net/dpaa: fix event queue detach
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <ethdev_driver.h>
37 #include <rte_security_driver.h>
38 #include <rte_prefetch.h>
39 #include <rte_udp.h>
40 #include <rte_tcp.h>
41 #include <rte_sctp.h>
42 #include <rte_string_fns.h>
43 #include <rte_errno.h>
44 #include <rte_ip.h>
45 #include <rte_net.h>
46 #include <rte_vect.h>
47
48 #include "ixgbe_logs.h"
49 #include "base/ixgbe_api.h"
50 #include "base/ixgbe_vf.h"
51 #include "ixgbe_ethdev.h"
52 #include "base/ixgbe_dcb.h"
53 #include "base/ixgbe_common.h"
54 #include "ixgbe_rxtx.h"
55
56 #ifdef RTE_LIBRTE_IEEE1588
57 #define IXGBE_TX_IEEE1588_TMST RTE_MBUF_F_TX_IEEE1588_TMST
58 #else
59 #define IXGBE_TX_IEEE1588_TMST 0
60 #endif
61 /* Bit Mask to indicate what bits required for building TX context */
62 #define IXGBE_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_OUTER_IPV6 |                \
63                 RTE_MBUF_F_TX_OUTER_IPV4 |               \
64                 RTE_MBUF_F_TX_IPV6 |                     \
65                 RTE_MBUF_F_TX_IPV4 |                     \
66                 RTE_MBUF_F_TX_VLAN |             \
67                 RTE_MBUF_F_TX_IP_CKSUM |                 \
68                 RTE_MBUF_F_TX_L4_MASK |          \
69                 RTE_MBUF_F_TX_TCP_SEG |          \
70                 RTE_MBUF_F_TX_MACSEC |                   \
71                 RTE_MBUF_F_TX_OUTER_IP_CKSUM |           \
72                 RTE_MBUF_F_TX_SEC_OFFLOAD |      \
73                 IXGBE_TX_IEEE1588_TMST)
74
75 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
76                 (RTE_MBUF_F_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
77
78 #if 1
79 #define RTE_PMD_USE_PREFETCH
80 #endif
81
82 #ifdef RTE_PMD_USE_PREFETCH
83 /*
84  * Prefetch a cache line into all cache levels.
85  */
86 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
87 #else
88 #define rte_ixgbe_prefetch(p)   do {} while (0)
89 #endif
90
91 /*********************************************************************
92  *
93  *  TX functions
94  *
95  **********************************************************************/
96
97 /*
98  * Check for descriptors with their DD bit set and free mbufs.
99  * Return the total number of buffers freed.
100  */
101 static __rte_always_inline int
102 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
103 {
104         struct ixgbe_tx_entry *txep;
105         uint32_t status;
106         int i, nb_free = 0;
107         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
108
109         /* check DD bit on threshold descriptor */
110         status = txq->tx_ring[txq->tx_next_dd].wb.status;
111         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
112                 return 0;
113
114         /*
115          * first buffer to free from S/W ring is at index
116          * tx_next_dd - (tx_rs_thresh-1)
117          */
118         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
119
120         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
121                 /* free buffers one at a time */
122                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
123                 txep->mbuf = NULL;
124
125                 if (unlikely(m == NULL))
126                         continue;
127
128                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
129                     (nb_free > 0 && m->pool != free[0]->pool)) {
130                         rte_mempool_put_bulk(free[0]->pool,
131                                              (void **)free, nb_free);
132                         nb_free = 0;
133                 }
134
135                 free[nb_free++] = m;
136         }
137
138         if (nb_free > 0)
139                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
140
141         /* buffers were freed, update counters */
142         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
143         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
144         if (txq->tx_next_dd >= txq->nb_tx_desc)
145                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
146
147         return txq->tx_rs_thresh;
148 }
149
150 /* Populate 4 descriptors with data from 4 mbufs */
151 static inline void
152 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
153 {
154         uint64_t buf_dma_addr;
155         uint32_t pkt_len;
156         int i;
157
158         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
159                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
160                 pkt_len = (*pkts)->data_len;
161
162                 /* write data to descriptor */
163                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
164
165                 txdp->read.cmd_type_len =
166                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
167
168                 txdp->read.olinfo_status =
169                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
170
171                 rte_prefetch0(&(*pkts)->pool);
172         }
173 }
174
175 /* Populate 1 descriptor with data from 1 mbuf */
176 static inline void
177 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
178 {
179         uint64_t buf_dma_addr;
180         uint32_t pkt_len;
181
182         buf_dma_addr = rte_mbuf_data_iova(*pkts);
183         pkt_len = (*pkts)->data_len;
184
185         /* write data to descriptor */
186         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
187         txdp->read.cmd_type_len =
188                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
189         txdp->read.olinfo_status =
190                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
191         rte_prefetch0(&(*pkts)->pool);
192 }
193
194 /*
195  * Fill H/W descriptor ring with mbuf data.
196  * Copy mbuf pointers to the S/W ring.
197  */
198 static inline void
199 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
200                       uint16_t nb_pkts)
201 {
202         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
203         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
204         const int N_PER_LOOP = 4;
205         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
206         int mainpart, leftover;
207         int i, j;
208
209         /*
210          * Process most of the packets in chunks of N pkts.  Any
211          * leftover packets will get processed one at a time.
212          */
213         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
214         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
215         for (i = 0; i < mainpart; i += N_PER_LOOP) {
216                 /* Copy N mbuf pointers to the S/W ring */
217                 for (j = 0; j < N_PER_LOOP; ++j) {
218                         (txep + i + j)->mbuf = *(pkts + i + j);
219                 }
220                 tx4(txdp + i, pkts + i);
221         }
222
223         if (unlikely(leftover > 0)) {
224                 for (i = 0; i < leftover; ++i) {
225                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
226                         tx1(txdp + mainpart + i, pkts + mainpart + i);
227                 }
228         }
229 }
230
231 static inline uint16_t
232 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
233              uint16_t nb_pkts)
234 {
235         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
236         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
237         uint16_t n = 0;
238
239         /*
240          * Begin scanning the H/W ring for done descriptors when the
241          * number of available descriptors drops below tx_free_thresh.  For
242          * each done descriptor, free the associated buffer.
243          */
244         if (txq->nb_tx_free < txq->tx_free_thresh)
245                 ixgbe_tx_free_bufs(txq);
246
247         /* Only use descriptors that are available */
248         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
249         if (unlikely(nb_pkts == 0))
250                 return 0;
251
252         /* Use exactly nb_pkts descriptors */
253         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
254
255         /*
256          * At this point, we know there are enough descriptors in the
257          * ring to transmit all the packets.  This assumes that each
258          * mbuf contains a single segment, and that no new offloads
259          * are expected, which would require a new context descriptor.
260          */
261
262         /*
263          * See if we're going to wrap-around. If so, handle the top
264          * of the descriptor ring first, then do the bottom.  If not,
265          * the processing looks just like the "bottom" part anyway...
266          */
267         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
268                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
269                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
270
271                 /*
272                  * We know that the last descriptor in the ring will need to
273                  * have its RS bit set because tx_rs_thresh has to be
274                  * a divisor of the ring size
275                  */
276                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
277                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
278                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
279
280                 txq->tx_tail = 0;
281         }
282
283         /* Fill H/W descriptor ring with mbuf data */
284         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
285         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
286
287         /*
288          * Determine if RS bit should be set
289          * This is what we actually want:
290          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
291          * but instead of subtracting 1 and doing >=, we can just do
292          * greater than without subtracting.
293          */
294         if (txq->tx_tail > txq->tx_next_rs) {
295                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
296                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
297                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
298                                                 txq->tx_rs_thresh);
299                 if (txq->tx_next_rs >= txq->nb_tx_desc)
300                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
301         }
302
303         /*
304          * Check for wrap-around. This would only happen if we used
305          * up to the last descriptor in the ring, no more, no less.
306          */
307         if (txq->tx_tail >= txq->nb_tx_desc)
308                 txq->tx_tail = 0;
309
310         /* update tail pointer */
311         rte_wmb();
312         IXGBE_PCI_REG_WC_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
313
314         return nb_pkts;
315 }
316
317 uint16_t
318 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
319                        uint16_t nb_pkts)
320 {
321         uint16_t nb_tx;
322
323         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
324         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
325                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
326
327         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
328         nb_tx = 0;
329         while (nb_pkts) {
330                 uint16_t ret, n;
331
332                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
333                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
334                 nb_tx = (uint16_t)(nb_tx + ret);
335                 nb_pkts = (uint16_t)(nb_pkts - ret);
336                 if (ret < n)
337                         break;
338         }
339
340         return nb_tx;
341 }
342
343 static uint16_t
344 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
345                     uint16_t nb_pkts)
346 {
347         uint16_t nb_tx = 0;
348         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
349
350         while (nb_pkts) {
351                 uint16_t ret, num;
352
353                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
354                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
355                                                  num);
356                 nb_tx += ret;
357                 nb_pkts -= ret;
358                 if (ret < num)
359                         break;
360         }
361
362         return nb_tx;
363 }
364
365 static inline void
366 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
367                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
368                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
369                 __rte_unused uint64_t *mdata)
370 {
371         uint32_t type_tucmd_mlhl;
372         uint32_t mss_l4len_idx = 0;
373         uint32_t ctx_idx;
374         uint32_t vlan_macip_lens;
375         union ixgbe_tx_offload tx_offload_mask;
376         uint32_t seqnum_seed = 0;
377
378         ctx_idx = txq->ctx_curr;
379         tx_offload_mask.data[0] = 0;
380         tx_offload_mask.data[1] = 0;
381         type_tucmd_mlhl = 0;
382
383         /* Specify which HW CTX to upload. */
384         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
385
386         if (ol_flags & RTE_MBUF_F_TX_VLAN)
387                 tx_offload_mask.vlan_tci |= ~0;
388
389         /* check if TCP segmentation required for this packet */
390         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
391                 /* implies IP cksum in IPv4 */
392                 if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
393                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
394                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
395                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
396                 else
397                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
398                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
399                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
400
401                 tx_offload_mask.l2_len |= ~0;
402                 tx_offload_mask.l3_len |= ~0;
403                 tx_offload_mask.l4_len |= ~0;
404                 tx_offload_mask.tso_segsz |= ~0;
405                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
406                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
407         } else { /* no TSO, check if hardware checksum is needed */
408                 if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
409                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
410                         tx_offload_mask.l2_len |= ~0;
411                         tx_offload_mask.l3_len |= ~0;
412                 }
413
414                 switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
415                 case RTE_MBUF_F_TX_UDP_CKSUM:
416                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
417                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
418                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
419                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
420                         tx_offload_mask.l2_len |= ~0;
421                         tx_offload_mask.l3_len |= ~0;
422                         break;
423                 case RTE_MBUF_F_TX_TCP_CKSUM:
424                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
425                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
426                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
427                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
428                         tx_offload_mask.l2_len |= ~0;
429                         tx_offload_mask.l3_len |= ~0;
430                         break;
431                 case RTE_MBUF_F_TX_SCTP_CKSUM:
432                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
433                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
434                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
435                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
436                         tx_offload_mask.l2_len |= ~0;
437                         tx_offload_mask.l3_len |= ~0;
438                         break;
439                 default:
440                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
441                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
442                         break;
443                 }
444         }
445
446         if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) {
447                 tx_offload_mask.outer_l2_len |= ~0;
448                 tx_offload_mask.outer_l3_len |= ~0;
449                 tx_offload_mask.l2_len |= ~0;
450                 seqnum_seed |= tx_offload.outer_l3_len
451                                << IXGBE_ADVTXD_OUTER_IPLEN;
452                 seqnum_seed |= tx_offload.l2_len
453                                << IXGBE_ADVTXD_TUNNEL_LEN;
454         }
455 #ifdef RTE_LIB_SECURITY
456         if (ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
457                 union ixgbe_crypto_tx_desc_md *md =
458                                 (union ixgbe_crypto_tx_desc_md *)mdata;
459                 seqnum_seed |=
460                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
461                 type_tucmd_mlhl |= md->enc ?
462                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
463                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
464                 type_tucmd_mlhl |=
465                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
466                 tx_offload_mask.sa_idx |= ~0;
467                 tx_offload_mask.sec_pad_len |= ~0;
468         }
469 #endif
470
471         txq->ctx_cache[ctx_idx].flags = ol_flags;
472         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
473                 tx_offload_mask.data[0] & tx_offload.data[0];
474         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
475                 tx_offload_mask.data[1] & tx_offload.data[1];
476         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
477
478         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
479         vlan_macip_lens = tx_offload.l3_len;
480         if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
481                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
482                                     IXGBE_ADVTXD_MACLEN_SHIFT);
483         else
484                 vlan_macip_lens |= (tx_offload.l2_len <<
485                                     IXGBE_ADVTXD_MACLEN_SHIFT);
486         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
487         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
488         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
489         ctx_txd->seqnum_seed     = seqnum_seed;
490 }
491
492 /*
493  * Check which hardware context can be used. Use the existing match
494  * or create a new context descriptor.
495  */
496 static inline uint32_t
497 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
498                    union ixgbe_tx_offload tx_offload)
499 {
500         /* If match with the current used context */
501         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
502                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
503                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
504                      & tx_offload.data[0])) &&
505                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
506                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
507                      & tx_offload.data[1]))))
508                 return txq->ctx_curr;
509
510         /* What if match with the next context  */
511         txq->ctx_curr ^= 1;
512         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
513                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
514                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
515                      & tx_offload.data[0])) &&
516                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
517                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
518                      & tx_offload.data[1]))))
519                 return txq->ctx_curr;
520
521         /* Mismatch, use the previous context */
522         return IXGBE_CTX_NUM;
523 }
524
525 static inline uint32_t
526 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
527 {
528         uint32_t tmp = 0;
529
530         if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM)
531                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
532         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
534         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
535                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
536         return tmp;
537 }
538
539 static inline uint32_t
540 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
541 {
542         uint32_t cmdtype = 0;
543
544         if (ol_flags & RTE_MBUF_F_TX_VLAN)
545                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
546         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
548         if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
549                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
550         if (ol_flags & RTE_MBUF_F_TX_MACSEC)
551                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
552         return cmdtype;
553 }
554
555 /* Default RS bit threshold values */
556 #ifndef DEFAULT_TX_RS_THRESH
557 #define DEFAULT_TX_RS_THRESH   32
558 #endif
559 #ifndef DEFAULT_TX_FREE_THRESH
560 #define DEFAULT_TX_FREE_THRESH 32
561 #endif
562
563 /* Reset transmit descriptors after they have been used */
564 static inline int
565 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
566 {
567         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
568         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
569         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
570         uint16_t nb_tx_desc = txq->nb_tx_desc;
571         uint16_t desc_to_clean_to;
572         uint16_t nb_tx_to_clean;
573         uint32_t status;
574
575         /* Determine the last descriptor needing to be cleaned */
576         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
577         if (desc_to_clean_to >= nb_tx_desc)
578                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
579
580         /* Check to make sure the last descriptor to clean is done */
581         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
582         status = txr[desc_to_clean_to].wb.status;
583         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
584                 PMD_TX_LOG(DEBUG,
585                            "TX descriptor %4u is not done"
586                            "(port=%d queue=%d)",
587                            desc_to_clean_to,
588                            txq->port_id, txq->queue_id);
589                 /* Failed to clean any descriptors, better luck next time */
590                 return -(1);
591         }
592
593         /* Figure out how many descriptors will be cleaned */
594         if (last_desc_cleaned > desc_to_clean_to)
595                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
596                                                         desc_to_clean_to);
597         else
598                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
599                                                 last_desc_cleaned);
600
601         PMD_TX_LOG(DEBUG,
602                    "Cleaning %4u TX descriptors: %4u to %4u "
603                    "(port=%d queue=%d)",
604                    nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
605                    txq->port_id, txq->queue_id);
606
607         /*
608          * The last descriptor to clean is done, so that means all the
609          * descriptors from the last descriptor that was cleaned
610          * up to the last descriptor with the RS bit set
611          * are done. Only reset the threshold descriptor.
612          */
613         txr[desc_to_clean_to].wb.status = 0;
614
615         /* Update the txq to reflect the last descriptor that was cleaned */
616         txq->last_desc_cleaned = desc_to_clean_to;
617         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
618
619         /* No Error */
620         return 0;
621 }
622
623 uint16_t
624 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
625                 uint16_t nb_pkts)
626 {
627         struct ixgbe_tx_queue *txq;
628         struct ixgbe_tx_entry *sw_ring;
629         struct ixgbe_tx_entry *txe, *txn;
630         volatile union ixgbe_adv_tx_desc *txr;
631         volatile union ixgbe_adv_tx_desc *txd, *txp;
632         struct rte_mbuf     *tx_pkt;
633         struct rte_mbuf     *m_seg;
634         uint64_t buf_dma_addr;
635         uint32_t olinfo_status;
636         uint32_t cmd_type_len;
637         uint32_t pkt_len;
638         uint16_t slen;
639         uint64_t ol_flags;
640         uint16_t tx_id;
641         uint16_t tx_last;
642         uint16_t nb_tx;
643         uint16_t nb_used;
644         uint64_t tx_ol_req;
645         uint32_t ctx = 0;
646         uint32_t new_ctx;
647         union ixgbe_tx_offload tx_offload;
648 #ifdef RTE_LIB_SECURITY
649         uint8_t use_ipsec;
650 #endif
651
652         tx_offload.data[0] = 0;
653         tx_offload.data[1] = 0;
654         txq = tx_queue;
655         sw_ring = txq->sw_ring;
656         txr     = txq->tx_ring;
657         tx_id   = txq->tx_tail;
658         txe = &sw_ring[tx_id];
659         txp = NULL;
660
661         /* Determine if the descriptor ring needs to be cleaned. */
662         if (txq->nb_tx_free < txq->tx_free_thresh)
663                 ixgbe_xmit_cleanup(txq);
664
665         rte_prefetch0(&txe->mbuf->pool);
666
667         /* TX loop */
668         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
669                 new_ctx = 0;
670                 tx_pkt = *tx_pkts++;
671                 pkt_len = tx_pkt->pkt_len;
672
673                 /*
674                  * Determine how many (if any) context descriptors
675                  * are needed for offload functionality.
676                  */
677                 ol_flags = tx_pkt->ol_flags;
678 #ifdef RTE_LIB_SECURITY
679                 use_ipsec = txq->using_ipsec && (ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
680 #endif
681
682                 /* If hardware offload required */
683                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
684                 if (tx_ol_req) {
685                         tx_offload.l2_len = tx_pkt->l2_len;
686                         tx_offload.l3_len = tx_pkt->l3_len;
687                         tx_offload.l4_len = tx_pkt->l4_len;
688                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
689                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
690                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
691                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
692 #ifdef RTE_LIB_SECURITY
693                         if (use_ipsec) {
694                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
695                                         (union ixgbe_crypto_tx_desc_md *)
696                                                 rte_security_dynfield(tx_pkt);
697                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
698                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
699                         }
700 #endif
701
702                         /* If new context need be built or reuse the exist ctx. */
703                         ctx = what_advctx_update(txq, tx_ol_req,
704                                 tx_offload);
705                         /* Only allocate context descriptor if required*/
706                         new_ctx = (ctx == IXGBE_CTX_NUM);
707                         ctx = txq->ctx_curr;
708                 }
709
710                 /*
711                  * Keep track of how many descriptors are used this loop
712                  * This will always be the number of segments + the number of
713                  * Context descriptors required to transmit the packet
714                  */
715                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
716
717                 if (txp != NULL &&
718                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
719                         /* set RS on the previous packet in the burst */
720                         txp->read.cmd_type_len |=
721                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
722
723                 /*
724                  * The number of descriptors that must be allocated for a
725                  * packet is the number of segments of that packet, plus 1
726                  * Context Descriptor for the hardware offload, if any.
727                  * Determine the last TX descriptor to allocate in the TX ring
728                  * for the packet, starting from the current position (tx_id)
729                  * in the ring.
730                  */
731                 tx_last = (uint16_t) (tx_id + nb_used - 1);
732
733                 /* Circular ring */
734                 if (tx_last >= txq->nb_tx_desc)
735                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
736
737                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
738                            " tx_first=%u tx_last=%u",
739                            (unsigned) txq->port_id,
740                            (unsigned) txq->queue_id,
741                            (unsigned) pkt_len,
742                            (unsigned) tx_id,
743                            (unsigned) tx_last);
744
745                 /*
746                  * Make sure there are enough TX descriptors available to
747                  * transmit the entire packet.
748                  * nb_used better be less than or equal to txq->tx_rs_thresh
749                  */
750                 if (nb_used > txq->nb_tx_free) {
751                         PMD_TX_LOG(DEBUG,
752                                    "Not enough free TX descriptors "
753                                    "nb_used=%4u nb_free=%4u "
754                                    "(port=%d queue=%d)",
755                                    nb_used, txq->nb_tx_free,
756                                    txq->port_id, txq->queue_id);
757
758                         if (ixgbe_xmit_cleanup(txq) != 0) {
759                                 /* Could not clean any descriptors */
760                                 if (nb_tx == 0)
761                                         return 0;
762                                 goto end_of_tx;
763                         }
764
765                         /* nb_used better be <= txq->tx_rs_thresh */
766                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
767                                 PMD_TX_LOG(DEBUG,
768                                            "The number of descriptors needed to "
769                                            "transmit the packet exceeds the "
770                                            "RS bit threshold. This will impact "
771                                            "performance."
772                                            "nb_used=%4u nb_free=%4u "
773                                            "tx_rs_thresh=%4u. "
774                                            "(port=%d queue=%d)",
775                                            nb_used, txq->nb_tx_free,
776                                            txq->tx_rs_thresh,
777                                            txq->port_id, txq->queue_id);
778                                 /*
779                                  * Loop here until there are enough TX
780                                  * descriptors or until the ring cannot be
781                                  * cleaned.
782                                  */
783                                 while (nb_used > txq->nb_tx_free) {
784                                         if (ixgbe_xmit_cleanup(txq) != 0) {
785                                                 /*
786                                                  * Could not clean any
787                                                  * descriptors
788                                                  */
789                                                 if (nb_tx == 0)
790                                                         return 0;
791                                                 goto end_of_tx;
792                                         }
793                                 }
794                         }
795                 }
796
797                 /*
798                  * By now there are enough free TX descriptors to transmit
799                  * the packet.
800                  */
801
802                 /*
803                  * Set common flags of all TX Data Descriptors.
804                  *
805                  * The following bits must be set in all Data Descriptors:
806                  *   - IXGBE_ADVTXD_DTYP_DATA
807                  *   - IXGBE_ADVTXD_DCMD_DEXT
808                  *
809                  * The following bits must be set in the first Data Descriptor
810                  * and are ignored in the other ones:
811                  *   - IXGBE_ADVTXD_DCMD_IFCS
812                  *   - IXGBE_ADVTXD_MAC_1588
813                  *   - IXGBE_ADVTXD_DCMD_VLE
814                  *
815                  * The following bits must only be set in the last Data
816                  * Descriptor:
817                  *   - IXGBE_TXD_CMD_EOP
818                  *
819                  * The following bits can be set in any Data Descriptor, but
820                  * are only set in the last Data Descriptor:
821                  *   - IXGBE_TXD_CMD_RS
822                  */
823                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
824                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
825
826 #ifdef RTE_LIBRTE_IEEE1588
827                 if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
828                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
829 #endif
830
831                 olinfo_status = 0;
832                 if (tx_ol_req) {
833
834                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
835                                 /* when TSO is on, paylen in descriptor is the
836                                  * not the packet len but the tcp payload len */
837                                 pkt_len -= (tx_offload.l2_len +
838                                         tx_offload.l3_len + tx_offload.l4_len);
839                         }
840
841                         /*
842                          * Setup the TX Advanced Context Descriptor if required
843                          */
844                         if (new_ctx) {
845                                 volatile struct ixgbe_adv_tx_context_desc *
846                                     ctx_txd;
847
848                                 ctx_txd = (volatile struct
849                                     ixgbe_adv_tx_context_desc *)
850                                     &txr[tx_id];
851
852                                 txn = &sw_ring[txe->next_id];
853                                 rte_prefetch0(&txn->mbuf->pool);
854
855                                 if (txe->mbuf != NULL) {
856                                         rte_pktmbuf_free_seg(txe->mbuf);
857                                         txe->mbuf = NULL;
858                                 }
859
860                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
861                                         tx_offload,
862                                         rte_security_dynfield(tx_pkt));
863
864                                 txe->last_id = tx_last;
865                                 tx_id = txe->next_id;
866                                 txe = txn;
867                         }
868
869                         /*
870                          * Setup the TX Advanced Data Descriptor,
871                          * This path will go through
872                          * whatever new/reuse the context descriptor
873                          */
874                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
875                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
876                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
877                 }
878
879                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
880 #ifdef RTE_LIB_SECURITY
881                 if (use_ipsec)
882                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
883 #endif
884
885                 m_seg = tx_pkt;
886                 do {
887                         txd = &txr[tx_id];
888                         txn = &sw_ring[txe->next_id];
889                         rte_prefetch0(&txn->mbuf->pool);
890
891                         if (txe->mbuf != NULL)
892                                 rte_pktmbuf_free_seg(txe->mbuf);
893                         txe->mbuf = m_seg;
894
895                         /*
896                          * Set up Transmit Data Descriptor.
897                          */
898                         slen = m_seg->data_len;
899                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
900                         txd->read.buffer_addr =
901                                 rte_cpu_to_le_64(buf_dma_addr);
902                         txd->read.cmd_type_len =
903                                 rte_cpu_to_le_32(cmd_type_len | slen);
904                         txd->read.olinfo_status =
905                                 rte_cpu_to_le_32(olinfo_status);
906                         txe->last_id = tx_last;
907                         tx_id = txe->next_id;
908                         txe = txn;
909                         m_seg = m_seg->next;
910                 } while (m_seg != NULL);
911
912                 /*
913                  * The last packet data descriptor needs End Of Packet (EOP)
914                  */
915                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
916                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
917                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
918
919                 /* Set RS bit only on threshold packets' last descriptor */
920                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
921                         PMD_TX_LOG(DEBUG,
922                                    "Setting RS bit on TXD id="
923                                    "%4u (port=%d queue=%d)",
924                                    tx_last, txq->port_id, txq->queue_id);
925
926                         cmd_type_len |= IXGBE_TXD_CMD_RS;
927
928                         /* Update txq RS bit counters */
929                         txq->nb_tx_used = 0;
930                         txp = NULL;
931                 } else
932                         txp = txd;
933
934                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
935         }
936
937 end_of_tx:
938         /* set RS on last packet in the burst */
939         if (txp != NULL)
940                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
941
942         rte_wmb();
943
944         /*
945          * Set the Transmit Descriptor Tail (TDT)
946          */
947         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
948                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
949                    (unsigned) tx_id, (unsigned) nb_tx);
950         IXGBE_PCI_REG_WC_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
951         txq->tx_tail = tx_id;
952
953         return nb_tx;
954 }
955
956 /*********************************************************************
957  *
958  *  TX prep functions
959  *
960  **********************************************************************/
961 uint16_t
962 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
963 {
964         int i, ret;
965         uint64_t ol_flags;
966         struct rte_mbuf *m;
967         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
968
969         for (i = 0; i < nb_pkts; i++) {
970                 m = tx_pkts[i];
971                 ol_flags = m->ol_flags;
972
973                 /**
974                  * Check if packet meets requirements for number of segments
975                  *
976                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
977                  *       non-TSO
978                  */
979
980                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
981                         rte_errno = EINVAL;
982                         return i;
983                 }
984
985                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
986                         rte_errno = ENOTSUP;
987                         return i;
988                 }
989
990                 /* check the size of packet */
991                 if (m->pkt_len < IXGBE_TX_MIN_PKT_LEN) {
992                         rte_errno = EINVAL;
993                         return i;
994                 }
995
996 #ifdef RTE_ETHDEV_DEBUG_TX
997                 ret = rte_validate_tx_offload(m);
998                 if (ret != 0) {
999                         rte_errno = -ret;
1000                         return i;
1001                 }
1002 #endif
1003                 ret = rte_net_intel_cksum_prepare(m);
1004                 if (ret != 0) {
1005                         rte_errno = -ret;
1006                         return i;
1007                 }
1008         }
1009
1010         return i;
1011 }
1012
1013 /*********************************************************************
1014  *
1015  *  RX functions
1016  *
1017  **********************************************************************/
1018
1019 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1020 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1021 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1022 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1023 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1024 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1025 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1026 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1027 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1028 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1029 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1030 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1031 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1032 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1033 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1034 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1035 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1036 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1040 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1044 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1045 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1046 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1047 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1048 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1049 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1050 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1051 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1052
1053 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1069 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1070 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1071 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1072 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1073 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1074 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1075 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1076
1077 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1093 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1094 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1095 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1096 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1097 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1098 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1099 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1100
1101 /**
1102  * Use 2 different table for normal packet and tunnel packet
1103  * to save the space.
1104  */
1105 const uint32_t
1106         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1107         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1108         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1109                 RTE_PTYPE_L3_IPV4,
1110         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1111                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1112         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1113                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1114         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1115                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1116         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1117                 RTE_PTYPE_L3_IPV4_EXT,
1118         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1119                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1120         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1121                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1122         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1123                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1124         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1125                 RTE_PTYPE_L3_IPV6,
1126         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1127                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1128         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1129                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1130         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1131                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1132         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1133                 RTE_PTYPE_L3_IPV6_EXT,
1134         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1135                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1136         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1138         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1139                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1140         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1141                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1142                 RTE_PTYPE_INNER_L3_IPV6,
1143         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1144                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1145                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1146         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1147                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1148         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1149         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1150                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1151                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1152         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1153                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1154                 RTE_PTYPE_INNER_L3_IPV6,
1155         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1156                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1157                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1158         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1159                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1160                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1161         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1162                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1163                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1164         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1165                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1166                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1167         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1168                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1169                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1170         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1171                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1172                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1173         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1174                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1175                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1176         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1177                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1178                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1179         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1182         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1183                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1184                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1185         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1186                 RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1188                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1189 };
1190
1191 const uint32_t
1192         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1193         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1194                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1195                 RTE_PTYPE_INNER_L2_ETHER,
1196         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1197                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1198                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1199         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1200                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1201                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1202         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1203                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1204                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1205         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1206                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1207                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1208         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1209                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1210                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1214         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1215                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1216                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1217                 RTE_PTYPE_INNER_L4_TCP,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1223                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1224                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1225         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1226                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1227                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1228                 RTE_PTYPE_INNER_L4_TCP,
1229         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1230                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1231                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1232                 RTE_PTYPE_INNER_L3_IPV4,
1233         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1234                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1235                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1236                 RTE_PTYPE_INNER_L4_UDP,
1237         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1238                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1239                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1240                 RTE_PTYPE_INNER_L4_UDP,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1244                 RTE_PTYPE_INNER_L4_SCTP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1248         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1249                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1250                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1251                 RTE_PTYPE_INNER_L4_UDP,
1252         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1253                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1254                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1255                 RTE_PTYPE_INNER_L4_SCTP,
1256         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1257                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1258                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1259                 RTE_PTYPE_INNER_L3_IPV4,
1260         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1261                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1262                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1263                 RTE_PTYPE_INNER_L4_SCTP,
1264         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1265                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1266                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1267                 RTE_PTYPE_INNER_L4_SCTP,
1268         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1269                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1270                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1271                 RTE_PTYPE_INNER_L4_TCP,
1272         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1273                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1274                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1275                 RTE_PTYPE_INNER_L4_UDP,
1276
1277         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1280         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1281                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1282                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1283                 RTE_PTYPE_INNER_L3_IPV4,
1284         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1285                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1286                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1287                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1288         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1289                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1290                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1291                 RTE_PTYPE_INNER_L3_IPV6,
1292         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1293                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1294                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1295                 RTE_PTYPE_INNER_L3_IPV4,
1296         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1297                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1298                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1299                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1300         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1301                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1302                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1303                 RTE_PTYPE_INNER_L3_IPV4,
1304         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1305                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1306                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1307                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1308         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1309                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1310                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1311                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1312         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1313                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1314                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1315                 RTE_PTYPE_INNER_L3_IPV4,
1316         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1317                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1318                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1319                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1320         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1321                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1322                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1323                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1324         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1325                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1326                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1327                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1328         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1329                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1330                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1331                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1332         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1333                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1334                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1335                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1336         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1337                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1338                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1339                 RTE_PTYPE_INNER_L3_IPV4,
1340         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1341                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1342                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1343                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1344         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1345                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1346                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1347                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1348         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1349                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1350                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1351                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1352         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1353                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1354                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1355                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1356         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1357                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1358                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1359                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1360         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1361                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1362                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1363                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1364         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1365                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1366                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1367                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1368 };
1369
1370 static int
1371 ixgbe_monitor_callback(const uint64_t value,
1372                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
1373 {
1374         const uint64_t m = rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD);
1375         /*
1376          * we expect the DD bit to be set to 1 if this descriptor was already
1377          * written to.
1378          */
1379         return (value & m) == m ? -1 : 0;
1380 }
1381
1382 int
1383 ixgbe_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
1384 {
1385         volatile union ixgbe_adv_rx_desc *rxdp;
1386         struct ixgbe_rx_queue *rxq = rx_queue;
1387         uint16_t desc;
1388
1389         desc = rxq->rx_tail;
1390         rxdp = &rxq->rx_ring[desc];
1391         /* watch for changes in status bit */
1392         pmc->addr = &rxdp->wb.upper.status_error;
1393
1394         /* comparison callback */
1395         pmc->fn = ixgbe_monitor_callback;
1396
1397         /* the registers are 32-bit */
1398         pmc->size = sizeof(uint32_t);
1399
1400         return 0;
1401 }
1402
1403 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1404 static inline uint32_t
1405 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1406 {
1407
1408         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1409                 return RTE_PTYPE_UNKNOWN;
1410
1411         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1412
1413         /* For tunnel packet */
1414         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1415                 /* Remove the tunnel bit to save the space. */
1416                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1417                 return ptype_table_tn[pkt_info];
1418         }
1419
1420         /**
1421          * For x550, if it's not tunnel,
1422          * tunnel type bit should be set to 0.
1423          * Reuse 82599's mask.
1424          */
1425         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1426
1427         return ptype_table[pkt_info];
1428 }
1429
1430 static inline uint64_t
1431 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1432 {
1433         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1434                 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
1435                 0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH,
1436                 RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0,
1437                 0, 0, 0,  RTE_MBUF_F_RX_FDIR,
1438         };
1439 #ifdef RTE_LIBRTE_IEEE1588
1440         static uint64_t ip_pkt_etqf_map[8] = {
1441                 0, 0, 0, RTE_MBUF_F_RX_IEEE1588_PTP,
1442                 0, 0, 0, 0,
1443         };
1444
1445         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1446                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1447                                 ip_rss_types_map[pkt_info & 0XF];
1448         else
1449                 return ip_rss_types_map[pkt_info & 0XF];
1450 #else
1451         return ip_rss_types_map[pkt_info & 0XF];
1452 #endif
1453 }
1454
1455 static inline uint64_t
1456 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1457 {
1458         uint64_t pkt_flags;
1459
1460         /*
1461          * Check if VLAN present only.
1462          * Do not check whether L3/L4 rx checksum done by NIC or not,
1463          * That can be found from rte_eth_rxmode.offloads flag
1464          */
1465         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1466
1467 #ifdef RTE_LIBRTE_IEEE1588
1468         if (rx_status & IXGBE_RXD_STAT_TMST)
1469                 pkt_flags = pkt_flags | RTE_MBUF_F_RX_IEEE1588_TMST;
1470 #endif
1471         return pkt_flags;
1472 }
1473
1474 static inline uint64_t
1475 rx_desc_error_to_pkt_flags(uint32_t rx_status, uint16_t pkt_info,
1476                            uint8_t rx_udp_csum_zero_err)
1477 {
1478         uint64_t pkt_flags;
1479
1480         /*
1481          * Bit 31: IPE, IPv4 checksum error
1482          * Bit 30: L4I, L4I integrity error
1483          */
1484         static uint64_t error_to_pkt_flags_map[4] = {
1485                 RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD,
1486                 RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
1487                 RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD,
1488                 RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD
1489         };
1490         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1491                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1492
1493         /* Mask out the bad UDP checksum error if the hardware has UDP zero
1494          * checksum error issue, so that the software application will then
1495          * have to recompute the checksum itself if needed.
1496          */
1497         if ((rx_status & IXGBE_RXDADV_ERR_TCPE) &&
1498             (pkt_info & IXGBE_RXDADV_PKTTYPE_UDP) &&
1499             rx_udp_csum_zero_err)
1500                 pkt_flags &= ~RTE_MBUF_F_RX_L4_CKSUM_BAD;
1501
1502         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1503             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1504                 pkt_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1505         }
1506
1507 #ifdef RTE_LIB_SECURITY
1508         if (rx_status & IXGBE_RXD_STAT_SECP) {
1509                 pkt_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
1510                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1511                         pkt_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
1512         }
1513 #endif
1514
1515         return pkt_flags;
1516 }
1517
1518 /*
1519  * LOOK_AHEAD defines how many desc statuses to check beyond the
1520  * current descriptor.
1521  * It must be a pound define for optimal performance.
1522  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1523  * function only works with LOOK_AHEAD=8.
1524  */
1525 #define LOOK_AHEAD 8
1526 #if (LOOK_AHEAD != 8)
1527 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1528 #endif
1529 static inline int
1530 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1531 {
1532         volatile union ixgbe_adv_rx_desc *rxdp;
1533         struct ixgbe_rx_entry *rxep;
1534         struct rte_mbuf *mb;
1535         uint16_t pkt_len;
1536         uint64_t pkt_flags;
1537         int nb_dd;
1538         uint32_t s[LOOK_AHEAD];
1539         uint32_t pkt_info[LOOK_AHEAD];
1540         int i, j, nb_rx = 0;
1541         uint32_t status;
1542         uint64_t vlan_flags = rxq->vlan_flags;
1543
1544         /* get references to current descriptor and S/W ring entry */
1545         rxdp = &rxq->rx_ring[rxq->rx_tail];
1546         rxep = &rxq->sw_ring[rxq->rx_tail];
1547
1548         status = rxdp->wb.upper.status_error;
1549         /* check to make sure there is at least 1 packet to receive */
1550         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1551                 return 0;
1552
1553         /*
1554          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1555          * reference packets that are ready to be received.
1556          */
1557         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1558              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1559                 /* Read desc statuses backwards to avoid race condition */
1560                 for (j = 0; j < LOOK_AHEAD; j++)
1561                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1562
1563                 rte_smp_rmb();
1564
1565                 /* Compute how many status bits were set */
1566                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1567                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1568                         ;
1569
1570                 for (j = 0; j < nb_dd; j++)
1571                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1572                                                        lo_dword.data);
1573
1574                 nb_rx += nb_dd;
1575
1576                 /* Translate descriptor info to mbuf format */
1577                 for (j = 0; j < nb_dd; ++j) {
1578                         mb = rxep[j].mbuf;
1579                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1580                                   rxq->crc_len;
1581                         mb->data_len = pkt_len;
1582                         mb->pkt_len = pkt_len;
1583                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1584
1585                         /* convert descriptor fields to rte mbuf flags */
1586                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1587                                 vlan_flags);
1588                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j],
1589                                         (uint16_t)pkt_info[j],
1590                                         rxq->rx_udp_csum_zero_err);
1591                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1592                                         ((uint16_t)pkt_info[j]);
1593                         mb->ol_flags = pkt_flags;
1594                         mb->packet_type =
1595                                 ixgbe_rxd_pkt_info_to_pkt_type
1596                                         (pkt_info[j], rxq->pkt_type_mask);
1597
1598                         if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
1599                                 mb->hash.rss = rte_le_to_cpu_32(
1600                                     rxdp[j].wb.lower.hi_dword.rss);
1601                         else if (pkt_flags & RTE_MBUF_F_RX_FDIR) {
1602                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1603                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1604                                     IXGBE_ATR_HASH_MASK;
1605                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1606                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1607                         }
1608                 }
1609
1610                 /* Move mbuf pointers from the S/W ring to the stage */
1611                 for (j = 0; j < LOOK_AHEAD; ++j) {
1612                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1613                 }
1614
1615                 /* stop if all requested packets could not be received */
1616                 if (nb_dd != LOOK_AHEAD)
1617                         break;
1618         }
1619
1620         /* clear software ring entries so we can cleanup correctly */
1621         for (i = 0; i < nb_rx; ++i) {
1622                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1623         }
1624
1625
1626         return nb_rx;
1627 }
1628
1629 static inline int
1630 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1631 {
1632         volatile union ixgbe_adv_rx_desc *rxdp;
1633         struct ixgbe_rx_entry *rxep;
1634         struct rte_mbuf *mb;
1635         uint16_t alloc_idx;
1636         __le64 dma_addr;
1637         int diag, i;
1638
1639         /* allocate buffers in bulk directly into the S/W ring */
1640         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1641         rxep = &rxq->sw_ring[alloc_idx];
1642         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1643                                     rxq->rx_free_thresh);
1644         if (unlikely(diag != 0))
1645                 return -ENOMEM;
1646
1647         rxdp = &rxq->rx_ring[alloc_idx];
1648         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1649                 /* populate the static rte mbuf fields */
1650                 mb = rxep[i].mbuf;
1651                 if (reset_mbuf) {
1652                         mb->port = rxq->port_id;
1653                 }
1654
1655                 rte_mbuf_refcnt_set(mb, 1);
1656                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1657
1658                 /* populate the descriptors */
1659                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1660                 rxdp[i].read.hdr_addr = 0;
1661                 rxdp[i].read.pkt_addr = dma_addr;
1662         }
1663
1664         /* update state of internal queue structure */
1665         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1666         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1667                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1668
1669         /* no errors */
1670         return 0;
1671 }
1672
1673 static inline uint16_t
1674 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1675                          uint16_t nb_pkts)
1676 {
1677         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1678         int i;
1679
1680         /* how many packets are ready to return? */
1681         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1682
1683         /* copy mbuf pointers to the application's packet list */
1684         for (i = 0; i < nb_pkts; ++i)
1685                 rx_pkts[i] = stage[i];
1686
1687         /* update internal queue state */
1688         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1689         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1690
1691         return nb_pkts;
1692 }
1693
1694 static inline uint16_t
1695 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1696              uint16_t nb_pkts)
1697 {
1698         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1699         uint16_t nb_rx = 0;
1700
1701         /* Any previously recv'd pkts will be returned from the Rx stage */
1702         if (rxq->rx_nb_avail)
1703                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1704
1705         /* Scan the H/W ring for packets to receive */
1706         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1707
1708         /* update internal queue state */
1709         rxq->rx_next_avail = 0;
1710         rxq->rx_nb_avail = nb_rx;
1711         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1712
1713         /* if required, allocate new buffers to replenish descriptors */
1714         if (rxq->rx_tail > rxq->rx_free_trigger) {
1715                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1716
1717                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1718                         int i, j;
1719
1720                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1721                                    "queue_id=%u", (unsigned) rxq->port_id,
1722                                    (unsigned) rxq->queue_id);
1723
1724                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1725                                 rxq->rx_free_thresh;
1726
1727                         /*
1728                          * Need to rewind any previous receives if we cannot
1729                          * allocate new buffers to replenish the old ones.
1730                          */
1731                         rxq->rx_nb_avail = 0;
1732                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1733                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1734                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1735
1736                         return 0;
1737                 }
1738
1739                 /* update tail pointer */
1740                 rte_wmb();
1741                 IXGBE_PCI_REG_WC_WRITE_RELAXED(rxq->rdt_reg_addr,
1742                                             cur_free_trigger);
1743         }
1744
1745         if (rxq->rx_tail >= rxq->nb_rx_desc)
1746                 rxq->rx_tail = 0;
1747
1748         /* received any packets this loop? */
1749         if (rxq->rx_nb_avail)
1750                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1751
1752         return 0;
1753 }
1754
1755 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1756 uint16_t
1757 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1758                            uint16_t nb_pkts)
1759 {
1760         uint16_t nb_rx;
1761
1762         if (unlikely(nb_pkts == 0))
1763                 return 0;
1764
1765         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1766                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1767
1768         /* request is relatively large, chunk it up */
1769         nb_rx = 0;
1770         while (nb_pkts) {
1771                 uint16_t ret, n;
1772
1773                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1774                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1775                 nb_rx = (uint16_t)(nb_rx + ret);
1776                 nb_pkts = (uint16_t)(nb_pkts - ret);
1777                 if (ret < n)
1778                         break;
1779         }
1780
1781         return nb_rx;
1782 }
1783
1784 uint16_t
1785 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1786                 uint16_t nb_pkts)
1787 {
1788         struct ixgbe_rx_queue *rxq;
1789         volatile union ixgbe_adv_rx_desc *rx_ring;
1790         volatile union ixgbe_adv_rx_desc *rxdp;
1791         struct ixgbe_rx_entry *sw_ring;
1792         struct ixgbe_rx_entry *rxe;
1793         struct rte_mbuf *rxm;
1794         struct rte_mbuf *nmb;
1795         union ixgbe_adv_rx_desc rxd;
1796         uint64_t dma_addr;
1797         uint32_t staterr;
1798         uint32_t pkt_info;
1799         uint16_t pkt_len;
1800         uint16_t rx_id;
1801         uint16_t nb_rx;
1802         uint16_t nb_hold;
1803         uint64_t pkt_flags;
1804         uint64_t vlan_flags;
1805
1806         nb_rx = 0;
1807         nb_hold = 0;
1808         rxq = rx_queue;
1809         rx_id = rxq->rx_tail;
1810         rx_ring = rxq->rx_ring;
1811         sw_ring = rxq->sw_ring;
1812         vlan_flags = rxq->vlan_flags;
1813         while (nb_rx < nb_pkts) {
1814                 /*
1815                  * The order of operations here is important as the DD status
1816                  * bit must not be read after any other descriptor fields.
1817                  * rx_ring and rxdp are pointing to volatile data so the order
1818                  * of accesses cannot be reordered by the compiler. If they were
1819                  * not volatile, they could be reordered which could lead to
1820                  * using invalid descriptor fields when read from rxd.
1821                  */
1822                 rxdp = &rx_ring[rx_id];
1823                 staterr = rxdp->wb.upper.status_error;
1824                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1825                         break;
1826                 rxd = *rxdp;
1827
1828                 /*
1829                  * End of packet.
1830                  *
1831                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1832                  * is likely to be invalid and to be dropped by the various
1833                  * validation checks performed by the network stack.
1834                  *
1835                  * Allocate a new mbuf to replenish the RX ring descriptor.
1836                  * If the allocation fails:
1837                  *    - arrange for that RX descriptor to be the first one
1838                  *      being parsed the next time the receive function is
1839                  *      invoked [on the same queue].
1840                  *
1841                  *    - Stop parsing the RX ring and return immediately.
1842                  *
1843                  * This policy do not drop the packet received in the RX
1844                  * descriptor for which the allocation of a new mbuf failed.
1845                  * Thus, it allows that packet to be later retrieved if
1846                  * mbuf have been freed in the mean time.
1847                  * As a side effect, holding RX descriptors instead of
1848                  * systematically giving them back to the NIC may lead to
1849                  * RX ring exhaustion situations.
1850                  * However, the NIC can gracefully prevent such situations
1851                  * to happen by sending specific "back-pressure" flow control
1852                  * frames to its peer(s).
1853                  */
1854                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1855                            "ext_err_stat=0x%08x pkt_len=%u",
1856                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1857                            (unsigned) rx_id, (unsigned) staterr,
1858                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1859
1860                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1861                 if (nmb == NULL) {
1862                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1863                                    "queue_id=%u", (unsigned) rxq->port_id,
1864                                    (unsigned) rxq->queue_id);
1865                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1866                         break;
1867                 }
1868
1869                 nb_hold++;
1870                 rxe = &sw_ring[rx_id];
1871                 rx_id++;
1872                 if (rx_id == rxq->nb_rx_desc)
1873                         rx_id = 0;
1874
1875                 /* Prefetch next mbuf while processing current one. */
1876                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1877
1878                 /*
1879                  * When next RX descriptor is on a cache-line boundary,
1880                  * prefetch the next 4 RX descriptors and the next 8 pointers
1881                  * to mbufs.
1882                  */
1883                 if ((rx_id & 0x3) == 0) {
1884                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1885                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1886                 }
1887
1888                 rxm = rxe->mbuf;
1889                 rxe->mbuf = nmb;
1890                 dma_addr =
1891                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1892                 rxdp->read.hdr_addr = 0;
1893                 rxdp->read.pkt_addr = dma_addr;
1894
1895                 /*
1896                  * Initialize the returned mbuf.
1897                  * 1) setup generic mbuf fields:
1898                  *    - number of segments,
1899                  *    - next segment,
1900                  *    - packet length,
1901                  *    - RX port identifier.
1902                  * 2) integrate hardware offload data, if any:
1903                  *    - RSS flag & hash,
1904                  *    - IP checksum flag,
1905                  *    - VLAN TCI, if any,
1906                  *    - error flags.
1907                  */
1908                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1909                                       rxq->crc_len);
1910                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1911                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1912                 rxm->nb_segs = 1;
1913                 rxm->next = NULL;
1914                 rxm->pkt_len = pkt_len;
1915                 rxm->data_len = pkt_len;
1916                 rxm->port = rxq->port_id;
1917
1918                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1919                 /* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */
1920                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1921
1922                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1923                 pkt_flags = pkt_flags |
1924                         rx_desc_error_to_pkt_flags(staterr, (uint16_t)pkt_info,
1925                                                    rxq->rx_udp_csum_zero_err);
1926                 pkt_flags = pkt_flags |
1927                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1928                 rxm->ol_flags = pkt_flags;
1929                 rxm->packet_type =
1930                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1931                                                        rxq->pkt_type_mask);
1932
1933                 if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
1934                         rxm->hash.rss = rte_le_to_cpu_32(
1935                                                 rxd.wb.lower.hi_dword.rss);
1936                 else if (pkt_flags & RTE_MBUF_F_RX_FDIR) {
1937                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1938                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1939                                         IXGBE_ATR_HASH_MASK;
1940                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1941                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1942                 }
1943                 /*
1944                  * Store the mbuf address into the next entry of the array
1945                  * of returned packets.
1946                  */
1947                 rx_pkts[nb_rx++] = rxm;
1948         }
1949         rxq->rx_tail = rx_id;
1950
1951         /*
1952          * If the number of free RX descriptors is greater than the RX free
1953          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1954          * register.
1955          * Update the RDT with the value of the last processed RX descriptor
1956          * minus 1, to guarantee that the RDT register is never equal to the
1957          * RDH register, which creates a "full" ring situation from the
1958          * hardware point of view...
1959          */
1960         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1961         if (nb_hold > rxq->rx_free_thresh) {
1962                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1963                            "nb_hold=%u nb_rx=%u",
1964                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1965                            (unsigned) rx_id, (unsigned) nb_hold,
1966                            (unsigned) nb_rx);
1967                 rx_id = (uint16_t) ((rx_id == 0) ?
1968                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1969                 IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
1970                 nb_hold = 0;
1971         }
1972         rxq->nb_rx_hold = nb_hold;
1973         return nb_rx;
1974 }
1975
1976 /**
1977  * Detect an RSC descriptor.
1978  */
1979 static inline uint32_t
1980 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1981 {
1982         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1983                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1984 }
1985
1986 /**
1987  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1988  *
1989  * Fill the following info in the HEAD buffer of the Rx cluster:
1990  *    - RX port identifier
1991  *    - hardware offload data, if any:
1992  *      - RSS flag & hash
1993  *      - IP checksum flag
1994  *      - VLAN TCI, if any
1995  *      - error flags
1996  * @head HEAD of the packet cluster
1997  * @desc HW descriptor to get data from
1998  * @rxq Pointer to the Rx queue
1999  */
2000 static inline void
2001 ixgbe_fill_cluster_head_buf(
2002         struct rte_mbuf *head,
2003         union ixgbe_adv_rx_desc *desc,
2004         struct ixgbe_rx_queue *rxq,
2005         uint32_t staterr)
2006 {
2007         uint32_t pkt_info;
2008         uint64_t pkt_flags;
2009
2010         head->port = rxq->port_id;
2011
2012         /* The vlan_tci field is only valid when RTE_MBUF_F_RX_VLAN is
2013          * set in the pkt_flags field.
2014          */
2015         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
2016         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
2017         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
2018         pkt_flags |= rx_desc_error_to_pkt_flags(staterr, (uint16_t)pkt_info,
2019                                                 rxq->rx_udp_csum_zero_err);
2020         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
2021         head->ol_flags = pkt_flags;
2022         head->packet_type =
2023                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
2024
2025         if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
2026                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
2027         else if (pkt_flags & RTE_MBUF_F_RX_FDIR) {
2028                 head->hash.fdir.hash =
2029                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
2030                                                           & IXGBE_ATR_HASH_MASK;
2031                 head->hash.fdir.id =
2032                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
2033         }
2034 }
2035
2036 /**
2037  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
2038  *
2039  * @rx_queue Rx queue handle
2040  * @rx_pkts table of received packets
2041  * @nb_pkts size of rx_pkts table
2042  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
2043  *
2044  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
2045  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
2046  *
2047  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
2048  * 1) When non-EOP RSC completion arrives:
2049  *    a) Update the HEAD of the current RSC aggregation cluster with the new
2050  *       segment's data length.
2051  *    b) Set the "next" pointer of the current segment to point to the segment
2052  *       at the NEXTP index.
2053  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
2054  *       in the sw_rsc_ring.
2055  * 2) When EOP arrives we just update the cluster's total length and offload
2056  *    flags and deliver the cluster up to the upper layers. In our case - put it
2057  *    in the rx_pkts table.
2058  *
2059  * Returns the number of received packets/clusters (according to the "bulk
2060  * receive" interface).
2061  */
2062 static inline uint16_t
2063 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2064                     bool bulk_alloc)
2065 {
2066         struct ixgbe_rx_queue *rxq = rx_queue;
2067         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2068         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2069         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2070         uint16_t rx_id = rxq->rx_tail;
2071         uint16_t nb_rx = 0;
2072         uint16_t nb_hold = rxq->nb_rx_hold;
2073         uint16_t prev_id = rxq->rx_tail;
2074
2075         while (nb_rx < nb_pkts) {
2076                 bool eop;
2077                 struct ixgbe_rx_entry *rxe;
2078                 struct ixgbe_scattered_rx_entry *sc_entry;
2079                 struct ixgbe_scattered_rx_entry *next_sc_entry = NULL;
2080                 struct ixgbe_rx_entry *next_rxe = NULL;
2081                 struct rte_mbuf *first_seg;
2082                 struct rte_mbuf *rxm;
2083                 struct rte_mbuf *nmb = NULL;
2084                 union ixgbe_adv_rx_desc rxd;
2085                 uint16_t data_len;
2086                 uint16_t next_id;
2087                 volatile union ixgbe_adv_rx_desc *rxdp;
2088                 uint32_t staterr;
2089
2090 next_desc:
2091                 /*
2092                  * The code in this whole file uses the volatile pointer to
2093                  * ensure the read ordering of the status and the rest of the
2094                  * descriptor fields (on the compiler level only!!!). This is so
2095                  * UGLY - why not to just use the compiler barrier instead? DPDK
2096                  * even has the rte_compiler_barrier() for that.
2097                  *
2098                  * But most importantly this is just wrong because this doesn't
2099                  * ensure memory ordering in a general case at all. For
2100                  * instance, DPDK is supposed to work on Power CPUs where
2101                  * compiler barrier may just not be enough!
2102                  *
2103                  * I tried to write only this function properly to have a
2104                  * starting point (as a part of an LRO/RSC series) but the
2105                  * compiler cursed at me when I tried to cast away the
2106                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2107                  * keeping it the way it is for now.
2108                  *
2109                  * The code in this file is broken in so many other places and
2110                  * will just not work on a big endian CPU anyway therefore the
2111                  * lines below will have to be revisited together with the rest
2112                  * of the ixgbe PMD.
2113                  *
2114                  * TODO:
2115                  *    - Get rid of "volatile" and let the compiler do its job.
2116                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2117                  *      memory ordering below.
2118                  */
2119                 rxdp = &rx_ring[rx_id];
2120                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2121
2122                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2123                         break;
2124
2125                 rxd = *rxdp;
2126
2127                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2128                                   "staterr=0x%x data_len=%u",
2129                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2130                            rte_le_to_cpu_16(rxd.wb.upper.length));
2131
2132                 if (!bulk_alloc) {
2133                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2134                         if (nmb == NULL) {
2135                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2136                                                   "port_id=%u queue_id=%u",
2137                                            rxq->port_id, rxq->queue_id);
2138
2139                                 rte_eth_devices[rxq->port_id].data->
2140                                                         rx_mbuf_alloc_failed++;
2141                                 break;
2142                         }
2143                 } else if (nb_hold > rxq->rx_free_thresh) {
2144                         uint16_t next_rdt = rxq->rx_free_trigger;
2145
2146                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2147                                 rte_wmb();
2148                                 IXGBE_PCI_REG_WC_WRITE_RELAXED(
2149                                                         rxq->rdt_reg_addr,
2150                                                         next_rdt);
2151                                 nb_hold -= rxq->rx_free_thresh;
2152                         } else {
2153                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2154                                                   "port_id=%u queue_id=%u",
2155                                            rxq->port_id, rxq->queue_id);
2156
2157                                 rte_eth_devices[rxq->port_id].data->
2158                                                         rx_mbuf_alloc_failed++;
2159                                 break;
2160                         }
2161                 }
2162
2163                 nb_hold++;
2164                 rxe = &sw_ring[rx_id];
2165                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2166
2167                 next_id = rx_id + 1;
2168                 if (next_id == rxq->nb_rx_desc)
2169                         next_id = 0;
2170
2171                 /* Prefetch next mbuf while processing current one. */
2172                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2173
2174                 /*
2175                  * When next RX descriptor is on a cache-line boundary,
2176                  * prefetch the next 4 RX descriptors and the next 4 pointers
2177                  * to mbufs.
2178                  */
2179                 if ((next_id & 0x3) == 0) {
2180                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2181                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2182                 }
2183
2184                 rxm = rxe->mbuf;
2185
2186                 if (!bulk_alloc) {
2187                         __le64 dma =
2188                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2189                         /*
2190                          * Update RX descriptor with the physical address of the
2191                          * new data buffer of the new allocated mbuf.
2192                          */
2193                         rxe->mbuf = nmb;
2194
2195                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2196                         rxdp->read.hdr_addr = 0;
2197                         rxdp->read.pkt_addr = dma;
2198                 } else
2199                         rxe->mbuf = NULL;
2200
2201                 /*
2202                  * Set data length & data buffer address of mbuf.
2203                  */
2204                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2205                 rxm->data_len = data_len;
2206
2207                 if (!eop) {
2208                         uint16_t nextp_id;
2209                         /*
2210                          * Get next descriptor index:
2211                          *  - For RSC it's in the NEXTP field.
2212                          *  - For a scattered packet - it's just a following
2213                          *    descriptor.
2214                          */
2215                         if (ixgbe_rsc_count(&rxd))
2216                                 nextp_id =
2217                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2218                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2219                         else
2220                                 nextp_id = next_id;
2221
2222                         next_sc_entry = &sw_sc_ring[nextp_id];
2223                         next_rxe = &sw_ring[nextp_id];
2224                         rte_ixgbe_prefetch(next_rxe);
2225                 }
2226
2227                 sc_entry = &sw_sc_ring[rx_id];
2228                 first_seg = sc_entry->fbuf;
2229                 sc_entry->fbuf = NULL;
2230
2231                 /*
2232                  * If this is the first buffer of the received packet,
2233                  * set the pointer to the first mbuf of the packet and
2234                  * initialize its context.
2235                  * Otherwise, update the total length and the number of segments
2236                  * of the current scattered packet, and update the pointer to
2237                  * the last mbuf of the current packet.
2238                  */
2239                 if (first_seg == NULL) {
2240                         first_seg = rxm;
2241                         first_seg->pkt_len = data_len;
2242                         first_seg->nb_segs = 1;
2243                 } else {
2244                         first_seg->pkt_len += data_len;
2245                         first_seg->nb_segs++;
2246                 }
2247
2248                 prev_id = rx_id;
2249                 rx_id = next_id;
2250
2251                 /*
2252                  * If this is not the last buffer of the received packet, update
2253                  * the pointer to the first mbuf at the NEXTP entry in the
2254                  * sw_sc_ring and continue to parse the RX ring.
2255                  */
2256                 if (!eop && next_rxe) {
2257                         rxm->next = next_rxe->mbuf;
2258                         next_sc_entry->fbuf = first_seg;
2259                         goto next_desc;
2260                 }
2261
2262                 /* Initialize the first mbuf of the returned packet */
2263                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2264
2265                 /*
2266                  * Deal with the case, when HW CRC srip is disabled.
2267                  * That can't happen when LRO is enabled, but still could
2268                  * happen for scattered RX mode.
2269                  */
2270                 first_seg->pkt_len -= rxq->crc_len;
2271                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2272                         struct rte_mbuf *lp;
2273
2274                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2275                                 ;
2276
2277                         first_seg->nb_segs--;
2278                         lp->data_len -= rxq->crc_len - rxm->data_len;
2279                         lp->next = NULL;
2280                         rte_pktmbuf_free_seg(rxm);
2281                 } else
2282                         rxm->data_len -= rxq->crc_len;
2283
2284                 /* Prefetch data of first segment, if configured to do so. */
2285                 rte_packet_prefetch((char *)first_seg->buf_addr +
2286                         first_seg->data_off);
2287
2288                 /*
2289                  * Store the mbuf address into the next entry of the array
2290                  * of returned packets.
2291                  */
2292                 rx_pkts[nb_rx++] = first_seg;
2293         }
2294
2295         /*
2296          * Record index of the next RX descriptor to probe.
2297          */
2298         rxq->rx_tail = rx_id;
2299
2300         /*
2301          * If the number of free RX descriptors is greater than the RX free
2302          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2303          * register.
2304          * Update the RDT with the value of the last processed RX descriptor
2305          * minus 1, to guarantee that the RDT register is never equal to the
2306          * RDH register, which creates a "full" ring situation from the
2307          * hardware point of view...
2308          */
2309         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2310                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2311                            "nb_hold=%u nb_rx=%u",
2312                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2313
2314                 rte_wmb();
2315                 IXGBE_PCI_REG_WC_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2316                 nb_hold = 0;
2317         }
2318
2319         rxq->nb_rx_hold = nb_hold;
2320         return nb_rx;
2321 }
2322
2323 uint16_t
2324 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2325                                  uint16_t nb_pkts)
2326 {
2327         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2328 }
2329
2330 uint16_t
2331 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2332                                uint16_t nb_pkts)
2333 {
2334         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2335 }
2336
2337 /*********************************************************************
2338  *
2339  *  Queue management functions
2340  *
2341  **********************************************************************/
2342
2343 static void __rte_cold
2344 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2345 {
2346         unsigned i;
2347
2348         if (txq->sw_ring != NULL) {
2349                 for (i = 0; i < txq->nb_tx_desc; i++) {
2350                         if (txq->sw_ring[i].mbuf != NULL) {
2351                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2352                                 txq->sw_ring[i].mbuf = NULL;
2353                         }
2354                 }
2355         }
2356 }
2357
2358 static int
2359 ixgbe_tx_done_cleanup_full(struct ixgbe_tx_queue *txq, uint32_t free_cnt)
2360 {
2361         struct ixgbe_tx_entry *swr_ring = txq->sw_ring;
2362         uint16_t i, tx_last, tx_id;
2363         uint16_t nb_tx_free_last;
2364         uint16_t nb_tx_to_clean;
2365         uint32_t pkt_cnt;
2366
2367         /* Start free mbuf from the next of tx_tail */
2368         tx_last = txq->tx_tail;
2369         tx_id  = swr_ring[tx_last].next_id;
2370
2371         if (txq->nb_tx_free == 0 && ixgbe_xmit_cleanup(txq))
2372                 return 0;
2373
2374         nb_tx_to_clean = txq->nb_tx_free;
2375         nb_tx_free_last = txq->nb_tx_free;
2376         if (!free_cnt)
2377                 free_cnt = txq->nb_tx_desc;
2378
2379         /* Loop through swr_ring to count the amount of
2380          * freeable mubfs and packets.
2381          */
2382         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2383                 for (i = 0; i < nb_tx_to_clean &&
2384                         pkt_cnt < free_cnt &&
2385                         tx_id != tx_last; i++) {
2386                         if (swr_ring[tx_id].mbuf != NULL) {
2387                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2388                                 swr_ring[tx_id].mbuf = NULL;
2389
2390                                 /*
2391                                  * last segment in the packet,
2392                                  * increment packet count
2393                                  */
2394                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2395                         }
2396
2397                         tx_id = swr_ring[tx_id].next_id;
2398                 }
2399
2400                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2401                         txq->nb_tx_free || tx_id == tx_last)
2402                         break;
2403
2404                 if (pkt_cnt < free_cnt) {
2405                         if (ixgbe_xmit_cleanup(txq))
2406                                 break;
2407
2408                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2409                         nb_tx_free_last = txq->nb_tx_free;
2410                 }
2411         }
2412
2413         return (int)pkt_cnt;
2414 }
2415
2416 static int
2417 ixgbe_tx_done_cleanup_simple(struct ixgbe_tx_queue *txq,
2418                         uint32_t free_cnt)
2419 {
2420         int i, n, cnt;
2421
2422         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2423                 free_cnt = txq->nb_tx_desc;
2424
2425         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2426
2427         for (i = 0; i < cnt; i += n) {
2428                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2429                         break;
2430
2431                 n = ixgbe_tx_free_bufs(txq);
2432
2433                 if (n == 0)
2434                         break;
2435         }
2436
2437         return i;
2438 }
2439
2440 static int
2441 ixgbe_tx_done_cleanup_vec(struct ixgbe_tx_queue *txq __rte_unused,
2442                         uint32_t free_cnt __rte_unused)
2443 {
2444         return -ENOTSUP;
2445 }
2446
2447 int
2448 ixgbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
2449 {
2450         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
2451         if (txq->offloads == 0 &&
2452 #ifdef RTE_LIB_SECURITY
2453                         !(txq->using_ipsec) &&
2454 #endif
2455                         txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST) {
2456                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2457                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128 &&
2458                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2459                                         txq->sw_ring_v != NULL)) {
2460                         return ixgbe_tx_done_cleanup_vec(txq, free_cnt);
2461                 } else {
2462                         return ixgbe_tx_done_cleanup_simple(txq, free_cnt);
2463                 }
2464         }
2465
2466         return ixgbe_tx_done_cleanup_full(txq, free_cnt);
2467 }
2468
2469 static void __rte_cold
2470 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2471 {
2472         if (txq != NULL &&
2473             txq->sw_ring != NULL)
2474                 rte_free(txq->sw_ring);
2475 }
2476
2477 static void __rte_cold
2478 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2479 {
2480         if (txq != NULL && txq->ops != NULL) {
2481                 txq->ops->release_mbufs(txq);
2482                 txq->ops->free_swring(txq);
2483                 rte_memzone_free(txq->mz);
2484                 rte_free(txq);
2485         }
2486 }
2487
2488 void __rte_cold
2489 ixgbe_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2490 {
2491         ixgbe_tx_queue_release(dev->data->tx_queues[qid]);
2492 }
2493
2494 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2495 static void __rte_cold
2496 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2497 {
2498         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2499         struct ixgbe_tx_entry *txe = txq->sw_ring;
2500         uint16_t prev, i;
2501
2502         /* Zero out HW ring memory */
2503         for (i = 0; i < txq->nb_tx_desc; i++) {
2504                 txq->tx_ring[i] = zeroed_desc;
2505         }
2506
2507         /* Initialize SW ring entries */
2508         prev = (uint16_t) (txq->nb_tx_desc - 1);
2509         for (i = 0; i < txq->nb_tx_desc; i++) {
2510                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2511
2512                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2513                 txe[i].mbuf = NULL;
2514                 txe[i].last_id = i;
2515                 txe[prev].next_id = i;
2516                 prev = i;
2517         }
2518
2519         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2520         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2521
2522         txq->tx_tail = 0;
2523         txq->nb_tx_used = 0;
2524         /*
2525          * Always allow 1 descriptor to be un-allocated to avoid
2526          * a H/W race condition
2527          */
2528         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2529         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2530         txq->ctx_curr = 0;
2531         memset((void *)&txq->ctx_cache, 0,
2532                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2533 }
2534
2535 static const struct ixgbe_txq_ops def_txq_ops = {
2536         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2537         .free_swring = ixgbe_tx_free_swring,
2538         .reset = ixgbe_reset_tx_queue,
2539 };
2540
2541 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2542  * the queue parameters. Used in tx_queue_setup by primary process and then
2543  * in dev_init by secondary process when attaching to an existing ethdev.
2544  */
2545 void __rte_cold
2546 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2547 {
2548         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2549         if ((txq->offloads == 0) &&
2550 #ifdef RTE_LIB_SECURITY
2551                         !(txq->using_ipsec) &&
2552 #endif
2553                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2554                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2555                 dev->tx_pkt_prepare = NULL;
2556                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2557                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128 &&
2558                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2559                                         ixgbe_txq_vec_setup(txq) == 0)) {
2560                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2561                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2562                 } else
2563                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2564         } else {
2565                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2566                 PMD_INIT_LOG(DEBUG,
2567                                 " - offloads = 0x%" PRIx64,
2568                                 txq->offloads);
2569                 PMD_INIT_LOG(DEBUG,
2570                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2571                                 (unsigned long)txq->tx_rs_thresh,
2572                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2573                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2574                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2575         }
2576 }
2577
2578 uint64_t
2579 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2580 {
2581         RTE_SET_USED(dev);
2582
2583         return 0;
2584 }
2585
2586 uint64_t
2587 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2588 {
2589         uint64_t tx_offload_capa;
2590         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2591
2592         tx_offload_capa =
2593                 RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
2594                 RTE_ETH_TX_OFFLOAD_IPV4_CKSUM  |
2595                 RTE_ETH_TX_OFFLOAD_UDP_CKSUM   |
2596                 RTE_ETH_TX_OFFLOAD_TCP_CKSUM   |
2597                 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM  |
2598                 RTE_ETH_TX_OFFLOAD_TCP_TSO     |
2599                 RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2600
2601         if (hw->mac.type == ixgbe_mac_82599EB ||
2602             hw->mac.type == ixgbe_mac_X540)
2603                 tx_offload_capa |= RTE_ETH_TX_OFFLOAD_MACSEC_INSERT;
2604
2605         if (hw->mac.type == ixgbe_mac_X550 ||
2606             hw->mac.type == ixgbe_mac_X550EM_x ||
2607             hw->mac.type == ixgbe_mac_X550EM_a)
2608                 tx_offload_capa |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2609
2610 #ifdef RTE_LIB_SECURITY
2611         if (dev->security_ctx)
2612                 tx_offload_capa |= RTE_ETH_TX_OFFLOAD_SECURITY;
2613 #endif
2614         return tx_offload_capa;
2615 }
2616
2617 int __rte_cold
2618 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2619                          uint16_t queue_idx,
2620                          uint16_t nb_desc,
2621                          unsigned int socket_id,
2622                          const struct rte_eth_txconf *tx_conf)
2623 {
2624         const struct rte_memzone *tz;
2625         struct ixgbe_tx_queue *txq;
2626         struct ixgbe_hw     *hw;
2627         uint16_t tx_rs_thresh, tx_free_thresh;
2628         uint64_t offloads;
2629
2630         PMD_INIT_FUNC_TRACE();
2631         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2632
2633         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2634
2635         /*
2636          * Validate number of transmit descriptors.
2637          * It must not exceed hardware maximum, and must be multiple
2638          * of IXGBE_ALIGN.
2639          */
2640         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2641                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2642                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2643                 return -EINVAL;
2644         }
2645
2646         /*
2647          * The following two parameters control the setting of the RS bit on
2648          * transmit descriptors.
2649          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2650          * descriptors have been used.
2651          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2652          * descriptors are used or if the number of descriptors required
2653          * to transmit a packet is greater than the number of free TX
2654          * descriptors.
2655          * The following constraints must be satisfied:
2656          *  tx_rs_thresh must be greater than 0.
2657          *  tx_rs_thresh must be less than the size of the ring minus 2.
2658          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2659          *  tx_rs_thresh must be a divisor of the ring size.
2660          *  tx_free_thresh must be greater than 0.
2661          *  tx_free_thresh must be less than the size of the ring minus 3.
2662          *  tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2663          * One descriptor in the TX ring is used as a sentinel to avoid a
2664          * H/W race condition, hence the maximum threshold constraints.
2665          * When set to zero use default values.
2666          */
2667         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2668                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2669         /* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
2670         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2671                         nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2672         if (tx_conf->tx_rs_thresh > 0)
2673                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2674         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2675                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2676                              "exceed nb_desc. (tx_rs_thresh=%u "
2677                              "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
2678                              (unsigned int)tx_rs_thresh,
2679                              (unsigned int)tx_free_thresh,
2680                              (unsigned int)nb_desc,
2681                              (int)dev->data->port_id,
2682                              (int)queue_idx);
2683                 return -(EINVAL);
2684         }
2685         if (tx_rs_thresh >= (nb_desc - 2)) {
2686                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2687                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2688                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2689                         (int)dev->data->port_id, (int)queue_idx);
2690                 return -(EINVAL);
2691         }
2692         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2693                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2694                         "(tx_rs_thresh=%u port=%d queue=%d)",
2695                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2696                         (int)dev->data->port_id, (int)queue_idx);
2697                 return -(EINVAL);
2698         }
2699         if (tx_free_thresh >= (nb_desc - 3)) {
2700                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2701                              "tx_free_thresh must be less than the number of "
2702                              "TX descriptors minus 3. (tx_free_thresh=%u "
2703                              "port=%d queue=%d)",
2704                              (unsigned int)tx_free_thresh,
2705                              (int)dev->data->port_id, (int)queue_idx);
2706                 return -(EINVAL);
2707         }
2708         if (tx_rs_thresh > tx_free_thresh) {
2709                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2710                              "tx_free_thresh. (tx_free_thresh=%u "
2711                              "tx_rs_thresh=%u port=%d queue=%d)",
2712                              (unsigned int)tx_free_thresh,
2713                              (unsigned int)tx_rs_thresh,
2714                              (int)dev->data->port_id,
2715                              (int)queue_idx);
2716                 return -(EINVAL);
2717         }
2718         if ((nb_desc % tx_rs_thresh) != 0) {
2719                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2720                              "number of TX descriptors. (tx_rs_thresh=%u "
2721                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2722                              (int)dev->data->port_id, (int)queue_idx);
2723                 return -(EINVAL);
2724         }
2725
2726         /*
2727          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2728          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2729          * by the NIC and all descriptors are written back after the NIC
2730          * accumulates WTHRESH descriptors.
2731          */
2732         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2733                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2734                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2735                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2736                              (int)dev->data->port_id, (int)queue_idx);
2737                 return -(EINVAL);
2738         }
2739
2740         /* Free memory prior to re-allocation if needed... */
2741         if (dev->data->tx_queues[queue_idx] != NULL) {
2742                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2743                 dev->data->tx_queues[queue_idx] = NULL;
2744         }
2745
2746         /* First allocate the tx queue data structure */
2747         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2748                                  RTE_CACHE_LINE_SIZE, socket_id);
2749         if (txq == NULL)
2750                 return -ENOMEM;
2751
2752         /*
2753          * Allocate TX ring hardware descriptors. A memzone large enough to
2754          * handle the maximum ring size is allocated in order to allow for
2755          * resizing in later calls to the queue setup function.
2756          */
2757         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2758                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2759                         IXGBE_ALIGN, socket_id);
2760         if (tz == NULL) {
2761                 ixgbe_tx_queue_release(txq);
2762                 return -ENOMEM;
2763         }
2764
2765         txq->mz = tz;
2766         txq->nb_tx_desc = nb_desc;
2767         txq->tx_rs_thresh = tx_rs_thresh;
2768         txq->tx_free_thresh = tx_free_thresh;
2769         txq->pthresh = tx_conf->tx_thresh.pthresh;
2770         txq->hthresh = tx_conf->tx_thresh.hthresh;
2771         txq->wthresh = tx_conf->tx_thresh.wthresh;
2772         txq->queue_id = queue_idx;
2773         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2774                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2775         txq->port_id = dev->data->port_id;
2776         txq->offloads = offloads;
2777         txq->ops = &def_txq_ops;
2778         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2779 #ifdef RTE_LIB_SECURITY
2780         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2781                         RTE_ETH_TX_OFFLOAD_SECURITY);
2782 #endif
2783
2784         /*
2785          * Modification to set VFTDT for virtual function if vf is detected
2786          */
2787         if (hw->mac.type == ixgbe_mac_82599_vf ||
2788             hw->mac.type == ixgbe_mac_X540_vf ||
2789             hw->mac.type == ixgbe_mac_X550_vf ||
2790             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2791             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2792                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2793         else
2794                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2795
2796         txq->tx_ring_phys_addr = tz->iova;
2797         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2798
2799         /* Allocate software ring */
2800         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2801                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2802                                 RTE_CACHE_LINE_SIZE, socket_id);
2803         if (txq->sw_ring == NULL) {
2804                 ixgbe_tx_queue_release(txq);
2805                 return -ENOMEM;
2806         }
2807         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2808                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2809
2810         /* set up vector or scalar TX function as appropriate */
2811         ixgbe_set_tx_function(dev, txq);
2812
2813         txq->ops->reset(txq);
2814
2815         dev->data->tx_queues[queue_idx] = txq;
2816
2817
2818         return 0;
2819 }
2820
2821 /**
2822  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2823  *
2824  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2825  * in the sw_rsc_ring is not set to NULL but rather points to the next
2826  * mbuf of this RSC aggregation (that has not been completed yet and still
2827  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2828  * will just free first "nb_segs" segments of the cluster explicitly by calling
2829  * an rte_pktmbuf_free_seg().
2830  *
2831  * @m scattered cluster head
2832  */
2833 static void __rte_cold
2834 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2835 {
2836         uint16_t i, nb_segs = m->nb_segs;
2837         struct rte_mbuf *next_seg;
2838
2839         for (i = 0; i < nb_segs; i++) {
2840                 next_seg = m->next;
2841                 rte_pktmbuf_free_seg(m);
2842                 m = next_seg;
2843         }
2844 }
2845
2846 static void __rte_cold
2847 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2848 {
2849         unsigned i;
2850
2851         /* SSE Vector driver has a different way of releasing mbufs. */
2852         if (rxq->rx_using_sse) {
2853                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2854                 return;
2855         }
2856
2857         if (rxq->sw_ring != NULL) {
2858                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2859                         if (rxq->sw_ring[i].mbuf != NULL) {
2860                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2861                                 rxq->sw_ring[i].mbuf = NULL;
2862                         }
2863                 }
2864                 if (rxq->rx_nb_avail) {
2865                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2866                                 struct rte_mbuf *mb;
2867
2868                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2869                                 rte_pktmbuf_free_seg(mb);
2870                         }
2871                         rxq->rx_nb_avail = 0;
2872                 }
2873         }
2874
2875         if (rxq->sw_sc_ring)
2876                 for (i = 0; i < rxq->nb_rx_desc; i++)
2877                         if (rxq->sw_sc_ring[i].fbuf) {
2878                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2879                                 rxq->sw_sc_ring[i].fbuf = NULL;
2880                         }
2881 }
2882
2883 static void __rte_cold
2884 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2885 {
2886         if (rxq != NULL) {
2887                 ixgbe_rx_queue_release_mbufs(rxq);
2888                 rte_free(rxq->sw_ring);
2889                 rte_free(rxq->sw_sc_ring);
2890                 rte_memzone_free(rxq->mz);
2891                 rte_free(rxq);
2892         }
2893 }
2894
2895 void __rte_cold
2896 ixgbe_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2897 {
2898         ixgbe_rx_queue_release(dev->data->rx_queues[qid]);
2899 }
2900
2901 /*
2902  * Check if Rx Burst Bulk Alloc function can be used.
2903  * Return
2904  *        0: the preconditions are satisfied and the bulk allocation function
2905  *           can be used.
2906  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2907  *           function must be used.
2908  */
2909 static inline int __rte_cold
2910 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2911 {
2912         int ret = 0;
2913
2914         /*
2915          * Make sure the following pre-conditions are satisfied:
2916          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2917          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2918          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2919          * Scattered packets are not supported.  This should be checked
2920          * outside of this function.
2921          */
2922         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2923                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2924                              "rxq->rx_free_thresh=%d, "
2925                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2926                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2927                 ret = -EINVAL;
2928         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2929                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2930                              "rxq->rx_free_thresh=%d, "
2931                              "rxq->nb_rx_desc=%d",
2932                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2933                 ret = -EINVAL;
2934         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2935                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2936                              "rxq->nb_rx_desc=%d, "
2937                              "rxq->rx_free_thresh=%d",
2938                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2939                 ret = -EINVAL;
2940         }
2941
2942         return ret;
2943 }
2944
2945 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2946 static void __rte_cold
2947 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2948 {
2949         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2950         unsigned i;
2951         uint16_t len = rxq->nb_rx_desc;
2952
2953         /*
2954          * By default, the Rx queue setup function allocates enough memory for
2955          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2956          * extra memory at the end of the descriptor ring to be zero'd out.
2957          */
2958         if (adapter->rx_bulk_alloc_allowed)
2959                 /* zero out extra memory */
2960                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2961
2962         /*
2963          * Zero out HW ring memory. Zero out extra memory at the end of
2964          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2965          * reads extra memory as zeros.
2966          */
2967         for (i = 0; i < len; i++) {
2968                 rxq->rx_ring[i] = zeroed_desc;
2969         }
2970
2971         /*
2972          * initialize extra software ring entries. Space for these extra
2973          * entries is always allocated
2974          */
2975         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2976         for (i = rxq->nb_rx_desc; i < len; ++i) {
2977                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2978         }
2979
2980         rxq->rx_nb_avail = 0;
2981         rxq->rx_next_avail = 0;
2982         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2983         rxq->rx_tail = 0;
2984         rxq->nb_rx_hold = 0;
2985
2986         rte_pktmbuf_free(rxq->pkt_first_seg);
2987
2988         rxq->pkt_first_seg = NULL;
2989         rxq->pkt_last_seg = NULL;
2990
2991 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
2992         rxq->rxrearm_start = 0;
2993         rxq->rxrearm_nb = 0;
2994 #endif
2995 }
2996
2997 static int
2998 ixgbe_is_vf(struct rte_eth_dev *dev)
2999 {
3000         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3001
3002         switch (hw->mac.type) {
3003         case ixgbe_mac_82599_vf:
3004         case ixgbe_mac_X540_vf:
3005         case ixgbe_mac_X550_vf:
3006         case ixgbe_mac_X550EM_x_vf:
3007         case ixgbe_mac_X550EM_a_vf:
3008                 return 1;
3009         default:
3010                 return 0;
3011         }
3012 }
3013
3014 uint64_t
3015 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
3016 {
3017         uint64_t offloads = 0;
3018         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3019
3020         if (hw->mac.type != ixgbe_mac_82598EB)
3021                 offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
3022
3023         return offloads;
3024 }
3025
3026 uint64_t
3027 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
3028 {
3029         uint64_t offloads;
3030         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3031
3032         offloads = RTE_ETH_RX_OFFLOAD_IPV4_CKSUM  |
3033                    RTE_ETH_RX_OFFLOAD_UDP_CKSUM   |
3034                    RTE_ETH_RX_OFFLOAD_TCP_CKSUM   |
3035                    RTE_ETH_RX_OFFLOAD_KEEP_CRC    |
3036                    RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
3037                    RTE_ETH_RX_OFFLOAD_SCATTER |
3038                    RTE_ETH_RX_OFFLOAD_RSS_HASH;
3039
3040         if (hw->mac.type == ixgbe_mac_82598EB)
3041                 offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
3042
3043         if (ixgbe_is_vf(dev) == 0)
3044                 offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
3045
3046         /*
3047          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
3048          * mode.
3049          */
3050         if ((hw->mac.type == ixgbe_mac_82599EB ||
3051              hw->mac.type == ixgbe_mac_X540 ||
3052              hw->mac.type == ixgbe_mac_X550) &&
3053             !RTE_ETH_DEV_SRIOV(dev).active)
3054                 offloads |= RTE_ETH_RX_OFFLOAD_TCP_LRO;
3055
3056         if (hw->mac.type == ixgbe_mac_82599EB ||
3057             hw->mac.type == ixgbe_mac_X540)
3058                 offloads |= RTE_ETH_RX_OFFLOAD_MACSEC_STRIP;
3059
3060         if (hw->mac.type == ixgbe_mac_X550 ||
3061             hw->mac.type == ixgbe_mac_X550EM_x ||
3062             hw->mac.type == ixgbe_mac_X550EM_a)
3063                 offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
3064
3065 #ifdef RTE_LIB_SECURITY
3066         if (dev->security_ctx)
3067                 offloads |= RTE_ETH_RX_OFFLOAD_SECURITY;
3068 #endif
3069
3070         return offloads;
3071 }
3072
3073 int __rte_cold
3074 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
3075                          uint16_t queue_idx,
3076                          uint16_t nb_desc,
3077                          unsigned int socket_id,
3078                          const struct rte_eth_rxconf *rx_conf,
3079                          struct rte_mempool *mp)
3080 {
3081         const struct rte_memzone *rz;
3082         struct ixgbe_rx_queue *rxq;
3083         struct ixgbe_hw     *hw;
3084         uint16_t len;
3085         struct ixgbe_adapter *adapter = dev->data->dev_private;
3086         uint64_t offloads;
3087
3088         PMD_INIT_FUNC_TRACE();
3089         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3090
3091         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
3092
3093         /*
3094          * Validate number of receive descriptors.
3095          * It must not exceed hardware maximum, and must be multiple
3096          * of IXGBE_ALIGN.
3097          */
3098         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
3099                         (nb_desc > IXGBE_MAX_RING_DESC) ||
3100                         (nb_desc < IXGBE_MIN_RING_DESC)) {
3101                 return -EINVAL;
3102         }
3103
3104         /* Free memory prior to re-allocation if needed... */
3105         if (dev->data->rx_queues[queue_idx] != NULL) {
3106                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
3107                 dev->data->rx_queues[queue_idx] = NULL;
3108         }
3109
3110         /* First allocate the rx queue data structure */
3111         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
3112                                  RTE_CACHE_LINE_SIZE, socket_id);
3113         if (rxq == NULL)
3114                 return -ENOMEM;
3115         rxq->mb_pool = mp;
3116         rxq->nb_rx_desc = nb_desc;
3117         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
3118         rxq->queue_id = queue_idx;
3119         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
3120                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
3121         rxq->port_id = dev->data->port_id;
3122         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
3123                 rxq->crc_len = RTE_ETHER_CRC_LEN;
3124         else
3125                 rxq->crc_len = 0;
3126         rxq->drop_en = rx_conf->rx_drop_en;
3127         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
3128         rxq->offloads = offloads;
3129
3130         /*
3131          * The packet type in RX descriptor is different for different NICs.
3132          * Some bits are used for x550 but reserved for other NICS.
3133          * So set different masks for different NICs.
3134          */
3135         if (hw->mac.type == ixgbe_mac_X550 ||
3136             hw->mac.type == ixgbe_mac_X550EM_x ||
3137             hw->mac.type == ixgbe_mac_X550EM_a ||
3138             hw->mac.type == ixgbe_mac_X550_vf ||
3139             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3140             hw->mac.type == ixgbe_mac_X550EM_a_vf)
3141                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
3142         else
3143                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
3144
3145         /*
3146          * 82599 errata, UDP frames with a 0 checksum can be marked as checksum
3147          * errors.
3148          */
3149         if (hw->mac.type == ixgbe_mac_82599EB)
3150                 rxq->rx_udp_csum_zero_err = 1;
3151
3152         /*
3153          * Allocate RX ring hardware descriptors. A memzone large enough to
3154          * handle the maximum ring size is allocated in order to allow for
3155          * resizing in later calls to the queue setup function.
3156          */
3157         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
3158                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
3159         if (rz == NULL) {
3160                 ixgbe_rx_queue_release(rxq);
3161                 return -ENOMEM;
3162         }
3163
3164         rxq->mz = rz;
3165         /*
3166          * Zero init all the descriptors in the ring.
3167          */
3168         memset(rz->addr, 0, RX_RING_SZ);
3169
3170         /*
3171          * Modified to setup VFRDT for Virtual Function
3172          */
3173         if (hw->mac.type == ixgbe_mac_82599_vf ||
3174             hw->mac.type == ixgbe_mac_X540_vf ||
3175             hw->mac.type == ixgbe_mac_X550_vf ||
3176             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3177             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
3178                 rxq->rdt_reg_addr =
3179                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
3180                 rxq->rdh_reg_addr =
3181                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
3182         } else {
3183                 rxq->rdt_reg_addr =
3184                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
3185                 rxq->rdh_reg_addr =
3186                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
3187         }
3188
3189         rxq->rx_ring_phys_addr = rz->iova;
3190         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3191
3192         /*
3193          * Certain constraints must be met in order to use the bulk buffer
3194          * allocation Rx burst function. If any of Rx queues doesn't meet them
3195          * the feature should be disabled for the whole port.
3196          */
3197         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3198                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3199                                     "preconditions - canceling the feature for "
3200                                     "the whole port[%d]",
3201                              rxq->queue_id, rxq->port_id);
3202                 adapter->rx_bulk_alloc_allowed = false;
3203         }
3204
3205         /*
3206          * Allocate software ring. Allow for space at the end of the
3207          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3208          * function does not access an invalid memory region.
3209          */
3210         len = nb_desc;
3211         if (adapter->rx_bulk_alloc_allowed)
3212                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3213
3214         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3215                                           sizeof(struct ixgbe_rx_entry) * len,
3216                                           RTE_CACHE_LINE_SIZE, socket_id);
3217         if (!rxq->sw_ring) {
3218                 ixgbe_rx_queue_release(rxq);
3219                 return -ENOMEM;
3220         }
3221
3222         /*
3223          * Always allocate even if it's not going to be needed in order to
3224          * simplify the code.
3225          *
3226          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3227          * be requested in ixgbe_dev_rx_init(), which is called later from
3228          * dev_start() flow.
3229          */
3230         rxq->sw_sc_ring =
3231                 rte_zmalloc_socket("rxq->sw_sc_ring",
3232                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3233                                    RTE_CACHE_LINE_SIZE, socket_id);
3234         if (!rxq->sw_sc_ring) {
3235                 ixgbe_rx_queue_release(rxq);
3236                 return -ENOMEM;
3237         }
3238
3239         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3240                             "dma_addr=0x%"PRIx64,
3241                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3242                      rxq->rx_ring_phys_addr);
3243
3244         if (!rte_is_power_of_2(nb_desc)) {
3245                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3246                                     "preconditions - canceling the feature for "
3247                                     "the whole port[%d]",
3248                              rxq->queue_id, rxq->port_id);
3249                 adapter->rx_vec_allowed = false;
3250         } else
3251                 ixgbe_rxq_vec_setup(rxq);
3252
3253         dev->data->rx_queues[queue_idx] = rxq;
3254
3255         ixgbe_reset_rx_queue(adapter, rxq);
3256
3257         return 0;
3258 }
3259
3260 uint32_t
3261 ixgbe_dev_rx_queue_count(void *rx_queue)
3262 {
3263 #define IXGBE_RXQ_SCAN_INTERVAL 4
3264         volatile union ixgbe_adv_rx_desc *rxdp;
3265         struct ixgbe_rx_queue *rxq;
3266         uint32_t desc = 0;
3267
3268         rxq = rx_queue;
3269         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3270
3271         while ((desc < rxq->nb_rx_desc) &&
3272                 (rxdp->wb.upper.status_error &
3273                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3274                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3275                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3276                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3277                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3278                                 desc - rxq->nb_rx_desc]);
3279         }
3280
3281         return desc;
3282 }
3283
3284 int
3285 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3286 {
3287         struct ixgbe_rx_queue *rxq = rx_queue;
3288         volatile uint32_t *status;
3289         uint32_t nb_hold, desc;
3290
3291         if (unlikely(offset >= rxq->nb_rx_desc))
3292                 return -EINVAL;
3293
3294 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
3295         if (rxq->rx_using_sse)
3296                 nb_hold = rxq->rxrearm_nb;
3297         else
3298 #endif
3299                 nb_hold = rxq->nb_rx_hold;
3300         if (offset >= rxq->nb_rx_desc - nb_hold)
3301                 return RTE_ETH_RX_DESC_UNAVAIL;
3302
3303         desc = rxq->rx_tail + offset;
3304         if (desc >= rxq->nb_rx_desc)
3305                 desc -= rxq->nb_rx_desc;
3306
3307         status = &rxq->rx_ring[desc].wb.upper.status_error;
3308         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3309                 return RTE_ETH_RX_DESC_DONE;
3310
3311         return RTE_ETH_RX_DESC_AVAIL;
3312 }
3313
3314 int
3315 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3316 {
3317         struct ixgbe_tx_queue *txq = tx_queue;
3318         volatile uint32_t *status;
3319         uint32_t desc;
3320
3321         if (unlikely(offset >= txq->nb_tx_desc))
3322                 return -EINVAL;
3323
3324         desc = txq->tx_tail + offset;
3325         /* go to next desc that has the RS bit */
3326         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3327                 txq->tx_rs_thresh;
3328         if (desc >= txq->nb_tx_desc) {
3329                 desc -= txq->nb_tx_desc;
3330                 if (desc >= txq->nb_tx_desc)
3331                         desc -= txq->nb_tx_desc;
3332         }
3333
3334         status = &txq->tx_ring[desc].wb.status;
3335         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3336                 return RTE_ETH_TX_DESC_DONE;
3337
3338         return RTE_ETH_TX_DESC_FULL;
3339 }
3340
3341 /*
3342  * Set up link loopback for X540/X550 mode Tx->Rx.
3343  */
3344 static inline void __rte_cold
3345 ixgbe_setup_loopback_link_x540_x550(struct ixgbe_hw *hw, bool enable)
3346 {
3347         uint32_t macc;
3348         PMD_INIT_FUNC_TRACE();
3349
3350         u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
3351
3352         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3353                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
3354         macc = IXGBE_READ_REG(hw, IXGBE_MACC);
3355
3356         if (enable) {
3357                 /* datasheet 15.2.1: disable AUTONEG (PHY Bit 7.0.C) */
3358                 autoneg_reg |= IXGBE_MII_AUTONEG_ENABLE;
3359                 /* datasheet 15.2.1: MACC.FLU = 1 (force link up) */
3360                 macc |= IXGBE_MACC_FLU;
3361         } else {
3362                 autoneg_reg &= ~IXGBE_MII_AUTONEG_ENABLE;
3363                 macc &= ~IXGBE_MACC_FLU;
3364         }
3365
3366         hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3367                               IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
3368
3369         IXGBE_WRITE_REG(hw, IXGBE_MACC, macc);
3370 }
3371
3372 void __rte_cold
3373 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3374 {
3375         unsigned i;
3376         struct ixgbe_adapter *adapter = dev->data->dev_private;
3377         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3378
3379         PMD_INIT_FUNC_TRACE();
3380
3381         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3382                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3383
3384                 if (txq != NULL) {
3385                         txq->ops->release_mbufs(txq);
3386                         txq->ops->reset(txq);
3387                 }
3388         }
3389
3390         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3391                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3392
3393                 if (rxq != NULL) {
3394                         ixgbe_rx_queue_release_mbufs(rxq);
3395                         ixgbe_reset_rx_queue(adapter, rxq);
3396                 }
3397         }
3398         /* If loopback mode was enabled, reconfigure the link accordingly */
3399         if (dev->data->dev_conf.lpbk_mode != 0) {
3400                 if (hw->mac.type == ixgbe_mac_X540 ||
3401                      hw->mac.type == ixgbe_mac_X550 ||
3402                      hw->mac.type == ixgbe_mac_X550EM_x ||
3403                      hw->mac.type == ixgbe_mac_X550EM_a)
3404                         ixgbe_setup_loopback_link_x540_x550(hw, false);
3405         }
3406 }
3407
3408 void
3409 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3410 {
3411         unsigned i;
3412
3413         PMD_INIT_FUNC_TRACE();
3414
3415         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3416                 ixgbe_dev_rx_queue_release(dev, i);
3417                 dev->data->rx_queues[i] = NULL;
3418         }
3419         dev->data->nb_rx_queues = 0;
3420
3421         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3422                 ixgbe_dev_tx_queue_release(dev, i);
3423                 dev->data->tx_queues[i] = NULL;
3424         }
3425         dev->data->nb_tx_queues = 0;
3426 }
3427
3428 /*********************************************************************
3429  *
3430  *  Device RX/TX init functions
3431  *
3432  **********************************************************************/
3433
3434 /**
3435  * Receive Side Scaling (RSS)
3436  * See section 7.1.2.8 in the following document:
3437  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3438  *
3439  * Principles:
3440  * The source and destination IP addresses of the IP header and the source
3441  * and destination ports of TCP/UDP headers, if any, of received packets are
3442  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3443  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3444  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3445  * RSS output index which is used as the RX queue index where to store the
3446  * received packets.
3447  * The following output is supplied in the RX write-back descriptor:
3448  *     - 32-bit result of the Microsoft RSS hash function,
3449  *     - 4-bit RSS type field.
3450  */
3451
3452 /*
3453  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3454  * Used as the default key.
3455  */
3456 static uint8_t rss_intel_key[40] = {
3457         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3458         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3459         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3460         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3461         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3462 };
3463
3464 static void
3465 ixgbe_rss_disable(struct rte_eth_dev *dev)
3466 {
3467         struct ixgbe_hw *hw;
3468         uint32_t mrqc;
3469         uint32_t mrqc_reg;
3470
3471         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3472         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3473         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3474         mrqc &= ~IXGBE_MRQC_RSSEN;
3475         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3476 }
3477
3478 static void
3479 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3480 {
3481         uint8_t  *hash_key;
3482         uint32_t mrqc;
3483         uint32_t rss_key;
3484         uint64_t rss_hf;
3485         uint16_t i;
3486         uint32_t mrqc_reg;
3487         uint32_t rssrk_reg;
3488
3489         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3490         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3491
3492         hash_key = rss_conf->rss_key;
3493         if (hash_key != NULL) {
3494                 /* Fill in RSS hash key */
3495                 for (i = 0; i < 10; i++) {
3496                         rss_key  = hash_key[(i * 4)];
3497                         rss_key |= hash_key[(i * 4) + 1] << 8;
3498                         rss_key |= hash_key[(i * 4) + 2] << 16;
3499                         rss_key |= hash_key[(i * 4) + 3] << 24;
3500                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3501                 }
3502         }
3503
3504         /* Set configured hashing protocols in MRQC register */
3505         rss_hf = rss_conf->rss_hf;
3506         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3507         if (rss_hf & RTE_ETH_RSS_IPV4)
3508                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3509         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
3510                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3511         if (rss_hf & RTE_ETH_RSS_IPV6)
3512                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3513         if (rss_hf & RTE_ETH_RSS_IPV6_EX)
3514                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3515         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP)
3516                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3517         if (rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
3518                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3519         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
3520                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3521         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP)
3522                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3523         if (rss_hf & RTE_ETH_RSS_IPV6_UDP_EX)
3524                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3525         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3526 }
3527
3528 int
3529 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3530                           struct rte_eth_rss_conf *rss_conf)
3531 {
3532         struct ixgbe_hw *hw;
3533         uint32_t mrqc;
3534         uint64_t rss_hf;
3535         uint32_t mrqc_reg;
3536
3537         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3538
3539         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3540                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3541                         "NIC.");
3542                 return -ENOTSUP;
3543         }
3544         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3545
3546         /*
3547          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3548          *     "RSS enabling cannot be done dynamically while it must be
3549          *      preceded by a software reset"
3550          * Before changing anything, first check that the update RSS operation
3551          * does not attempt to disable RSS, if RSS was enabled at
3552          * initialization time, or does not attempt to enable RSS, if RSS was
3553          * disabled at initialization time.
3554          */
3555         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3556         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3557         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3558                 if (rss_hf != 0) /* Enable RSS */
3559                         return -(EINVAL);
3560                 return 0; /* Nothing to do */
3561         }
3562         /* RSS enabled */
3563         if (rss_hf == 0) /* Disable RSS */
3564                 return -(EINVAL);
3565         ixgbe_hw_rss_hash_set(hw, rss_conf);
3566         return 0;
3567 }
3568
3569 int
3570 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3571                             struct rte_eth_rss_conf *rss_conf)
3572 {
3573         struct ixgbe_hw *hw;
3574         uint8_t *hash_key;
3575         uint32_t mrqc;
3576         uint32_t rss_key;
3577         uint64_t rss_hf;
3578         uint16_t i;
3579         uint32_t mrqc_reg;
3580         uint32_t rssrk_reg;
3581
3582         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3583         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3584         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3585         hash_key = rss_conf->rss_key;
3586         if (hash_key != NULL) {
3587                 /* Return RSS hash key */
3588                 for (i = 0; i < 10; i++) {
3589                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3590                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3591                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3592                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3593                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3594                 }
3595         }
3596
3597         /* Get RSS functions configured in MRQC register */
3598         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3599         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3600                 rss_conf->rss_hf = 0;
3601                 return 0;
3602         }
3603         rss_hf = 0;
3604         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3605                 rss_hf |= RTE_ETH_RSS_IPV4;
3606         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3607                 rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
3608         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3609                 rss_hf |= RTE_ETH_RSS_IPV6;
3610         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3611                 rss_hf |= RTE_ETH_RSS_IPV6_EX;
3612         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3613                 rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP;
3614         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3615                 rss_hf |= RTE_ETH_RSS_IPV6_TCP_EX;
3616         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3617                 rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
3618         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3619                 rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP;
3620         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3621                 rss_hf |= RTE_ETH_RSS_IPV6_UDP_EX;
3622         rss_conf->rss_hf = rss_hf;
3623         return 0;
3624 }
3625
3626 static void
3627 ixgbe_rss_configure(struct rte_eth_dev *dev)
3628 {
3629         struct rte_eth_rss_conf rss_conf;
3630         struct ixgbe_adapter *adapter;
3631         struct ixgbe_hw *hw;
3632         uint32_t reta;
3633         uint16_t i;
3634         uint16_t j;
3635         uint16_t sp_reta_size;
3636         uint32_t reta_reg;
3637
3638         PMD_INIT_FUNC_TRACE();
3639         adapter = dev->data->dev_private;
3640         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3641
3642         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3643
3644         /*
3645          * Fill in redirection table
3646          * The byte-swap is needed because NIC registers are in
3647          * little-endian order.
3648          */
3649         if (adapter->rss_reta_updated == 0) {
3650                 reta = 0;
3651                 for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3652                         reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3653
3654                         if (j == dev->data->nb_rx_queues)
3655                                 j = 0;
3656                         reta = (reta << 8) | j;
3657                         if ((i & 3) == 3)
3658                                 IXGBE_WRITE_REG(hw, reta_reg,
3659                                                 rte_bswap32(reta));
3660                 }
3661         }
3662
3663         /*
3664          * Configure the RSS key and the RSS protocols used to compute
3665          * the RSS hash of input packets.
3666          */
3667         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3668         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3669                 ixgbe_rss_disable(dev);
3670                 return;
3671         }
3672         if (rss_conf.rss_key == NULL)
3673                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3674         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3675 }
3676
3677 #define NUM_VFTA_REGISTERS 128
3678 #define NIC_RX_BUFFER_SIZE 0x200
3679 #define X550_RX_BUFFER_SIZE 0x180
3680
3681 static void
3682 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3683 {
3684         struct rte_eth_vmdq_dcb_conf *cfg;
3685         struct ixgbe_hw *hw;
3686         enum rte_eth_nb_pools num_pools;
3687         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3688         uint16_t pbsize;
3689         uint8_t nb_tcs; /* number of traffic classes */
3690         int i;
3691
3692         PMD_INIT_FUNC_TRACE();
3693         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3694         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3695         num_pools = cfg->nb_queue_pools;
3696         /* Check we have a valid number of pools */
3697         if (num_pools != RTE_ETH_16_POOLS && num_pools != RTE_ETH_32_POOLS) {
3698                 ixgbe_rss_disable(dev);
3699                 return;
3700         }
3701         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3702         nb_tcs = (uint8_t)(RTE_ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3703
3704         /*
3705          * RXPBSIZE
3706          * split rx buffer up into sections, each for 1 traffic class
3707          */
3708         switch (hw->mac.type) {
3709         case ixgbe_mac_X550:
3710         case ixgbe_mac_X550EM_x:
3711         case ixgbe_mac_X550EM_a:
3712                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3713                 break;
3714         default:
3715                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3716                 break;
3717         }
3718         for (i = 0; i < nb_tcs; i++) {
3719                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3720
3721                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3722                 /* clear 10 bits. */
3723                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3724                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3725         }
3726         /* zero alloc all unused TCs */
3727         for (i = nb_tcs; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
3728                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3729
3730                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3731                 /* clear 10 bits. */
3732                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3733         }
3734
3735         /* MRQC: enable vmdq and dcb */
3736         mrqc = (num_pools == RTE_ETH_16_POOLS) ?
3737                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3738         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3739
3740         /* PFVTCTL: turn on virtualisation and set the default pool */
3741         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3742         if (cfg->enable_default_pool) {
3743                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3744         } else {
3745                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3746         }
3747
3748         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3749
3750         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3751         queue_mapping = 0;
3752         for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++)
3753                 /*
3754                  * mapping is done with 3 bits per priority,
3755                  * so shift by i*3 each time
3756                  */
3757                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3758
3759         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3760
3761         /* RTRPCS: DCB related */
3762         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3763
3764         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3765         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3766         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3767         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3768
3769         /* VFTA - enable all vlan filters */
3770         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3771                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3772         }
3773
3774         /* VFRE: pool enabling for receive - 16 or 32 */
3775         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3776                         num_pools == RTE_ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3777
3778         /*
3779          * MPSAR - allow pools to read specific mac addresses
3780          * In this case, all pools should be able to read from mac addr 0
3781          */
3782         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3783         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3784
3785         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3786         for (i = 0; i < cfg->nb_pool_maps; i++) {
3787                 /* set vlan id in VF register and set the valid bit */
3788                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3789                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3790                 /*
3791                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3792                  * pools, we only need to use the first half of the register
3793                  * i.e. bits 0-31
3794                  */
3795                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3796         }
3797 }
3798
3799 /**
3800  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3801  * @dev: pointer to eth_dev structure
3802  * @dcb_config: pointer to ixgbe_dcb_config structure
3803  */
3804 static void
3805 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3806                        struct ixgbe_dcb_config *dcb_config)
3807 {
3808         uint32_t reg;
3809         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3810
3811         PMD_INIT_FUNC_TRACE();
3812         if (hw->mac.type != ixgbe_mac_82598EB) {
3813                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3814                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3815                 reg |= IXGBE_RTTDCS_ARBDIS;
3816                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3817
3818                 /* Enable DCB for Tx with 8 TCs */
3819                 if (dcb_config->num_tcs.pg_tcs == 8) {
3820                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3821                 } else {
3822                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3823                 }
3824                 if (dcb_config->vt_mode)
3825                         reg |= IXGBE_MTQC_VT_ENA;
3826                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3827
3828                 /* Enable the Tx desc arbiter */
3829                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3830                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3831                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3832
3833                 /* Enable Security TX Buffer IFG for DCB */
3834                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3835                 reg |= IXGBE_SECTX_DCB;
3836                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3837         }
3838 }
3839
3840 /**
3841  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3842  * @dev: pointer to rte_eth_dev structure
3843  * @dcb_config: pointer to ixgbe_dcb_config structure
3844  */
3845 static void
3846 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3847                         struct ixgbe_dcb_config *dcb_config)
3848 {
3849         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3850                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3851         struct ixgbe_hw *hw =
3852                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3853
3854         PMD_INIT_FUNC_TRACE();
3855         if (hw->mac.type != ixgbe_mac_82598EB)
3856                 /*PF VF Transmit Enable*/
3857                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3858                         vmdq_tx_conf->nb_queue_pools == RTE_ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3859
3860         /*Configure general DCB TX parameters*/
3861         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3862 }
3863
3864 static void
3865 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3866                         struct ixgbe_dcb_config *dcb_config)
3867 {
3868         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3869                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3870         struct ixgbe_dcb_tc_config *tc;
3871         uint8_t i, j;
3872
3873         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3874         if (vmdq_rx_conf->nb_queue_pools == RTE_ETH_16_POOLS) {
3875                 dcb_config->num_tcs.pg_tcs = RTE_ETH_8_TCS;
3876                 dcb_config->num_tcs.pfc_tcs = RTE_ETH_8_TCS;
3877         } else {
3878                 dcb_config->num_tcs.pg_tcs = RTE_ETH_4_TCS;
3879                 dcb_config->num_tcs.pfc_tcs = RTE_ETH_4_TCS;
3880         }
3881
3882         /* Initialize User Priority to Traffic Class mapping */
3883         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3884                 tc = &dcb_config->tc_config[j];
3885                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3886         }
3887
3888         /* User Priority to Traffic Class mapping */
3889         for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
3890                 j = vmdq_rx_conf->dcb_tc[i];
3891                 tc = &dcb_config->tc_config[j];
3892                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3893                                                 (uint8_t)(1 << i);
3894         }
3895 }
3896
3897 static void
3898 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3899                         struct ixgbe_dcb_config *dcb_config)
3900 {
3901         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3902                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3903         struct ixgbe_dcb_tc_config *tc;
3904         uint8_t i, j;
3905
3906         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3907         if (vmdq_tx_conf->nb_queue_pools == RTE_ETH_16_POOLS) {
3908                 dcb_config->num_tcs.pg_tcs = RTE_ETH_8_TCS;
3909                 dcb_config->num_tcs.pfc_tcs = RTE_ETH_8_TCS;
3910         } else {
3911                 dcb_config->num_tcs.pg_tcs = RTE_ETH_4_TCS;
3912                 dcb_config->num_tcs.pfc_tcs = RTE_ETH_4_TCS;
3913         }
3914
3915         /* Initialize User Priority to Traffic Class mapping */
3916         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3917                 tc = &dcb_config->tc_config[j];
3918                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3919         }
3920
3921         /* User Priority to Traffic Class mapping */
3922         for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
3923                 j = vmdq_tx_conf->dcb_tc[i];
3924                 tc = &dcb_config->tc_config[j];
3925                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3926                                                 (uint8_t)(1 << i);
3927         }
3928 }
3929
3930 static void
3931 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3932                 struct ixgbe_dcb_config *dcb_config)
3933 {
3934         struct rte_eth_dcb_rx_conf *rx_conf =
3935                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3936         struct ixgbe_dcb_tc_config *tc;
3937         uint8_t i, j;
3938
3939         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3940         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3941
3942         /* Initialize User Priority to Traffic Class mapping */
3943         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3944                 tc = &dcb_config->tc_config[j];
3945                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3946         }
3947
3948         /* User Priority to Traffic Class mapping */
3949         for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
3950                 j = rx_conf->dcb_tc[i];
3951                 tc = &dcb_config->tc_config[j];
3952                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3953                                                 (uint8_t)(1 << i);
3954         }
3955 }
3956
3957 static void
3958 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3959                 struct ixgbe_dcb_config *dcb_config)
3960 {
3961         struct rte_eth_dcb_tx_conf *tx_conf =
3962                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3963         struct ixgbe_dcb_tc_config *tc;
3964         uint8_t i, j;
3965
3966         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3967         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3968
3969         /* Initialize User Priority to Traffic Class mapping */
3970         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3971                 tc = &dcb_config->tc_config[j];
3972                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3973         }
3974
3975         /* User Priority to Traffic Class mapping */
3976         for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
3977                 j = tx_conf->dcb_tc[i];
3978                 tc = &dcb_config->tc_config[j];
3979                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3980                                                 (uint8_t)(1 << i);
3981         }
3982 }
3983
3984 /**
3985  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3986  * @dev: pointer to eth_dev structure
3987  * @dcb_config: pointer to ixgbe_dcb_config structure
3988  */
3989 static void
3990 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3991                        struct ixgbe_dcb_config *dcb_config)
3992 {
3993         uint32_t reg;
3994         uint32_t vlanctrl;
3995         uint8_t i;
3996         uint32_t q;
3997         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3998
3999         PMD_INIT_FUNC_TRACE();
4000         /*
4001          * Disable the arbiter before changing parameters
4002          * (always enable recycle mode; WSP)
4003          */
4004         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
4005         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
4006
4007         if (hw->mac.type != ixgbe_mac_82598EB) {
4008                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
4009                 if (dcb_config->num_tcs.pg_tcs == 4) {
4010                         if (dcb_config->vt_mode)
4011                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4012                                         IXGBE_MRQC_VMDQRT4TCEN;
4013                         else {
4014                                 /* no matter the mode is DCB or DCB_RSS, just
4015                                  * set the MRQE to RSSXTCEN. RSS is controlled
4016                                  * by RSS_FIELD
4017                                  */
4018                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
4019                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4020                                         IXGBE_MRQC_RTRSS4TCEN;
4021                         }
4022                 }
4023                 if (dcb_config->num_tcs.pg_tcs == 8) {
4024                         if (dcb_config->vt_mode)
4025                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4026                                         IXGBE_MRQC_VMDQRT8TCEN;
4027                         else {
4028                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
4029                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4030                                         IXGBE_MRQC_RTRSS8TCEN;
4031                         }
4032                 }
4033
4034                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
4035
4036                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4037                         /* Disable drop for all queues in VMDQ mode*/
4038                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4039                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4040                                                 (IXGBE_QDE_WRITE |
4041                                                  (q << IXGBE_QDE_IDX_SHIFT)));
4042                 } else {
4043                         /* Enable drop for all queues in SRIOV mode */
4044                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4045                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4046                                                 (IXGBE_QDE_WRITE |
4047                                                  (q << IXGBE_QDE_IDX_SHIFT) |
4048                                                  IXGBE_QDE_ENABLE));
4049                 }
4050         }
4051
4052         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4053         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4054         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4055         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4056
4057         /* VFTA - enable all vlan filters */
4058         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
4059                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
4060         }
4061
4062         /*
4063          * Configure Rx packet plane (recycle mode; WSP) and
4064          * enable arbiter
4065          */
4066         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
4067         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
4068 }
4069
4070 static void
4071 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
4072                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
4073 {
4074         switch (hw->mac.type) {
4075         case ixgbe_mac_82598EB:
4076                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
4077                 break;
4078         case ixgbe_mac_82599EB:
4079         case ixgbe_mac_X540:
4080         case ixgbe_mac_X550:
4081         case ixgbe_mac_X550EM_x:
4082         case ixgbe_mac_X550EM_a:
4083                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
4084                                                   tsa, map);
4085                 break;
4086         default:
4087                 break;
4088         }
4089 }
4090
4091 static void
4092 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
4093                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
4094 {
4095         switch (hw->mac.type) {
4096         case ixgbe_mac_82598EB:
4097                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
4098                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
4099                 break;
4100         case ixgbe_mac_82599EB:
4101         case ixgbe_mac_X540:
4102         case ixgbe_mac_X550:
4103         case ixgbe_mac_X550EM_x:
4104         case ixgbe_mac_X550EM_a:
4105                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
4106                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
4107                 break;
4108         default:
4109                 break;
4110         }
4111 }
4112
4113 #define DCB_RX_CONFIG  1
4114 #define DCB_TX_CONFIG  1
4115 #define DCB_TX_PB      1024
4116 /**
4117  * ixgbe_dcb_hw_configure - Enable DCB and configure
4118  * general DCB in VT mode and non-VT mode parameters
4119  * @dev: pointer to rte_eth_dev structure
4120  * @dcb_config: pointer to ixgbe_dcb_config structure
4121  */
4122 static int
4123 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
4124                         struct ixgbe_dcb_config *dcb_config)
4125 {
4126         int     ret = 0;
4127         uint8_t i, pfc_en, nb_tcs;
4128         uint16_t pbsize, rx_buffer_size;
4129         uint8_t config_dcb_rx = 0;
4130         uint8_t config_dcb_tx = 0;
4131         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4132         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4133         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4134         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4135         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4136         struct ixgbe_dcb_tc_config *tc;
4137         uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN +
4138                 RTE_ETHER_CRC_LEN;
4139         struct ixgbe_hw *hw =
4140                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4141         struct ixgbe_bw_conf *bw_conf =
4142                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
4143
4144         switch (dev->data->dev_conf.rxmode.mq_mode) {
4145         case RTE_ETH_MQ_RX_VMDQ_DCB:
4146                 dcb_config->vt_mode = true;
4147                 if (hw->mac.type != ixgbe_mac_82598EB) {
4148                         config_dcb_rx = DCB_RX_CONFIG;
4149                         /*
4150                          *get dcb and VT rx configuration parameters
4151                          *from rte_eth_conf
4152                          */
4153                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
4154                         /*Configure general VMDQ and DCB RX parameters*/
4155                         ixgbe_vmdq_dcb_configure(dev);
4156                 }
4157                 break;
4158         case RTE_ETH_MQ_RX_DCB:
4159         case RTE_ETH_MQ_RX_DCB_RSS:
4160                 dcb_config->vt_mode = false;
4161                 config_dcb_rx = DCB_RX_CONFIG;
4162                 /* Get dcb TX configuration parameters from rte_eth_conf */
4163                 ixgbe_dcb_rx_config(dev, dcb_config);
4164                 /*Configure general DCB RX parameters*/
4165                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
4166                 break;
4167         default:
4168                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
4169                 break;
4170         }
4171         switch (dev->data->dev_conf.txmode.mq_mode) {
4172         case RTE_ETH_MQ_TX_VMDQ_DCB:
4173                 dcb_config->vt_mode = true;
4174                 config_dcb_tx = DCB_TX_CONFIG;
4175                 /* get DCB and VT TX configuration parameters
4176                  * from rte_eth_conf
4177                  */
4178                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
4179                 /*Configure general VMDQ and DCB TX parameters*/
4180                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
4181                 break;
4182
4183         case RTE_ETH_MQ_TX_DCB:
4184                 dcb_config->vt_mode = false;
4185                 config_dcb_tx = DCB_TX_CONFIG;
4186                 /*get DCB TX configuration parameters from rte_eth_conf*/
4187                 ixgbe_dcb_tx_config(dev, dcb_config);
4188                 /*Configure general DCB TX parameters*/
4189                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
4190                 break;
4191         default:
4192                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
4193                 break;
4194         }
4195
4196         nb_tcs = dcb_config->num_tcs.pfc_tcs;
4197         /* Unpack map */
4198         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
4199         if (nb_tcs == RTE_ETH_4_TCS) {
4200                 /* Avoid un-configured priority mapping to TC0 */
4201                 uint8_t j = 4;
4202                 uint8_t mask = 0xFF;
4203
4204                 for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
4205                         mask = (uint8_t)(mask & (~(1 << map[i])));
4206                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
4207                         if ((mask & 0x1) && j < RTE_ETH_DCB_NUM_USER_PRIORITIES)
4208                                 map[j++] = i;
4209                         mask >>= 1;
4210                 }
4211                 /* Re-configure 4 TCs BW */
4212                 for (i = 0; i < nb_tcs; i++) {
4213                         tc = &dcb_config->tc_config[i];
4214                         if (bw_conf->tc_num != nb_tcs)
4215                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4216                                         (uint8_t)(100 / nb_tcs);
4217                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4218                                                 (uint8_t)(100 / nb_tcs);
4219                 }
4220                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4221                         tc = &dcb_config->tc_config[i];
4222                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4223                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4224                 }
4225         } else {
4226                 /* Re-configure 8 TCs BW */
4227                 for (i = 0; i < nb_tcs; i++) {
4228                         tc = &dcb_config->tc_config[i];
4229                         if (bw_conf->tc_num != nb_tcs)
4230                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4231                                         (uint8_t)(100 / nb_tcs + (i & 1));
4232                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4233                                 (uint8_t)(100 / nb_tcs + (i & 1));
4234                 }
4235         }
4236
4237         switch (hw->mac.type) {
4238         case ixgbe_mac_X550:
4239         case ixgbe_mac_X550EM_x:
4240         case ixgbe_mac_X550EM_a:
4241                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4242                 break;
4243         default:
4244                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4245                 break;
4246         }
4247
4248         if (config_dcb_rx) {
4249                 /* Set RX buffer size */
4250                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4251                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4252
4253                 for (i = 0; i < nb_tcs; i++) {
4254                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4255                 }
4256                 /* zero alloc all unused TCs */
4257                 for (; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++)
4258                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4259         }
4260         if (config_dcb_tx) {
4261                 /* Only support an equally distributed
4262                  *  Tx packet buffer strategy.
4263                  */
4264                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4265                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4266
4267                 for (i = 0; i < nb_tcs; i++) {
4268                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4269                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4270                 }
4271                 /* Clear unused TCs, if any, to zero buffer size*/
4272                 for (; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
4273                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4274                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4275                 }
4276         }
4277
4278         /*Calculates traffic class credits*/
4279         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4280                                 IXGBE_DCB_TX_CONFIG);
4281         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4282                                 IXGBE_DCB_RX_CONFIG);
4283
4284         if (config_dcb_rx) {
4285                 /* Unpack CEE standard containers */
4286                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4287                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4288                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4289                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4290                 /* Configure PG(ETS) RX */
4291                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4292         }
4293
4294         if (config_dcb_tx) {
4295                 /* Unpack CEE standard containers */
4296                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4297                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4298                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4299                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4300                 /* Configure PG(ETS) TX */
4301                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4302         }
4303
4304         /*Configure queue statistics registers*/
4305         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4306
4307         /* Check if the PFC is supported */
4308         if (dev->data->dev_conf.dcb_capability_en & RTE_ETH_DCB_PFC_SUPPORT) {
4309                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4310                 for (i = 0; i < nb_tcs; i++) {
4311                         /*
4312                         * If the TC count is 8,and the default high_water is 48,
4313                         * the low_water is 16 as default.
4314                         */
4315                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4316                         hw->fc.low_water[i] = pbsize / 4;
4317                         /* Enable pfc for this TC */
4318                         tc = &dcb_config->tc_config[i];
4319                         tc->pfc = ixgbe_dcb_pfc_enabled;
4320                 }
4321                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4322                 if (dcb_config->num_tcs.pfc_tcs == RTE_ETH_4_TCS)
4323                         pfc_en &= 0x0F;
4324                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4325         }
4326
4327         return ret;
4328 }
4329
4330 /**
4331  * ixgbe_configure_dcb - Configure DCB  Hardware
4332  * @dev: pointer to rte_eth_dev
4333  */
4334 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4335 {
4336         struct ixgbe_dcb_config *dcb_cfg =
4337                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4338         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4339
4340         PMD_INIT_FUNC_TRACE();
4341
4342         /* check support mq_mode for DCB */
4343         if (dev_conf->rxmode.mq_mode != RTE_ETH_MQ_RX_VMDQ_DCB &&
4344             dev_conf->rxmode.mq_mode != RTE_ETH_MQ_RX_DCB &&
4345             dev_conf->rxmode.mq_mode != RTE_ETH_MQ_RX_DCB_RSS)
4346                 return;
4347
4348         if (dev->data->nb_rx_queues > RTE_ETH_DCB_NUM_QUEUES)
4349                 return;
4350
4351         /** Configure DCB hardware **/
4352         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4353 }
4354
4355 /*
4356  * VMDq only support for 10 GbE NIC.
4357  */
4358 static void
4359 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4360 {
4361         struct rte_eth_vmdq_rx_conf *cfg;
4362         struct ixgbe_hw *hw;
4363         enum rte_eth_nb_pools num_pools;
4364         uint32_t mrqc, vt_ctl, vlanctrl;
4365         uint32_t vmolr = 0;
4366         int i;
4367
4368         PMD_INIT_FUNC_TRACE();
4369         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4370         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4371         num_pools = cfg->nb_queue_pools;
4372
4373         ixgbe_rss_disable(dev);
4374
4375         /* MRQC: enable vmdq */
4376         mrqc = IXGBE_MRQC_VMDQEN;
4377         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4378
4379         /* PFVTCTL: turn on virtualisation and set the default pool */
4380         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4381         if (cfg->enable_default_pool)
4382                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4383         else
4384                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4385
4386         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4387
4388         for (i = 0; i < (int)num_pools; i++) {
4389                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4390                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4391         }
4392
4393         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4394         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4395         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4396         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4397
4398         /* VFTA - enable all vlan filters */
4399         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4400                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4401
4402         /* VFRE: pool enabling for receive - 64 */
4403         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4404         if (num_pools == RTE_ETH_64_POOLS)
4405                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4406
4407         /*
4408          * MPSAR - allow pools to read specific mac addresses
4409          * In this case, all pools should be able to read from mac addr 0
4410          */
4411         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4412         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4413
4414         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4415         for (i = 0; i < cfg->nb_pool_maps; i++) {
4416                 /* set vlan id in VF register and set the valid bit */
4417                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4418                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4419                 /*
4420                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4421                  * pools, we only need to use the first half of the register
4422                  * i.e. bits 0-31
4423                  */
4424                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4425                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4426                                         (cfg->pool_map[i].pools & UINT32_MAX));
4427                 else
4428                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4429                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4430
4431         }
4432
4433         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4434         if (cfg->enable_loop_back) {
4435                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4436                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4437                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4438         }
4439
4440         IXGBE_WRITE_FLUSH(hw);
4441 }
4442
4443 /*
4444  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4445  * @hw: pointer to hardware structure
4446  */
4447 static void
4448 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4449 {
4450         uint32_t reg;
4451         uint32_t q;
4452
4453         PMD_INIT_FUNC_TRACE();
4454         /*PF VF Transmit Enable*/
4455         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4456         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4457
4458         /* Disable the Tx desc arbiter so that MTQC can be changed */
4459         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4460         reg |= IXGBE_RTTDCS_ARBDIS;
4461         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4462
4463         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4464         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4465
4466         /* Disable drop for all queues */
4467         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4468                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4469                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4470
4471         /* Enable the Tx desc arbiter */
4472         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4473         reg &= ~IXGBE_RTTDCS_ARBDIS;
4474         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4475
4476         IXGBE_WRITE_FLUSH(hw);
4477 }
4478
4479 static int __rte_cold
4480 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4481 {
4482         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4483         uint64_t dma_addr;
4484         unsigned int i;
4485
4486         /* Initialize software ring entries */
4487         for (i = 0; i < rxq->nb_rx_desc; i++) {
4488                 volatile union ixgbe_adv_rx_desc *rxd;
4489                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4490
4491                 if (mbuf == NULL) {
4492                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4493                                      (unsigned) rxq->queue_id);
4494                         return -ENOMEM;
4495                 }
4496
4497                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4498                 mbuf->port = rxq->port_id;
4499
4500                 dma_addr =
4501                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4502                 rxd = &rxq->rx_ring[i];
4503                 rxd->read.hdr_addr = 0;
4504                 rxd->read.pkt_addr = dma_addr;
4505                 rxe[i].mbuf = mbuf;
4506         }
4507
4508         return 0;
4509 }
4510
4511 static int
4512 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4513 {
4514         struct ixgbe_hw *hw;
4515         uint32_t mrqc;
4516
4517         ixgbe_rss_configure(dev);
4518
4519         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4520
4521         /* MRQC: enable VF RSS */
4522         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4523         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4524         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4525         case RTE_ETH_64_POOLS:
4526                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4527                 break;
4528
4529         case RTE_ETH_32_POOLS:
4530                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4531                 break;
4532
4533         default:
4534                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4535                 return -EINVAL;
4536         }
4537
4538         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4539
4540         return 0;
4541 }
4542
4543 static int
4544 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4545 {
4546         struct ixgbe_hw *hw =
4547                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4548
4549         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4550         case RTE_ETH_64_POOLS:
4551                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4552                         IXGBE_MRQC_VMDQEN);
4553                 break;
4554
4555         case RTE_ETH_32_POOLS:
4556                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4557                         IXGBE_MRQC_VMDQRT4TCEN);
4558                 break;
4559
4560         case RTE_ETH_16_POOLS:
4561                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4562                         IXGBE_MRQC_VMDQRT8TCEN);
4563                 break;
4564         default:
4565                 PMD_INIT_LOG(ERR,
4566                         "invalid pool number in IOV mode");
4567                 break;
4568         }
4569         return 0;
4570 }
4571
4572 static int
4573 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4574 {
4575         struct ixgbe_hw *hw =
4576                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4577
4578         if (hw->mac.type == ixgbe_mac_82598EB)
4579                 return 0;
4580
4581         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4582                 /*
4583                  * SRIOV inactive scheme
4584                  * any DCB/RSS w/o VMDq multi-queue setting
4585                  */
4586                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4587                 case RTE_ETH_MQ_RX_RSS:
4588                 case RTE_ETH_MQ_RX_DCB_RSS:
4589                 case RTE_ETH_MQ_RX_VMDQ_RSS:
4590                         ixgbe_rss_configure(dev);
4591                         break;
4592
4593                 case RTE_ETH_MQ_RX_VMDQ_DCB:
4594                         ixgbe_vmdq_dcb_configure(dev);
4595                         break;
4596
4597                 case RTE_ETH_MQ_RX_VMDQ_ONLY:
4598                         ixgbe_vmdq_rx_hw_configure(dev);
4599                         break;
4600
4601                 case RTE_ETH_MQ_RX_NONE:
4602                 default:
4603                         /* if mq_mode is none, disable rss mode.*/
4604                         ixgbe_rss_disable(dev);
4605                         break;
4606                 }
4607         } else {
4608                 /* SRIOV active scheme
4609                  * Support RSS together with SRIOV.
4610                  */
4611                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4612                 case RTE_ETH_MQ_RX_RSS:
4613                 case RTE_ETH_MQ_RX_VMDQ_RSS:
4614                         ixgbe_config_vf_rss(dev);
4615                         break;
4616                 case RTE_ETH_MQ_RX_VMDQ_DCB:
4617                 case RTE_ETH_MQ_RX_DCB:
4618                 /* In SRIOV, the configuration is the same as VMDq case */
4619                         ixgbe_vmdq_dcb_configure(dev);
4620                         break;
4621                 /* DCB/RSS together with SRIOV is not supported */
4622                 case RTE_ETH_MQ_RX_VMDQ_DCB_RSS:
4623                 case RTE_ETH_MQ_RX_DCB_RSS:
4624                         PMD_INIT_LOG(ERR,
4625                                 "Could not support DCB/RSS with VMDq & SRIOV");
4626                         return -1;
4627                 default:
4628                         ixgbe_config_vf_default(dev);
4629                         break;
4630                 }
4631         }
4632
4633         return 0;
4634 }
4635
4636 static int
4637 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4638 {
4639         struct ixgbe_hw *hw =
4640                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4641         uint32_t mtqc;
4642         uint32_t rttdcs;
4643
4644         if (hw->mac.type == ixgbe_mac_82598EB)
4645                 return 0;
4646
4647         /* disable arbiter before setting MTQC */
4648         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4649         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4650         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4651
4652         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4653                 /*
4654                  * SRIOV inactive scheme
4655                  * any DCB w/o VMDq multi-queue setting
4656                  */
4657                 if (dev->data->dev_conf.txmode.mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)
4658                         ixgbe_vmdq_tx_hw_configure(hw);
4659                 else {
4660                         mtqc = IXGBE_MTQC_64Q_1PB;
4661                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4662                 }
4663         } else {
4664                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4665
4666                 /*
4667                  * SRIOV active scheme
4668                  * FIXME if support DCB together with VMDq & SRIOV
4669                  */
4670                 case RTE_ETH_64_POOLS:
4671                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4672                         break;
4673                 case RTE_ETH_32_POOLS:
4674                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4675                         break;
4676                 case RTE_ETH_16_POOLS:
4677                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4678                                 IXGBE_MTQC_8TC_8TQ;
4679                         break;
4680                 default:
4681                         mtqc = IXGBE_MTQC_64Q_1PB;
4682                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4683                 }
4684                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4685         }
4686
4687         /* re-enable arbiter */
4688         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4689         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4690
4691         return 0;
4692 }
4693
4694 /**
4695  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4696  *
4697  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4698  * spec rev. 3.0 chapter 8.2.3.8.13.
4699  *
4700  * @pool Memory pool of the Rx queue
4701  */
4702 static inline uint32_t
4703 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4704 {
4705         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4706
4707         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4708         uint16_t maxdesc =
4709                 RTE_IPV4_MAX_PKT_LEN /
4710                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4711
4712         if (maxdesc >= 16)
4713                 return IXGBE_RSCCTL_MAXDESC_16;
4714         else if (maxdesc >= 8)
4715                 return IXGBE_RSCCTL_MAXDESC_8;
4716         else if (maxdesc >= 4)
4717                 return IXGBE_RSCCTL_MAXDESC_4;
4718         else
4719                 return IXGBE_RSCCTL_MAXDESC_1;
4720 }
4721
4722 /**
4723  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4724  * interrupt
4725  *
4726  * (Taken from FreeBSD tree)
4727  * (yes this is all very magic and confusing :)
4728  *
4729  * @dev port handle
4730  * @entry the register array entry
4731  * @vector the MSIX vector for this queue
4732  * @type RX/TX/MISC
4733  */
4734 static void
4735 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4736 {
4737         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4738         u32 ivar, index;
4739
4740         vector |= IXGBE_IVAR_ALLOC_VAL;
4741
4742         switch (hw->mac.type) {
4743
4744         case ixgbe_mac_82598EB:
4745                 if (type == -1)
4746                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4747                 else
4748                         entry += (type * 64);
4749                 index = (entry >> 2) & 0x1F;
4750                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4751                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4752                 ivar |= (vector << (8 * (entry & 0x3)));
4753                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4754                 break;
4755
4756         case ixgbe_mac_82599EB:
4757         case ixgbe_mac_X540:
4758                 if (type == -1) { /* MISC IVAR */
4759                         index = (entry & 1) * 8;
4760                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4761                         ivar &= ~(0xFF << index);
4762                         ivar |= (vector << index);
4763                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4764                 } else {        /* RX/TX IVARS */
4765                         index = (16 * (entry & 1)) + (8 * type);
4766                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4767                         ivar &= ~(0xFF << index);
4768                         ivar |= (vector << index);
4769                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4770                 }
4771
4772                 break;
4773
4774         default:
4775                 break;
4776         }
4777 }
4778
4779 void __rte_cold
4780 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4781 {
4782         uint16_t i, rx_using_sse;
4783         struct ixgbe_adapter *adapter = dev->data->dev_private;
4784
4785         /*
4786          * In order to allow Vector Rx there are a few configuration
4787          * conditions to be met and Rx Bulk Allocation should be allowed.
4788          */
4789         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4790             !adapter->rx_bulk_alloc_allowed ||
4791                         rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128) {
4792                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4793                                     "preconditions",
4794                              dev->data->port_id);
4795
4796                 adapter->rx_vec_allowed = false;
4797         }
4798
4799         /*
4800          * Initialize the appropriate LRO callback.
4801          *
4802          * If all queues satisfy the bulk allocation preconditions
4803          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4804          * Otherwise use a single allocation version.
4805          */
4806         if (dev->data->lro) {
4807                 if (adapter->rx_bulk_alloc_allowed) {
4808                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4809                                            "allocation version");
4810                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4811                 } else {
4812                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4813                                            "allocation version");
4814                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4815                 }
4816         } else if (dev->data->scattered_rx) {
4817                 /*
4818                  * Set the non-LRO scattered callback: there are Vector and
4819                  * single allocation versions.
4820                  */
4821                 if (adapter->rx_vec_allowed) {
4822                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4823                                             "callback (port=%d).",
4824                                      dev->data->port_id);
4825
4826                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4827                 } else if (adapter->rx_bulk_alloc_allowed) {
4828                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4829                                            "allocation callback (port=%d).",
4830                                      dev->data->port_id);
4831                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4832                 } else {
4833                         PMD_INIT_LOG(DEBUG, "Using Regular (non-vector, "
4834                                             "single allocation) "
4835                                             "Scattered Rx callback "
4836                                             "(port=%d).",
4837                                      dev->data->port_id);
4838
4839                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4840                 }
4841         /*
4842          * Below we set "simple" callbacks according to port/queues parameters.
4843          * If parameters allow we are going to choose between the following
4844          * callbacks:
4845          *    - Vector
4846          *    - Bulk Allocation
4847          *    - Single buffer allocation (the simplest one)
4848          */
4849         } else if (adapter->rx_vec_allowed) {
4850                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4851                                     "burst size no less than %d (port=%d).",
4852                              RTE_IXGBE_DESCS_PER_LOOP,
4853                              dev->data->port_id);
4854
4855                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4856         } else if (adapter->rx_bulk_alloc_allowed) {
4857                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4858                                     "satisfied. Rx Burst Bulk Alloc function "
4859                                     "will be used on port=%d.",
4860                              dev->data->port_id);
4861
4862                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4863         } else {
4864                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4865                                     "satisfied, or Scattered Rx is requested "
4866                                     "(port=%d).",
4867                              dev->data->port_id);
4868
4869                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4870         }
4871
4872         /* Propagate information about RX function choice through all queues. */
4873
4874         rx_using_sse =
4875                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4876                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4877
4878         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4879                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4880
4881                 rxq->rx_using_sse = rx_using_sse;
4882 #ifdef RTE_LIB_SECURITY
4883                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4884                                 RTE_ETH_RX_OFFLOAD_SECURITY);
4885 #endif
4886         }
4887 }
4888
4889 /**
4890  * ixgbe_set_rsc - configure RSC related port HW registers
4891  *
4892  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4893  * of 82599 Spec (x540 configuration is virtually the same).
4894  *
4895  * @dev port handle
4896  *
4897  * Returns 0 in case of success or a non-zero error code
4898  */
4899 static int
4900 ixgbe_set_rsc(struct rte_eth_dev *dev)
4901 {
4902         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4903         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4904         struct rte_eth_dev_info dev_info = { 0 };
4905         bool rsc_capable = false;
4906         uint16_t i;
4907         uint32_t rdrxctl;
4908         uint32_t rfctl;
4909
4910         /* Sanity check */
4911         dev->dev_ops->dev_infos_get(dev, &dev_info);
4912         if (dev_info.rx_offload_capa & RTE_ETH_RX_OFFLOAD_TCP_LRO)
4913                 rsc_capable = true;
4914
4915         if (!rsc_capable && (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO)) {
4916                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4917                                    "support it");
4918                 return -EINVAL;
4919         }
4920
4921         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4922
4923         if ((rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) &&
4924              (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO)) {
4925                 /*
4926                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4927                  * 3.0 RSC configuration requires HW CRC stripping being
4928                  * enabled. If user requested both HW CRC stripping off
4929                  * and RSC on - return an error.
4930                  */
4931                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4932                                     "is disabled");
4933                 return -EINVAL;
4934         }
4935
4936         /* RFCTL configuration  */
4937         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4938         if ((rsc_capable) && (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO))
4939                 rfctl &= ~IXGBE_RFCTL_RSC_DIS;
4940         else
4941                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4942         /* disable NFS filtering */
4943         rfctl |= IXGBE_RFCTL_NFSW_DIS | IXGBE_RFCTL_NFSR_DIS;
4944         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4945
4946         /* If LRO hasn't been requested - we are done here. */
4947         if (!(rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO))
4948                 return 0;
4949
4950         /* Set RDRXCTL.RSCACKC bit */
4951         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4952         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4953         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4954
4955         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4956         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4957                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4958                 uint32_t srrctl =
4959                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4960                 uint32_t rscctl =
4961                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4962                 uint32_t psrtype =
4963                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4964                 uint32_t eitr =
4965                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4966
4967                 /*
4968                  * ixgbe PMD doesn't support header-split at the moment.
4969                  *
4970                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4971                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4972                  * should be configured even if header split is not
4973                  * enabled. We will configure it 128 bytes following the
4974                  * recommendation in the spec.
4975                  */
4976                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4977                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4978                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4979
4980                 /*
4981                  * TODO: Consider setting the Receive Descriptor Minimum
4982                  * Threshold Size for an RSC case. This is not an obviously
4983                  * beneficiary option but the one worth considering...
4984                  */
4985
4986                 rscctl |= IXGBE_RSCCTL_RSCEN;
4987                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4988                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4989
4990                 /*
4991                  * RSC: Set ITR interval corresponding to 2K ints/s.
4992                  *
4993                  * Full-sized RSC aggregations for a 10Gb/s link will
4994                  * arrive at about 20K aggregation/s rate.
4995                  *
4996                  * 2K inst/s rate will make only 10% of the
4997                  * aggregations to be closed due to the interrupt timer
4998                  * expiration for a streaming at wire-speed case.
4999                  *
5000                  * For a sparse streaming case this setting will yield
5001                  * at most 500us latency for a single RSC aggregation.
5002                  */
5003                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
5004                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
5005                 eitr |= IXGBE_EITR_CNT_WDIS;
5006
5007                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5008                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
5009                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
5010                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
5011
5012                 /*
5013                  * RSC requires the mapping of the queue to the
5014                  * interrupt vector.
5015                  */
5016                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
5017         }
5018
5019         dev->data->lro = 1;
5020
5021         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
5022
5023         return 0;
5024 }
5025
5026 /*
5027  * Initializes Receive Unit.
5028  */
5029 int __rte_cold
5030 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
5031 {
5032         struct ixgbe_hw     *hw;
5033         struct ixgbe_rx_queue *rxq;
5034         uint64_t bus_addr;
5035         uint32_t rxctrl;
5036         uint32_t fctrl;
5037         uint32_t hlreg0;
5038         uint32_t maxfrs;
5039         uint32_t srrctl;
5040         uint32_t rdrxctl;
5041         uint32_t rxcsum;
5042         uint16_t buf_size;
5043         uint16_t i;
5044         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
5045         uint32_t frame_size = dev->data->mtu + IXGBE_ETH_OVERHEAD;
5046         int rc;
5047
5048         PMD_INIT_FUNC_TRACE();
5049         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5050
5051         /*
5052          * Make sure receives are disabled while setting
5053          * up the RX context (registers, descriptor rings, etc.).
5054          */
5055         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5056         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
5057
5058         /* Enable receipt of broadcasted frames */
5059         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
5060         fctrl |= IXGBE_FCTRL_BAM;
5061         fctrl |= IXGBE_FCTRL_DPF;
5062         fctrl |= IXGBE_FCTRL_PMCF;
5063         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
5064
5065         /*
5066          * Configure CRC stripping, if any.
5067          */
5068         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5069         if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
5070                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
5071         else
5072                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
5073
5074         /*
5075          * Configure jumbo frame support, if any.
5076          */
5077         if (dev->data->mtu > RTE_ETHER_MTU) {
5078                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
5079                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
5080                 maxfrs &= 0x0000FFFF;
5081                 maxfrs |= (frame_size << 16);
5082                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
5083         } else
5084                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
5085
5086         /*
5087          * If loopback mode is configured, set LPBK bit.
5088          */
5089         if (dev->data->dev_conf.lpbk_mode != 0) {
5090                 rc = ixgbe_check_supported_loopback_mode(dev);
5091                 if (rc < 0) {
5092                         PMD_INIT_LOG(ERR, "Unsupported loopback mode");
5093                         return rc;
5094                 }
5095                 hlreg0 |= IXGBE_HLREG0_LPBK;
5096         } else {
5097                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
5098         }
5099
5100         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5101
5102         /*
5103          * Assume no header split and no VLAN strip support
5104          * on any Rx queue first .
5105          */
5106         rx_conf->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
5107         /* Setup RX queues */
5108         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5109                 rxq = dev->data->rx_queues[i];
5110
5111                 /*
5112                  * Reset crc_len in case it was changed after queue setup by a
5113                  * call to configure.
5114                  */
5115                 if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
5116                         rxq->crc_len = RTE_ETHER_CRC_LEN;
5117                 else
5118                         rxq->crc_len = 0;
5119
5120                 /* Setup the Base and Length of the Rx Descriptor Rings */
5121                 bus_addr = rxq->rx_ring_phys_addr;
5122                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
5123                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5124                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
5125                                 (uint32_t)(bus_addr >> 32));
5126                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
5127                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5128                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5129                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
5130
5131                 /* Configure the SRRCTL register */
5132                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5133
5134                 /* Set if packets are dropped when no descriptors available */
5135                 if (rxq->drop_en)
5136                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5137
5138                 /*
5139                  * Configure the RX buffer size in the BSIZEPACKET field of
5140                  * the SRRCTL register of the queue.
5141                  * The value is in 1 KB resolution. Valid values can be from
5142                  * 1 KB to 16 KB.
5143                  */
5144                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5145                         RTE_PKTMBUF_HEADROOM);
5146                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5147                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5148
5149                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5150
5151                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5152                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5153
5154                 /* It adds dual VLAN length for supporting dual VLAN */
5155                 if (frame_size + 2 * RTE_VLAN_HLEN > buf_size)
5156                         dev->data->scattered_rx = 1;
5157                 if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
5158                         rx_conf->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
5159         }
5160
5161         if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
5162                 dev->data->scattered_rx = 1;
5163
5164         /*
5165          * Device configured with multiple RX queues.
5166          */
5167         ixgbe_dev_mq_rx_configure(dev);
5168
5169         /*
5170          * Setup the Checksum Register.
5171          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
5172          * Enable IP/L4 checksum computation by hardware if requested to do so.
5173          */
5174         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
5175         rxcsum |= IXGBE_RXCSUM_PCSD;
5176         if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
5177                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
5178         else
5179                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
5180
5181         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
5182
5183         if (hw->mac.type == ixgbe_mac_82599EB ||
5184             hw->mac.type == ixgbe_mac_X540) {
5185                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
5186                 if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
5187                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
5188                 else
5189                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
5190                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
5191                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
5192         }
5193
5194         rc = ixgbe_set_rsc(dev);
5195         if (rc)
5196                 return rc;
5197
5198         ixgbe_set_rx_function(dev);
5199
5200         return 0;
5201 }
5202
5203 /*
5204  * Initializes Transmit Unit.
5205  */
5206 void __rte_cold
5207 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
5208 {
5209         struct ixgbe_hw     *hw;
5210         struct ixgbe_tx_queue *txq;
5211         uint64_t bus_addr;
5212         uint32_t hlreg0;
5213         uint32_t txctrl;
5214         uint16_t i;
5215
5216         PMD_INIT_FUNC_TRACE();
5217         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5218
5219         /* Enable TX CRC (checksum offload requirement) and hw padding
5220          * (TSO requirement)
5221          */
5222         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5223         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5224         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5225
5226         /* Setup the Base and Length of the Tx Descriptor Rings */
5227         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5228                 txq = dev->data->tx_queues[i];
5229
5230                 bus_addr = txq->tx_ring_phys_addr;
5231                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5232                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5233                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5234                                 (uint32_t)(bus_addr >> 32));
5235                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5236                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5237                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5238                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5239                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5240
5241                 /*
5242                  * Disable Tx Head Writeback RO bit, since this hoses
5243                  * bookkeeping if things aren't delivered in order.
5244                  */
5245                 switch (hw->mac.type) {
5246                 case ixgbe_mac_82598EB:
5247                         txctrl = IXGBE_READ_REG(hw,
5248                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5249                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5250                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5251                                         txctrl);
5252                         break;
5253
5254                 case ixgbe_mac_82599EB:
5255                 case ixgbe_mac_X540:
5256                 case ixgbe_mac_X550:
5257                 case ixgbe_mac_X550EM_x:
5258                 case ixgbe_mac_X550EM_a:
5259                 default:
5260                         txctrl = IXGBE_READ_REG(hw,
5261                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5262                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5263                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5264                                         txctrl);
5265                         break;
5266                 }
5267         }
5268
5269         /* Device configured with multiple TX queues. */
5270         ixgbe_dev_mq_tx_configure(dev);
5271 }
5272
5273 /*
5274  * Check if requested loopback mode is supported
5275  */
5276 int
5277 ixgbe_check_supported_loopback_mode(struct rte_eth_dev *dev)
5278 {
5279         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5280
5281         if (dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_TX_RX)
5282                 if (hw->mac.type == ixgbe_mac_82599EB ||
5283                      hw->mac.type == ixgbe_mac_X540 ||
5284                      hw->mac.type == ixgbe_mac_X550 ||
5285                      hw->mac.type == ixgbe_mac_X550EM_x ||
5286                      hw->mac.type == ixgbe_mac_X550EM_a)
5287                         return 0;
5288
5289         return -ENOTSUP;
5290 }
5291
5292 /*
5293  * Set up link for 82599 loopback mode Tx->Rx.
5294  */
5295 static inline void __rte_cold
5296 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5297 {
5298         PMD_INIT_FUNC_TRACE();
5299
5300         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5301                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5302                                 IXGBE_SUCCESS) {
5303                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5304                         /* ignore error */
5305                         return;
5306                 }
5307         }
5308
5309         /* Restart link */
5310         IXGBE_WRITE_REG(hw,
5311                         IXGBE_AUTOC,
5312                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5313         ixgbe_reset_pipeline_82599(hw);
5314
5315         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5316         msec_delay(50);
5317 }
5318
5319
5320 /*
5321  * Start Transmit and Receive Units.
5322  */
5323 int __rte_cold
5324 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5325 {
5326         struct ixgbe_hw     *hw;
5327         struct ixgbe_tx_queue *txq;
5328         struct ixgbe_rx_queue *rxq;
5329         uint32_t txdctl;
5330         uint32_t dmatxctl;
5331         uint32_t rxctrl;
5332         uint16_t i;
5333         int ret = 0;
5334
5335         PMD_INIT_FUNC_TRACE();
5336         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5337
5338         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5339                 txq = dev->data->tx_queues[i];
5340                 /* Setup Transmit Threshold Registers */
5341                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5342                 txdctl |= txq->pthresh & 0x7F;
5343                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5344                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5345                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5346         }
5347
5348         if (hw->mac.type != ixgbe_mac_82598EB) {
5349                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5350                 dmatxctl |= IXGBE_DMATXCTL_TE;
5351                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5352         }
5353
5354         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5355                 txq = dev->data->tx_queues[i];
5356                 if (!txq->tx_deferred_start) {
5357                         ret = ixgbe_dev_tx_queue_start(dev, i);
5358                         if (ret < 0)
5359                                 return ret;
5360                 }
5361         }
5362
5363         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5364                 rxq = dev->data->rx_queues[i];
5365                 if (!rxq->rx_deferred_start) {
5366                         ret = ixgbe_dev_rx_queue_start(dev, i);
5367                         if (ret < 0)
5368                                 return ret;
5369                 }
5370         }
5371
5372         /* Enable Receive engine */
5373         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5374         if (hw->mac.type == ixgbe_mac_82598EB)
5375                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5376         rxctrl |= IXGBE_RXCTRL_RXEN;
5377         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5378
5379         /* If loopback mode is enabled, set up the link accordingly */
5380         if (dev->data->dev_conf.lpbk_mode != 0) {
5381                 if (hw->mac.type == ixgbe_mac_82599EB)
5382                         ixgbe_setup_loopback_link_82599(hw);
5383                 else if (hw->mac.type == ixgbe_mac_X540 ||
5384                      hw->mac.type == ixgbe_mac_X550 ||
5385                      hw->mac.type == ixgbe_mac_X550EM_x ||
5386                      hw->mac.type == ixgbe_mac_X550EM_a)
5387                         ixgbe_setup_loopback_link_x540_x550(hw, true);
5388         }
5389
5390 #ifdef RTE_LIB_SECURITY
5391         if ((dev->data->dev_conf.rxmode.offloads &
5392                         RTE_ETH_RX_OFFLOAD_SECURITY) ||
5393                 (dev->data->dev_conf.txmode.offloads &
5394                         RTE_ETH_TX_OFFLOAD_SECURITY)) {
5395                 ret = ixgbe_crypto_enable_ipsec(dev);
5396                 if (ret != 0) {
5397                         PMD_DRV_LOG(ERR,
5398                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5399                                     ret);
5400                         return ret;
5401                 }
5402         }
5403 #endif
5404
5405         return 0;
5406 }
5407
5408 /*
5409  * Start Receive Units for specified queue.
5410  */
5411 int __rte_cold
5412 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5413 {
5414         struct ixgbe_hw     *hw;
5415         struct ixgbe_rx_queue *rxq;
5416         uint32_t rxdctl;
5417         int poll_ms;
5418
5419         PMD_INIT_FUNC_TRACE();
5420         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5421
5422         rxq = dev->data->rx_queues[rx_queue_id];
5423
5424         /* Allocate buffers for descriptor rings */
5425         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5426                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5427                              rx_queue_id);
5428                 return -1;
5429         }
5430         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5431         rxdctl |= IXGBE_RXDCTL_ENABLE;
5432         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5433
5434         /* Wait until RX Enable ready */
5435         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5436         do {
5437                 rte_delay_ms(1);
5438                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5439         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5440         if (!poll_ms)
5441                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5442         rte_wmb();
5443         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5444         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5445         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5446
5447         return 0;
5448 }
5449
5450 /*
5451  * Stop Receive Units for specified queue.
5452  */
5453 int __rte_cold
5454 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5455 {
5456         struct ixgbe_hw     *hw;
5457         struct ixgbe_adapter *adapter = dev->data->dev_private;
5458         struct ixgbe_rx_queue *rxq;
5459         uint32_t rxdctl;
5460         int poll_ms;
5461
5462         PMD_INIT_FUNC_TRACE();
5463         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5464
5465         rxq = dev->data->rx_queues[rx_queue_id];
5466
5467         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5468         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5469         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5470
5471         /* Wait until RX Enable bit clear */
5472         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5473         do {
5474                 rte_delay_ms(1);
5475                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5476         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5477         if (!poll_ms)
5478                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5479
5480         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5481
5482         ixgbe_rx_queue_release_mbufs(rxq);
5483         ixgbe_reset_rx_queue(adapter, rxq);
5484         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5485
5486         return 0;
5487 }
5488
5489
5490 /*
5491  * Start Transmit Units for specified queue.
5492  */
5493 int __rte_cold
5494 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5495 {
5496         struct ixgbe_hw     *hw;
5497         struct ixgbe_tx_queue *txq;
5498         uint32_t txdctl;
5499         int poll_ms;
5500
5501         PMD_INIT_FUNC_TRACE();
5502         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5503
5504         txq = dev->data->tx_queues[tx_queue_id];
5505         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5506         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5507         txdctl |= IXGBE_TXDCTL_ENABLE;
5508         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5509
5510         /* Wait until TX Enable ready */
5511         if (hw->mac.type == ixgbe_mac_82599EB) {
5512                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5513                 do {
5514                         rte_delay_ms(1);
5515                         txdctl = IXGBE_READ_REG(hw,
5516                                 IXGBE_TXDCTL(txq->reg_idx));
5517                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5518                 if (!poll_ms)
5519                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5520                                 tx_queue_id);
5521         }
5522         rte_wmb();
5523         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5524         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5525
5526         return 0;
5527 }
5528
5529 /*
5530  * Stop Transmit Units for specified queue.
5531  */
5532 int __rte_cold
5533 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5534 {
5535         struct ixgbe_hw     *hw;
5536         struct ixgbe_tx_queue *txq;
5537         uint32_t txdctl;
5538         uint32_t txtdh, txtdt;
5539         int poll_ms;
5540
5541         PMD_INIT_FUNC_TRACE();
5542         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5543
5544         txq = dev->data->tx_queues[tx_queue_id];
5545
5546         /* Wait until TX queue is empty */
5547         if (hw->mac.type == ixgbe_mac_82599EB) {
5548                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5549                 do {
5550                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5551                         txtdh = IXGBE_READ_REG(hw,
5552                                                IXGBE_TDH(txq->reg_idx));
5553                         txtdt = IXGBE_READ_REG(hw,
5554                                                IXGBE_TDT(txq->reg_idx));
5555                 } while (--poll_ms && (txtdh != txtdt));
5556                 if (!poll_ms)
5557                         PMD_INIT_LOG(ERR,
5558                                 "Tx Queue %d is not empty when stopping.",
5559                                 tx_queue_id);
5560         }
5561
5562         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5563         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5564         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5565
5566         /* Wait until TX Enable bit clear */
5567         if (hw->mac.type == ixgbe_mac_82599EB) {
5568                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5569                 do {
5570                         rte_delay_ms(1);
5571                         txdctl = IXGBE_READ_REG(hw,
5572                                                 IXGBE_TXDCTL(txq->reg_idx));
5573                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5574                 if (!poll_ms)
5575                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5576                                 tx_queue_id);
5577         }
5578
5579         if (txq->ops != NULL) {
5580                 txq->ops->release_mbufs(txq);
5581                 txq->ops->reset(txq);
5582         }
5583         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5584
5585         return 0;
5586 }
5587
5588 void
5589 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5590         struct rte_eth_rxq_info *qinfo)
5591 {
5592         struct ixgbe_rx_queue *rxq;
5593
5594         rxq = dev->data->rx_queues[queue_id];
5595
5596         qinfo->mp = rxq->mb_pool;
5597         qinfo->scattered_rx = dev->data->scattered_rx;
5598         qinfo->nb_desc = rxq->nb_rx_desc;
5599
5600         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5601         qinfo->conf.rx_drop_en = rxq->drop_en;
5602         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5603         qinfo->conf.offloads = rxq->offloads;
5604 }
5605
5606 void
5607 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5608         struct rte_eth_txq_info *qinfo)
5609 {
5610         struct ixgbe_tx_queue *txq;
5611
5612         txq = dev->data->tx_queues[queue_id];
5613
5614         qinfo->nb_desc = txq->nb_tx_desc;
5615
5616         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5617         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5618         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5619
5620         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5621         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5622         qinfo->conf.offloads = txq->offloads;
5623         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5624 }
5625
5626 /*
5627  * [VF] Initializes Receive Unit.
5628  */
5629 int __rte_cold
5630 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5631 {
5632         struct ixgbe_hw     *hw;
5633         struct ixgbe_rx_queue *rxq;
5634         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5635         uint32_t frame_size = dev->data->mtu + IXGBE_ETH_OVERHEAD;
5636         uint64_t bus_addr;
5637         uint32_t srrctl, psrtype = 0;
5638         uint16_t buf_size;
5639         uint16_t i;
5640         int ret;
5641
5642         PMD_INIT_FUNC_TRACE();
5643         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5644
5645         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5646                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5647                         "it should be power of 2");
5648                 return -1;
5649         }
5650
5651         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5652                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5653                         "it should be equal to or less than %d",
5654                         hw->mac.max_rx_queues);
5655                 return -1;
5656         }
5657
5658         /*
5659          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5660          * disables the VF receipt of packets if the PF MTU is > 1500.
5661          * This is done to deal with 82599 limitations that imposes
5662          * the PF and all VFs to share the same MTU.
5663          * Then, the PF driver enables again the VF receipt of packet when
5664          * the VF driver issues a IXGBE_VF_SET_LPE request.
5665          * In the meantime, the VF device cannot be used, even if the VF driver
5666          * and the Guest VM network stack are ready to accept packets with a
5667          * size up to the PF MTU.
5668          * As a work-around to this PF behaviour, force the call to
5669          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5670          * VF packets received can work in all cases.
5671          */
5672         if (ixgbevf_rlpml_set_vf(hw, frame_size) != 0)
5673                 PMD_INIT_LOG(ERR, "Set max packet length to %d failed.",
5674                              frame_size);
5675
5676         /*
5677          * Assume no header split and no VLAN strip support
5678          * on any Rx queue first .
5679          */
5680         rxmode->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
5681         /* Setup RX queues */
5682         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5683                 rxq = dev->data->rx_queues[i];
5684
5685                 /* Allocate buffers for descriptor rings */
5686                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5687                 if (ret)
5688                         return ret;
5689
5690                 /* Setup the Base and Length of the Rx Descriptor Rings */
5691                 bus_addr = rxq->rx_ring_phys_addr;
5692
5693                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5694                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5695                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5696                                 (uint32_t)(bus_addr >> 32));
5697                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5698                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5699                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5700                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5701
5702
5703                 /* Configure the SRRCTL register */
5704                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5705
5706                 /* Set if packets are dropped when no descriptors available */
5707                 if (rxq->drop_en)
5708                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5709
5710                 /*
5711                  * Configure the RX buffer size in the BSIZEPACKET field of
5712                  * the SRRCTL register of the queue.
5713                  * The value is in 1 KB resolution. Valid values can be from
5714                  * 1 KB to 16 KB.
5715                  */
5716                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5717                         RTE_PKTMBUF_HEADROOM);
5718                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5719                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5720
5721                 /*
5722                  * VF modification to write virtual function SRRCTL register
5723                  */
5724                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5725
5726                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5727                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5728
5729                 if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ||
5730                     /* It adds dual VLAN length for supporting dual VLAN */
5731                     (frame_size + 2 * RTE_VLAN_HLEN) > buf_size) {
5732                         if (!dev->data->scattered_rx)
5733                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5734                         dev->data->scattered_rx = 1;
5735                 }
5736
5737                 if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
5738                         rxmode->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
5739         }
5740
5741         /* Set RQPL for VF RSS according to max Rx queue */
5742         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5743                 IXGBE_PSRTYPE_RQPL_SHIFT;
5744         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5745
5746         ixgbe_set_rx_function(dev);
5747
5748         return 0;
5749 }
5750
5751 /*
5752  * [VF] Initializes Transmit Unit.
5753  */
5754 void __rte_cold
5755 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5756 {
5757         struct ixgbe_hw     *hw;
5758         struct ixgbe_tx_queue *txq;
5759         uint64_t bus_addr;
5760         uint32_t txctrl;
5761         uint16_t i;
5762
5763         PMD_INIT_FUNC_TRACE();
5764         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5765
5766         /* Setup the Base and Length of the Tx Descriptor Rings */
5767         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5768                 txq = dev->data->tx_queues[i];
5769                 bus_addr = txq->tx_ring_phys_addr;
5770                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5771                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5772                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5773                                 (uint32_t)(bus_addr >> 32));
5774                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5775                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5776                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5777                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5778                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5779
5780                 /*
5781                  * Disable Tx Head Writeback RO bit, since this hoses
5782                  * bookkeeping if things aren't delivered in order.
5783                  */
5784                 txctrl = IXGBE_READ_REG(hw,
5785                                 IXGBE_VFDCA_TXCTRL(i));
5786                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5787                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5788                                 txctrl);
5789         }
5790 }
5791
5792 /*
5793  * [VF] Start Transmit and Receive Units.
5794  */
5795 void __rte_cold
5796 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5797 {
5798         struct ixgbe_hw     *hw;
5799         struct ixgbe_tx_queue *txq;
5800         struct ixgbe_rx_queue *rxq;
5801         uint32_t txdctl;
5802         uint32_t rxdctl;
5803         uint16_t i;
5804         int poll_ms;
5805
5806         PMD_INIT_FUNC_TRACE();
5807         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5808
5809         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5810                 txq = dev->data->tx_queues[i];
5811                 /* Setup Transmit Threshold Registers */
5812                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5813                 txdctl |= txq->pthresh & 0x7F;
5814                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5815                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5816                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5817         }
5818
5819         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5820
5821                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5822                 txdctl |= IXGBE_TXDCTL_ENABLE;
5823                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5824
5825                 poll_ms = 10;
5826                 /* Wait until TX Enable ready */
5827                 do {
5828                         rte_delay_ms(1);
5829                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5830                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5831                 if (!poll_ms)
5832                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5833         }
5834         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5835
5836                 rxq = dev->data->rx_queues[i];
5837
5838                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5839                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5840                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5841
5842                 /* Wait until RX Enable ready */
5843                 poll_ms = 10;
5844                 do {
5845                         rte_delay_ms(1);
5846                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5847                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5848                 if (!poll_ms)
5849                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5850                 rte_wmb();
5851                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5852
5853         }
5854 }
5855
5856 int
5857 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5858                     const struct rte_flow_action_rss *in)
5859 {
5860         if (in->key_len > RTE_DIM(out->key) ||
5861             in->queue_num > RTE_DIM(out->queue))
5862                 return -EINVAL;
5863         out->conf = (struct rte_flow_action_rss){
5864                 .func = in->func,
5865                 .level = in->level,
5866                 .types = in->types,
5867                 .key_len = in->key_len,
5868                 .queue_num = in->queue_num,
5869                 .key = memcpy(out->key, in->key, in->key_len),
5870                 .queue = memcpy(out->queue, in->queue,
5871                                 sizeof(*in->queue) * in->queue_num),
5872         };
5873         return 0;
5874 }
5875
5876 int
5877 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5878                       const struct rte_flow_action_rss *with)
5879 {
5880         return (comp->func == with->func &&
5881                 comp->level == with->level &&
5882                 comp->types == with->types &&
5883                 comp->key_len == with->key_len &&
5884                 comp->queue_num == with->queue_num &&
5885                 !memcmp(comp->key, with->key, with->key_len) &&
5886                 !memcmp(comp->queue, with->queue,
5887                         sizeof(*with->queue) * with->queue_num));
5888 }
5889
5890 int
5891 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5892                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5893 {
5894         struct ixgbe_hw *hw;
5895         uint32_t reta;
5896         uint16_t i;
5897         uint16_t j;
5898         uint16_t sp_reta_size;
5899         uint32_t reta_reg;
5900         struct rte_eth_rss_conf rss_conf = {
5901                 .rss_key = conf->conf.key_len ?
5902                         (void *)(uintptr_t)conf->conf.key : NULL,
5903                 .rss_key_len = conf->conf.key_len,
5904                 .rss_hf = conf->conf.types,
5905         };
5906         struct ixgbe_filter_info *filter_info =
5907                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5908
5909         PMD_INIT_FUNC_TRACE();
5910         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5911
5912         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5913
5914         if (!add) {
5915                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5916                                           &conf->conf)) {
5917                         ixgbe_rss_disable(dev);
5918                         memset(&filter_info->rss_info, 0,
5919                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5920                         return 0;
5921                 }
5922                 return -EINVAL;
5923         }
5924
5925         if (filter_info->rss_info.conf.queue_num)
5926                 return -EINVAL;
5927         /* Fill in redirection table
5928          * The byte-swap is needed because NIC registers are in
5929          * little-endian order.
5930          */
5931         reta = 0;
5932         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5933                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5934
5935                 if (j == conf->conf.queue_num)
5936                         j = 0;
5937                 reta = (reta << 8) | conf->conf.queue[j];
5938                 if ((i & 3) == 3)
5939                         IXGBE_WRITE_REG(hw, reta_reg,
5940                                         rte_bswap32(reta));
5941         }
5942
5943         /* Configure the RSS key and the RSS protocols used to compute
5944          * the RSS hash of input packets.
5945          */
5946         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5947                 ixgbe_rss_disable(dev);
5948                 return 0;
5949         }
5950         if (rss_conf.rss_key == NULL)
5951                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5952         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5953
5954         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5955                 return -EINVAL;
5956
5957         return 0;
5958 }
5959
5960 /* Stubs needed for linkage when RTE_ARCH_PPC_64 is set */
5961 #if defined(RTE_ARCH_PPC_64)
5962 int
5963 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5964 {
5965         return -1;
5966 }
5967
5968 uint16_t
5969 ixgbe_recv_pkts_vec(
5970         void __rte_unused *rx_queue,
5971         struct rte_mbuf __rte_unused **rx_pkts,
5972         uint16_t __rte_unused nb_pkts)
5973 {
5974         return 0;
5975 }
5976
5977 uint16_t
5978 ixgbe_recv_scattered_pkts_vec(
5979         void __rte_unused *rx_queue,
5980         struct rte_mbuf __rte_unused **rx_pkts,
5981         uint16_t __rte_unused nb_pkts)
5982 {
5983         return 0;
5984 }
5985
5986 int
5987 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5988 {
5989         return -1;
5990 }
5991
5992 uint16_t
5993 ixgbe_xmit_fixed_burst_vec(void __rte_unused *tx_queue,
5994                 struct rte_mbuf __rte_unused **tx_pkts,
5995                 uint16_t __rte_unused nb_pkts)
5996 {
5997         return 0;
5998 }
5999
6000 int
6001 ixgbe_txq_vec_setup(struct ixgbe_tx_queue __rte_unused *txq)
6002 {
6003         return -1;
6004 }
6005
6006 void
6007 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue __rte_unused *rxq)
6008 {
6009         return;
6010 }
6011 #endif