net/ice: fix Rx offload flags in SSE path
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <tmmintrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline __m128i
14 ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
15 {
16 #define FDID_MIS_MAGIC 0xFFFFFFFF
17         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
18         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
19         const __m128i pkt_fdir_bit = _mm_set1_epi32(PKT_RX_FDIR |
20                         PKT_RX_FDIR_ID);
21         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
22         const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
23         __m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
24                         fdir_mis_mask);
25         /* this XOR op results to bit-reverse the fdir_mask */
26         fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
27         const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
28
29         return fdir_flags;
30 }
31
32 static inline void
33 ice_rxq_rearm(struct ice_rx_queue *rxq)
34 {
35         int i;
36         uint16_t rx_id;
37         volatile union ice_rx_flex_desc *rxdp;
38         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
39         struct rte_mbuf *mb0, *mb1;
40         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
41                                           RTE_PKTMBUF_HEADROOM);
42         __m128i dma_addr0, dma_addr1;
43
44         rxdp = rxq->rx_ring + rxq->rxrearm_start;
45
46         /* Pull 'n' more MBUFs into the software ring */
47         if (rte_mempool_get_bulk(rxq->mp,
48                                  (void *)rxep,
49                                  ICE_RXQ_REARM_THRESH) < 0) {
50                 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
51                     rxq->nb_rx_desc) {
52                         dma_addr0 = _mm_setzero_si128();
53                         for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
54                                 rxep[i].mbuf = &rxq->fake_mbuf;
55                                 _mm_store_si128((__m128i *)&rxdp[i].read,
56                                                 dma_addr0);
57                         }
58                 }
59                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
60                         ICE_RXQ_REARM_THRESH;
61                 return;
62         }
63
64         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
65         for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
66                 __m128i vaddr0, vaddr1;
67
68                 mb0 = rxep[0].mbuf;
69                 mb1 = rxep[1].mbuf;
70
71                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
72                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
73                                  offsetof(struct rte_mbuf, buf_addr) + 8);
74                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
75                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
76
77                 /* convert pa to dma_addr hdr/data */
78                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
79                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
80
81                 /* add headroom to pa values */
82                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
83                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
84
85                 /* flush desc with pa dma_addr */
86                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
87                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
88         }
89
90         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
91         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
92                 rxq->rxrearm_start = 0;
93
94         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
95
96         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
97                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
98
99         /* Update the tail pointer on the NIC */
100         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
101 }
102
103 static inline void
104 ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
105                          struct rte_mbuf **rx_pkts)
106 {
107         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
108         __m128i rearm0, rearm1, rearm2, rearm3;
109
110         __m128i tmp_desc, flags, rss_vlan;
111
112         /* mask everything except checksum, RSS and VLAN flags.
113          * bit6:4 for checksum.
114          * bit12 for RSS indication.
115          * bit13 for VLAN indication.
116          */
117         const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
118                                                 0x3070, 0x3070);
119
120         const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
121                                                  PKT_RX_L4_CKSUM_MASK |
122                                                  PKT_RX_EIP_CKSUM_BAD,
123                                                  PKT_RX_IP_CKSUM_MASK |
124                                                  PKT_RX_L4_CKSUM_MASK |
125                                                  PKT_RX_EIP_CKSUM_BAD,
126                                                  PKT_RX_IP_CKSUM_MASK |
127                                                  PKT_RX_L4_CKSUM_MASK |
128                                                  PKT_RX_EIP_CKSUM_BAD,
129                                                  PKT_RX_IP_CKSUM_MASK |
130                                                  PKT_RX_L4_CKSUM_MASK |
131                                                  PKT_RX_EIP_CKSUM_BAD);
132
133         /* map the checksum, rss and vlan fields to the checksum, rss
134          * and vlan flag
135          */
136         const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
137                         /* shift right 1 bit to make sure it not exceed 255 */
138                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
139                          PKT_RX_IP_CKSUM_BAD) >> 1,
140                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
141                          PKT_RX_IP_CKSUM_GOOD) >> 1,
142                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
143                          PKT_RX_IP_CKSUM_BAD) >> 1,
144                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
145                          PKT_RX_IP_CKSUM_GOOD) >> 1,
146                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
147                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
148                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
149                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
150
151         const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
152                         0, 0, 0, 0,
153                         0, 0, 0, 0,
154                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
155                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
156                         PKT_RX_RSS_HASH, 0);
157
158         /* merge 4 descriptors */
159         flags = _mm_unpackhi_epi32(descs[0], descs[1]);
160         tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
161         tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
162         tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
163
164         /* checksum flags */
165         tmp_desc = _mm_srli_epi32(tmp_desc, 4);
166         flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
167         /* then we shift left 1 bit */
168         flags = _mm_slli_epi32(flags, 1);
169         /* we need to mask out the reduntant bits introduced by RSS or
170          * VLAN fields.
171          */
172         flags = _mm_and_si128(flags, cksum_mask);
173
174         /* RSS, VLAN flag */
175         tmp_desc = _mm_srli_epi32(tmp_desc, 8);
176         rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
177
178         /* merge the flags */
179         flags = _mm_or_si128(flags, rss_vlan);
180
181         if (rxq->fdir_enabled) {
182                 const __m128i fdir_id0_1 =
183                         _mm_unpackhi_epi32(descs[0], descs[1]);
184
185                 const __m128i fdir_id2_3 =
186                         _mm_unpackhi_epi32(descs[2], descs[3]);
187
188                 const __m128i fdir_id0_3 =
189                         _mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
190
191                 const __m128i fdir_flags =
192                         ice_flex_rxd_to_fdir_flags_vec(fdir_id0_3);
193
194                 /* merge with fdir_flags */
195                 flags = _mm_or_si128(flags, fdir_flags);
196
197                 /* write fdir_id to mbuf */
198                 rx_pkts[0]->hash.fdir.hi =
199                         _mm_extract_epi32(fdir_id0_3, 0);
200
201                 rx_pkts[1]->hash.fdir.hi =
202                         _mm_extract_epi32(fdir_id0_3, 1);
203
204                 rx_pkts[2]->hash.fdir.hi =
205                         _mm_extract_epi32(fdir_id0_3, 2);
206
207                 rx_pkts[3]->hash.fdir.hi =
208                         _mm_extract_epi32(fdir_id0_3, 3);
209         } /* if() on fdir_enabled */
210
211         /**
212          * At this point, we have the 4 sets of flags in the low 16-bits
213          * of each 32-bit value in flags.
214          * We want to extract these, and merge them with the mbuf init data
215          * so we can do a single 16-byte write to the mbuf to set the flags
216          * and all the other initialization fields. Extracting the
217          * appropriate flags means that we have to do a shift and blend for
218          * each mbuf before we do the write.
219          */
220         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
221         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
222         rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
223         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
224
225         /* write the rearm data and the olflags in one write */
226         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
227                          offsetof(struct rte_mbuf, rearm_data) + 8);
228         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
229                          RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
230         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
231         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
232         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
233         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
234 }
235
236 static inline void
237 ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
238                        uint32_t *ptype_tbl)
239 {
240         const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0,
241                                                  ICE_RX_FLEX_DESC_PTYPE_M, 0,
242                                                  ICE_RX_FLEX_DESC_PTYPE_M, 0,
243                                                  ICE_RX_FLEX_DESC_PTYPE_M, 0);
244         __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
245         __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
246         __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
247
248         ptype_all = _mm_and_si128(ptype_all, ptype_mask);
249
250         rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
251         rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
252         rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
253         rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
254 }
255
256 /**
257  * vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP)
258  *
259  * Notice:
260  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
261  * - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two
262  */
263 static inline uint16_t
264 _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
265                        uint16_t nb_pkts, uint8_t *split_packet)
266 {
267         volatile union ice_rx_flex_desc *rxdp;
268         struct ice_rx_entry *sw_ring;
269         uint16_t nb_pkts_recd;
270         int pos;
271         uint64_t var;
272         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
273         __m128i crc_adjust = _mm_set_epi16
274                                 (0, 0, 0,       /* ignore non-length fields */
275                                  -rxq->crc_len, /* sub crc on data_len */
276                                  0,          /* ignore high-16bits of pkt_len */
277                                  -rxq->crc_len, /* sub crc on pkt_len */
278                                  0, 0           /* ignore pkt_type field */
279                                 );
280         const __m128i zero = _mm_setzero_si128();
281         /* mask to shuffle from desc. to mbuf */
282         const __m128i shuf_msk = _mm_set_epi8
283                         (0xFF, 0xFF,
284                          0xFF, 0xFF,  /* rss hash parsed separately */
285                          11, 10,      /* octet 10~11, 16 bits vlan_macip */
286                          5, 4,        /* octet 4~5, 16 bits data_len */
287                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
288                          5, 4,        /* octet 4~5, low 16 bits pkt_len */
289                          0xFF, 0xFF,  /* pkt_type set as unknown */
290                          0xFF, 0xFF   /* pkt_type set as unknown */
291                         );
292         const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
293                                                    0xFF, 0xFF,
294                                                    0xFF, 0xFF,
295                                                    0xFF, 0xFF,
296                                                    0xFF, 0xFF,
297                                                    0xFF, 0xFF,
298                                                    0x04, 0x0C,
299                                                    0x00, 0x08);
300
301         /**
302          * compile-time check the above crc_adjust layout is correct.
303          * NOTE: the first field (lowest address) is given last in set_epi16
304          * call above.
305          */
306         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
307                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
308         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
309                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
310
311         /* 4 packets DD mask */
312         const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
313                                                 0x0000000100000001LL);
314         /* 4 packets EOP mask */
315         const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
316                                                  0x0000000200000002LL);
317
318         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
319         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
320
321         /* Just the act of getting into the function from the application is
322          * going to cost about 7 cycles
323          */
324         rxdp = rxq->rx_ring + rxq->rx_tail;
325
326         rte_prefetch0(rxdp);
327
328         /* See if we need to rearm the RX queue - gives the prefetch a bit
329          * of time to act
330          */
331         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
332                 ice_rxq_rearm(rxq);
333
334         /* Before we start moving massive data around, check to see if
335          * there is actually a packet available
336          */
337         if (!(rxdp->wb.status_error0 &
338               rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
339                 return 0;
340
341         /**
342          * Compile-time verify the shuffle mask
343          * NOTE: some field positions already verified above, but duplicated
344          * here for completeness in case of future modifications.
345          */
346         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
347                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
348         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
349                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
350         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
351                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
352         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
353                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
354
355         /* Cache is empty -> need to scan the buffer rings, but first move
356          * the next 'n' mbufs into the cache
357          */
358         sw_ring = &rxq->sw_ring[rxq->rx_tail];
359
360         /* A. load 4 packet in one loop
361          * [A*. mask out 4 unused dirty field in desc]
362          * B. copy 4 mbuf point from swring to rx_pkts
363          * C. calc the number of DD bits among the 4 packets
364          * [C*. extract the end-of-packet bit, if requested]
365          * D. fill info. from desc to mbuf
366          */
367
368         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
369              pos += ICE_DESCS_PER_LOOP,
370              rxdp += ICE_DESCS_PER_LOOP) {
371                 __m128i descs[ICE_DESCS_PER_LOOP];
372                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
373                 __m128i staterr, sterr_tmp1, sterr_tmp2;
374                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
375                 __m128i mbp1;
376 #if defined(RTE_ARCH_X86_64)
377                 __m128i mbp2;
378 #endif
379
380                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
381                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
382                 /* Read desc statuses backwards to avoid race condition */
383                 /* A.1 load 4 pkts desc */
384                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
385                 rte_compiler_barrier();
386
387                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
388                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
389
390 #if defined(RTE_ARCH_X86_64)
391                 /* B.1 load 2 64 bit mbuf points */
392                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
393 #endif
394
395                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
396                 rte_compiler_barrier();
397                 /* B.1 load 2 mbuf point */
398                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
399                 rte_compiler_barrier();
400                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
401
402 #if defined(RTE_ARCH_X86_64)
403                 /* B.2 copy 2 mbuf point into rx_pkts  */
404                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
405 #endif
406
407                 if (split_packet) {
408                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
409                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
410                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
411                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
412                 }
413
414                 /* avoid compiler reorder optimization */
415                 rte_compiler_barrier();
416
417                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
418                 pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
419                 pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
420
421                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
422                 pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
423                 pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
424
425                 /* C.1 4=>2 filter staterr info only */
426                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
427                 /* C.1 4=>2 filter staterr info only */
428                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
429
430                 ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
431
432                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
433                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
434                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
435
436                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
437                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
438                 pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
439
440 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
441                 /**
442                  * needs to load 2nd 16B of each desc for RSS hash parsing,
443                  * will cause performance drop to get into this context.
444                  */
445                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
446                                 DEV_RX_OFFLOAD_RSS_HASH) {
447                         /* load bottom half of every 32B desc */
448                         const __m128i raw_desc_bh3 =
449                                 _mm_load_si128
450                                         ((void *)(&rxdp[3].wb.status_error1));
451                         rte_compiler_barrier();
452                         const __m128i raw_desc_bh2 =
453                                 _mm_load_si128
454                                         ((void *)(&rxdp[2].wb.status_error1));
455                         rte_compiler_barrier();
456                         const __m128i raw_desc_bh1 =
457                                 _mm_load_si128
458                                         ((void *)(&rxdp[1].wb.status_error1));
459                         rte_compiler_barrier();
460                         const __m128i raw_desc_bh0 =
461                                 _mm_load_si128
462                                         ((void *)(&rxdp[0].wb.status_error1));
463
464                         /**
465                          * to shift the 32b RSS hash value to the
466                          * highest 32b of each 128b before mask
467                          */
468                         __m128i rss_hash3 =
469                                 _mm_slli_epi64(raw_desc_bh3, 32);
470                         __m128i rss_hash2 =
471                                 _mm_slli_epi64(raw_desc_bh2, 32);
472                         __m128i rss_hash1 =
473                                 _mm_slli_epi64(raw_desc_bh1, 32);
474                         __m128i rss_hash0 =
475                                 _mm_slli_epi64(raw_desc_bh0, 32);
476
477                         __m128i rss_hash_msk =
478                                 _mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
479
480                         rss_hash3 = _mm_and_si128
481                                         (rss_hash3, rss_hash_msk);
482                         rss_hash2 = _mm_and_si128
483                                         (rss_hash2, rss_hash_msk);
484                         rss_hash1 = _mm_and_si128
485                                         (rss_hash1, rss_hash_msk);
486                         rss_hash0 = _mm_and_si128
487                                         (rss_hash0, rss_hash_msk);
488
489                         pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
490                         pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
491                         pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
492                         pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
493                 } /* if() on RSS hash parsing */
494 #endif
495
496                 /* C.2 get 4 pkts staterr value  */
497                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
498
499                 /* D.3 copy final 3,4 data to rx_pkts */
500                 _mm_storeu_si128
501                         ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
502                          pkt_mb3);
503                 _mm_storeu_si128
504                         ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
505                          pkt_mb2);
506
507                 /* C* extract and record EOP bit */
508                 if (split_packet) {
509                         /* and with mask to extract bits, flipping 1-0 */
510                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
511                         /* the staterr values are not in order, as the count
512                          * count of dd bits doesn't care. However, for end of
513                          * packet tracking, we do care, so shuffle. This also
514                          * compresses the 32-bit values to 8-bit
515                          */
516                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
517                         /* store the resulting 32-bit value */
518                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
519                         split_packet += ICE_DESCS_PER_LOOP;
520                 }
521
522                 /* C.3 calc available number of desc */
523                 staterr = _mm_and_si128(staterr, dd_check);
524                 staterr = _mm_packs_epi32(staterr, zero);
525
526                 /* D.3 copy final 1,2 data to rx_pkts */
527                 _mm_storeu_si128
528                         ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
529                          pkt_mb1);
530                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
531                                  pkt_mb0);
532                 ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
533                 /* C.4 calc avaialbe number of desc */
534                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
535                 nb_pkts_recd += var;
536                 if (likely(var != ICE_DESCS_PER_LOOP))
537                         break;
538         }
539
540         /* Update our internal tail pointer */
541         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
542         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
543         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
544
545         return nb_pkts_recd;
546 }
547
548 /**
549  * Notice:
550  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
551  * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
552  *   numbers of DD bits
553  */
554 uint16_t
555 ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
556                   uint16_t nb_pkts)
557 {
558         return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
559 }
560
561 /**
562  * vPMD receive routine that reassembles single burst of 32 scattered packets
563  *
564  * Notice:
565  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
566  */
567 static uint16_t
568 ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
569                              uint16_t nb_pkts)
570 {
571         struct ice_rx_queue *rxq = rx_queue;
572         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
573
574         /* get some new buffers */
575         uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
576                                                   split_flags);
577         if (nb_bufs == 0)
578                 return 0;
579
580         /* happy day case, full burst + no packets to be joined */
581         const uint64_t *split_fl64 = (uint64_t *)split_flags;
582
583         if (!rxq->pkt_first_seg &&
584             split_fl64[0] == 0 && split_fl64[1] == 0 &&
585             split_fl64[2] == 0 && split_fl64[3] == 0)
586                 return nb_bufs;
587
588         /* reassemble any packets that need reassembly*/
589         unsigned int i = 0;
590
591         if (!rxq->pkt_first_seg) {
592                 /* find the first split flag, and only reassemble then*/
593                 while (i < nb_bufs && !split_flags[i])
594                         i++;
595                 if (i == nb_bufs)
596                         return nb_bufs;
597                 rxq->pkt_first_seg = rx_pkts[i];
598         }
599         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
600                                              &split_flags[i]);
601 }
602
603 /**
604  * vPMD receive routine that reassembles scattered packets.
605  */
606 uint16_t
607 ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
608                             uint16_t nb_pkts)
609 {
610         uint16_t retval = 0;
611
612         while (nb_pkts > ICE_VPMD_RX_BURST) {
613                 uint16_t burst;
614
615                 burst = ice_recv_scattered_burst_vec(rx_queue,
616                                                      rx_pkts + retval,
617                                                      ICE_VPMD_RX_BURST);
618                 retval += burst;
619                 nb_pkts -= burst;
620                 if (burst < ICE_VPMD_RX_BURST)
621                         return retval;
622         }
623
624         return retval + ice_recv_scattered_burst_vec(rx_queue,
625                                                      rx_pkts + retval,
626                                                      nb_pkts);
627 }
628
629 static inline void
630 ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
631          uint64_t flags)
632 {
633         uint64_t high_qw =
634                 (ICE_TX_DESC_DTYPE_DATA |
635                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
636                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
637
638         __m128i descriptor = _mm_set_epi64x(high_qw,
639                                             pkt->buf_iova + pkt->data_off);
640         _mm_store_si128((__m128i *)txdp, descriptor);
641 }
642
643 static inline void
644 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
645         uint16_t nb_pkts, uint64_t flags)
646 {
647         int i;
648
649         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
650                 ice_vtx1(txdp, *pkt, flags);
651 }
652
653 static uint16_t
654 ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
655                          uint16_t nb_pkts)
656 {
657         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
658         volatile struct ice_tx_desc *txdp;
659         struct ice_tx_entry *txep;
660         uint16_t n, nb_commit, tx_id;
661         uint64_t flags = ICE_TD_CMD;
662         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
663         int i;
664
665         /* cross rx_thresh boundary is not allowed */
666         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
667
668         if (txq->nb_tx_free < txq->tx_free_thresh)
669                 ice_tx_free_bufs(txq);
670
671         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
672         nb_commit = nb_pkts;
673         if (unlikely(nb_pkts == 0))
674                 return 0;
675
676         tx_id = txq->tx_tail;
677         txdp = &txq->tx_ring[tx_id];
678         txep = &txq->sw_ring[tx_id];
679
680         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
681
682         n = (uint16_t)(txq->nb_tx_desc - tx_id);
683         if (nb_commit >= n) {
684                 ice_tx_backlog_entry(txep, tx_pkts, n);
685
686                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
687                         ice_vtx1(txdp, *tx_pkts, flags);
688
689                 ice_vtx1(txdp, *tx_pkts++, rs);
690
691                 nb_commit = (uint16_t)(nb_commit - n);
692
693                 tx_id = 0;
694                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
695
696                 /* avoid reach the end of ring */
697                 txdp = &txq->tx_ring[tx_id];
698                 txep = &txq->sw_ring[tx_id];
699         }
700
701         ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
702
703         ice_vtx(txdp, tx_pkts, nb_commit, flags);
704
705         tx_id = (uint16_t)(tx_id + nb_commit);
706         if (tx_id > txq->tx_next_rs) {
707                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
708                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
709                                          ICE_TXD_QW1_CMD_S);
710                 txq->tx_next_rs =
711                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
712         }
713
714         txq->tx_tail = tx_id;
715
716         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
717
718         return nb_pkts;
719 }
720
721 uint16_t
722 ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
723                   uint16_t nb_pkts)
724 {
725         uint16_t nb_tx = 0;
726         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
727
728         while (nb_pkts) {
729                 uint16_t ret, num;
730
731                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
732                 ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
733                 nb_tx += ret;
734                 nb_pkts -= ret;
735                 if (ret < num)
736                         break;
737         }
738
739         return nb_tx;
740 }
741
742 int __rte_cold
743 ice_rxq_vec_setup(struct ice_rx_queue *rxq)
744 {
745         if (!rxq)
746                 return -1;
747
748         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
749         return ice_rxq_vec_setup_default(rxq);
750 }
751
752 int __rte_cold
753 ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
754 {
755         if (!txq)
756                 return -1;
757
758         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
759         return 0;
760 }
761
762 int __rte_cold
763 ice_rx_vec_dev_check(struct rte_eth_dev *dev)
764 {
765         return ice_rx_vec_dev_check_default(dev);
766 }
767
768 int __rte_cold
769 ice_tx_vec_dev_check(struct rte_eth_dev *dev)
770 {
771         return ice_tx_vec_dev_check_default(dev);
772 }