1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2019 Intel Corporation
5 #include "ice_rxtx_vec_common.h"
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
18 volatile union ice_rx_desc *rxdp;
19 struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
20 struct rte_mbuf *mb0, *mb1;
21 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
22 RTE_PKTMBUF_HEADROOM);
23 __m128i dma_addr0, dma_addr1;
25 rxdp = rxq->rx_ring + rxq->rxrearm_start;
27 /* Pull 'n' more MBUFs into the software ring */
28 if (rte_mempool_get_bulk(rxq->mp,
30 ICE_RXQ_REARM_THRESH) < 0) {
31 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
33 dma_addr0 = _mm_setzero_si128();
34 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
35 rxep[i].mbuf = &rxq->fake_mbuf;
36 _mm_store_si128((__m128i *)&rxdp[i].read,
40 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
45 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
46 for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
47 __m128i vaddr0, vaddr1;
52 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
53 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
54 offsetof(struct rte_mbuf, buf_addr) + 8);
55 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
56 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
58 /* convert pa to dma_addr hdr/data */
59 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
60 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
62 /* add headroom to pa values */
63 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
64 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
66 /* flush desc with pa dma_addr */
67 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
68 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
71 rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
72 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
73 rxq->rxrearm_start = 0;
75 rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
77 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
78 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
80 /* Update the tail pointer on the NIC */
81 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
85 ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
86 struct rte_mbuf **rx_pkts)
88 const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
89 __m128i rearm0, rearm1, rearm2, rearm3;
91 __m128i vlan0, vlan1, rss, l3_l4e;
93 /* mask everything except RSS, flow director and VLAN flags
94 * bit2 is for VLAN tag, bit11 for flow director indication
95 * bit13:12 for RSS indication.
97 const __m128i rss_vlan_msk = _mm_set_epi32(0x1c03804, 0x1c03804,
98 0x1c03804, 0x1c03804);
100 const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD |
101 PKT_RX_IP_CKSUM_BAD |
102 PKT_RX_L4_CKSUM_GOOD |
103 PKT_RX_L4_CKSUM_BAD |
104 PKT_RX_EIP_CKSUM_BAD,
105 PKT_RX_IP_CKSUM_GOOD |
106 PKT_RX_IP_CKSUM_BAD |
107 PKT_RX_L4_CKSUM_GOOD |
108 PKT_RX_L4_CKSUM_BAD |
109 PKT_RX_EIP_CKSUM_BAD,
110 PKT_RX_IP_CKSUM_GOOD |
111 PKT_RX_IP_CKSUM_BAD |
112 PKT_RX_L4_CKSUM_GOOD |
113 PKT_RX_L4_CKSUM_BAD |
114 PKT_RX_EIP_CKSUM_BAD,
115 PKT_RX_IP_CKSUM_GOOD |
116 PKT_RX_IP_CKSUM_BAD |
117 PKT_RX_L4_CKSUM_GOOD |
118 PKT_RX_L4_CKSUM_BAD |
119 PKT_RX_EIP_CKSUM_BAD);
121 /* map rss and vlan type to rss hash and vlan flag */
122 const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
124 0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
127 const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
129 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
130 0, 0, PKT_RX_FDIR, 0);
132 const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
133 /* shift right 1 bit to make sure it not exceed 255 */
134 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
135 PKT_RX_IP_CKSUM_BAD) >> 1,
136 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
137 PKT_RX_L4_CKSUM_BAD) >> 1,
138 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
139 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
140 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
141 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
142 PKT_RX_IP_CKSUM_BAD >> 1,
143 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
145 vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
146 vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
147 vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
149 vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
150 vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
152 rss = _mm_srli_epi32(vlan1, 11);
153 rss = _mm_shuffle_epi8(rss_flags, rss);
155 l3_l4e = _mm_srli_epi32(vlan1, 22);
156 l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
157 /* then we shift left 1 bit */
158 l3_l4e = _mm_slli_epi32(l3_l4e, 1);
159 /* we need to mask out the reduntant bits */
160 l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
162 vlan0 = _mm_or_si128(vlan0, rss);
163 vlan0 = _mm_or_si128(vlan0, l3_l4e);
166 * At this point, we have the 4 sets of flags in the low 16-bits
167 * of each 32-bit value in vlan0.
168 * We want to extract these, and merge them with the mbuf init data
169 * so we can do a single 16-byte write to the mbuf to set the flags
170 * and all the other initialization fields. Extracting the
171 * appropriate flags means that we have to do a shift and blend for
172 * each mbuf before we do the write.
174 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
175 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
176 rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
177 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
179 /* write the rearm data and the olflags in one write */
180 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
181 offsetof(struct rte_mbuf, rearm_data) + 8);
182 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
183 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
184 _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
185 _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
186 _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
187 _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 #define PKTLEN_SHIFT 10
193 ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
196 __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
197 __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
199 ptype0 = _mm_srli_epi64(ptype0, 30);
200 ptype1 = _mm_srli_epi64(ptype1, 30);
202 rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
203 rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
204 rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
205 rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
210 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
211 * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
214 static inline uint16_t
215 _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
216 uint16_t nb_pkts, uint8_t *split_packet)
218 volatile union ice_rx_desc *rxdp;
219 struct ice_rx_entry *sw_ring;
220 uint16_t nb_pkts_recd;
224 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
226 __m128i crc_adjust = _mm_set_epi16
227 (0, 0, 0, /* ignore non-length fields */
228 -rxq->crc_len, /* sub crc on data_len */
229 0, /* ignore high-16bits of pkt_len */
230 -rxq->crc_len, /* sub crc on pkt_len */
231 0, 0 /* ignore pkt_type field */
234 * compile-time check the above crc_adjust layout is correct.
235 * NOTE: the first field (lowest address) is given last in set_epi16
238 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
239 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
240 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
241 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
242 __m128i dd_check, eop_check;
244 /* nb_pkts shall be less equal than ICE_MAX_RX_BURST */
245 nb_pkts = RTE_MIN(nb_pkts, ICE_MAX_RX_BURST);
247 /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
248 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
250 /* Just the act of getting into the function from the application is
251 * going to cost about 7 cycles
253 rxdp = rxq->rx_ring + rxq->rx_tail;
257 /* See if we need to rearm the RX queue - gives the prefetch a bit
260 if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
263 /* Before we start moving massive data around, check to see if
264 * there is actually a packet available
266 if (!(rxdp->wb.qword1.status_error_len &
267 rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S)))
270 /* 4 packets DD mask */
271 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
273 /* 4 packets EOP mask */
274 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
276 /* mask to shuffle from desc. to mbuf */
277 shuf_msk = _mm_set_epi8
278 (7, 6, 5, 4, /* octet 4~7, 32bits rss */
279 3, 2, /* octet 2~3, low 16 bits vlan_macip */
280 15, 14, /* octet 15~14, 16 bits data_len */
281 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
282 15, 14, /* octet 15~14, low 16 bits pkt_len */
283 0xFF, 0xFF, /* pkt_type set as unknown */
284 0xFF, 0xFF /*pkt_type set as unknown */
287 * Compile-time verify the shuffle mask
288 * NOTE: some field positions already verified above, but duplicated
289 * here for completeness in case of future modifications.
291 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
292 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
293 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
294 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
295 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
296 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
297 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
298 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
300 /* Cache is empty -> need to scan the buffer rings, but first move
301 * the next 'n' mbufs into the cache
303 sw_ring = &rxq->sw_ring[rxq->rx_tail];
305 /* A. load 4 packet in one loop
306 * [A*. mask out 4 unused dirty field in desc]
307 * B. copy 4 mbuf point from swring to rx_pkts
308 * C. calc the number of DD bits among the 4 packets
309 * [C*. extract the end-of-packet bit, if requested]
310 * D. fill info. from desc to mbuf
313 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
314 pos += ICE_DESCS_PER_LOOP,
315 rxdp += ICE_DESCS_PER_LOOP) {
316 __m128i descs[ICE_DESCS_PER_LOOP];
317 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
318 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
319 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
321 #if defined(RTE_ARCH_X86_64)
325 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
326 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
327 /* Read desc statuses backwards to avoid race condition */
328 /* A.1 load 4 pkts desc */
329 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
330 rte_compiler_barrier();
332 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
333 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
335 #if defined(RTE_ARCH_X86_64)
336 /* B.1 load 2 64 bit mbuf points */
337 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
340 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
341 rte_compiler_barrier();
342 /* B.1 load 2 mbuf point */
343 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
344 rte_compiler_barrier();
345 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
347 #if defined(RTE_ARCH_X86_64)
348 /* B.2 copy 2 mbuf point into rx_pkts */
349 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
353 rte_mbuf_prefetch_part2(rx_pkts[pos]);
354 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
355 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
356 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
359 /* avoid compiler reorder optimization */
360 rte_compiler_barrier();
362 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
363 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
364 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
366 /* merge the now-aligned packet length fields back in */
367 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
368 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
370 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
371 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
372 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
374 /* C.1 4=>2 filter staterr info only */
375 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
376 /* C.1 4=>2 filter staterr info only */
377 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
379 ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
381 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
382 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
383 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
385 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
386 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
387 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
389 /* merge the now-aligned packet length fields back in */
390 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
391 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
393 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
394 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
395 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
397 /* C.2 get 4 pkts staterr value */
398 zero = _mm_xor_si128(dd_check, dd_check);
399 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
401 /* D.3 copy final 3,4 data to rx_pkts */
403 ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
406 ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
409 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
410 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
411 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
413 /* C* extract and record EOP bit */
415 __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
424 /* and with mask to extract bits, flipping 1-0 */
425 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
426 /* the staterr values are not in order, as the count
427 * count of dd bits doesn't care. However, for end of
428 * packet tracking, we do care, so shuffle. This also
429 * compresses the 32-bit values to 8-bit
431 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
432 /* store the resulting 32-bit value */
433 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
434 split_packet += ICE_DESCS_PER_LOOP;
437 /* C.3 calc available number of desc */
438 staterr = _mm_and_si128(staterr, dd_check);
439 staterr = _mm_packs_epi32(staterr, zero);
441 /* D.3 copy final 1,2 data to rx_pkts */
443 ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
445 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
447 ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
448 /* C.4 calc avaialbe number of desc */
449 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
451 if (likely(var != ICE_DESCS_PER_LOOP))
455 /* Update our internal tail pointer */
456 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
457 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
458 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
465 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
466 * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
470 ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
473 return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
476 /* vPMD receive routine that reassembles scattered packets
478 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
479 * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
483 ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
486 struct ice_rx_queue *rxq = rx_queue;
487 uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
489 /* get some new buffers */
490 uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
495 /* happy day case, full burst + no packets to be joined */
496 const uint64_t *split_fl64 = (uint64_t *)split_flags;
498 if (!rxq->pkt_first_seg &&
499 split_fl64[0] == 0 && split_fl64[1] == 0 &&
500 split_fl64[2] == 0 && split_fl64[3] == 0)
503 /* reassemble any packets that need reassembly*/
506 if (!rxq->pkt_first_seg) {
507 /* find the first split flag, and only reassemble then*/
508 while (i < nb_bufs && !split_flags[i])
512 rxq->pkt_first_seg = rx_pkts[i];
514 return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
519 ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
523 (ICE_TX_DESC_DTYPE_DATA |
524 ((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
525 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
527 __m128i descriptor = _mm_set_epi64x(high_qw,
528 pkt->buf_iova + pkt->data_off);
529 _mm_store_si128((__m128i *)txdp, descriptor);
533 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
534 uint16_t nb_pkts, uint64_t flags)
538 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
539 ice_vtx1(txdp, *pkt, flags);
543 ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
546 struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
547 volatile struct ice_tx_desc *txdp;
548 struct ice_tx_entry *txep;
549 uint16_t n, nb_commit, tx_id;
550 uint64_t flags = ICE_TD_CMD;
551 uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
554 /* cross rx_thresh boundary is not allowed */
555 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
557 if (txq->nb_tx_free < txq->tx_free_thresh)
558 ice_tx_free_bufs(txq);
560 nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
562 if (unlikely(nb_pkts == 0))
565 tx_id = txq->tx_tail;
566 txdp = &txq->tx_ring[tx_id];
567 txep = &txq->sw_ring[tx_id];
569 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
571 n = (uint16_t)(txq->nb_tx_desc - tx_id);
572 if (nb_commit >= n) {
573 ice_tx_backlog_entry(txep, tx_pkts, n);
575 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
576 ice_vtx1(txdp, *tx_pkts, flags);
578 ice_vtx1(txdp, *tx_pkts++, rs);
580 nb_commit = (uint16_t)(nb_commit - n);
583 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
585 /* avoid reach the end of ring */
586 txdp = &txq->tx_ring[tx_id];
587 txep = &txq->sw_ring[tx_id];
590 ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
592 ice_vtx(txdp, tx_pkts, nb_commit, flags);
594 tx_id = (uint16_t)(tx_id + nb_commit);
595 if (tx_id > txq->tx_next_rs) {
596 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
597 rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
600 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
603 txq->tx_tail = tx_id;
605 ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
611 ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
615 struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
620 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
621 ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
631 int __attribute__((cold))
632 ice_rxq_vec_setup(struct ice_rx_queue *rxq)
637 rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
638 return ice_rxq_vec_setup_default(rxq);
641 int __attribute__((cold))
642 ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
647 txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
651 int __attribute__((cold))
652 ice_rx_vec_dev_check(struct rte_eth_dev *dev)
654 return ice_rx_vec_dev_check_default(dev);
657 int __attribute__((cold))
658 ice_tx_vec_dev_check(struct rte_eth_dev *dev)
660 return ice_tx_vec_dev_check_default(dev);