net/i40e: remove duplicate tunnel type check
[dpdk.git] / drivers / net / igc / base / igc_i225.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4
5 #include "igc_api.h"
6
7 static s32 igc_init_nvm_params_i225(struct igc_hw *hw);
8 static s32 igc_init_mac_params_i225(struct igc_hw *hw);
9 static s32 igc_init_phy_params_i225(struct igc_hw *hw);
10 static s32 igc_reset_hw_i225(struct igc_hw *hw);
11 static s32 igc_acquire_nvm_i225(struct igc_hw *hw);
12 static void igc_release_nvm_i225(struct igc_hw *hw);
13 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw);
14 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
15                                   u16 *data);
16 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw);
17 static s32 igc_valid_led_default_i225(struct igc_hw *hw, u16 *data);
18
19 /**
20  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
21  *  @hw: pointer to the HW structure
22  **/
23 static s32 igc_init_nvm_params_i225(struct igc_hw *hw)
24 {
25         struct igc_nvm_info *nvm = &hw->nvm;
26         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
27         u16 size;
28
29         DEBUGFUNC("igc_init_nvm_params_i225");
30
31         size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
32                      IGC_EECD_SIZE_EX_SHIFT);
33         /*
34          * Added to a constant, "size" becomes the left-shift value
35          * for setting word_size.
36          */
37         size += NVM_WORD_SIZE_BASE_SHIFT;
38
39         /* Just in case size is out of range, cap it to the largest
40          * EEPROM size supported
41          */
42         if (size > 15)
43                 size = 15;
44
45         nvm->word_size = 1 << size;
46         nvm->opcode_bits = 8;
47         nvm->delay_usec = 1;
48         nvm->type = igc_nvm_eeprom_spi;
49
50
51         nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
52         nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
53                             16 : 8;
54
55         if (nvm->word_size == (1 << 15))
56                 nvm->page_size = 128;
57
58         nvm->ops.acquire = igc_acquire_nvm_i225;
59         nvm->ops.release = igc_release_nvm_i225;
60         nvm->ops.valid_led_default = igc_valid_led_default_i225;
61         if (igc_get_flash_presence_i225(hw)) {
62                 hw->nvm.type = igc_nvm_flash_hw;
63                 nvm->ops.read    = igc_read_nvm_srrd_i225;
64                 nvm->ops.write   = igc_write_nvm_srwr_i225;
65                 nvm->ops.validate = igc_validate_nvm_checksum_i225;
66                 nvm->ops.update   = igc_update_nvm_checksum_i225;
67         } else {
68                 hw->nvm.type = igc_nvm_invm;
69                 nvm->ops.write    = igc_null_write_nvm;
70                 nvm->ops.validate = igc_null_ops_generic;
71                 nvm->ops.update   = igc_null_ops_generic;
72         }
73
74         return IGC_SUCCESS;
75 }
76
77 /**
78  *  igc_init_mac_params_i225 - Init MAC func ptrs.
79  *  @hw: pointer to the HW structure
80  **/
81 static s32 igc_init_mac_params_i225(struct igc_hw *hw)
82 {
83         struct igc_mac_info *mac = &hw->mac;
84         struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
85
86         DEBUGFUNC("igc_init_mac_params_i225");
87
88         /* Initialize function pointer */
89         igc_init_mac_ops_generic(hw);
90
91         /* Set media type */
92         hw->phy.media_type = igc_media_type_copper;
93         /* Set mta register count */
94         mac->mta_reg_count = 128;
95         /* Set rar entry count */
96         mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
97
98         /* reset */
99         mac->ops.reset_hw = igc_reset_hw_i225;
100         /* hw initialization */
101         mac->ops.init_hw = igc_init_hw_i225;
102         /* link setup */
103         mac->ops.setup_link = igc_setup_link_generic;
104         /* check for link */
105         mac->ops.check_for_link = igc_check_for_link_i225;
106         /* link info */
107         mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
108         /* acquire SW_FW sync */
109         mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
110         /* release SW_FW sync */
111         mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
112
113         /* Allow a single clear of the SW semaphore on I225 */
114         dev_spec->clear_semaphore_once = true;
115         mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
116
117         /* Set if part includes ASF firmware */
118         mac->asf_firmware_present = true;
119
120         /* multicast address update */
121         mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
122
123         mac->ops.write_vfta = igc_write_vfta_generic;
124
125         return IGC_SUCCESS;
126 }
127
128 /**
129  *  igc_init_phy_params_i225 - Init PHY func ptrs.
130  *  @hw: pointer to the HW structure
131  **/
132 static s32 igc_init_phy_params_i225(struct igc_hw *hw)
133 {
134         struct igc_phy_info *phy = &hw->phy;
135         s32 ret_val = IGC_SUCCESS;
136         u32 ctrl_ext;
137
138         DEBUGFUNC("igc_init_phy_params_i225");
139
140         phy->ops.read_i2c_byte = igc_read_i2c_byte_generic;
141         phy->ops.write_i2c_byte = igc_write_i2c_byte_generic;
142
143         if (hw->phy.media_type != igc_media_type_copper) {
144                 phy->type = igc_phy_none;
145                 goto out;
146         }
147
148         phy->ops.power_up   = igc_power_up_phy_copper;
149         phy->ops.power_down = igc_power_down_phy_copper_base;
150
151         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
152
153         phy->reset_delay_us     = 100;
154
155         phy->ops.acquire        = igc_acquire_phy_base;
156         phy->ops.check_reset_block = igc_check_reset_block_generic;
157         phy->ops.commit         = igc_phy_sw_reset_generic;
158         phy->ops.release        = igc_release_phy_base;
159
160         ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
161
162         /* Make sure the PHY is in a good state. Several people have reported
163          * firmware leaving the PHY's page select register set to something
164          * other than the default of zero, which causes the PHY ID read to
165          * access something other than the intended register.
166          */
167         ret_val = hw->phy.ops.reset(hw);
168         if (ret_val)
169                 goto out;
170
171         IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
172         phy->ops.read_reg = igc_read_phy_reg_gpy;
173         phy->ops.write_reg = igc_write_phy_reg_gpy;
174
175         ret_val = igc_get_phy_id(hw);
176         /* Verify phy id and set remaining function pointers */
177         switch (phy->id) {
178         case I225_I_PHY_ID:
179                 phy->type               = igc_phy_i225;
180                 phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225;
181                 phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225;
182                 /* TODO - complete with GPY PHY information */
183                 break;
184         default:
185                 ret_val = -IGC_ERR_PHY;
186                 goto out;
187         }
188
189 out:
190         return ret_val;
191 }
192
193 /**
194  *  igc_reset_hw_i225 - Reset hardware
195  *  @hw: pointer to the HW structure
196  *
197  *  This resets the hardware into a known state.
198  **/
199 static s32 igc_reset_hw_i225(struct igc_hw *hw)
200 {
201         u32 ctrl;
202         s32 ret_val;
203
204         DEBUGFUNC("igc_reset_hw_i225");
205
206         /*
207          * Prevent the PCI-E bus from sticking if there is no TLP connection
208          * on the last TLP read/write transaction when MAC is reset.
209          */
210         ret_val = igc_disable_pcie_master_generic(hw);
211         if (ret_val)
212                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
213
214         DEBUGOUT("Masking off all interrupts\n");
215         IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
216
217         IGC_WRITE_REG(hw, IGC_RCTL, 0);
218         IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
219         IGC_WRITE_FLUSH(hw);
220
221         msec_delay(10);
222
223         ctrl = IGC_READ_REG(hw, IGC_CTRL);
224
225         DEBUGOUT("Issuing a global reset to MAC\n");
226         IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_RST);
227
228         ret_val = igc_get_auto_rd_done_generic(hw);
229         if (ret_val) {
230                 /*
231                  * When auto config read does not complete, do not
232                  * return with an error. This can happen in situations
233                  * where there is no eeprom and prevents getting link.
234                  */
235                 DEBUGOUT("Auto Read Done did not complete\n");
236         }
237
238         /* Clear any pending interrupt events. */
239         IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
240         IGC_READ_REG(hw, IGC_ICR);
241
242         /* Install any alternate MAC address into RAR0 */
243         ret_val = igc_check_alt_mac_addr_generic(hw);
244
245         return ret_val;
246 }
247
248 /* igc_acquire_nvm_i225 - Request for access to EEPROM
249  * @hw: pointer to the HW structure
250  *
251  * Acquire the necessary semaphores for exclusive access to the EEPROM.
252  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
253  * Return successful if access grant bit set, else clear the request for
254  * EEPROM access and return -IGC_ERR_NVM (-1).
255  */
256 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
257 {
258         s32 ret_val;
259
260         DEBUGFUNC("igc_acquire_nvm_i225");
261
262         ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
263
264         return ret_val;
265 }
266
267 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
268  * @hw: pointer to the HW structure
269  *
270  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
271  * then release the semaphores acquired.
272  */
273 static void igc_release_nvm_i225(struct igc_hw *hw)
274 {
275         DEBUGFUNC("igc_release_nvm_i225");
276
277         igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
278 }
279
280 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
281  * @hw: pointer to the HW structure
282  * @mask: specifies which semaphore to acquire
283  *
284  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
285  * will also specify which port we're acquiring the lock for.
286  */
287 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
288 {
289         u32 swfw_sync;
290         u32 swmask = mask;
291         u32 fwmask = mask << 16;
292         s32 ret_val = IGC_SUCCESS;
293         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
294
295         DEBUGFUNC("igc_acquire_swfw_sync_i225");
296
297         while (i < timeout) {
298                 if (igc_get_hw_semaphore_i225(hw)) {
299                         ret_val = -IGC_ERR_SWFW_SYNC;
300                         goto out;
301                 }
302
303                 swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
304                 if (!(swfw_sync & (fwmask | swmask)))
305                         break;
306
307                 /* Firmware currently using resource (fwmask)
308                  * or other software thread using resource (swmask)
309                  */
310                 igc_put_hw_semaphore_generic(hw);
311                 msec_delay_irq(5);
312                 i++;
313         }
314
315         if (i == timeout) {
316                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
317                 ret_val = -IGC_ERR_SWFW_SYNC;
318                 goto out;
319         }
320
321         swfw_sync |= swmask;
322         IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
323
324         igc_put_hw_semaphore_generic(hw);
325
326 out:
327         return ret_val;
328 }
329
330 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
331  * @hw: pointer to the HW structure
332  * @mask: specifies which semaphore to acquire
333  *
334  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
335  * will also specify which port we're releasing the lock for.
336  */
337 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
338 {
339         u32 swfw_sync;
340
341         DEBUGFUNC("igc_release_swfw_sync_i225");
342
343         while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
344                 ; /* Empty */
345
346         swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
347         swfw_sync &= ~mask;
348         IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
349
350         igc_put_hw_semaphore_generic(hw);
351 }
352
353 /*
354  * igc_setup_copper_link_i225 - Configure copper link settings
355  * @hw: pointer to the HW structure
356  *
357  * Configures the link for auto-neg or forced speed and duplex.  Then we check
358  * for link, once link is established calls to configure collision distance
359  * and flow control are called.
360  */
361 s32 igc_setup_copper_link_i225(struct igc_hw *hw)
362 {
363         u32 phpm_reg;
364         s32 ret_val;
365         u32 ctrl;
366
367         DEBUGFUNC("igc_setup_copper_link_i225");
368
369         ctrl = IGC_READ_REG(hw, IGC_CTRL);
370         ctrl |= IGC_CTRL_SLU;
371         ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
372         IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
373
374         phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
375         phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
376         IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
377
378         ret_val = igc_setup_copper_link_generic(hw);
379
380         return ret_val;
381 }
382
383 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
384  * @hw: pointer to the HW structure
385  *
386  * Acquire the HW semaphore to access the PHY or NVM
387  */
388 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
389 {
390         u32 swsm;
391         s32 timeout = hw->nvm.word_size + 1;
392         s32 i = 0;
393
394         DEBUGFUNC("igc_get_hw_semaphore_i225");
395
396         /* Get the SW semaphore */
397         while (i < timeout) {
398                 swsm = IGC_READ_REG(hw, IGC_SWSM);
399                 if (!(swsm & IGC_SWSM_SMBI))
400                         break;
401
402                 usec_delay(50);
403                 i++;
404         }
405
406         if (i == timeout) {
407                 /* In rare circumstances, the SW semaphore may already be held
408                  * unintentionally. Clear the semaphore once before giving up.
409                  */
410                 if (hw->dev_spec._i225.clear_semaphore_once) {
411                         hw->dev_spec._i225.clear_semaphore_once = false;
412                         igc_put_hw_semaphore_generic(hw);
413                         for (i = 0; i < timeout; i++) {
414                                 swsm = IGC_READ_REG(hw, IGC_SWSM);
415                                 if (!(swsm & IGC_SWSM_SMBI))
416                                         break;
417
418                                 usec_delay(50);
419                         }
420                 }
421
422                 /* If we do not have the semaphore here, we have to give up. */
423                 if (i == timeout) {
424                         DEBUGOUT("Driver can't access device -\n");
425                         DEBUGOUT("SMBI bit is set.\n");
426                         return -IGC_ERR_NVM;
427                 }
428         }
429
430         /* Get the FW semaphore. */
431         for (i = 0; i < timeout; i++) {
432                 swsm = IGC_READ_REG(hw, IGC_SWSM);
433                 IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
434
435                 /* Semaphore acquired if bit latched */
436                 if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
437                         break;
438
439                 usec_delay(50);
440         }
441
442         if (i == timeout) {
443                 /* Release semaphores */
444                 igc_put_hw_semaphore_generic(hw);
445                 DEBUGOUT("Driver can't access the NVM\n");
446                 return -IGC_ERR_NVM;
447         }
448
449         return IGC_SUCCESS;
450 }
451
452 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
453  * @hw: pointer to the HW structure
454  * @offset: offset of word in the Shadow Ram to read
455  * @words: number of words to read
456  * @data: word read from the Shadow Ram
457  *
458  * Reads a 16 bit word from the Shadow Ram using the EERD register.
459  * Uses necessary synchronization semaphores.
460  */
461 s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
462                              u16 *data)
463 {
464         s32 status = IGC_SUCCESS;
465         u16 i, count;
466
467         DEBUGFUNC("igc_read_nvm_srrd_i225");
468
469         /* We cannot hold synchronization semaphores for too long,
470          * because of forceful takeover procedure. However it is more efficient
471          * to read in bursts than synchronizing access for each word.
472          */
473         for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
474                 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
475                         IGC_EERD_EEWR_MAX_COUNT : (words - i);
476                 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
477                         status = igc_read_nvm_eerd(hw, offset, count,
478                                                      data + i);
479                         hw->nvm.ops.release(hw);
480                 } else {
481                         status = IGC_ERR_SWFW_SYNC;
482                 }
483
484                 if (status != IGC_SUCCESS)
485                         break;
486         }
487
488         return status;
489 }
490
491 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
492  * @hw: pointer to the HW structure
493  * @offset: offset within the Shadow RAM to be written to
494  * @words: number of words to write
495  * @data: 16 bit word(s) to be written to the Shadow RAM
496  *
497  * Writes data to Shadow RAM at offset using EEWR register.
498  *
499  * If igc_update_nvm_checksum is not called after this function , the
500  * data will not be committed to FLASH and also Shadow RAM will most likely
501  * contain an invalid checksum.
502  *
503  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
504  * partially written.
505  */
506 s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
507                               u16 *data)
508 {
509         s32 status = IGC_SUCCESS;
510         u16 i, count;
511
512         DEBUGFUNC("igc_write_nvm_srwr_i225");
513
514         /* We cannot hold synchronization semaphores for too long,
515          * because of forceful takeover procedure. However it is more efficient
516          * to write in bursts than synchronizing access for each word.
517          */
518         for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
519                 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
520                         IGC_EERD_EEWR_MAX_COUNT : (words - i);
521                 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
522                         status = __igc_write_nvm_srwr(hw, offset, count,
523                                                         data + i);
524                         hw->nvm.ops.release(hw);
525                 } else {
526                         status = IGC_ERR_SWFW_SYNC;
527                 }
528
529                 if (status != IGC_SUCCESS)
530                         break;
531         }
532
533         return status;
534 }
535
536 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
537  * @hw: pointer to the HW structure
538  * @offset: offset within the Shadow Ram to be written to
539  * @words: number of words to write
540  * @data: 16 bit word(s) to be written to the Shadow Ram
541  *
542  * Writes data to Shadow Ram at offset using EEWR register.
543  *
544  * If igc_update_nvm_checksum is not called after this function , the
545  * Shadow Ram will most likely contain an invalid checksum.
546  */
547 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
548                                   u16 *data)
549 {
550         struct igc_nvm_info *nvm = &hw->nvm;
551         u32 i, k, eewr = 0;
552         u32 attempts = 100000;
553         s32 ret_val = IGC_SUCCESS;
554
555         DEBUGFUNC("__igc_write_nvm_srwr");
556
557         /* A check for invalid values:  offset too large, too many words,
558          * too many words for the offset, and not enough words.
559          */
560         if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
561                         words == 0) {
562                 DEBUGOUT("nvm parameter(s) out of bounds\n");
563                 ret_val = -IGC_ERR_NVM;
564                 goto out;
565         }
566
567         for (i = 0; i < words; i++) {
568                 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
569                         (data[i] << IGC_NVM_RW_REG_DATA) |
570                         IGC_NVM_RW_REG_START;
571
572                 IGC_WRITE_REG(hw, IGC_SRWR, eewr);
573
574                 for (k = 0; k < attempts; k++) {
575                         if (IGC_NVM_RW_REG_DONE &
576                             IGC_READ_REG(hw, IGC_SRWR)) {
577                                 ret_val = IGC_SUCCESS;
578                                 break;
579                         }
580                         usec_delay(5);
581                 }
582
583                 if (ret_val != IGC_SUCCESS) {
584                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
585                         break;
586                 }
587         }
588
589 out:
590         return ret_val;
591 }
592
593 /* igc_read_invm_version_i225 - Reads iNVM version and image type
594  * @hw: pointer to the HW structure
595  * @invm_ver: version structure for the version read
596  *
597  * Reads iNVM version and image type.
598  */
599 s32 igc_read_invm_version_i225(struct igc_hw *hw,
600                                  struct igc_fw_version *invm_ver)
601 {
602         u32 *record = NULL;
603         u32 *next_record = NULL;
604         u32 i = 0;
605         u32 invm_dword = 0;
606         u32 invm_blocks = IGC_INVM_SIZE - (IGC_INVM_ULT_BYTES_SIZE /
607                                              IGC_INVM_RECORD_SIZE_IN_BYTES);
608         u32 buffer[IGC_INVM_SIZE];
609         s32 status = -IGC_ERR_INVM_VALUE_NOT_FOUND;
610         u16 version = 0;
611
612         DEBUGFUNC("igc_read_invm_version_i225");
613
614         /* Read iNVM memory */
615         for (i = 0; i < IGC_INVM_SIZE; i++) {
616                 invm_dword = IGC_READ_REG(hw, IGC_INVM_DATA_REG(i));
617                 buffer[i] = invm_dword;
618         }
619
620         /* Read version number */
621         for (i = 1; i < invm_blocks; i++) {
622                 record = &buffer[invm_blocks - i];
623                 next_record = &buffer[invm_blocks - i + 1];
624
625                 /* Check if we have first version location used */
626                 if (i == 1 && (*record & IGC_INVM_VER_FIELD_ONE) == 0) {
627                         version = 0;
628                         status = IGC_SUCCESS;
629                         break;
630                 }
631                 /* Check if we have second version location used */
632                 else if ((i == 1) &&
633                          ((*record & IGC_INVM_VER_FIELD_TWO) == 0)) {
634                         version = (*record & IGC_INVM_VER_FIELD_ONE) >> 3;
635                         status = IGC_SUCCESS;
636                         break;
637                 }
638                 /* Check if we have odd version location
639                  * used and it is the last one used
640                  */
641                 else if ((((*record & IGC_INVM_VER_FIELD_ONE) == 0) &&
642                           ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
643                            (i != 1))) {
644                         version = (*next_record & IGC_INVM_VER_FIELD_TWO)
645                                   >> 13;
646                         status = IGC_SUCCESS;
647                         break;
648                 }
649                 /* Check if we have even version location
650                  * used and it is the last one used
651                  */
652                 else if (((*record & IGC_INVM_VER_FIELD_TWO) == 0) &&
653                          ((*record & 0x3) == 0)) {
654                         version = (*record & IGC_INVM_VER_FIELD_ONE) >> 3;
655                         status = IGC_SUCCESS;
656                         break;
657                 }
658         }
659
660         if (status == IGC_SUCCESS) {
661                 invm_ver->invm_major = (version & IGC_INVM_MAJOR_MASK)
662                                         >> IGC_INVM_MAJOR_SHIFT;
663                 invm_ver->invm_minor = version & IGC_INVM_MINOR_MASK;
664         }
665         /* Read Image Type */
666         for (i = 1; i < invm_blocks; i++) {
667                 record = &buffer[invm_blocks - i];
668                 next_record = &buffer[invm_blocks - i + 1];
669
670                 /* Check if we have image type in first location used */
671                 if (i == 1 && (*record & IGC_INVM_IMGTYPE_FIELD) == 0) {
672                         invm_ver->invm_img_type = 0;
673                         status = IGC_SUCCESS;
674                         break;
675                 }
676                 /* Check if we have image type in first location used */
677                 else if ((((*record & 0x3) == 0) &&
678                           ((*record & IGC_INVM_IMGTYPE_FIELD) == 0)) ||
679                             ((((*record & 0x3) != 0) && (i != 1)))) {
680                         invm_ver->invm_img_type =
681                                 (*next_record & IGC_INVM_IMGTYPE_FIELD) >> 23;
682                         status = IGC_SUCCESS;
683                         break;
684                 }
685         }
686         return status;
687 }
688
689 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
690  * @hw: pointer to the HW structure
691  *
692  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
693  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
694  */
695 s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
696 {
697         s32 status = IGC_SUCCESS;
698         s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset,
699                         u16 count, u16 *data);
700
701         DEBUGFUNC("igc_validate_nvm_checksum_i225");
702
703         if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
704                 /* Replace the read function with semaphore grabbing with
705                  * the one that skips this for a while.
706                  * We have semaphore taken already here.
707                  */
708                 read_op_ptr = hw->nvm.ops.read;
709                 hw->nvm.ops.read = igc_read_nvm_eerd;
710
711                 status = igc_validate_nvm_checksum_generic(hw);
712
713                 /* Revert original read operation. */
714                 hw->nvm.ops.read = read_op_ptr;
715
716                 hw->nvm.ops.release(hw);
717         } else {
718                 status = IGC_ERR_SWFW_SYNC;
719         }
720
721         return status;
722 }
723
724 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
725  * @hw: pointer to the HW structure
726  *
727  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
728  * up to the checksum.  Then calculates the EEPROM checksum and writes the
729  * value to the EEPROM. Next commit EEPROM data onto the Flash.
730  */
731 s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
732 {
733         s32 ret_val;
734         u16 checksum = 0;
735         u16 i, nvm_data;
736
737         DEBUGFUNC("igc_update_nvm_checksum_i225");
738
739         /* Read the first word from the EEPROM. If this times out or fails, do
740          * not continue or we could be in for a very long wait while every
741          * EEPROM read fails
742          */
743         ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
744         if (ret_val != IGC_SUCCESS) {
745                 DEBUGOUT("EEPROM read failed\n");
746                 goto out;
747         }
748
749         if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
750                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
751                  * because we do not want to take the synchronization
752                  * semaphores twice here.
753                  */
754
755                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
756                         ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
757                         if (ret_val) {
758                                 hw->nvm.ops.release(hw);
759                                 DEBUGOUT("NVM Read Error while updating\n");
760                                 DEBUGOUT("checksum.\n");
761                                 goto out;
762                         }
763                         checksum += nvm_data;
764                 }
765                 checksum = (u16)NVM_SUM - checksum;
766                 ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
767                                                  &checksum);
768                 if (ret_val != IGC_SUCCESS) {
769                         hw->nvm.ops.release(hw);
770                         DEBUGOUT("NVM Write Error while updating checksum.\n");
771                         goto out;
772                 }
773
774                 hw->nvm.ops.release(hw);
775
776                 ret_val = igc_update_flash_i225(hw);
777         } else {
778                 ret_val = IGC_ERR_SWFW_SYNC;
779         }
780 out:
781         return ret_val;
782 }
783
784 /* igc_get_flash_presence_i225 - Check if flash device is detected.
785  * @hw: pointer to the HW structure
786  */
787 bool igc_get_flash_presence_i225(struct igc_hw *hw)
788 {
789         u32 eec = 0;
790         bool ret_val = false;
791
792         DEBUGFUNC("igc_get_flash_presence_i225");
793
794         eec = IGC_READ_REG(hw, IGC_EECD);
795
796         if (eec & IGC_EECD_FLASH_DETECTED_I225)
797                 ret_val = true;
798
799         return ret_val;
800 }
801
802 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
803  * Counter in FLSWCNT register.
804  *
805  * @hw: pointer to the HW structure
806  * @burst_counter: size in bytes of the Flash burst to read or write
807  */
808 s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw,
809                                             u32 burst_counter)
810 {
811         s32 ret_val = IGC_SUCCESS;
812
813         DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
814
815         /* Validate input data */
816         if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
817                 /* Write FLSWCNT - burst counter */
818                 IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
819         } else {
820                 ret_val = IGC_ERR_INVALID_ARGUMENT;
821         }
822
823         return ret_val;
824 }
825
826 /* igc_write_erase_flash_command_i225 - write/erase to a sector
827  * region on a given address.
828  *
829  * @hw: pointer to the HW structure
830  * @opcode: opcode to be used for the write command
831  * @address: the offset to write into the FLASH image
832  */
833 s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode,
834                                          u32 address)
835 {
836         u32 flswctl = 0;
837         s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
838         s32 ret_val = IGC_SUCCESS;
839
840         DEBUGFUNC("igc_write_erase_flash_command_i225");
841
842         flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
843         /* Polling done bit on FLSWCTL register */
844         while (timeout) {
845                 if (flswctl & IGC_FLSWCTL_DONE)
846                         break;
847                 usec_delay(5);
848                 flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
849                 timeout--;
850         }
851
852         if (!timeout) {
853                 DEBUGOUT("Flash transaction was not done\n");
854                 return -IGC_ERR_NVM;
855         }
856
857         /* Build and issue command on FLSWCTL register */
858         flswctl = address | opcode;
859         IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
860
861         /* Check if issued command is valid on FLSWCTL register */
862         flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
863         if (!(flswctl & IGC_FLSWCTL_CMDV)) {
864                 DEBUGOUT("Write flash command failed\n");
865                 ret_val = IGC_ERR_INVALID_ARGUMENT;
866         }
867
868         return ret_val;
869 }
870
871 /* igc_update_flash_i225 - Commit EEPROM to the flash
872  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
873  * register makes the FW load the internal shadow RAM into the flash.
874  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
875  * then FW is not active so the SW is responsible shadow RAM dump.
876  *
877  * @hw: pointer to the HW structure
878  */
879 s32 igc_update_flash_i225(struct igc_hw *hw)
880 {
881         u16 current_offset_data = 0;
882         u32 block_sw_protect = 1;
883         u16 base_address = 0x0;
884         u32 i, fw_valid_bit;
885         u16 current_offset;
886         s32 ret_val = 0;
887         u32 flup;
888
889         DEBUGFUNC("igc_update_flash_i225");
890
891         block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
892                                           IGC_FLSECU_BLK_SW_ACCESS_I225;
893         fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) &
894                                       IGC_FWSM_FW_VALID_I225;
895         if (fw_valid_bit) {
896                 ret_val = igc_pool_flash_update_done_i225(hw);
897                 if (ret_val == -IGC_ERR_NVM) {
898                         DEBUGOUT("Flash update time out\n");
899                         goto out;
900                 }
901
902                 flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
903                 IGC_WRITE_REG(hw, IGC_EECD, flup);
904
905                 ret_val = igc_pool_flash_update_done_i225(hw);
906                 if (ret_val == IGC_SUCCESS)
907                         DEBUGOUT("Flash update complete\n");
908                 else
909                         DEBUGOUT("Flash update time out\n");
910         } else if (!block_sw_protect) {
911                 /* FW is not active and security protection is disabled.
912                  * therefore, SW is in charge of shadow RAM dump.
913                  * Check which sector is valid. if sector 0 is valid,
914                  * base address remains 0x0. otherwise, sector 1 is
915                  * valid and it's base address is 0x1000
916                  */
917                 if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
918                         base_address = 0x1000;
919
920                 /* Valid sector erase */
921                 ret_val = igc_write_erase_flash_command_i225(hw,
922                                                   IGC_I225_ERASE_CMD_OPCODE,
923                                                   base_address);
924                 if (!ret_val) {
925                         DEBUGOUT("Sector erase failed\n");
926                         goto out;
927                 }
928
929                 current_offset = base_address;
930
931                 /* Write */
932                 for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
933                         /* Set burst write length */
934                         ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
935                                                                           0x2);
936                         if (ret_val != IGC_SUCCESS)
937                                 break;
938
939                         /* Set address and opcode */
940                         ret_val = igc_write_erase_flash_command_i225(hw,
941                                                 IGC_I225_WRITE_CMD_OPCODE,
942                                                 2 * current_offset);
943                         if (ret_val != IGC_SUCCESS)
944                                 break;
945
946                         ret_val = igc_read_nvm_eerd(hw, current_offset,
947                                                       1, &current_offset_data);
948                         if (ret_val) {
949                                 DEBUGOUT("Failed to read from EEPROM\n");
950                                 goto out;
951                         }
952
953                         /* Write CurrentOffseData to FLSWDATA register */
954                         IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
955                                         current_offset_data);
956                         current_offset++;
957
958                         /* Wait till operation has finished */
959                         ret_val = igc_poll_eerd_eewr_done(hw,
960                                                 IGC_NVM_POLL_READ);
961                         if (ret_val)
962                                 break;
963
964                         usec_delay(1000);
965                 }
966         }
967 out:
968         return ret_val;
969 }
970
971 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
972  * @hw: pointer to the HW structure
973  */
974 s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
975 {
976         s32 ret_val = -IGC_ERR_NVM;
977         u32 i, reg;
978
979         DEBUGFUNC("igc_pool_flash_update_done_i225");
980
981         for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
982                 reg = IGC_READ_REG(hw, IGC_EECD);
983                 if (reg & IGC_EECD_FLUDONE_I225) {
984                         ret_val = IGC_SUCCESS;
985                         break;
986                 }
987                 usec_delay(5);
988         }
989
990         return ret_val;
991 }
992
993 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
994  * @hw: pointer to the HW structure
995  * @link: bool indicating link status
996  *
997  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
998  * settings, otherwise specify that there is no LTR requirement.
999  */
1000 static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
1001 {
1002         u16 speed, duplex;
1003         u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
1004         s32 size;
1005
1006         DEBUGFUNC("igc_set_ltr_i225");
1007
1008         /* If we do not have link, LTR thresholds are zero. */
1009         if (link) {
1010                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1011
1012                 /* Check if using copper interface with EEE enabled or if the
1013                  * link speed is 10 Mbps.
1014                  */
1015                 if (hw->phy.media_type == igc_media_type_copper &&
1016                                 !hw->dev_spec._i225.eee_disable &&
1017                                 speed != SPEED_10) {
1018                         /* EEE enabled, so send LTRMAX threshold. */
1019                         ltrc = IGC_READ_REG(hw, IGC_LTRC) |
1020                                 IGC_LTRC_EEEMS_EN;
1021                         IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
1022
1023                         /* Calculate tw_system (nsec). */
1024                         if (speed == SPEED_100)
1025                                 tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
1026                                         IGC_TW_SYSTEM_100_MASK) >>
1027                                         IGC_TW_SYSTEM_100_SHIFT) * 500;
1028                         else
1029                                 tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
1030                                         IGC_TW_SYSTEM_1000_MASK) * 500;
1031                 } else {
1032                         tw_system = 0;
1033                 }
1034
1035                 /* Get the Rx packet buffer size. */
1036                 size = IGC_READ_REG(hw, IGC_RXPBS) &
1037                         IGC_RXPBS_SIZE_I225_MASK;
1038
1039                 /* Calculations vary based on DMAC settings. */
1040                 if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
1041                         size -= (IGC_READ_REG(hw, IGC_DMACR) &
1042                                  IGC_DMACR_DMACTHR_MASK) >>
1043                                  IGC_DMACR_DMACTHR_SHIFT;
1044                         /* Convert size to bits. */
1045                         size *= 1024 * 8;
1046                 } else {
1047                         /* Convert size to bytes, subtract the MTU, and then
1048                          * convert the size to bits.
1049                          */
1050                         size *= 1024;
1051                         size -= hw->dev_spec._i225.mtu;
1052                         size *= 8;
1053                 }
1054
1055                 if (size < 0) {
1056                         DEBUGOUT1("Invalid effective Rx buffer size %d\n",
1057                                   size);
1058                         return -IGC_ERR_CONFIG;
1059                 }
1060
1061                 /* Calculate the thresholds. Since speed is in Mbps, simplify
1062                  * the calculation by multiplying size/speed by 1000 for result
1063                  * to be in nsec before dividing by the scale in nsec. Set the
1064                  * scale such that the LTR threshold fits in the register.
1065                  */
1066                 ltr_min = (1000 * size) / speed;
1067                 ltr_max = ltr_min + tw_system;
1068                 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
1069                             IGC_LTRMINV_SCALE_32768;
1070                 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
1071                             IGC_LTRMAXV_SCALE_32768;
1072                 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
1073                 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
1074
1075                 /* Only write the LTR thresholds if they differ from before. */
1076                 ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
1077                 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
1078                         ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
1079                               (scale_min << IGC_LTRMINV_SCALE_SHIFT);
1080                         IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
1081                 }
1082
1083                 ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
1084                 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
1085                         ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
1086                               (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
1087                         IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
1088                 }
1089         }
1090
1091         return IGC_SUCCESS;
1092 }
1093
1094 /* igc_check_for_link_i225 - Check for link
1095  * @hw: pointer to the HW structure
1096  *
1097  * Checks to see of the link status of the hardware has changed.  If a
1098  * change in link status has been detected, then we read the PHY registers
1099  * to get the current speed/duplex if link exists.
1100  */
1101 s32 igc_check_for_link_i225(struct igc_hw *hw)
1102 {
1103         struct igc_mac_info *mac = &hw->mac;
1104         s32 ret_val;
1105         bool link = false;
1106
1107         DEBUGFUNC("igc_check_for_link_i225");
1108
1109         /* We only want to go out to the PHY registers to see if
1110          * Auto-Neg has completed and/or if our link status has
1111          * changed.  The get_link_status flag is set upon receiving
1112          * a Link Status Change or Rx Sequence Error interrupt.
1113          */
1114         if (!mac->get_link_status) {
1115                 ret_val = IGC_SUCCESS;
1116                 goto out;
1117         }
1118
1119         /* First we want to see if the MII Status Register reports
1120          * link.  If so, then we want to get the current speed/duplex
1121          * of the PHY.
1122          */
1123         ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1124         if (ret_val)
1125                 goto out;
1126
1127         if (!link)
1128                 goto out; /* No link detected */
1129
1130         mac->get_link_status = false;
1131
1132         /* Check if there was DownShift, must be checked
1133          * immediately after link-up
1134          */
1135         igc_check_downshift_generic(hw);
1136
1137         /* If we are forcing speed/duplex, then we simply return since
1138          * we have already determined whether we have link or not.
1139          */
1140         if (!mac->autoneg)
1141                 goto out;
1142
1143         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1144          * of MAC speed/duplex configuration.  So we only need to
1145          * configure Collision Distance in the MAC.
1146          */
1147         mac->ops.config_collision_dist(hw);
1148
1149         /* Configure Flow Control now that Auto-Neg has completed.
1150          * First, we need to restore the desired flow control
1151          * settings because we may have had to re-autoneg with a
1152          * different link partner.
1153          */
1154         ret_val = igc_config_fc_after_link_up_generic(hw);
1155         if (ret_val)
1156                 DEBUGOUT("Error configuring flow control\n");
1157 out:
1158         /* Now that we are aware of our link settings, we can set the LTR
1159          * thresholds.
1160          */
1161         ret_val = igc_set_ltr_i225(hw, link);
1162
1163         return ret_val;
1164 }
1165
1166 /* igc_init_function_pointers_i225 - Init func ptrs.
1167  * @hw: pointer to the HW structure
1168  *
1169  * Called to initialize all function pointers and parameters.
1170  */
1171 void igc_init_function_pointers_i225(struct igc_hw *hw)
1172 {
1173         igc_init_mac_ops_generic(hw);
1174         igc_init_phy_ops_generic(hw);
1175         igc_init_nvm_ops_generic(hw);
1176         hw->mac.ops.init_params = igc_init_mac_params_i225;
1177         hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1178         hw->phy.ops.init_params = igc_init_phy_params_i225;
1179 }
1180
1181 /* igc_valid_led_default_i225 - Verify a valid default LED config
1182  * @hw: pointer to the HW structure
1183  * @data: pointer to the NVM (EEPROM)
1184  *
1185  * Read the EEPROM for the current default LED configuration.  If the
1186  * LED configuration is not valid, set to a valid LED configuration.
1187  */
1188 static s32 igc_valid_led_default_i225(struct igc_hw *hw, u16 *data)
1189 {
1190         s32 ret_val;
1191
1192         DEBUGFUNC("igc_valid_led_default_i225");
1193
1194         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1195         if (ret_val) {
1196                 DEBUGOUT("NVM Read Error\n");
1197                 goto out;
1198         }
1199
1200         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1201                 switch (hw->phy.media_type) {
1202                 case igc_media_type_internal_serdes:
1203                         *data = ID_LED_DEFAULT_I225_SERDES;
1204                         break;
1205                 case igc_media_type_copper:
1206                 default:
1207                         *data = ID_LED_DEFAULT_I225;
1208                         break;
1209                 }
1210         }
1211 out:
1212         return ret_val;
1213 }
1214
1215 /* igc_get_cfg_done_i225 - Read config done bit
1216  * @hw: pointer to the HW structure
1217  *
1218  * Read the management control register for the config done bit for
1219  * completion status.  NOTE: silicon which is EEPROM-less will fail trying
1220  * to read the config done bit, so an error is *ONLY* logged and returns
1221  * IGC_SUCCESS.  If we were to return with error, EEPROM-less silicon
1222  * would not be able to be reset or change link.
1223  */
1224 static s32 igc_get_cfg_done_i225(struct igc_hw *hw)
1225 {
1226         s32 timeout = PHY_CFG_TIMEOUT;
1227         u32 mask = IGC_NVM_CFG_DONE_PORT_0;
1228
1229         DEBUGFUNC("igc_get_cfg_done_i225");
1230
1231         while (timeout) {
1232                 if (IGC_READ_REG(hw, IGC_EEMNGCTL_I225) & mask)
1233                         break;
1234                 msec_delay(1);
1235                 timeout--;
1236         }
1237         if (!timeout)
1238                 DEBUGOUT("MNG configuration cycle has not completed.\n");
1239
1240         return IGC_SUCCESS;
1241 }
1242
1243 /* igc_init_hw_i225 - Init hw for I225
1244  * @hw: pointer to the HW structure
1245  *
1246  * Called to initialize hw for i225 hw family.
1247  */
1248 s32 igc_init_hw_i225(struct igc_hw *hw)
1249 {
1250         s32 ret_val;
1251
1252         DEBUGFUNC("igc_init_hw_i225");
1253
1254         hw->phy.ops.get_cfg_done = igc_get_cfg_done_i225;
1255         ret_val = igc_init_hw_base(hw);
1256         return ret_val;
1257 }
1258
1259 /*
1260  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
1261  * @hw: pointer to the HW structure
1262  * @active: true to enable LPLU, false to disable
1263  *
1264  * Note: since I225 does not actually support LPLU, this function
1265  * simply enables/disables 1G and 2.5G speeds in D0.
1266  */
1267 s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
1268 {
1269         u32 data;
1270
1271         DEBUGFUNC("igc_set_d0_lplu_state_i225");
1272
1273         data = IGC_READ_REG(hw, IGC_I225_PHPM);
1274
1275         if (active) {
1276                 data |= IGC_I225_PHPM_DIS_1000;
1277                 data |= IGC_I225_PHPM_DIS_2500;
1278         } else {
1279                 data &= ~IGC_I225_PHPM_DIS_1000;
1280                 data &= ~IGC_I225_PHPM_DIS_2500;
1281         }
1282
1283         IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1284         return IGC_SUCCESS;
1285 }
1286
1287 /*
1288  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
1289  * @hw: pointer to the HW structure
1290  * @active: true to enable LPLU, false to disable
1291  *
1292  * Note: since I225 does not actually support LPLU, this function
1293  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
1294  */
1295 s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
1296 {
1297         u32 data;
1298
1299         DEBUGFUNC("igc_set_d3_lplu_state_i225");
1300
1301         data = IGC_READ_REG(hw, IGC_I225_PHPM);
1302
1303         if (active) {
1304                 data |= IGC_I225_PHPM_DIS_100_D3;
1305                 data |= IGC_I225_PHPM_DIS_1000_D3;
1306                 data |= IGC_I225_PHPM_DIS_2500_D3;
1307         } else {
1308                 data &= ~IGC_I225_PHPM_DIS_100_D3;
1309                 data &= ~IGC_I225_PHPM_DIS_1000_D3;
1310                 data &= ~IGC_I225_PHPM_DIS_2500_D3;
1311         }
1312
1313         IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1314         return IGC_SUCCESS;
1315 }
1316
1317 /**
1318  *  igc_set_eee_i225 - Enable/disable EEE support
1319  *  @hw: pointer to the HW structure
1320  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1321  *  @adv1G: boolean flag enabling 1G EEE advertisement
1322  *  @adv100M: boolean flag enabling 100M EEE advertisement
1323  *
1324  *  Enable/disable EEE based on setting in dev_spec structure.
1325  *
1326  **/
1327 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1328                        bool adv100M)
1329 {
1330         u32 ipcnfg, eeer;
1331
1332         DEBUGFUNC("igc_set_eee_i225");
1333
1334         if (hw->mac.type != igc_i225 ||
1335             hw->phy.media_type != igc_media_type_copper)
1336                 goto out;
1337         ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1338         eeer = IGC_READ_REG(hw, IGC_EEER);
1339
1340         /* enable or disable per user setting */
1341         if (!(hw->dev_spec._i225.eee_disable)) {
1342                 u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1343
1344                 if (adv100M)
1345                         ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1346                 else
1347                         ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1348
1349                 if (adv1G)
1350                         ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1351                 else
1352                         ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1353
1354                 if (adv2p5G)
1355                         ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1356                 else
1357                         ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1358
1359                 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1360                         IGC_EEER_LPI_FC);
1361
1362                 /* This bit should not be set in normal operation. */
1363                 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1364                         DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1365         } else {
1366                 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1367                         IGC_IPCNFG_EEE_100M_AN);
1368                 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1369                         IGC_EEER_LPI_FC);
1370         }
1371         IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1372         IGC_WRITE_REG(hw, IGC_EEER, eeer);
1373         IGC_READ_REG(hw, IGC_IPCNFG);
1374         IGC_READ_REG(hw, IGC_EEER);
1375 out:
1376
1377         return IGC_SUCCESS;
1378 }