942647f4e9598f908c2ff903b7638dc2e6a30a7b
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_common.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #ifndef _ICE_RXTX_VEC_COMMON_H_
6 #define _ICE_RXTX_VEC_COMMON_H_
7
8 #include "ice_rxtx.h"
9
10 #ifndef __INTEL_COMPILER
11 #pragma GCC diagnostic ignored "-Wcast-qual"
12 #endif
13
14 static inline uint16_t
15 ice_rx_reassemble_packets(struct ice_rx_queue *rxq, struct rte_mbuf **rx_bufs,
16                           uint16_t nb_bufs, uint8_t *split_flags)
17 {
18         struct rte_mbuf *pkts[ICE_VPMD_RX_BURST] = {0}; /*finished pkts*/
19         struct rte_mbuf *start = rxq->pkt_first_seg;
20         struct rte_mbuf *end =  rxq->pkt_last_seg;
21         unsigned int pkt_idx, buf_idx;
22
23         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
24                 if (end) {
25                         /* processing a split packet */
26                         end->next = rx_bufs[buf_idx];
27                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
28
29                         start->nb_segs++;
30                         start->pkt_len += rx_bufs[buf_idx]->data_len;
31                         end = end->next;
32
33                         if (!split_flags[buf_idx]) {
34                                 /* it's the last packet of the set */
35                                 start->hash = end->hash;
36                                 start->vlan_tci = end->vlan_tci;
37                                 start->ol_flags = end->ol_flags;
38                                 /* we need to strip crc for the whole packet */
39                                 start->pkt_len -= rxq->crc_len;
40                                 if (end->data_len > rxq->crc_len) {
41                                         end->data_len -= rxq->crc_len;
42                                 } else {
43                                         /* free up last mbuf */
44                                         struct rte_mbuf *secondlast = start;
45
46                                         start->nb_segs--;
47                                         while (secondlast->next != end)
48                                                 secondlast = secondlast->next;
49                                         secondlast->data_len -= (rxq->crc_len -
50                                                         end->data_len);
51                                         secondlast->next = NULL;
52                                         rte_pktmbuf_free_seg(end);
53                                 }
54                                 pkts[pkt_idx++] = start;
55                                 start = NULL;
56                                 end = NULL;
57                         }
58                 } else {
59                         /* not processing a split packet */
60                         if (!split_flags[buf_idx]) {
61                                 /* not a split packet, save and skip */
62                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
63                                 continue;
64                         }
65                         start = rx_bufs[buf_idx];
66                         end = start;
67                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
68                         rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
69                 }
70         }
71
72         /* save the partial packet for next time */
73         rxq->pkt_first_seg = start;
74         rxq->pkt_last_seg = end;
75         rte_memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
76         return pkt_idx;
77 }
78
79 static __rte_always_inline int
80 ice_tx_free_bufs_vec(struct ice_tx_queue *txq)
81 {
82         struct ice_tx_entry *txep;
83         uint32_t n;
84         uint32_t i;
85         int nb_free = 0;
86         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
87
88         /* check DD bits on threshold descriptor */
89         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
90                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
91                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
92                 return 0;
93
94         n = txq->tx_rs_thresh;
95
96          /* first buffer to free from S/W ring is at index
97           * tx_next_dd - (tx_rs_thresh-1)
98           */
99         txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
100         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
101         if (likely(m)) {
102                 free[0] = m;
103                 nb_free = 1;
104                 for (i = 1; i < n; i++) {
105                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
106                         if (likely(m)) {
107                                 if (likely(m->pool == free[0]->pool)) {
108                                         free[nb_free++] = m;
109                                 } else {
110                                         rte_mempool_put_bulk(free[0]->pool,
111                                                              (void *)free,
112                                                              nb_free);
113                                         free[0] = m;
114                                         nb_free = 1;
115                                 }
116                         }
117                 }
118                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
119         } else {
120                 for (i = 1; i < n; i++) {
121                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
122                         if (m)
123                                 rte_mempool_put(m->pool, m);
124                 }
125         }
126
127         /* buffers were freed, update counters */
128         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
129         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
130         if (txq->tx_next_dd >= txq->nb_tx_desc)
131                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
132
133         return txq->tx_rs_thresh;
134 }
135
136 static __rte_always_inline void
137 ice_tx_backlog_entry(struct ice_tx_entry *txep,
138                      struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
139 {
140         int i;
141
142         for (i = 0; i < (int)nb_pkts; ++i)
143                 txep[i].mbuf = tx_pkts[i];
144 }
145
146 static inline void
147 _ice_rx_queue_release_mbufs_vec(struct ice_rx_queue *rxq)
148 {
149         const unsigned int mask = rxq->nb_rx_desc - 1;
150         unsigned int i;
151
152         if (unlikely(!rxq->sw_ring)) {
153                 PMD_DRV_LOG(DEBUG, "sw_ring is NULL");
154                 return;
155         }
156
157         if (rxq->rxrearm_nb >= rxq->nb_rx_desc)
158                 return;
159
160         /* free all mbufs that are valid in the ring */
161         if (rxq->rxrearm_nb == 0) {
162                 for (i = 0; i < rxq->nb_rx_desc; i++) {
163                         if (rxq->sw_ring[i].mbuf)
164                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
165                 }
166         } else {
167                 for (i = rxq->rx_tail;
168                      i != rxq->rxrearm_start;
169                      i = (i + 1) & mask) {
170                         if (rxq->sw_ring[i].mbuf)
171                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
172                 }
173         }
174
175         rxq->rxrearm_nb = rxq->nb_rx_desc;
176
177         /* set all entries to NULL */
178         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
179 }
180
181 static inline void
182 _ice_tx_queue_release_mbufs_vec(struct ice_tx_queue *txq)
183 {
184         uint16_t i;
185
186         if (unlikely(!txq || !txq->sw_ring)) {
187                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
188                 return;
189         }
190
191         /**
192          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
193          *  so need to free remains more carefully.
194          */
195         i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
196
197 #ifdef CC_AVX512_SUPPORT
198         struct rte_eth_dev *dev = txq->vsi->adapter->eth_dev;
199
200         if (dev->tx_pkt_burst == ice_xmit_pkts_vec_avx512 ||
201             dev->tx_pkt_burst == ice_xmit_pkts_vec_avx512_offload) {
202                 struct ice_vec_tx_entry *swr = (void *)txq->sw_ring;
203
204                 if (txq->tx_tail < i) {
205                         for (; i < txq->nb_tx_desc; i++) {
206                                 rte_pktmbuf_free_seg(swr[i].mbuf);
207                                 swr[i].mbuf = NULL;
208                         }
209                         i = 0;
210                 }
211                 for (; i < txq->tx_tail; i++) {
212                         rte_pktmbuf_free_seg(swr[i].mbuf);
213                         swr[i].mbuf = NULL;
214                 }
215         } else
216 #endif
217         {
218                 if (txq->tx_tail < i) {
219                         for (; i < txq->nb_tx_desc; i++) {
220                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
221                                 txq->sw_ring[i].mbuf = NULL;
222                         }
223                         i = 0;
224                 }
225                 for (; i < txq->tx_tail; i++) {
226                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
227                         txq->sw_ring[i].mbuf = NULL;
228                 }
229         }
230 }
231
232 static inline int
233 ice_rxq_vec_setup_default(struct ice_rx_queue *rxq)
234 {
235         uintptr_t p;
236         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
237
238         mb_def.nb_segs = 1;
239         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
240         mb_def.port = rxq->port_id;
241         rte_mbuf_refcnt_set(&mb_def, 1);
242
243         /* prevent compiler reordering: rearm_data covers previous fields */
244         rte_compiler_barrier();
245         p = (uintptr_t)&mb_def.rearm_data;
246         rxq->mbuf_initializer = *(uint64_t *)p;
247         return 0;
248 }
249
250 static inline int
251 ice_rx_vec_queue_default(struct ice_rx_queue *rxq)
252 {
253         if (!rxq)
254                 return -1;
255
256         if (!rte_is_power_of_2(rxq->nb_rx_desc))
257                 return -1;
258
259         if (rxq->rx_free_thresh < ICE_VPMD_RX_BURST)
260                 return -1;
261
262         if (rxq->nb_rx_desc % rxq->rx_free_thresh)
263                 return -1;
264
265         if (rxq->proto_xtr != PROTO_XTR_NONE)
266                 return -1;
267
268         return 0;
269 }
270
271 #define ICE_TX_NO_VECTOR_FLAGS (                        \
272                 DEV_TX_OFFLOAD_MULTI_SEGS |             \
273                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |       \
274                 DEV_TX_OFFLOAD_TCP_TSO)
275
276 #define ICE_TX_VECTOR_OFFLOAD (                         \
277                 DEV_TX_OFFLOAD_VLAN_INSERT |            \
278                 DEV_TX_OFFLOAD_QINQ_INSERT |            \
279                 DEV_TX_OFFLOAD_IPV4_CKSUM |             \
280                 DEV_TX_OFFLOAD_SCTP_CKSUM |             \
281                 DEV_TX_OFFLOAD_UDP_CKSUM |              \
282                 DEV_TX_OFFLOAD_TCP_CKSUM)
283
284 #define ICE_VECTOR_PATH         0
285 #define ICE_VECTOR_OFFLOAD_PATH 1
286
287 static inline int
288 ice_tx_vec_queue_default(struct ice_tx_queue *txq)
289 {
290         if (!txq)
291                 return -1;
292
293         if (txq->tx_rs_thresh < ICE_VPMD_TX_BURST ||
294             txq->tx_rs_thresh > ICE_TX_MAX_FREE_BUF_SZ)
295                 return -1;
296
297         if (txq->offloads & ICE_TX_NO_VECTOR_FLAGS)
298                 return -1;
299
300         if (txq->offloads & ICE_TX_VECTOR_OFFLOAD)
301                 return ICE_VECTOR_OFFLOAD_PATH;
302
303         return ICE_VECTOR_PATH;
304 }
305
306 static inline int
307 ice_rx_vec_dev_check_default(struct rte_eth_dev *dev)
308 {
309         int i;
310         struct ice_rx_queue *rxq;
311
312         for (i = 0; i < dev->data->nb_rx_queues; i++) {
313                 rxq = dev->data->rx_queues[i];
314                 if (ice_rx_vec_queue_default(rxq))
315                         return -1;
316         }
317
318         return 0;
319 }
320
321 static inline int
322 ice_tx_vec_dev_check_default(struct rte_eth_dev *dev)
323 {
324         int i;
325         struct ice_tx_queue *txq;
326         int ret = 0;
327         int result = 0;
328
329         for (i = 0; i < dev->data->nb_tx_queues; i++) {
330                 txq = dev->data->tx_queues[i];
331                 ret = ice_tx_vec_queue_default(txq);
332                 if (ret < 0)
333                         return -1;
334                 if (ret == ICE_VECTOR_OFFLOAD_PATH)
335                         result = ret;
336         }
337
338         return result;
339 }
340
341 #ifdef CC_AVX2_SUPPORT
342 static __rte_always_inline void
343 ice_rxq_rearm_common(struct ice_rx_queue *rxq, __rte_unused bool avx512)
344 {
345         int i;
346         uint16_t rx_id;
347         volatile union ice_rx_flex_desc *rxdp;
348         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
349
350         rxdp = rxq->rx_ring + rxq->rxrearm_start;
351
352         /* Pull 'n' more MBUFs into the software ring */
353         if (rte_mempool_get_bulk(rxq->mp,
354                                  (void *)rxep,
355                                  ICE_RXQ_REARM_THRESH) < 0) {
356                 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
357                     rxq->nb_rx_desc) {
358                         __m128i dma_addr0;
359
360                         dma_addr0 = _mm_setzero_si128();
361                         for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
362                                 rxep[i].mbuf = &rxq->fake_mbuf;
363                                 _mm_store_si128((__m128i *)&rxdp[i].read,
364                                                 dma_addr0);
365                         }
366                 }
367                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
368                         ICE_RXQ_REARM_THRESH;
369                 return;
370         }
371
372 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
373         struct rte_mbuf *mb0, *mb1;
374         __m128i dma_addr0, dma_addr1;
375         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
376                         RTE_PKTMBUF_HEADROOM);
377         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
378         for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
379                 __m128i vaddr0, vaddr1;
380
381                 mb0 = rxep[0].mbuf;
382                 mb1 = rxep[1].mbuf;
383
384                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
385                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
386                                 offsetof(struct rte_mbuf, buf_addr) + 8);
387                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
388                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
389
390                 /* convert pa to dma_addr hdr/data */
391                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
392                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
393
394                 /* add headroom to pa values */
395                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
396                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
397
398                 /* flush desc with pa dma_addr */
399                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
400                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
401         }
402 #else
403 #ifdef CC_AVX512_SUPPORT
404         if (avx512) {
405                 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
406                 struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
407                 __m512i dma_addr0_3, dma_addr4_7;
408                 __m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
409                 /* Initialize the mbufs in vector, process 8 mbufs in one loop */
410                 for (i = 0; i < ICE_RXQ_REARM_THRESH;
411                                 i += 8, rxep += 8, rxdp += 8) {
412                         __m128i vaddr0, vaddr1, vaddr2, vaddr3;
413                         __m128i vaddr4, vaddr5, vaddr6, vaddr7;
414                         __m256i vaddr0_1, vaddr2_3;
415                         __m256i vaddr4_5, vaddr6_7;
416                         __m512i vaddr0_3, vaddr4_7;
417
418                         mb0 = rxep[0].mbuf;
419                         mb1 = rxep[1].mbuf;
420                         mb2 = rxep[2].mbuf;
421                         mb3 = rxep[3].mbuf;
422                         mb4 = rxep[4].mbuf;
423                         mb5 = rxep[5].mbuf;
424                         mb6 = rxep[6].mbuf;
425                         mb7 = rxep[7].mbuf;
426
427                         /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
428                         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
429                                         offsetof(struct rte_mbuf, buf_addr) + 8);
430                         vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
431                         vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
432                         vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
433                         vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
434                         vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
435                         vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
436                         vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
437                         vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
438
439                         /**
440                          * merge 0 & 1, by casting 0 to 256-bit and inserting 1
441                          * into the high lanes. Similarly for 2 & 3, and so on.
442                          */
443                         vaddr0_1 =
444                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
445                                                         vaddr1, 1);
446                         vaddr2_3 =
447                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
448                                                         vaddr3, 1);
449                         vaddr4_5 =
450                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
451                                                         vaddr5, 1);
452                         vaddr6_7 =
453                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
454                                                         vaddr7, 1);
455                         vaddr0_3 =
456                                 _mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
457                                                         vaddr2_3, 1);
458                         vaddr4_7 =
459                                 _mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
460                                                         vaddr6_7, 1);
461
462                         /* convert pa to dma_addr hdr/data */
463                         dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
464                         dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);
465
466                         /* add headroom to pa values */
467                         dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
468                         dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);
469
470                         /* flush desc with pa dma_addr */
471                         _mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
472                         _mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
473                 }
474         } else
475 #endif
476         {
477                 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
478                 __m256i dma_addr0_1, dma_addr2_3;
479                 __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
480                 /* Initialize the mbufs in vector, process 4 mbufs in one loop */
481                 for (i = 0; i < ICE_RXQ_REARM_THRESH;
482                                 i += 4, rxep += 4, rxdp += 4) {
483                         __m128i vaddr0, vaddr1, vaddr2, vaddr3;
484                         __m256i vaddr0_1, vaddr2_3;
485
486                         mb0 = rxep[0].mbuf;
487                         mb1 = rxep[1].mbuf;
488                         mb2 = rxep[2].mbuf;
489                         mb3 = rxep[3].mbuf;
490
491                         /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
492                         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
493                                         offsetof(struct rte_mbuf, buf_addr) + 8);
494                         vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
495                         vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
496                         vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
497                         vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
498
499                         /**
500                          * merge 0 & 1, by casting 0 to 256-bit and inserting 1
501                          * into the high lanes. Similarly for 2 & 3
502                          */
503                         vaddr0_1 =
504                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
505                                                         vaddr1, 1);
506                         vaddr2_3 =
507                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
508                                                         vaddr3, 1);
509
510                         /* convert pa to dma_addr hdr/data */
511                         dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
512                         dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
513
514                         /* add headroom to pa values */
515                         dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
516                         dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
517
518                         /* flush desc with pa dma_addr */
519                         _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
520                         _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
521                 }
522         }
523
524 #endif
525
526         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
527         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
528                 rxq->rxrearm_start = 0;
529
530         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
531
532         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
533                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
534
535         /* Update the tail pointer on the NIC */
536         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
537 }
538 #endif
539
540 static inline void
541 ice_txd_enable_offload(struct rte_mbuf *tx_pkt,
542                        uint64_t *txd_hi)
543 {
544         uint64_t ol_flags = tx_pkt->ol_flags;
545         uint32_t td_cmd = 0;
546         uint32_t td_offset = 0;
547
548         /* Tx Checksum Offload */
549         /* SET MACLEN */
550         td_offset |= (tx_pkt->l2_len >> 1) <<
551                         ICE_TX_DESC_LEN_MACLEN_S;
552
553         /* Enable L3 checksum offload */
554         if (ol_flags & PKT_TX_IP_CKSUM) {
555                 td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
556                 td_offset |= (tx_pkt->l3_len >> 2) <<
557                         ICE_TX_DESC_LEN_IPLEN_S;
558         } else if (ol_flags & PKT_TX_IPV4) {
559                 td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
560                 td_offset |= (tx_pkt->l3_len >> 2) <<
561                         ICE_TX_DESC_LEN_IPLEN_S;
562         } else if (ol_flags & PKT_TX_IPV6) {
563                 td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
564                 td_offset |= (tx_pkt->l3_len >> 2) <<
565                         ICE_TX_DESC_LEN_IPLEN_S;
566         }
567
568         /* Enable L4 checksum offloads */
569         switch (ol_flags & PKT_TX_L4_MASK) {
570         case PKT_TX_TCP_CKSUM:
571                 td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
572                 td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
573                         ICE_TX_DESC_LEN_L4_LEN_S;
574                 break;
575         case PKT_TX_SCTP_CKSUM:
576                 td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
577                 td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
578                         ICE_TX_DESC_LEN_L4_LEN_S;
579                 break;
580         case PKT_TX_UDP_CKSUM:
581                 td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
582                 td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
583                         ICE_TX_DESC_LEN_L4_LEN_S;
584                 break;
585         default:
586                 break;
587         }
588
589         *txd_hi |= ((uint64_t)td_offset) << ICE_TXD_QW1_OFFSET_S;
590
591         /* Tx VLAN/QINQ insertion Offload */
592         if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
593                 td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
594                 *txd_hi |= ((uint64_t)tx_pkt->vlan_tci <<
595                                 ICE_TXD_QW1_L2TAG1_S);
596         }
597
598         *txd_hi |= ((uint64_t)td_cmd) << ICE_TXD_QW1_CMD_S;
599 }
600 #endif