net/ixgbe: fix Rx LRO capability offload for x550
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_OUTER_IPV6 |              \
62                 PKT_TX_OUTER_IPV4 |              \
63                 PKT_TX_IPV6 |                    \
64                 PKT_TX_IPV4 |                    \
65                 PKT_TX_VLAN_PKT |                \
66                 PKT_TX_IP_CKSUM |                \
67                 PKT_TX_L4_MASK |                 \
68                 PKT_TX_TCP_SEG |                 \
69                 PKT_TX_MACSEC |                  \
70                 PKT_TX_OUTER_IP_CKSUM |          \
71                 PKT_TX_SEC_OFFLOAD |     \
72                 IXGBE_TX_IEEE1588_TMST)
73
74 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
75                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
76
77 #if 1
78 #define RTE_PMD_USE_PREFETCH
79 #endif
80
81 #ifdef RTE_PMD_USE_PREFETCH
82 /*
83  * Prefetch a cache line into all cache levels.
84  */
85 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
86 #else
87 #define rte_ixgbe_prefetch(p)   do {} while (0)
88 #endif
89
90 #ifdef RTE_IXGBE_INC_VECTOR
91 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
92                                     uint16_t nb_pkts);
93 #endif
94
95 /*********************************************************************
96  *
97  *  TX functions
98  *
99  **********************************************************************/
100
101 /*
102  * Check for descriptors with their DD bit set and free mbufs.
103  * Return the total number of buffers freed.
104  */
105 static __rte_always_inline int
106 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
107 {
108         struct ixgbe_tx_entry *txep;
109         uint32_t status;
110         int i, nb_free = 0;
111         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
112
113         /* check DD bit on threshold descriptor */
114         status = txq->tx_ring[txq->tx_next_dd].wb.status;
115         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
116                 return 0;
117
118         /*
119          * first buffer to free from S/W ring is at index
120          * tx_next_dd - (tx_rs_thresh-1)
121          */
122         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
123
124         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
125                 /* free buffers one at a time */
126                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
127                 txep->mbuf = NULL;
128
129                 if (unlikely(m == NULL))
130                         continue;
131
132                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
133                     (nb_free > 0 && m->pool != free[0]->pool)) {
134                         rte_mempool_put_bulk(free[0]->pool,
135                                              (void **)free, nb_free);
136                         nb_free = 0;
137                 }
138
139                 free[nb_free++] = m;
140         }
141
142         if (nb_free > 0)
143                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
144
145         /* buffers were freed, update counters */
146         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
147         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
148         if (txq->tx_next_dd >= txq->nb_tx_desc)
149                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
150
151         return txq->tx_rs_thresh;
152 }
153
154 /* Populate 4 descriptors with data from 4 mbufs */
155 static inline void
156 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
157 {
158         uint64_t buf_dma_addr;
159         uint32_t pkt_len;
160         int i;
161
162         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
163                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
164                 pkt_len = (*pkts)->data_len;
165
166                 /* write data to descriptor */
167                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
168
169                 txdp->read.cmd_type_len =
170                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
171
172                 txdp->read.olinfo_status =
173                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
174
175                 rte_prefetch0(&(*pkts)->pool);
176         }
177 }
178
179 /* Populate 1 descriptor with data from 1 mbuf */
180 static inline void
181 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
182 {
183         uint64_t buf_dma_addr;
184         uint32_t pkt_len;
185
186         buf_dma_addr = rte_mbuf_data_iova(*pkts);
187         pkt_len = (*pkts)->data_len;
188
189         /* write data to descriptor */
190         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
191         txdp->read.cmd_type_len =
192                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
193         txdp->read.olinfo_status =
194                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
195         rte_prefetch0(&(*pkts)->pool);
196 }
197
198 /*
199  * Fill H/W descriptor ring with mbuf data.
200  * Copy mbuf pointers to the S/W ring.
201  */
202 static inline void
203 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
204                       uint16_t nb_pkts)
205 {
206         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
207         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
208         const int N_PER_LOOP = 4;
209         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
210         int mainpart, leftover;
211         int i, j;
212
213         /*
214          * Process most of the packets in chunks of N pkts.  Any
215          * leftover packets will get processed one at a time.
216          */
217         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
218         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
219         for (i = 0; i < mainpart; i += N_PER_LOOP) {
220                 /* Copy N mbuf pointers to the S/W ring */
221                 for (j = 0; j < N_PER_LOOP; ++j) {
222                         (txep + i + j)->mbuf = *(pkts + i + j);
223                 }
224                 tx4(txdp + i, pkts + i);
225         }
226
227         if (unlikely(leftover > 0)) {
228                 for (i = 0; i < leftover; ++i) {
229                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
230                         tx1(txdp + mainpart + i, pkts + mainpart + i);
231                 }
232         }
233 }
234
235 static inline uint16_t
236 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
237              uint16_t nb_pkts)
238 {
239         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
240         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
241         uint16_t n = 0;
242
243         /*
244          * Begin scanning the H/W ring for done descriptors when the
245          * number of available descriptors drops below tx_free_thresh.  For
246          * each done descriptor, free the associated buffer.
247          */
248         if (txq->nb_tx_free < txq->tx_free_thresh)
249                 ixgbe_tx_free_bufs(txq);
250
251         /* Only use descriptors that are available */
252         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
253         if (unlikely(nb_pkts == 0))
254                 return 0;
255
256         /* Use exactly nb_pkts descriptors */
257         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
258
259         /*
260          * At this point, we know there are enough descriptors in the
261          * ring to transmit all the packets.  This assumes that each
262          * mbuf contains a single segment, and that no new offloads
263          * are expected, which would require a new context descriptor.
264          */
265
266         /*
267          * See if we're going to wrap-around. If so, handle the top
268          * of the descriptor ring first, then do the bottom.  If not,
269          * the processing looks just like the "bottom" part anyway...
270          */
271         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
272                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
273                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
274
275                 /*
276                  * We know that the last descriptor in the ring will need to
277                  * have its RS bit set because tx_rs_thresh has to be
278                  * a divisor of the ring size
279                  */
280                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
281                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
282                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
283
284                 txq->tx_tail = 0;
285         }
286
287         /* Fill H/W descriptor ring with mbuf data */
288         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
289         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
290
291         /*
292          * Determine if RS bit should be set
293          * This is what we actually want:
294          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
295          * but instead of subtracting 1 and doing >=, we can just do
296          * greater than without subtracting.
297          */
298         if (txq->tx_tail > txq->tx_next_rs) {
299                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
300                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
301                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
302                                                 txq->tx_rs_thresh);
303                 if (txq->tx_next_rs >= txq->nb_tx_desc)
304                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
305         }
306
307         /*
308          * Check for wrap-around. This would only happen if we used
309          * up to the last descriptor in the ring, no more, no less.
310          */
311         if (txq->tx_tail >= txq->nb_tx_desc)
312                 txq->tx_tail = 0;
313
314         /* update tail pointer */
315         rte_wmb();
316         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
317
318         return nb_pkts;
319 }
320
321 uint16_t
322 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
323                        uint16_t nb_pkts)
324 {
325         uint16_t nb_tx;
326
327         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
328         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
329                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
330
331         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
332         nb_tx = 0;
333         while (nb_pkts) {
334                 uint16_t ret, n;
335
336                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
337                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
338                 nb_tx = (uint16_t)(nb_tx + ret);
339                 nb_pkts = (uint16_t)(nb_pkts - ret);
340                 if (ret < n)
341                         break;
342         }
343
344         return nb_tx;
345 }
346
347 #ifdef RTE_IXGBE_INC_VECTOR
348 static uint16_t
349 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
350                     uint16_t nb_pkts)
351 {
352         uint16_t nb_tx = 0;
353         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
354
355         while (nb_pkts) {
356                 uint16_t ret, num;
357
358                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
359                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
360                                                  num);
361                 nb_tx += ret;
362                 nb_pkts -= ret;
363                 if (ret < num)
364                         break;
365         }
366
367         return nb_tx;
368 }
369 #endif
370
371 static inline void
372 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
373                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
374                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
375                 __rte_unused uint64_t *mdata)
376 {
377         uint32_t type_tucmd_mlhl;
378         uint32_t mss_l4len_idx = 0;
379         uint32_t ctx_idx;
380         uint32_t vlan_macip_lens;
381         union ixgbe_tx_offload tx_offload_mask;
382         uint32_t seqnum_seed = 0;
383
384         ctx_idx = txq->ctx_curr;
385         tx_offload_mask.data[0] = 0;
386         tx_offload_mask.data[1] = 0;
387         type_tucmd_mlhl = 0;
388
389         /* Specify which HW CTX to upload. */
390         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
391
392         if (ol_flags & PKT_TX_VLAN_PKT) {
393                 tx_offload_mask.vlan_tci |= ~0;
394         }
395
396         /* check if TCP segmentation required for this packet */
397         if (ol_flags & PKT_TX_TCP_SEG) {
398                 /* implies IP cksum in IPv4 */
399                 if (ol_flags & PKT_TX_IP_CKSUM)
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403                 else
404                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
405                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
406                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
407
408                 tx_offload_mask.l2_len |= ~0;
409                 tx_offload_mask.l3_len |= ~0;
410                 tx_offload_mask.l4_len |= ~0;
411                 tx_offload_mask.tso_segsz |= ~0;
412                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
413                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
414         } else { /* no TSO, check if hardware checksum is needed */
415                 if (ol_flags & PKT_TX_IP_CKSUM) {
416                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
417                         tx_offload_mask.l2_len |= ~0;
418                         tx_offload_mask.l3_len |= ~0;
419                 }
420
421                 switch (ol_flags & PKT_TX_L4_MASK) {
422                 case PKT_TX_UDP_CKSUM:
423                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
424                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
425                         mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
426                         tx_offload_mask.l2_len |= ~0;
427                         tx_offload_mask.l3_len |= ~0;
428                         break;
429                 case PKT_TX_TCP_CKSUM:
430                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
431                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
432                         mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
433                         tx_offload_mask.l2_len |= ~0;
434                         tx_offload_mask.l3_len |= ~0;
435                         break;
436                 case PKT_TX_SCTP_CKSUM:
437                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
438                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
439                         mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
440                         tx_offload_mask.l2_len |= ~0;
441                         tx_offload_mask.l3_len |= ~0;
442                         break;
443                 default:
444                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
445                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
446                         break;
447                 }
448         }
449
450         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
451                 tx_offload_mask.outer_l2_len |= ~0;
452                 tx_offload_mask.outer_l3_len |= ~0;
453                 tx_offload_mask.l2_len |= ~0;
454                 seqnum_seed |= tx_offload.outer_l3_len
455                                << IXGBE_ADVTXD_OUTER_IPLEN;
456                 seqnum_seed |= tx_offload.l2_len
457                                << IXGBE_ADVTXD_TUNNEL_LEN;
458         }
459 #ifdef RTE_LIBRTE_SECURITY
460         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
461                 union ixgbe_crypto_tx_desc_md *md =
462                                 (union ixgbe_crypto_tx_desc_md *)mdata;
463                 seqnum_seed |=
464                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
465                 type_tucmd_mlhl |= md->enc ?
466                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
467                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
468                 type_tucmd_mlhl |=
469                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
470                 tx_offload_mask.sa_idx |= ~0;
471                 tx_offload_mask.sec_pad_len |= ~0;
472         }
473 #endif
474
475         txq->ctx_cache[ctx_idx].flags = ol_flags;
476         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
477                 tx_offload_mask.data[0] & tx_offload.data[0];
478         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
479                 tx_offload_mask.data[1] & tx_offload.data[1];
480         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
481
482         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
483         vlan_macip_lens = tx_offload.l3_len;
484         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
485                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
486                                     IXGBE_ADVTXD_MACLEN_SHIFT);
487         else
488                 vlan_macip_lens |= (tx_offload.l2_len <<
489                                     IXGBE_ADVTXD_MACLEN_SHIFT);
490         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
491         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
492         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
493         ctx_txd->seqnum_seed     = seqnum_seed;
494 }
495
496 /*
497  * Check which hardware context can be used. Use the existing match
498  * or create a new context descriptor.
499  */
500 static inline uint32_t
501 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
502                    union ixgbe_tx_offload tx_offload)
503 {
504         /* If match with the current used context */
505         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
506                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
507                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
508                      & tx_offload.data[0])) &&
509                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
510                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
511                      & tx_offload.data[1]))))
512                 return txq->ctx_curr;
513
514         /* What if match with the next context  */
515         txq->ctx_curr ^= 1;
516         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
517                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
518                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
519                      & tx_offload.data[0])) &&
520                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
521                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
522                      & tx_offload.data[1]))))
523                 return txq->ctx_curr;
524
525         /* Mismatch, use the previous context */
526         return IXGBE_CTX_NUM;
527 }
528
529 static inline uint32_t
530 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
531 {
532         uint32_t tmp = 0;
533
534         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
535                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
536         if (ol_flags & PKT_TX_IP_CKSUM)
537                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
538         if (ol_flags & PKT_TX_TCP_SEG)
539                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
540         return tmp;
541 }
542
543 static inline uint32_t
544 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
545 {
546         uint32_t cmdtype = 0;
547
548         if (ol_flags & PKT_TX_VLAN_PKT)
549                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
550         if (ol_flags & PKT_TX_TCP_SEG)
551                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
552         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
553                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
554         if (ol_flags & PKT_TX_MACSEC)
555                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
556         return cmdtype;
557 }
558
559 /* Default RS bit threshold values */
560 #ifndef DEFAULT_TX_RS_THRESH
561 #define DEFAULT_TX_RS_THRESH   32
562 #endif
563 #ifndef DEFAULT_TX_FREE_THRESH
564 #define DEFAULT_TX_FREE_THRESH 32
565 #endif
566
567 /* Reset transmit descriptors after they have been used */
568 static inline int
569 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
570 {
571         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
572         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
573         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
574         uint16_t nb_tx_desc = txq->nb_tx_desc;
575         uint16_t desc_to_clean_to;
576         uint16_t nb_tx_to_clean;
577         uint32_t status;
578
579         /* Determine the last descriptor needing to be cleaned */
580         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
581         if (desc_to_clean_to >= nb_tx_desc)
582                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
583
584         /* Check to make sure the last descriptor to clean is done */
585         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
586         status = txr[desc_to_clean_to].wb.status;
587         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
588                 PMD_TX_FREE_LOG(DEBUG,
589                                 "TX descriptor %4u is not done"
590                                 "(port=%d queue=%d)",
591                                 desc_to_clean_to,
592                                 txq->port_id, txq->queue_id);
593                 /* Failed to clean any descriptors, better luck next time */
594                 return -(1);
595         }
596
597         /* Figure out how many descriptors will be cleaned */
598         if (last_desc_cleaned > desc_to_clean_to)
599                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
600                                                         desc_to_clean_to);
601         else
602                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
603                                                 last_desc_cleaned);
604
605         PMD_TX_FREE_LOG(DEBUG,
606                         "Cleaning %4u TX descriptors: %4u to %4u "
607                         "(port=%d queue=%d)",
608                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
609                         txq->port_id, txq->queue_id);
610
611         /*
612          * The last descriptor to clean is done, so that means all the
613          * descriptors from the last descriptor that was cleaned
614          * up to the last descriptor with the RS bit set
615          * are done. Only reset the threshold descriptor.
616          */
617         txr[desc_to_clean_to].wb.status = 0;
618
619         /* Update the txq to reflect the last descriptor that was cleaned */
620         txq->last_desc_cleaned = desc_to_clean_to;
621         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
622
623         /* No Error */
624         return 0;
625 }
626
627 uint16_t
628 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
629                 uint16_t nb_pkts)
630 {
631         struct ixgbe_tx_queue *txq;
632         struct ixgbe_tx_entry *sw_ring;
633         struct ixgbe_tx_entry *txe, *txn;
634         volatile union ixgbe_adv_tx_desc *txr;
635         volatile union ixgbe_adv_tx_desc *txd, *txp;
636         struct rte_mbuf     *tx_pkt;
637         struct rte_mbuf     *m_seg;
638         uint64_t buf_dma_addr;
639         uint32_t olinfo_status;
640         uint32_t cmd_type_len;
641         uint32_t pkt_len;
642         uint16_t slen;
643         uint64_t ol_flags;
644         uint16_t tx_id;
645         uint16_t tx_last;
646         uint16_t nb_tx;
647         uint16_t nb_used;
648         uint64_t tx_ol_req;
649         uint32_t ctx = 0;
650         uint32_t new_ctx;
651         union ixgbe_tx_offload tx_offload;
652 #ifdef RTE_LIBRTE_SECURITY
653         uint8_t use_ipsec;
654 #endif
655
656         tx_offload.data[0] = 0;
657         tx_offload.data[1] = 0;
658         txq = tx_queue;
659         sw_ring = txq->sw_ring;
660         txr     = txq->tx_ring;
661         tx_id   = txq->tx_tail;
662         txe = &sw_ring[tx_id];
663         txp = NULL;
664
665         /* Determine if the descriptor ring needs to be cleaned. */
666         if (txq->nb_tx_free < txq->tx_free_thresh)
667                 ixgbe_xmit_cleanup(txq);
668
669         rte_prefetch0(&txe->mbuf->pool);
670
671         /* TX loop */
672         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
673                 new_ctx = 0;
674                 tx_pkt = *tx_pkts++;
675                 pkt_len = tx_pkt->pkt_len;
676
677                 /*
678                  * Determine how many (if any) context descriptors
679                  * are needed for offload functionality.
680                  */
681                 ol_flags = tx_pkt->ol_flags;
682 #ifdef RTE_LIBRTE_SECURITY
683                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
684 #endif
685
686                 /* If hardware offload required */
687                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
688                 if (tx_ol_req) {
689                         tx_offload.l2_len = tx_pkt->l2_len;
690                         tx_offload.l3_len = tx_pkt->l3_len;
691                         tx_offload.l4_len = tx_pkt->l4_len;
692                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
693                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
694                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
695                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
696 #ifdef RTE_LIBRTE_SECURITY
697                         if (use_ipsec) {
698                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
699                                         (union ixgbe_crypto_tx_desc_md *)
700                                                         &tx_pkt->udata64;
701                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
702                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
703                         }
704 #endif
705
706                         /* If new context need be built or reuse the exist ctx. */
707                         ctx = what_advctx_update(txq, tx_ol_req,
708                                 tx_offload);
709                         /* Only allocate context descriptor if required*/
710                         new_ctx = (ctx == IXGBE_CTX_NUM);
711                         ctx = txq->ctx_curr;
712                 }
713
714                 /*
715                  * Keep track of how many descriptors are used this loop
716                  * This will always be the number of segments + the number of
717                  * Context descriptors required to transmit the packet
718                  */
719                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
720
721                 if (txp != NULL &&
722                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
723                         /* set RS on the previous packet in the burst */
724                         txp->read.cmd_type_len |=
725                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
726
727                 /*
728                  * The number of descriptors that must be allocated for a
729                  * packet is the number of segments of that packet, plus 1
730                  * Context Descriptor for the hardware offload, if any.
731                  * Determine the last TX descriptor to allocate in the TX ring
732                  * for the packet, starting from the current position (tx_id)
733                  * in the ring.
734                  */
735                 tx_last = (uint16_t) (tx_id + nb_used - 1);
736
737                 /* Circular ring */
738                 if (tx_last >= txq->nb_tx_desc)
739                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
740
741                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
742                            " tx_first=%u tx_last=%u",
743                            (unsigned) txq->port_id,
744                            (unsigned) txq->queue_id,
745                            (unsigned) pkt_len,
746                            (unsigned) tx_id,
747                            (unsigned) tx_last);
748
749                 /*
750                  * Make sure there are enough TX descriptors available to
751                  * transmit the entire packet.
752                  * nb_used better be less than or equal to txq->tx_rs_thresh
753                  */
754                 if (nb_used > txq->nb_tx_free) {
755                         PMD_TX_FREE_LOG(DEBUG,
756                                         "Not enough free TX descriptors "
757                                         "nb_used=%4u nb_free=%4u "
758                                         "(port=%d queue=%d)",
759                                         nb_used, txq->nb_tx_free,
760                                         txq->port_id, txq->queue_id);
761
762                         if (ixgbe_xmit_cleanup(txq) != 0) {
763                                 /* Could not clean any descriptors */
764                                 if (nb_tx == 0)
765                                         return 0;
766                                 goto end_of_tx;
767                         }
768
769                         /* nb_used better be <= txq->tx_rs_thresh */
770                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
771                                 PMD_TX_FREE_LOG(DEBUG,
772                                         "The number of descriptors needed to "
773                                         "transmit the packet exceeds the "
774                                         "RS bit threshold. This will impact "
775                                         "performance."
776                                         "nb_used=%4u nb_free=%4u "
777                                         "tx_rs_thresh=%4u. "
778                                         "(port=%d queue=%d)",
779                                         nb_used, txq->nb_tx_free,
780                                         txq->tx_rs_thresh,
781                                         txq->port_id, txq->queue_id);
782                                 /*
783                                  * Loop here until there are enough TX
784                                  * descriptors or until the ring cannot be
785                                  * cleaned.
786                                  */
787                                 while (nb_used > txq->nb_tx_free) {
788                                         if (ixgbe_xmit_cleanup(txq) != 0) {
789                                                 /*
790                                                  * Could not clean any
791                                                  * descriptors
792                                                  */
793                                                 if (nb_tx == 0)
794                                                         return 0;
795                                                 goto end_of_tx;
796                                         }
797                                 }
798                         }
799                 }
800
801                 /*
802                  * By now there are enough free TX descriptors to transmit
803                  * the packet.
804                  */
805
806                 /*
807                  * Set common flags of all TX Data Descriptors.
808                  *
809                  * The following bits must be set in all Data Descriptors:
810                  *   - IXGBE_ADVTXD_DTYP_DATA
811                  *   - IXGBE_ADVTXD_DCMD_DEXT
812                  *
813                  * The following bits must be set in the first Data Descriptor
814                  * and are ignored in the other ones:
815                  *   - IXGBE_ADVTXD_DCMD_IFCS
816                  *   - IXGBE_ADVTXD_MAC_1588
817                  *   - IXGBE_ADVTXD_DCMD_VLE
818                  *
819                  * The following bits must only be set in the last Data
820                  * Descriptor:
821                  *   - IXGBE_TXD_CMD_EOP
822                  *
823                  * The following bits can be set in any Data Descriptor, but
824                  * are only set in the last Data Descriptor:
825                  *   - IXGBE_TXD_CMD_RS
826                  */
827                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
828                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
829
830 #ifdef RTE_LIBRTE_IEEE1588
831                 if (ol_flags & PKT_TX_IEEE1588_TMST)
832                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
833 #endif
834
835                 olinfo_status = 0;
836                 if (tx_ol_req) {
837
838                         if (ol_flags & PKT_TX_TCP_SEG) {
839                                 /* when TSO is on, paylen in descriptor is the
840                                  * not the packet len but the tcp payload len */
841                                 pkt_len -= (tx_offload.l2_len +
842                                         tx_offload.l3_len + tx_offload.l4_len);
843                         }
844
845                         /*
846                          * Setup the TX Advanced Context Descriptor if required
847                          */
848                         if (new_ctx) {
849                                 volatile struct ixgbe_adv_tx_context_desc *
850                                     ctx_txd;
851
852                                 ctx_txd = (volatile struct
853                                     ixgbe_adv_tx_context_desc *)
854                                     &txr[tx_id];
855
856                                 txn = &sw_ring[txe->next_id];
857                                 rte_prefetch0(&txn->mbuf->pool);
858
859                                 if (txe->mbuf != NULL) {
860                                         rte_pktmbuf_free_seg(txe->mbuf);
861                                         txe->mbuf = NULL;
862                                 }
863
864                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
865                                         tx_offload, &tx_pkt->udata64);
866
867                                 txe->last_id = tx_last;
868                                 tx_id = txe->next_id;
869                                 txe = txn;
870                         }
871
872                         /*
873                          * Setup the TX Advanced Data Descriptor,
874                          * This path will go through
875                          * whatever new/reuse the context descriptor
876                          */
877                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
878                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
879                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
880                 }
881
882                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
883 #ifdef RTE_LIBRTE_SECURITY
884                 if (use_ipsec)
885                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
886 #endif
887
888                 m_seg = tx_pkt;
889                 do {
890                         txd = &txr[tx_id];
891                         txn = &sw_ring[txe->next_id];
892                         rte_prefetch0(&txn->mbuf->pool);
893
894                         if (txe->mbuf != NULL)
895                                 rte_pktmbuf_free_seg(txe->mbuf);
896                         txe->mbuf = m_seg;
897
898                         /*
899                          * Set up Transmit Data Descriptor.
900                          */
901                         slen = m_seg->data_len;
902                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
903                         txd->read.buffer_addr =
904                                 rte_cpu_to_le_64(buf_dma_addr);
905                         txd->read.cmd_type_len =
906                                 rte_cpu_to_le_32(cmd_type_len | slen);
907                         txd->read.olinfo_status =
908                                 rte_cpu_to_le_32(olinfo_status);
909                         txe->last_id = tx_last;
910                         tx_id = txe->next_id;
911                         txe = txn;
912                         m_seg = m_seg->next;
913                 } while (m_seg != NULL);
914
915                 /*
916                  * The last packet data descriptor needs End Of Packet (EOP)
917                  */
918                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
919                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
920                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
921
922                 /* Set RS bit only on threshold packets' last descriptor */
923                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
924                         PMD_TX_FREE_LOG(DEBUG,
925                                         "Setting RS bit on TXD id="
926                                         "%4u (port=%d queue=%d)",
927                                         tx_last, txq->port_id, txq->queue_id);
928
929                         cmd_type_len |= IXGBE_TXD_CMD_RS;
930
931                         /* Update txq RS bit counters */
932                         txq->nb_tx_used = 0;
933                         txp = NULL;
934                 } else
935                         txp = txd;
936
937                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
938         }
939
940 end_of_tx:
941         /* set RS on last packet in the burst */
942         if (txp != NULL)
943                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
944
945         rte_wmb();
946
947         /*
948          * Set the Transmit Descriptor Tail (TDT)
949          */
950         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
951                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
952                    (unsigned) tx_id, (unsigned) nb_tx);
953         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
954         txq->tx_tail = tx_id;
955
956         return nb_tx;
957 }
958
959 /*********************************************************************
960  *
961  *  TX prep functions
962  *
963  **********************************************************************/
964 uint16_t
965 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
966 {
967         int i, ret;
968         uint64_t ol_flags;
969         struct rte_mbuf *m;
970         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
971
972         for (i = 0; i < nb_pkts; i++) {
973                 m = tx_pkts[i];
974                 ol_flags = m->ol_flags;
975
976                 /**
977                  * Check if packet meets requirements for number of segments
978                  *
979                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
980                  *       non-TSO
981                  */
982
983                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
984                         rte_errno = -EINVAL;
985                         return i;
986                 }
987
988                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
989                         rte_errno = -ENOTSUP;
990                         return i;
991                 }
992
993 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
994                 ret = rte_validate_tx_offload(m);
995                 if (ret != 0) {
996                         rte_errno = ret;
997                         return i;
998                 }
999 #endif
1000                 ret = rte_net_intel_cksum_prepare(m);
1001                 if (ret != 0) {
1002                         rte_errno = ret;
1003                         return i;
1004                 }
1005         }
1006
1007         return i;
1008 }
1009
1010 /*********************************************************************
1011  *
1012  *  RX functions
1013  *
1014  **********************************************************************/
1015
1016 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1017 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1018 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1019 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1020 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1021 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1022 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1023 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1024 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1025 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1026 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1027 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1028 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1029 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1030 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1031 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1032 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1033 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1034 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1035 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1036 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1037 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1038 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1039 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1040 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1041 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1042 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1043 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1044 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1045 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1046 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1047 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1048 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1049
1050 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1051 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1052 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1053 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1069 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1070 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1071 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1072 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1073
1074 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1075 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1076 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1077 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1093 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1094 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1095 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1096 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1097
1098 /**
1099  * Use 2 different table for normal packet and tunnel packet
1100  * to save the space.
1101  */
1102 const uint32_t
1103         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1104         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1105         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1106                 RTE_PTYPE_L3_IPV4,
1107         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1108                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1109         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1110                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1111         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1112                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1113         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1114                 RTE_PTYPE_L3_IPV4_EXT,
1115         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1116                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1117         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1118                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1119         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1120                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1121         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1122                 RTE_PTYPE_L3_IPV6,
1123         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1124                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1125         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1126                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1127         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1128                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1129         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1130                 RTE_PTYPE_L3_IPV6_EXT,
1131         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1132                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1133         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1134                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1135         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1136                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1137         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1138                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1139                 RTE_PTYPE_INNER_L3_IPV6,
1140         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1141                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1142                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1143         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1144                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1145         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1146         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1147                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1148                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1149         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1150                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1151                 RTE_PTYPE_INNER_L3_IPV6,
1152         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1153                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1154                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1155         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1156                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1157                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1158         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1159                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1160                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1161         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1162                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1163                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1164         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1165                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1166                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1167         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1168                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1169                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1170         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1171                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1172                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1173         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1174                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1175                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1176         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1177                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1178                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1179         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1182         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1183                 RTE_PTYPE_L2_ETHER |
1184                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1185                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1186 };
1187
1188 const uint32_t
1189         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1190         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1191                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1192                 RTE_PTYPE_INNER_L2_ETHER,
1193         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1194                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1195                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1196         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1197                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1198                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1199         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1200                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1201                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1202         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1203                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1204                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1205         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1206                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1207                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1208         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1209                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1210                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1214                 RTE_PTYPE_INNER_L4_TCP,
1215         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1216                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1217                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1218                 RTE_PTYPE_INNER_L4_TCP,
1219         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1220                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1221                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1223                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1224                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1225                 RTE_PTYPE_INNER_L4_TCP,
1226         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1227                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1228                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1229                 RTE_PTYPE_INNER_L3_IPV4,
1230         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1231                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1232                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1233                 RTE_PTYPE_INNER_L4_UDP,
1234         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1235                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1236                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1237                 RTE_PTYPE_INNER_L4_UDP,
1238         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1239                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1240                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1241                 RTE_PTYPE_INNER_L4_SCTP,
1242         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1243                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1244                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1248                 RTE_PTYPE_INNER_L4_UDP,
1249         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1250                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1251                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1252                 RTE_PTYPE_INNER_L4_SCTP,
1253         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1254                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1255                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1256                 RTE_PTYPE_INNER_L3_IPV4,
1257         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1258                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1259                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1260                 RTE_PTYPE_INNER_L4_SCTP,
1261         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1262                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1263                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1264                 RTE_PTYPE_INNER_L4_SCTP,
1265         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1266                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1267                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1268                 RTE_PTYPE_INNER_L4_TCP,
1269         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1270                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1271                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1272                 RTE_PTYPE_INNER_L4_UDP,
1273
1274         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1275                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1276                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1277         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1280                 RTE_PTYPE_INNER_L3_IPV4,
1281         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1282                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1283                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1284                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1285         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1286                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1287                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1288                 RTE_PTYPE_INNER_L3_IPV6,
1289         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1290                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1291                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1292                 RTE_PTYPE_INNER_L3_IPV4,
1293         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1294                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1295                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1296                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1297         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1298                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1299                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1300                 RTE_PTYPE_INNER_L3_IPV4,
1301         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1302                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1303                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1304                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1305         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1306                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1307                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1308                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1309         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1310                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1311                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1312                 RTE_PTYPE_INNER_L3_IPV4,
1313         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1314                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1315                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1316                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1317         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1318                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1319                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1320                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1321         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1322                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1323                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1324                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1325         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1326                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1327                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1328                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1329         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1330                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1331                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1332                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1333         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1334                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1335                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1336                 RTE_PTYPE_INNER_L3_IPV4,
1337         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1338                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1339                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1340                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1341         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1342                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1343                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1344                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1345         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1346                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1347                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1348                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1349         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1350                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1351                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1352                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1353         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1354                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1355                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1356                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1357         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1358                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1359                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1360                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1361         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1362                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1363                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1364                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1365 };
1366
1367 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1368 static inline uint32_t
1369 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1370 {
1371
1372         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1373                 return RTE_PTYPE_UNKNOWN;
1374
1375         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1376
1377         /* For tunnel packet */
1378         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1379                 /* Remove the tunnel bit to save the space. */
1380                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1381                 return ptype_table_tn[pkt_info];
1382         }
1383
1384         /**
1385          * For x550, if it's not tunnel,
1386          * tunnel type bit should be set to 0.
1387          * Reuse 82599's mask.
1388          */
1389         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1390
1391         return ptype_table[pkt_info];
1392 }
1393
1394 static inline uint64_t
1395 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1396 {
1397         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1398                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1399                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1400                 PKT_RX_RSS_HASH, 0, 0, 0,
1401                 0, 0, 0,  PKT_RX_FDIR,
1402         };
1403 #ifdef RTE_LIBRTE_IEEE1588
1404         static uint64_t ip_pkt_etqf_map[8] = {
1405                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1406                 0, 0, 0, 0,
1407         };
1408
1409         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1410                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1411                                 ip_rss_types_map[pkt_info & 0XF];
1412         else
1413                 return ip_rss_types_map[pkt_info & 0XF];
1414 #else
1415         return ip_rss_types_map[pkt_info & 0XF];
1416 #endif
1417 }
1418
1419 static inline uint64_t
1420 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1421 {
1422         uint64_t pkt_flags;
1423
1424         /*
1425          * Check if VLAN present only.
1426          * Do not check whether L3/L4 rx checksum done by NIC or not,
1427          * That can be found from rte_eth_rxmode.offloads flag
1428          */
1429         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1430
1431 #ifdef RTE_LIBRTE_IEEE1588
1432         if (rx_status & IXGBE_RXD_STAT_TMST)
1433                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1434 #endif
1435         return pkt_flags;
1436 }
1437
1438 static inline uint64_t
1439 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1440 {
1441         uint64_t pkt_flags;
1442
1443         /*
1444          * Bit 31: IPE, IPv4 checksum error
1445          * Bit 30: L4I, L4I integrity error
1446          */
1447         static uint64_t error_to_pkt_flags_map[4] = {
1448                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1449                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1450                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1451                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1452         };
1453         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1454                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1455
1456         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1457             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1458                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1459         }
1460
1461 #ifdef RTE_LIBRTE_SECURITY
1462         if (rx_status & IXGBE_RXD_STAT_SECP) {
1463                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1464                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1465                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1466         }
1467 #endif
1468
1469         return pkt_flags;
1470 }
1471
1472 /*
1473  * LOOK_AHEAD defines how many desc statuses to check beyond the
1474  * current descriptor.
1475  * It must be a pound define for optimal performance.
1476  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1477  * function only works with LOOK_AHEAD=8.
1478  */
1479 #define LOOK_AHEAD 8
1480 #if (LOOK_AHEAD != 8)
1481 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1482 #endif
1483 static inline int
1484 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1485 {
1486         volatile union ixgbe_adv_rx_desc *rxdp;
1487         struct ixgbe_rx_entry *rxep;
1488         struct rte_mbuf *mb;
1489         uint16_t pkt_len;
1490         uint64_t pkt_flags;
1491         int nb_dd;
1492         uint32_t s[LOOK_AHEAD];
1493         uint32_t pkt_info[LOOK_AHEAD];
1494         int i, j, nb_rx = 0;
1495         uint32_t status;
1496         uint64_t vlan_flags = rxq->vlan_flags;
1497
1498         /* get references to current descriptor and S/W ring entry */
1499         rxdp = &rxq->rx_ring[rxq->rx_tail];
1500         rxep = &rxq->sw_ring[rxq->rx_tail];
1501
1502         status = rxdp->wb.upper.status_error;
1503         /* check to make sure there is at least 1 packet to receive */
1504         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1505                 return 0;
1506
1507         /*
1508          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1509          * reference packets that are ready to be received.
1510          */
1511         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1512              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1513                 /* Read desc statuses backwards to avoid race condition */
1514                 for (j = 0; j < LOOK_AHEAD; j++)
1515                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1516
1517                 rte_smp_rmb();
1518
1519                 /* Compute how many status bits were set */
1520                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1521                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1522                         ;
1523
1524                 for (j = 0; j < nb_dd; j++)
1525                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1526                                                        lo_dword.data);
1527
1528                 nb_rx += nb_dd;
1529
1530                 /* Translate descriptor info to mbuf format */
1531                 for (j = 0; j < nb_dd; ++j) {
1532                         mb = rxep[j].mbuf;
1533                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1534                                   rxq->crc_len;
1535                         mb->data_len = pkt_len;
1536                         mb->pkt_len = pkt_len;
1537                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1538
1539                         /* convert descriptor fields to rte mbuf flags */
1540                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1541                                 vlan_flags);
1542                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1543                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1544                                         ((uint16_t)pkt_info[j]);
1545                         mb->ol_flags = pkt_flags;
1546                         mb->packet_type =
1547                                 ixgbe_rxd_pkt_info_to_pkt_type
1548                                         (pkt_info[j], rxq->pkt_type_mask);
1549
1550                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1551                                 mb->hash.rss = rte_le_to_cpu_32(
1552                                     rxdp[j].wb.lower.hi_dword.rss);
1553                         else if (pkt_flags & PKT_RX_FDIR) {
1554                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1555                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1556                                     IXGBE_ATR_HASH_MASK;
1557                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1558                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1559                         }
1560                 }
1561
1562                 /* Move mbuf pointers from the S/W ring to the stage */
1563                 for (j = 0; j < LOOK_AHEAD; ++j) {
1564                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1565                 }
1566
1567                 /* stop if all requested packets could not be received */
1568                 if (nb_dd != LOOK_AHEAD)
1569                         break;
1570         }
1571
1572         /* clear software ring entries so we can cleanup correctly */
1573         for (i = 0; i < nb_rx; ++i) {
1574                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1575         }
1576
1577
1578         return nb_rx;
1579 }
1580
1581 static inline int
1582 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1583 {
1584         volatile union ixgbe_adv_rx_desc *rxdp;
1585         struct ixgbe_rx_entry *rxep;
1586         struct rte_mbuf *mb;
1587         uint16_t alloc_idx;
1588         __le64 dma_addr;
1589         int diag, i;
1590
1591         /* allocate buffers in bulk directly into the S/W ring */
1592         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1593         rxep = &rxq->sw_ring[alloc_idx];
1594         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1595                                     rxq->rx_free_thresh);
1596         if (unlikely(diag != 0))
1597                 return -ENOMEM;
1598
1599         rxdp = &rxq->rx_ring[alloc_idx];
1600         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1601                 /* populate the static rte mbuf fields */
1602                 mb = rxep[i].mbuf;
1603                 if (reset_mbuf) {
1604                         mb->port = rxq->port_id;
1605                 }
1606
1607                 rte_mbuf_refcnt_set(mb, 1);
1608                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1609
1610                 /* populate the descriptors */
1611                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1612                 rxdp[i].read.hdr_addr = 0;
1613                 rxdp[i].read.pkt_addr = dma_addr;
1614         }
1615
1616         /* update state of internal queue structure */
1617         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1618         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1619                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1620
1621         /* no errors */
1622         return 0;
1623 }
1624
1625 static inline uint16_t
1626 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1627                          uint16_t nb_pkts)
1628 {
1629         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1630         int i;
1631
1632         /* how many packets are ready to return? */
1633         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1634
1635         /* copy mbuf pointers to the application's packet list */
1636         for (i = 0; i < nb_pkts; ++i)
1637                 rx_pkts[i] = stage[i];
1638
1639         /* update internal queue state */
1640         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1641         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1642
1643         return nb_pkts;
1644 }
1645
1646 static inline uint16_t
1647 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1648              uint16_t nb_pkts)
1649 {
1650         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1651         uint16_t nb_rx = 0;
1652
1653         /* Any previously recv'd pkts will be returned from the Rx stage */
1654         if (rxq->rx_nb_avail)
1655                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1656
1657         /* Scan the H/W ring for packets to receive */
1658         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1659
1660         /* update internal queue state */
1661         rxq->rx_next_avail = 0;
1662         rxq->rx_nb_avail = nb_rx;
1663         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1664
1665         /* if required, allocate new buffers to replenish descriptors */
1666         if (rxq->rx_tail > rxq->rx_free_trigger) {
1667                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1668
1669                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1670                         int i, j;
1671
1672                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1673                                    "queue_id=%u", (unsigned) rxq->port_id,
1674                                    (unsigned) rxq->queue_id);
1675
1676                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1677                                 rxq->rx_free_thresh;
1678
1679                         /*
1680                          * Need to rewind any previous receives if we cannot
1681                          * allocate new buffers to replenish the old ones.
1682                          */
1683                         rxq->rx_nb_avail = 0;
1684                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1685                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1686                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1687
1688                         return 0;
1689                 }
1690
1691                 /* update tail pointer */
1692                 rte_wmb();
1693                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1694                                             cur_free_trigger);
1695         }
1696
1697         if (rxq->rx_tail >= rxq->nb_rx_desc)
1698                 rxq->rx_tail = 0;
1699
1700         /* received any packets this loop? */
1701         if (rxq->rx_nb_avail)
1702                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1703
1704         return 0;
1705 }
1706
1707 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1708 uint16_t
1709 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1710                            uint16_t nb_pkts)
1711 {
1712         uint16_t nb_rx;
1713
1714         if (unlikely(nb_pkts == 0))
1715                 return 0;
1716
1717         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1718                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1719
1720         /* request is relatively large, chunk it up */
1721         nb_rx = 0;
1722         while (nb_pkts) {
1723                 uint16_t ret, n;
1724
1725                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1726                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1727                 nb_rx = (uint16_t)(nb_rx + ret);
1728                 nb_pkts = (uint16_t)(nb_pkts - ret);
1729                 if (ret < n)
1730                         break;
1731         }
1732
1733         return nb_rx;
1734 }
1735
1736 uint16_t
1737 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1738                 uint16_t nb_pkts)
1739 {
1740         struct ixgbe_rx_queue *rxq;
1741         volatile union ixgbe_adv_rx_desc *rx_ring;
1742         volatile union ixgbe_adv_rx_desc *rxdp;
1743         struct ixgbe_rx_entry *sw_ring;
1744         struct ixgbe_rx_entry *rxe;
1745         struct rte_mbuf *rxm;
1746         struct rte_mbuf *nmb;
1747         union ixgbe_adv_rx_desc rxd;
1748         uint64_t dma_addr;
1749         uint32_t staterr;
1750         uint32_t pkt_info;
1751         uint16_t pkt_len;
1752         uint16_t rx_id;
1753         uint16_t nb_rx;
1754         uint16_t nb_hold;
1755         uint64_t pkt_flags;
1756         uint64_t vlan_flags;
1757
1758         nb_rx = 0;
1759         nb_hold = 0;
1760         rxq = rx_queue;
1761         rx_id = rxq->rx_tail;
1762         rx_ring = rxq->rx_ring;
1763         sw_ring = rxq->sw_ring;
1764         vlan_flags = rxq->vlan_flags;
1765         while (nb_rx < nb_pkts) {
1766                 /*
1767                  * The order of operations here is important as the DD status
1768                  * bit must not be read after any other descriptor fields.
1769                  * rx_ring and rxdp are pointing to volatile data so the order
1770                  * of accesses cannot be reordered by the compiler. If they were
1771                  * not volatile, they could be reordered which could lead to
1772                  * using invalid descriptor fields when read from rxd.
1773                  */
1774                 rxdp = &rx_ring[rx_id];
1775                 staterr = rxdp->wb.upper.status_error;
1776                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1777                         break;
1778                 rxd = *rxdp;
1779
1780                 /*
1781                  * End of packet.
1782                  *
1783                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1784                  * is likely to be invalid and to be dropped by the various
1785                  * validation checks performed by the network stack.
1786                  *
1787                  * Allocate a new mbuf to replenish the RX ring descriptor.
1788                  * If the allocation fails:
1789                  *    - arrange for that RX descriptor to be the first one
1790                  *      being parsed the next time the receive function is
1791                  *      invoked [on the same queue].
1792                  *
1793                  *    - Stop parsing the RX ring and return immediately.
1794                  *
1795                  * This policy do not drop the packet received in the RX
1796                  * descriptor for which the allocation of a new mbuf failed.
1797                  * Thus, it allows that packet to be later retrieved if
1798                  * mbuf have been freed in the mean time.
1799                  * As a side effect, holding RX descriptors instead of
1800                  * systematically giving them back to the NIC may lead to
1801                  * RX ring exhaustion situations.
1802                  * However, the NIC can gracefully prevent such situations
1803                  * to happen by sending specific "back-pressure" flow control
1804                  * frames to its peer(s).
1805                  */
1806                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1807                            "ext_err_stat=0x%08x pkt_len=%u",
1808                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1809                            (unsigned) rx_id, (unsigned) staterr,
1810                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1811
1812                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1813                 if (nmb == NULL) {
1814                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1815                                    "queue_id=%u", (unsigned) rxq->port_id,
1816                                    (unsigned) rxq->queue_id);
1817                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1818                         break;
1819                 }
1820
1821                 nb_hold++;
1822                 rxe = &sw_ring[rx_id];
1823                 rx_id++;
1824                 if (rx_id == rxq->nb_rx_desc)
1825                         rx_id = 0;
1826
1827                 /* Prefetch next mbuf while processing current one. */
1828                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1829
1830                 /*
1831                  * When next RX descriptor is on a cache-line boundary,
1832                  * prefetch the next 4 RX descriptors and the next 8 pointers
1833                  * to mbufs.
1834                  */
1835                 if ((rx_id & 0x3) == 0) {
1836                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1837                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1838                 }
1839
1840                 rxm = rxe->mbuf;
1841                 rxe->mbuf = nmb;
1842                 dma_addr =
1843                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1844                 rxdp->read.hdr_addr = 0;
1845                 rxdp->read.pkt_addr = dma_addr;
1846
1847                 /*
1848                  * Initialize the returned mbuf.
1849                  * 1) setup generic mbuf fields:
1850                  *    - number of segments,
1851                  *    - next segment,
1852                  *    - packet length,
1853                  *    - RX port identifier.
1854                  * 2) integrate hardware offload data, if any:
1855                  *    - RSS flag & hash,
1856                  *    - IP checksum flag,
1857                  *    - VLAN TCI, if any,
1858                  *    - error flags.
1859                  */
1860                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1861                                       rxq->crc_len);
1862                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1863                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1864                 rxm->nb_segs = 1;
1865                 rxm->next = NULL;
1866                 rxm->pkt_len = pkt_len;
1867                 rxm->data_len = pkt_len;
1868                 rxm->port = rxq->port_id;
1869
1870                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1871                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1872                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1873
1874                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1875                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1876                 pkt_flags = pkt_flags |
1877                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1878                 rxm->ol_flags = pkt_flags;
1879                 rxm->packet_type =
1880                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1881                                                        rxq->pkt_type_mask);
1882
1883                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1884                         rxm->hash.rss = rte_le_to_cpu_32(
1885                                                 rxd.wb.lower.hi_dword.rss);
1886                 else if (pkt_flags & PKT_RX_FDIR) {
1887                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1888                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1889                                         IXGBE_ATR_HASH_MASK;
1890                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1891                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1892                 }
1893                 /*
1894                  * Store the mbuf address into the next entry of the array
1895                  * of returned packets.
1896                  */
1897                 rx_pkts[nb_rx++] = rxm;
1898         }
1899         rxq->rx_tail = rx_id;
1900
1901         /*
1902          * If the number of free RX descriptors is greater than the RX free
1903          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1904          * register.
1905          * Update the RDT with the value of the last processed RX descriptor
1906          * minus 1, to guarantee that the RDT register is never equal to the
1907          * RDH register, which creates a "full" ring situtation from the
1908          * hardware point of view...
1909          */
1910         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1911         if (nb_hold > rxq->rx_free_thresh) {
1912                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1913                            "nb_hold=%u nb_rx=%u",
1914                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1915                            (unsigned) rx_id, (unsigned) nb_hold,
1916                            (unsigned) nb_rx);
1917                 rx_id = (uint16_t) ((rx_id == 0) ?
1918                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1919                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1920                 nb_hold = 0;
1921         }
1922         rxq->nb_rx_hold = nb_hold;
1923         return nb_rx;
1924 }
1925
1926 /**
1927  * Detect an RSC descriptor.
1928  */
1929 static inline uint32_t
1930 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1931 {
1932         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1933                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1934 }
1935
1936 /**
1937  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1938  *
1939  * Fill the following info in the HEAD buffer of the Rx cluster:
1940  *    - RX port identifier
1941  *    - hardware offload data, if any:
1942  *      - RSS flag & hash
1943  *      - IP checksum flag
1944  *      - VLAN TCI, if any
1945  *      - error flags
1946  * @head HEAD of the packet cluster
1947  * @desc HW descriptor to get data from
1948  * @rxq Pointer to the Rx queue
1949  */
1950 static inline void
1951 ixgbe_fill_cluster_head_buf(
1952         struct rte_mbuf *head,
1953         union ixgbe_adv_rx_desc *desc,
1954         struct ixgbe_rx_queue *rxq,
1955         uint32_t staterr)
1956 {
1957         uint32_t pkt_info;
1958         uint64_t pkt_flags;
1959
1960         head->port = rxq->port_id;
1961
1962         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1963          * set in the pkt_flags field.
1964          */
1965         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1966         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1967         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1968         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1969         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1970         head->ol_flags = pkt_flags;
1971         head->packet_type =
1972                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1973
1974         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1975                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1976         else if (pkt_flags & PKT_RX_FDIR) {
1977                 head->hash.fdir.hash =
1978                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1979                                                           & IXGBE_ATR_HASH_MASK;
1980                 head->hash.fdir.id =
1981                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1982         }
1983 }
1984
1985 /**
1986  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1987  *
1988  * @rx_queue Rx queue handle
1989  * @rx_pkts table of received packets
1990  * @nb_pkts size of rx_pkts table
1991  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1992  *
1993  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1994  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1995  *
1996  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
1997  * 1) When non-EOP RSC completion arrives:
1998  *    a) Update the HEAD of the current RSC aggregation cluster with the new
1999  *       segment's data length.
2000  *    b) Set the "next" pointer of the current segment to point to the segment
2001  *       at the NEXTP index.
2002  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
2003  *       in the sw_rsc_ring.
2004  * 2) When EOP arrives we just update the cluster's total length and offload
2005  *    flags and deliver the cluster up to the upper layers. In our case - put it
2006  *    in the rx_pkts table.
2007  *
2008  * Returns the number of received packets/clusters (according to the "bulk
2009  * receive" interface).
2010  */
2011 static inline uint16_t
2012 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2013                     bool bulk_alloc)
2014 {
2015         struct ixgbe_rx_queue *rxq = rx_queue;
2016         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2017         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2018         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2019         uint16_t rx_id = rxq->rx_tail;
2020         uint16_t nb_rx = 0;
2021         uint16_t nb_hold = rxq->nb_rx_hold;
2022         uint16_t prev_id = rxq->rx_tail;
2023
2024         while (nb_rx < nb_pkts) {
2025                 bool eop;
2026                 struct ixgbe_rx_entry *rxe;
2027                 struct ixgbe_scattered_rx_entry *sc_entry;
2028                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2029                 struct ixgbe_rx_entry *next_rxe = NULL;
2030                 struct rte_mbuf *first_seg;
2031                 struct rte_mbuf *rxm;
2032                 struct rte_mbuf *nmb;
2033                 union ixgbe_adv_rx_desc rxd;
2034                 uint16_t data_len;
2035                 uint16_t next_id;
2036                 volatile union ixgbe_adv_rx_desc *rxdp;
2037                 uint32_t staterr;
2038
2039 next_desc:
2040                 /*
2041                  * The code in this whole file uses the volatile pointer to
2042                  * ensure the read ordering of the status and the rest of the
2043                  * descriptor fields (on the compiler level only!!!). This is so
2044                  * UGLY - why not to just use the compiler barrier instead? DPDK
2045                  * even has the rte_compiler_barrier() for that.
2046                  *
2047                  * But most importantly this is just wrong because this doesn't
2048                  * ensure memory ordering in a general case at all. For
2049                  * instance, DPDK is supposed to work on Power CPUs where
2050                  * compiler barrier may just not be enough!
2051                  *
2052                  * I tried to write only this function properly to have a
2053                  * starting point (as a part of an LRO/RSC series) but the
2054                  * compiler cursed at me when I tried to cast away the
2055                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2056                  * keeping it the way it is for now.
2057                  *
2058                  * The code in this file is broken in so many other places and
2059                  * will just not work on a big endian CPU anyway therefore the
2060                  * lines below will have to be revisited together with the rest
2061                  * of the ixgbe PMD.
2062                  *
2063                  * TODO:
2064                  *    - Get rid of "volatile" and let the compiler do its job.
2065                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2066                  *      memory ordering below.
2067                  */
2068                 rxdp = &rx_ring[rx_id];
2069                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2070
2071                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2072                         break;
2073
2074                 rxd = *rxdp;
2075
2076                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2077                                   "staterr=0x%x data_len=%u",
2078                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2079                            rte_le_to_cpu_16(rxd.wb.upper.length));
2080
2081                 if (!bulk_alloc) {
2082                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2083                         if (nmb == NULL) {
2084                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2085                                                   "port_id=%u queue_id=%u",
2086                                            rxq->port_id, rxq->queue_id);
2087
2088                                 rte_eth_devices[rxq->port_id].data->
2089                                                         rx_mbuf_alloc_failed++;
2090                                 break;
2091                         }
2092                 } else if (nb_hold > rxq->rx_free_thresh) {
2093                         uint16_t next_rdt = rxq->rx_free_trigger;
2094
2095                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2096                                 rte_wmb();
2097                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2098                                                             next_rdt);
2099                                 nb_hold -= rxq->rx_free_thresh;
2100                         } else {
2101                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2102                                                   "port_id=%u queue_id=%u",
2103                                            rxq->port_id, rxq->queue_id);
2104
2105                                 rte_eth_devices[rxq->port_id].data->
2106                                                         rx_mbuf_alloc_failed++;
2107                                 break;
2108                         }
2109                 }
2110
2111                 nb_hold++;
2112                 rxe = &sw_ring[rx_id];
2113                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2114
2115                 next_id = rx_id + 1;
2116                 if (next_id == rxq->nb_rx_desc)
2117                         next_id = 0;
2118
2119                 /* Prefetch next mbuf while processing current one. */
2120                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2121
2122                 /*
2123                  * When next RX descriptor is on a cache-line boundary,
2124                  * prefetch the next 4 RX descriptors and the next 4 pointers
2125                  * to mbufs.
2126                  */
2127                 if ((next_id & 0x3) == 0) {
2128                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2129                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2130                 }
2131
2132                 rxm = rxe->mbuf;
2133
2134                 if (!bulk_alloc) {
2135                         __le64 dma =
2136                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2137                         /*
2138                          * Update RX descriptor with the physical address of the
2139                          * new data buffer of the new allocated mbuf.
2140                          */
2141                         rxe->mbuf = nmb;
2142
2143                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2144                         rxdp->read.hdr_addr = 0;
2145                         rxdp->read.pkt_addr = dma;
2146                 } else
2147                         rxe->mbuf = NULL;
2148
2149                 /*
2150                  * Set data length & data buffer address of mbuf.
2151                  */
2152                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2153                 rxm->data_len = data_len;
2154
2155                 if (!eop) {
2156                         uint16_t nextp_id;
2157                         /*
2158                          * Get next descriptor index:
2159                          *  - For RSC it's in the NEXTP field.
2160                          *  - For a scattered packet - it's just a following
2161                          *    descriptor.
2162                          */
2163                         if (ixgbe_rsc_count(&rxd))
2164                                 nextp_id =
2165                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2166                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2167                         else
2168                                 nextp_id = next_id;
2169
2170                         next_sc_entry = &sw_sc_ring[nextp_id];
2171                         next_rxe = &sw_ring[nextp_id];
2172                         rte_ixgbe_prefetch(next_rxe);
2173                 }
2174
2175                 sc_entry = &sw_sc_ring[rx_id];
2176                 first_seg = sc_entry->fbuf;
2177                 sc_entry->fbuf = NULL;
2178
2179                 /*
2180                  * If this is the first buffer of the received packet,
2181                  * set the pointer to the first mbuf of the packet and
2182                  * initialize its context.
2183                  * Otherwise, update the total length and the number of segments
2184                  * of the current scattered packet, and update the pointer to
2185                  * the last mbuf of the current packet.
2186                  */
2187                 if (first_seg == NULL) {
2188                         first_seg = rxm;
2189                         first_seg->pkt_len = data_len;
2190                         first_seg->nb_segs = 1;
2191                 } else {
2192                         first_seg->pkt_len += data_len;
2193                         first_seg->nb_segs++;
2194                 }
2195
2196                 prev_id = rx_id;
2197                 rx_id = next_id;
2198
2199                 /*
2200                  * If this is not the last buffer of the received packet, update
2201                  * the pointer to the first mbuf at the NEXTP entry in the
2202                  * sw_sc_ring and continue to parse the RX ring.
2203                  */
2204                 if (!eop && next_rxe) {
2205                         rxm->next = next_rxe->mbuf;
2206                         next_sc_entry->fbuf = first_seg;
2207                         goto next_desc;
2208                 }
2209
2210                 /* Initialize the first mbuf of the returned packet */
2211                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2212
2213                 /*
2214                  * Deal with the case, when HW CRC srip is disabled.
2215                  * That can't happen when LRO is enabled, but still could
2216                  * happen for scattered RX mode.
2217                  */
2218                 first_seg->pkt_len -= rxq->crc_len;
2219                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2220                         struct rte_mbuf *lp;
2221
2222                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2223                                 ;
2224
2225                         first_seg->nb_segs--;
2226                         lp->data_len -= rxq->crc_len - rxm->data_len;
2227                         lp->next = NULL;
2228                         rte_pktmbuf_free_seg(rxm);
2229                 } else
2230                         rxm->data_len -= rxq->crc_len;
2231
2232                 /* Prefetch data of first segment, if configured to do so. */
2233                 rte_packet_prefetch((char *)first_seg->buf_addr +
2234                         first_seg->data_off);
2235
2236                 /*
2237                  * Store the mbuf address into the next entry of the array
2238                  * of returned packets.
2239                  */
2240                 rx_pkts[nb_rx++] = first_seg;
2241         }
2242
2243         /*
2244          * Record index of the next RX descriptor to probe.
2245          */
2246         rxq->rx_tail = rx_id;
2247
2248         /*
2249          * If the number of free RX descriptors is greater than the RX free
2250          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2251          * register.
2252          * Update the RDT with the value of the last processed RX descriptor
2253          * minus 1, to guarantee that the RDT register is never equal to the
2254          * RDH register, which creates a "full" ring situtation from the
2255          * hardware point of view...
2256          */
2257         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2258                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2259                            "nb_hold=%u nb_rx=%u",
2260                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2261
2262                 rte_wmb();
2263                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2264                 nb_hold = 0;
2265         }
2266
2267         rxq->nb_rx_hold = nb_hold;
2268         return nb_rx;
2269 }
2270
2271 uint16_t
2272 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2273                                  uint16_t nb_pkts)
2274 {
2275         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2276 }
2277
2278 uint16_t
2279 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2280                                uint16_t nb_pkts)
2281 {
2282         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2283 }
2284
2285 /*********************************************************************
2286  *
2287  *  Queue management functions
2288  *
2289  **********************************************************************/
2290
2291 static void __attribute__((cold))
2292 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2293 {
2294         unsigned i;
2295
2296         if (txq->sw_ring != NULL) {
2297                 for (i = 0; i < txq->nb_tx_desc; i++) {
2298                         if (txq->sw_ring[i].mbuf != NULL) {
2299                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2300                                 txq->sw_ring[i].mbuf = NULL;
2301                         }
2302                 }
2303         }
2304 }
2305
2306 static void __attribute__((cold))
2307 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2308 {
2309         if (txq != NULL &&
2310             txq->sw_ring != NULL)
2311                 rte_free(txq->sw_ring);
2312 }
2313
2314 static void __attribute__((cold))
2315 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2316 {
2317         if (txq != NULL && txq->ops != NULL) {
2318                 txq->ops->release_mbufs(txq);
2319                 txq->ops->free_swring(txq);
2320                 rte_free(txq);
2321         }
2322 }
2323
2324 void __attribute__((cold))
2325 ixgbe_dev_tx_queue_release(void *txq)
2326 {
2327         ixgbe_tx_queue_release(txq);
2328 }
2329
2330 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2331 static void __attribute__((cold))
2332 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2333 {
2334         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2335         struct ixgbe_tx_entry *txe = txq->sw_ring;
2336         uint16_t prev, i;
2337
2338         /* Zero out HW ring memory */
2339         for (i = 0; i < txq->nb_tx_desc; i++) {
2340                 txq->tx_ring[i] = zeroed_desc;
2341         }
2342
2343         /* Initialize SW ring entries */
2344         prev = (uint16_t) (txq->nb_tx_desc - 1);
2345         for (i = 0; i < txq->nb_tx_desc; i++) {
2346                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2347
2348                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2349                 txe[i].mbuf = NULL;
2350                 txe[i].last_id = i;
2351                 txe[prev].next_id = i;
2352                 prev = i;
2353         }
2354
2355         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2356         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2357
2358         txq->tx_tail = 0;
2359         txq->nb_tx_used = 0;
2360         /*
2361          * Always allow 1 descriptor to be un-allocated to avoid
2362          * a H/W race condition
2363          */
2364         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2365         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2366         txq->ctx_curr = 0;
2367         memset((void *)&txq->ctx_cache, 0,
2368                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2369 }
2370
2371 static const struct ixgbe_txq_ops def_txq_ops = {
2372         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2373         .free_swring = ixgbe_tx_free_swring,
2374         .reset = ixgbe_reset_tx_queue,
2375 };
2376
2377 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2378  * the queue parameters. Used in tx_queue_setup by primary process and then
2379  * in dev_init by secondary process when attaching to an existing ethdev.
2380  */
2381 void __attribute__((cold))
2382 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2383 {
2384         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2385         if ((txq->offloads == 0) &&
2386 #ifdef RTE_LIBRTE_SECURITY
2387                         !(txq->using_ipsec) &&
2388 #endif
2389                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2390                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2391                 dev->tx_pkt_prepare = NULL;
2392 #ifdef RTE_IXGBE_INC_VECTOR
2393                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2394                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2395                                         ixgbe_txq_vec_setup(txq) == 0)) {
2396                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2397                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2398                 } else
2399 #endif
2400                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2401         } else {
2402                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2403                 PMD_INIT_LOG(DEBUG,
2404                                 " - offloads = 0x%" PRIx64,
2405                                 txq->offloads);
2406                 PMD_INIT_LOG(DEBUG,
2407                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2408                                 (unsigned long)txq->tx_rs_thresh,
2409                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2410                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2411                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2412         }
2413 }
2414
2415 uint64_t
2416 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2417 {
2418         RTE_SET_USED(dev);
2419
2420         return 0;
2421 }
2422
2423 uint64_t
2424 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2425 {
2426         uint64_t tx_offload_capa;
2427         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2428
2429         tx_offload_capa =
2430                 DEV_TX_OFFLOAD_VLAN_INSERT |
2431                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2432                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2433                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2434                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2435                 DEV_TX_OFFLOAD_TCP_TSO     |
2436                 DEV_TX_OFFLOAD_MULTI_SEGS;
2437
2438         if (hw->mac.type == ixgbe_mac_82599EB ||
2439             hw->mac.type == ixgbe_mac_X540)
2440                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2441
2442         if (hw->mac.type == ixgbe_mac_X550 ||
2443             hw->mac.type == ixgbe_mac_X550EM_x ||
2444             hw->mac.type == ixgbe_mac_X550EM_a)
2445                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2446
2447 #ifdef RTE_LIBRTE_SECURITY
2448         if (dev->security_ctx)
2449                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2450 #endif
2451         return tx_offload_capa;
2452 }
2453
2454 int __attribute__((cold))
2455 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2456                          uint16_t queue_idx,
2457                          uint16_t nb_desc,
2458                          unsigned int socket_id,
2459                          const struct rte_eth_txconf *tx_conf)
2460 {
2461         const struct rte_memzone *tz;
2462         struct ixgbe_tx_queue *txq;
2463         struct ixgbe_hw     *hw;
2464         uint16_t tx_rs_thresh, tx_free_thresh;
2465         uint64_t offloads;
2466
2467         PMD_INIT_FUNC_TRACE();
2468         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2469
2470         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2471
2472         /*
2473          * Validate number of transmit descriptors.
2474          * It must not exceed hardware maximum, and must be multiple
2475          * of IXGBE_ALIGN.
2476          */
2477         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2478                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2479                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2480                 return -EINVAL;
2481         }
2482
2483         /*
2484          * The following two parameters control the setting of the RS bit on
2485          * transmit descriptors.
2486          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2487          * descriptors have been used.
2488          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2489          * descriptors are used or if the number of descriptors required
2490          * to transmit a packet is greater than the number of free TX
2491          * descriptors.
2492          * The following constraints must be satisfied:
2493          *  tx_rs_thresh must be greater than 0.
2494          *  tx_rs_thresh must be less than the size of the ring minus 2.
2495          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2496          *  tx_rs_thresh must be a divisor of the ring size.
2497          *  tx_free_thresh must be greater than 0.
2498          *  tx_free_thresh must be less than the size of the ring minus 3.
2499          * One descriptor in the TX ring is used as a sentinel to avoid a
2500          * H/W race condition, hence the maximum threshold constraints.
2501          * When set to zero use default values.
2502          */
2503         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2504                         tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2505         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2506                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2507         if (tx_rs_thresh >= (nb_desc - 2)) {
2508                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2509                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2510                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2511                         (int)dev->data->port_id, (int)queue_idx);
2512                 return -(EINVAL);
2513         }
2514         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2515                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2516                         "(tx_rs_thresh=%u port=%d queue=%d)",
2517                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2518                         (int)dev->data->port_id, (int)queue_idx);
2519                 return -(EINVAL);
2520         }
2521         if (tx_free_thresh >= (nb_desc - 3)) {
2522                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2523                              "tx_free_thresh must be less than the number of "
2524                              "TX descriptors minus 3. (tx_free_thresh=%u "
2525                              "port=%d queue=%d)",
2526                              (unsigned int)tx_free_thresh,
2527                              (int)dev->data->port_id, (int)queue_idx);
2528                 return -(EINVAL);
2529         }
2530         if (tx_rs_thresh > tx_free_thresh) {
2531                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2532                              "tx_free_thresh. (tx_free_thresh=%u "
2533                              "tx_rs_thresh=%u port=%d queue=%d)",
2534                              (unsigned int)tx_free_thresh,
2535                              (unsigned int)tx_rs_thresh,
2536                              (int)dev->data->port_id,
2537                              (int)queue_idx);
2538                 return -(EINVAL);
2539         }
2540         if ((nb_desc % tx_rs_thresh) != 0) {
2541                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2542                              "number of TX descriptors. (tx_rs_thresh=%u "
2543                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2544                              (int)dev->data->port_id, (int)queue_idx);
2545                 return -(EINVAL);
2546         }
2547
2548         /*
2549          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2550          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2551          * by the NIC and all descriptors are written back after the NIC
2552          * accumulates WTHRESH descriptors.
2553          */
2554         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2555                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2556                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2557                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2558                              (int)dev->data->port_id, (int)queue_idx);
2559                 return -(EINVAL);
2560         }
2561
2562         /* Free memory prior to re-allocation if needed... */
2563         if (dev->data->tx_queues[queue_idx] != NULL) {
2564                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2565                 dev->data->tx_queues[queue_idx] = NULL;
2566         }
2567
2568         /* First allocate the tx queue data structure */
2569         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2570                                  RTE_CACHE_LINE_SIZE, socket_id);
2571         if (txq == NULL)
2572                 return -ENOMEM;
2573
2574         /*
2575          * Allocate TX ring hardware descriptors. A memzone large enough to
2576          * handle the maximum ring size is allocated in order to allow for
2577          * resizing in later calls to the queue setup function.
2578          */
2579         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2580                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2581                         IXGBE_ALIGN, socket_id);
2582         if (tz == NULL) {
2583                 ixgbe_tx_queue_release(txq);
2584                 return -ENOMEM;
2585         }
2586
2587         txq->nb_tx_desc = nb_desc;
2588         txq->tx_rs_thresh = tx_rs_thresh;
2589         txq->tx_free_thresh = tx_free_thresh;
2590         txq->pthresh = tx_conf->tx_thresh.pthresh;
2591         txq->hthresh = tx_conf->tx_thresh.hthresh;
2592         txq->wthresh = tx_conf->tx_thresh.wthresh;
2593         txq->queue_id = queue_idx;
2594         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2595                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2596         txq->port_id = dev->data->port_id;
2597         txq->offloads = offloads;
2598         txq->ops = &def_txq_ops;
2599         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2600 #ifdef RTE_LIBRTE_SECURITY
2601         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2602                         DEV_TX_OFFLOAD_SECURITY);
2603 #endif
2604
2605         /*
2606          * Modification to set VFTDT for virtual function if vf is detected
2607          */
2608         if (hw->mac.type == ixgbe_mac_82599_vf ||
2609             hw->mac.type == ixgbe_mac_X540_vf ||
2610             hw->mac.type == ixgbe_mac_X550_vf ||
2611             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2612             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2613                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2614         else
2615                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2616
2617         txq->tx_ring_phys_addr = tz->iova;
2618         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2619
2620         /* Allocate software ring */
2621         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2622                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2623                                 RTE_CACHE_LINE_SIZE, socket_id);
2624         if (txq->sw_ring == NULL) {
2625                 ixgbe_tx_queue_release(txq);
2626                 return -ENOMEM;
2627         }
2628         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2629                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2630
2631         /* set up vector or scalar TX function as appropriate */
2632         ixgbe_set_tx_function(dev, txq);
2633
2634         txq->ops->reset(txq);
2635
2636         dev->data->tx_queues[queue_idx] = txq;
2637
2638
2639         return 0;
2640 }
2641
2642 /**
2643  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2644  *
2645  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2646  * in the sw_rsc_ring is not set to NULL but rather points to the next
2647  * mbuf of this RSC aggregation (that has not been completed yet and still
2648  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2649  * will just free first "nb_segs" segments of the cluster explicitly by calling
2650  * an rte_pktmbuf_free_seg().
2651  *
2652  * @m scattered cluster head
2653  */
2654 static void __attribute__((cold))
2655 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2656 {
2657         uint16_t i, nb_segs = m->nb_segs;
2658         struct rte_mbuf *next_seg;
2659
2660         for (i = 0; i < nb_segs; i++) {
2661                 next_seg = m->next;
2662                 rte_pktmbuf_free_seg(m);
2663                 m = next_seg;
2664         }
2665 }
2666
2667 static void __attribute__((cold))
2668 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2669 {
2670         unsigned i;
2671
2672 #ifdef RTE_IXGBE_INC_VECTOR
2673         /* SSE Vector driver has a different way of releasing mbufs. */
2674         if (rxq->rx_using_sse) {
2675                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2676                 return;
2677         }
2678 #endif
2679
2680         if (rxq->sw_ring != NULL) {
2681                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2682                         if (rxq->sw_ring[i].mbuf != NULL) {
2683                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2684                                 rxq->sw_ring[i].mbuf = NULL;
2685                         }
2686                 }
2687                 if (rxq->rx_nb_avail) {
2688                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2689                                 struct rte_mbuf *mb;
2690
2691                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2692                                 rte_pktmbuf_free_seg(mb);
2693                         }
2694                         rxq->rx_nb_avail = 0;
2695                 }
2696         }
2697
2698         if (rxq->sw_sc_ring)
2699                 for (i = 0; i < rxq->nb_rx_desc; i++)
2700                         if (rxq->sw_sc_ring[i].fbuf) {
2701                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2702                                 rxq->sw_sc_ring[i].fbuf = NULL;
2703                         }
2704 }
2705
2706 static void __attribute__((cold))
2707 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2708 {
2709         if (rxq != NULL) {
2710                 ixgbe_rx_queue_release_mbufs(rxq);
2711                 rte_free(rxq->sw_ring);
2712                 rte_free(rxq->sw_sc_ring);
2713                 rte_free(rxq);
2714         }
2715 }
2716
2717 void __attribute__((cold))
2718 ixgbe_dev_rx_queue_release(void *rxq)
2719 {
2720         ixgbe_rx_queue_release(rxq);
2721 }
2722
2723 /*
2724  * Check if Rx Burst Bulk Alloc function can be used.
2725  * Return
2726  *        0: the preconditions are satisfied and the bulk allocation function
2727  *           can be used.
2728  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2729  *           function must be used.
2730  */
2731 static inline int __attribute__((cold))
2732 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2733 {
2734         int ret = 0;
2735
2736         /*
2737          * Make sure the following pre-conditions are satisfied:
2738          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2739          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2740          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2741          * Scattered packets are not supported.  This should be checked
2742          * outside of this function.
2743          */
2744         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2745                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2746                              "rxq->rx_free_thresh=%d, "
2747                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2748                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2749                 ret = -EINVAL;
2750         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2751                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2752                              "rxq->rx_free_thresh=%d, "
2753                              "rxq->nb_rx_desc=%d",
2754                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2755                 ret = -EINVAL;
2756         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2757                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2758                              "rxq->nb_rx_desc=%d, "
2759                              "rxq->rx_free_thresh=%d",
2760                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2761                 ret = -EINVAL;
2762         }
2763
2764         return ret;
2765 }
2766
2767 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2768 static void __attribute__((cold))
2769 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2770 {
2771         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2772         unsigned i;
2773         uint16_t len = rxq->nb_rx_desc;
2774
2775         /*
2776          * By default, the Rx queue setup function allocates enough memory for
2777          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2778          * extra memory at the end of the descriptor ring to be zero'd out.
2779          */
2780         if (adapter->rx_bulk_alloc_allowed)
2781                 /* zero out extra memory */
2782                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2783
2784         /*
2785          * Zero out HW ring memory. Zero out extra memory at the end of
2786          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2787          * reads extra memory as zeros.
2788          */
2789         for (i = 0; i < len; i++) {
2790                 rxq->rx_ring[i] = zeroed_desc;
2791         }
2792
2793         /*
2794          * initialize extra software ring entries. Space for these extra
2795          * entries is always allocated
2796          */
2797         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2798         for (i = rxq->nb_rx_desc; i < len; ++i) {
2799                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2800         }
2801
2802         rxq->rx_nb_avail = 0;
2803         rxq->rx_next_avail = 0;
2804         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2805         rxq->rx_tail = 0;
2806         rxq->nb_rx_hold = 0;
2807         rxq->pkt_first_seg = NULL;
2808         rxq->pkt_last_seg = NULL;
2809
2810 #ifdef RTE_IXGBE_INC_VECTOR
2811         rxq->rxrearm_start = 0;
2812         rxq->rxrearm_nb = 0;
2813 #endif
2814 }
2815
2816 static int
2817 ixgbe_is_vf(struct rte_eth_dev *dev)
2818 {
2819         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2820
2821         switch (hw->mac.type) {
2822         case ixgbe_mac_82599_vf:
2823         case ixgbe_mac_X540_vf:
2824         case ixgbe_mac_X550_vf:
2825         case ixgbe_mac_X550EM_x_vf:
2826         case ixgbe_mac_X550EM_a_vf:
2827                 return 1;
2828         default:
2829                 return 0;
2830         }
2831 }
2832
2833 uint64_t
2834 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
2835 {
2836         uint64_t offloads = 0;
2837         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2838
2839         if (hw->mac.type != ixgbe_mac_82598EB)
2840                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2841
2842         return offloads;
2843 }
2844
2845 uint64_t
2846 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
2847 {
2848         uint64_t offloads;
2849         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2850
2851         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
2852                    DEV_RX_OFFLOAD_UDP_CKSUM   |
2853                    DEV_RX_OFFLOAD_TCP_CKSUM   |
2854                    DEV_RX_OFFLOAD_KEEP_CRC    |
2855                    DEV_RX_OFFLOAD_JUMBO_FRAME |
2856                    DEV_RX_OFFLOAD_SCATTER;
2857
2858         if (hw->mac.type == ixgbe_mac_82598EB)
2859                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2860
2861         if (ixgbe_is_vf(dev) == 0)
2862                 offloads |= (DEV_RX_OFFLOAD_VLAN_FILTER |
2863                              DEV_RX_OFFLOAD_VLAN_EXTEND);
2864
2865         /*
2866          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
2867          * mode.
2868          */
2869         if ((hw->mac.type == ixgbe_mac_82599EB ||
2870              hw->mac.type == ixgbe_mac_X540 ||
2871              hw->mac.type == ixgbe_mac_X550) &&
2872             !RTE_ETH_DEV_SRIOV(dev).active)
2873                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
2874
2875         if (hw->mac.type == ixgbe_mac_82599EB ||
2876             hw->mac.type == ixgbe_mac_X540)
2877                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
2878
2879         if (hw->mac.type == ixgbe_mac_X550 ||
2880             hw->mac.type == ixgbe_mac_X550EM_x ||
2881             hw->mac.type == ixgbe_mac_X550EM_a)
2882                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
2883
2884 #ifdef RTE_LIBRTE_SECURITY
2885         if (dev->security_ctx)
2886                 offloads |= DEV_RX_OFFLOAD_SECURITY;
2887 #endif
2888
2889         return offloads;
2890 }
2891
2892 int __attribute__((cold))
2893 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2894                          uint16_t queue_idx,
2895                          uint16_t nb_desc,
2896                          unsigned int socket_id,
2897                          const struct rte_eth_rxconf *rx_conf,
2898                          struct rte_mempool *mp)
2899 {
2900         const struct rte_memzone *rz;
2901         struct ixgbe_rx_queue *rxq;
2902         struct ixgbe_hw     *hw;
2903         uint16_t len;
2904         struct ixgbe_adapter *adapter =
2905                 (struct ixgbe_adapter *)dev->data->dev_private;
2906         uint64_t offloads;
2907
2908         PMD_INIT_FUNC_TRACE();
2909         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2910
2911         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
2912
2913         /*
2914          * Validate number of receive descriptors.
2915          * It must not exceed hardware maximum, and must be multiple
2916          * of IXGBE_ALIGN.
2917          */
2918         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2919                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2920                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2921                 return -EINVAL;
2922         }
2923
2924         /* Free memory prior to re-allocation if needed... */
2925         if (dev->data->rx_queues[queue_idx] != NULL) {
2926                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2927                 dev->data->rx_queues[queue_idx] = NULL;
2928         }
2929
2930         /* First allocate the rx queue data structure */
2931         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2932                                  RTE_CACHE_LINE_SIZE, socket_id);
2933         if (rxq == NULL)
2934                 return -ENOMEM;
2935         rxq->mb_pool = mp;
2936         rxq->nb_rx_desc = nb_desc;
2937         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2938         rxq->queue_id = queue_idx;
2939         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2940                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2941         rxq->port_id = dev->data->port_id;
2942         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2943                 rxq->crc_len = ETHER_CRC_LEN;
2944         else
2945                 rxq->crc_len = 0;
2946         rxq->drop_en = rx_conf->rx_drop_en;
2947         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2948         rxq->offloads = offloads;
2949
2950         /*
2951          * The packet type in RX descriptor is different for different NICs.
2952          * Some bits are used for x550 but reserved for other NICS.
2953          * So set different masks for different NICs.
2954          */
2955         if (hw->mac.type == ixgbe_mac_X550 ||
2956             hw->mac.type == ixgbe_mac_X550EM_x ||
2957             hw->mac.type == ixgbe_mac_X550EM_a ||
2958             hw->mac.type == ixgbe_mac_X550_vf ||
2959             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2960             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2961                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
2962         else
2963                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
2964
2965         /*
2966          * Allocate RX ring hardware descriptors. A memzone large enough to
2967          * handle the maximum ring size is allocated in order to allow for
2968          * resizing in later calls to the queue setup function.
2969          */
2970         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2971                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
2972         if (rz == NULL) {
2973                 ixgbe_rx_queue_release(rxq);
2974                 return -ENOMEM;
2975         }
2976
2977         /*
2978          * Zero init all the descriptors in the ring.
2979          */
2980         memset(rz->addr, 0, RX_RING_SZ);
2981
2982         /*
2983          * Modified to setup VFRDT for Virtual Function
2984          */
2985         if (hw->mac.type == ixgbe_mac_82599_vf ||
2986             hw->mac.type == ixgbe_mac_X540_vf ||
2987             hw->mac.type == ixgbe_mac_X550_vf ||
2988             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2989             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
2990                 rxq->rdt_reg_addr =
2991                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
2992                 rxq->rdh_reg_addr =
2993                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
2994         } else {
2995                 rxq->rdt_reg_addr =
2996                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
2997                 rxq->rdh_reg_addr =
2998                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
2999         }
3000
3001         rxq->rx_ring_phys_addr = rz->iova;
3002         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3003
3004         /*
3005          * Certain constraints must be met in order to use the bulk buffer
3006          * allocation Rx burst function. If any of Rx queues doesn't meet them
3007          * the feature should be disabled for the whole port.
3008          */
3009         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3010                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3011                                     "preconditions - canceling the feature for "
3012                                     "the whole port[%d]",
3013                              rxq->queue_id, rxq->port_id);
3014                 adapter->rx_bulk_alloc_allowed = false;
3015         }
3016
3017         /*
3018          * Allocate software ring. Allow for space at the end of the
3019          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3020          * function does not access an invalid memory region.
3021          */
3022         len = nb_desc;
3023         if (adapter->rx_bulk_alloc_allowed)
3024                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3025
3026         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3027                                           sizeof(struct ixgbe_rx_entry) * len,
3028                                           RTE_CACHE_LINE_SIZE, socket_id);
3029         if (!rxq->sw_ring) {
3030                 ixgbe_rx_queue_release(rxq);
3031                 return -ENOMEM;
3032         }
3033
3034         /*
3035          * Always allocate even if it's not going to be needed in order to
3036          * simplify the code.
3037          *
3038          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3039          * be requested in ixgbe_dev_rx_init(), which is called later from
3040          * dev_start() flow.
3041          */
3042         rxq->sw_sc_ring =
3043                 rte_zmalloc_socket("rxq->sw_sc_ring",
3044                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3045                                    RTE_CACHE_LINE_SIZE, socket_id);
3046         if (!rxq->sw_sc_ring) {
3047                 ixgbe_rx_queue_release(rxq);
3048                 return -ENOMEM;
3049         }
3050
3051         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3052                             "dma_addr=0x%"PRIx64,
3053                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3054                      rxq->rx_ring_phys_addr);
3055
3056         if (!rte_is_power_of_2(nb_desc)) {
3057                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3058                                     "preconditions - canceling the feature for "
3059                                     "the whole port[%d]",
3060                              rxq->queue_id, rxq->port_id);
3061                 adapter->rx_vec_allowed = false;
3062         } else
3063                 ixgbe_rxq_vec_setup(rxq);
3064
3065         dev->data->rx_queues[queue_idx] = rxq;
3066
3067         ixgbe_reset_rx_queue(adapter, rxq);
3068
3069         return 0;
3070 }
3071
3072 uint32_t
3073 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3074 {
3075 #define IXGBE_RXQ_SCAN_INTERVAL 4
3076         volatile union ixgbe_adv_rx_desc *rxdp;
3077         struct ixgbe_rx_queue *rxq;
3078         uint32_t desc = 0;
3079
3080         rxq = dev->data->rx_queues[rx_queue_id];
3081         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3082
3083         while ((desc < rxq->nb_rx_desc) &&
3084                 (rxdp->wb.upper.status_error &
3085                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3086                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3087                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3088                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3089                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3090                                 desc - rxq->nb_rx_desc]);
3091         }
3092
3093         return desc;
3094 }
3095
3096 int
3097 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3098 {
3099         volatile union ixgbe_adv_rx_desc *rxdp;
3100         struct ixgbe_rx_queue *rxq = rx_queue;
3101         uint32_t desc;
3102
3103         if (unlikely(offset >= rxq->nb_rx_desc))
3104                 return 0;
3105         desc = rxq->rx_tail + offset;
3106         if (desc >= rxq->nb_rx_desc)
3107                 desc -= rxq->nb_rx_desc;
3108
3109         rxdp = &rxq->rx_ring[desc];
3110         return !!(rxdp->wb.upper.status_error &
3111                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3112 }
3113
3114 int
3115 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3116 {
3117         struct ixgbe_rx_queue *rxq = rx_queue;
3118         volatile uint32_t *status;
3119         uint32_t nb_hold, desc;
3120
3121         if (unlikely(offset >= rxq->nb_rx_desc))
3122                 return -EINVAL;
3123
3124 #ifdef RTE_IXGBE_INC_VECTOR
3125         if (rxq->rx_using_sse)
3126                 nb_hold = rxq->rxrearm_nb;
3127         else
3128 #endif
3129                 nb_hold = rxq->nb_rx_hold;
3130         if (offset >= rxq->nb_rx_desc - nb_hold)
3131                 return RTE_ETH_RX_DESC_UNAVAIL;
3132
3133         desc = rxq->rx_tail + offset;
3134         if (desc >= rxq->nb_rx_desc)
3135                 desc -= rxq->nb_rx_desc;
3136
3137         status = &rxq->rx_ring[desc].wb.upper.status_error;
3138         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3139                 return RTE_ETH_RX_DESC_DONE;
3140
3141         return RTE_ETH_RX_DESC_AVAIL;
3142 }
3143
3144 int
3145 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3146 {
3147         struct ixgbe_tx_queue *txq = tx_queue;
3148         volatile uint32_t *status;
3149         uint32_t desc;
3150
3151         if (unlikely(offset >= txq->nb_tx_desc))
3152                 return -EINVAL;
3153
3154         desc = txq->tx_tail + offset;
3155         /* go to next desc that has the RS bit */
3156         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3157                 txq->tx_rs_thresh;
3158         if (desc >= txq->nb_tx_desc) {
3159                 desc -= txq->nb_tx_desc;
3160                 if (desc >= txq->nb_tx_desc)
3161                         desc -= txq->nb_tx_desc;
3162         }
3163
3164         status = &txq->tx_ring[desc].wb.status;
3165         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3166                 return RTE_ETH_TX_DESC_DONE;
3167
3168         return RTE_ETH_TX_DESC_FULL;
3169 }
3170
3171 void __attribute__((cold))
3172 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3173 {
3174         unsigned i;
3175         struct ixgbe_adapter *adapter =
3176                 (struct ixgbe_adapter *)dev->data->dev_private;
3177
3178         PMD_INIT_FUNC_TRACE();
3179
3180         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3181                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3182
3183                 if (txq != NULL) {
3184                         txq->ops->release_mbufs(txq);
3185                         txq->ops->reset(txq);
3186                 }
3187         }
3188
3189         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3190                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3191
3192                 if (rxq != NULL) {
3193                         ixgbe_rx_queue_release_mbufs(rxq);
3194                         ixgbe_reset_rx_queue(adapter, rxq);
3195                 }
3196         }
3197 }
3198
3199 void
3200 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3201 {
3202         unsigned i;
3203
3204         PMD_INIT_FUNC_TRACE();
3205
3206         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3207                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3208                 dev->data->rx_queues[i] = NULL;
3209         }
3210         dev->data->nb_rx_queues = 0;
3211
3212         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3213                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3214                 dev->data->tx_queues[i] = NULL;
3215         }
3216         dev->data->nb_tx_queues = 0;
3217 }
3218
3219 /*********************************************************************
3220  *
3221  *  Device RX/TX init functions
3222  *
3223  **********************************************************************/
3224
3225 /**
3226  * Receive Side Scaling (RSS)
3227  * See section 7.1.2.8 in the following document:
3228  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3229  *
3230  * Principles:
3231  * The source and destination IP addresses of the IP header and the source
3232  * and destination ports of TCP/UDP headers, if any, of received packets are
3233  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3234  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3235  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3236  * RSS output index which is used as the RX queue index where to store the
3237  * received packets.
3238  * The following output is supplied in the RX write-back descriptor:
3239  *     - 32-bit result of the Microsoft RSS hash function,
3240  *     - 4-bit RSS type field.
3241  */
3242
3243 /*
3244  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3245  * Used as the default key.
3246  */
3247 static uint8_t rss_intel_key[40] = {
3248         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3249         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3250         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3251         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3252         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3253 };
3254
3255 static void
3256 ixgbe_rss_disable(struct rte_eth_dev *dev)
3257 {
3258         struct ixgbe_hw *hw;
3259         uint32_t mrqc;
3260         uint32_t mrqc_reg;
3261
3262         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3263         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3264         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3265         mrqc &= ~IXGBE_MRQC_RSSEN;
3266         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3267 }
3268
3269 static void
3270 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3271 {
3272         uint8_t  *hash_key;
3273         uint32_t mrqc;
3274         uint32_t rss_key;
3275         uint64_t rss_hf;
3276         uint16_t i;
3277         uint32_t mrqc_reg;
3278         uint32_t rssrk_reg;
3279
3280         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3281         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3282
3283         hash_key = rss_conf->rss_key;
3284         if (hash_key != NULL) {
3285                 /* Fill in RSS hash key */
3286                 for (i = 0; i < 10; i++) {
3287                         rss_key  = hash_key[(i * 4)];
3288                         rss_key |= hash_key[(i * 4) + 1] << 8;
3289                         rss_key |= hash_key[(i * 4) + 2] << 16;
3290                         rss_key |= hash_key[(i * 4) + 3] << 24;
3291                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3292                 }
3293         }
3294
3295         /* Set configured hashing protocols in MRQC register */
3296         rss_hf = rss_conf->rss_hf;
3297         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3298         if (rss_hf & ETH_RSS_IPV4)
3299                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3300         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3301                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3302         if (rss_hf & ETH_RSS_IPV6)
3303                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3304         if (rss_hf & ETH_RSS_IPV6_EX)
3305                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3306         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3307                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3308         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3309                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3310         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3311                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3312         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3313                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3314         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3315                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3316         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3317 }
3318
3319 int
3320 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3321                           struct rte_eth_rss_conf *rss_conf)
3322 {
3323         struct ixgbe_hw *hw;
3324         uint32_t mrqc;
3325         uint64_t rss_hf;
3326         uint32_t mrqc_reg;
3327
3328         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3329
3330         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3331                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3332                         "NIC.");
3333                 return -ENOTSUP;
3334         }
3335         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3336
3337         /*
3338          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3339          *     "RSS enabling cannot be done dynamically while it must be
3340          *      preceded by a software reset"
3341          * Before changing anything, first check that the update RSS operation
3342          * does not attempt to disable RSS, if RSS was enabled at
3343          * initialization time, or does not attempt to enable RSS, if RSS was
3344          * disabled at initialization time.
3345          */
3346         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3347         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3348         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3349                 if (rss_hf != 0) /* Enable RSS */
3350                         return -(EINVAL);
3351                 return 0; /* Nothing to do */
3352         }
3353         /* RSS enabled */
3354         if (rss_hf == 0) /* Disable RSS */
3355                 return -(EINVAL);
3356         ixgbe_hw_rss_hash_set(hw, rss_conf);
3357         return 0;
3358 }
3359
3360 int
3361 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3362                             struct rte_eth_rss_conf *rss_conf)
3363 {
3364         struct ixgbe_hw *hw;
3365         uint8_t *hash_key;
3366         uint32_t mrqc;
3367         uint32_t rss_key;
3368         uint64_t rss_hf;
3369         uint16_t i;
3370         uint32_t mrqc_reg;
3371         uint32_t rssrk_reg;
3372
3373         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3374         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3375         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3376         hash_key = rss_conf->rss_key;
3377         if (hash_key != NULL) {
3378                 /* Return RSS hash key */
3379                 for (i = 0; i < 10; i++) {
3380                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3381                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3382                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3383                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3384                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3385                 }
3386         }
3387
3388         /* Get RSS functions configured in MRQC register */
3389         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3390         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3391                 rss_conf->rss_hf = 0;
3392                 return 0;
3393         }
3394         rss_hf = 0;
3395         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3396                 rss_hf |= ETH_RSS_IPV4;
3397         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3398                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3399         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3400                 rss_hf |= ETH_RSS_IPV6;
3401         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3402                 rss_hf |= ETH_RSS_IPV6_EX;
3403         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3404                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3405         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3406                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3407         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3408                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3409         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3410                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3411         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3412                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3413         rss_conf->rss_hf = rss_hf;
3414         return 0;
3415 }
3416
3417 static void
3418 ixgbe_rss_configure(struct rte_eth_dev *dev)
3419 {
3420         struct rte_eth_rss_conf rss_conf;
3421         struct ixgbe_hw *hw;
3422         uint32_t reta;
3423         uint16_t i;
3424         uint16_t j;
3425         uint16_t sp_reta_size;
3426         uint32_t reta_reg;
3427
3428         PMD_INIT_FUNC_TRACE();
3429         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3430
3431         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3432
3433         /*
3434          * Fill in redirection table
3435          * The byte-swap is needed because NIC registers are in
3436          * little-endian order.
3437          */
3438         reta = 0;
3439         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3440                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3441
3442                 if (j == dev->data->nb_rx_queues)
3443                         j = 0;
3444                 reta = (reta << 8) | j;
3445                 if ((i & 3) == 3)
3446                         IXGBE_WRITE_REG(hw, reta_reg,
3447                                         rte_bswap32(reta));
3448         }
3449
3450         /*
3451          * Configure the RSS key and the RSS protocols used to compute
3452          * the RSS hash of input packets.
3453          */
3454         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3455         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3456                 ixgbe_rss_disable(dev);
3457                 return;
3458         }
3459         if (rss_conf.rss_key == NULL)
3460                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3461         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3462 }
3463
3464 #define NUM_VFTA_REGISTERS 128
3465 #define NIC_RX_BUFFER_SIZE 0x200
3466 #define X550_RX_BUFFER_SIZE 0x180
3467
3468 static void
3469 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3470 {
3471         struct rte_eth_vmdq_dcb_conf *cfg;
3472         struct ixgbe_hw *hw;
3473         enum rte_eth_nb_pools num_pools;
3474         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3475         uint16_t pbsize;
3476         uint8_t nb_tcs; /* number of traffic classes */
3477         int i;
3478
3479         PMD_INIT_FUNC_TRACE();
3480         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3481         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3482         num_pools = cfg->nb_queue_pools;
3483         /* Check we have a valid number of pools */
3484         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3485                 ixgbe_rss_disable(dev);
3486                 return;
3487         }
3488         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3489         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3490
3491         /*
3492          * RXPBSIZE
3493          * split rx buffer up into sections, each for 1 traffic class
3494          */
3495         switch (hw->mac.type) {
3496         case ixgbe_mac_X550:
3497         case ixgbe_mac_X550EM_x:
3498         case ixgbe_mac_X550EM_a:
3499                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3500                 break;
3501         default:
3502                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3503                 break;
3504         }
3505         for (i = 0; i < nb_tcs; i++) {
3506                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3507
3508                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3509                 /* clear 10 bits. */
3510                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3511                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3512         }
3513         /* zero alloc all unused TCs */
3514         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3515                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3516
3517                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3518                 /* clear 10 bits. */
3519                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3520         }
3521
3522         /* MRQC: enable vmdq and dcb */
3523         mrqc = (num_pools == ETH_16_POOLS) ?
3524                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3525         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3526
3527         /* PFVTCTL: turn on virtualisation and set the default pool */
3528         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3529         if (cfg->enable_default_pool) {
3530                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3531         } else {
3532                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3533         }
3534
3535         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3536
3537         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3538         queue_mapping = 0;
3539         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3540                 /*
3541                  * mapping is done with 3 bits per priority,
3542                  * so shift by i*3 each time
3543                  */
3544                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3545
3546         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3547
3548         /* RTRPCS: DCB related */
3549         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3550
3551         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3552         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3553         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3554         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3555
3556         /* VFTA - enable all vlan filters */
3557         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3558                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3559         }
3560
3561         /* VFRE: pool enabling for receive - 16 or 32 */
3562         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3563                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3564
3565         /*
3566          * MPSAR - allow pools to read specific mac addresses
3567          * In this case, all pools should be able to read from mac addr 0
3568          */
3569         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3570         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3571
3572         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3573         for (i = 0; i < cfg->nb_pool_maps; i++) {
3574                 /* set vlan id in VF register and set the valid bit */
3575                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3576                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3577                 /*
3578                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3579                  * pools, we only need to use the first half of the register
3580                  * i.e. bits 0-31
3581                  */
3582                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3583         }
3584 }
3585
3586 /**
3587  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3588  * @dev: pointer to eth_dev structure
3589  * @dcb_config: pointer to ixgbe_dcb_config structure
3590  */
3591 static void
3592 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3593                        struct ixgbe_dcb_config *dcb_config)
3594 {
3595         uint32_t reg;
3596         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3597
3598         PMD_INIT_FUNC_TRACE();
3599         if (hw->mac.type != ixgbe_mac_82598EB) {
3600                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3601                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3602                 reg |= IXGBE_RTTDCS_ARBDIS;
3603                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3604
3605                 /* Enable DCB for Tx with 8 TCs */
3606                 if (dcb_config->num_tcs.pg_tcs == 8) {
3607                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3608                 } else {
3609                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3610                 }
3611                 if (dcb_config->vt_mode)
3612                         reg |= IXGBE_MTQC_VT_ENA;
3613                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3614
3615                 /* Enable the Tx desc arbiter */
3616                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3617                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3618                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3619
3620                 /* Enable Security TX Buffer IFG for DCB */
3621                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3622                 reg |= IXGBE_SECTX_DCB;
3623                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3624         }
3625 }
3626
3627 /**
3628  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3629  * @dev: pointer to rte_eth_dev structure
3630  * @dcb_config: pointer to ixgbe_dcb_config structure
3631  */
3632 static void
3633 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3634                         struct ixgbe_dcb_config *dcb_config)
3635 {
3636         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3637                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3638         struct ixgbe_hw *hw =
3639                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3640
3641         PMD_INIT_FUNC_TRACE();
3642         if (hw->mac.type != ixgbe_mac_82598EB)
3643                 /*PF VF Transmit Enable*/
3644                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3645                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3646
3647         /*Configure general DCB TX parameters*/
3648         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3649 }
3650
3651 static void
3652 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3653                         struct ixgbe_dcb_config *dcb_config)
3654 {
3655         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3656                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3657         struct ixgbe_dcb_tc_config *tc;
3658         uint8_t i, j;
3659
3660         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3661         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3662                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3663                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3664         } else {
3665                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3666                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3667         }
3668
3669         /* Initialize User Priority to Traffic Class mapping */
3670         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3671                 tc = &dcb_config->tc_config[j];
3672                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3673         }
3674
3675         /* User Priority to Traffic Class mapping */
3676         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3677                 j = vmdq_rx_conf->dcb_tc[i];
3678                 tc = &dcb_config->tc_config[j];
3679                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3680                                                 (uint8_t)(1 << i);
3681         }
3682 }
3683
3684 static void
3685 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3686                         struct ixgbe_dcb_config *dcb_config)
3687 {
3688         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3689                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3690         struct ixgbe_dcb_tc_config *tc;
3691         uint8_t i, j;
3692
3693         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3694         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3695                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3696                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3697         } else {
3698                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3699                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3700         }
3701
3702         /* Initialize User Priority to Traffic Class mapping */
3703         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3704                 tc = &dcb_config->tc_config[j];
3705                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3706         }
3707
3708         /* User Priority to Traffic Class mapping */
3709         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3710                 j = vmdq_tx_conf->dcb_tc[i];
3711                 tc = &dcb_config->tc_config[j];
3712                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3713                                                 (uint8_t)(1 << i);
3714         }
3715 }
3716
3717 static void
3718 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3719                 struct ixgbe_dcb_config *dcb_config)
3720 {
3721         struct rte_eth_dcb_rx_conf *rx_conf =
3722                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3723         struct ixgbe_dcb_tc_config *tc;
3724         uint8_t i, j;
3725
3726         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3727         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3728
3729         /* Initialize User Priority to Traffic Class mapping */
3730         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3731                 tc = &dcb_config->tc_config[j];
3732                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3733         }
3734
3735         /* User Priority to Traffic Class mapping */
3736         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3737                 j = rx_conf->dcb_tc[i];
3738                 tc = &dcb_config->tc_config[j];
3739                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3740                                                 (uint8_t)(1 << i);
3741         }
3742 }
3743
3744 static void
3745 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3746                 struct ixgbe_dcb_config *dcb_config)
3747 {
3748         struct rte_eth_dcb_tx_conf *tx_conf =
3749                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3750         struct ixgbe_dcb_tc_config *tc;
3751         uint8_t i, j;
3752
3753         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3754         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3755
3756         /* Initialize User Priority to Traffic Class mapping */
3757         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3758                 tc = &dcb_config->tc_config[j];
3759                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3760         }
3761
3762         /* User Priority to Traffic Class mapping */
3763         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3764                 j = tx_conf->dcb_tc[i];
3765                 tc = &dcb_config->tc_config[j];
3766                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3767                                                 (uint8_t)(1 << i);
3768         }
3769 }
3770
3771 /**
3772  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3773  * @dev: pointer to eth_dev structure
3774  * @dcb_config: pointer to ixgbe_dcb_config structure
3775  */
3776 static void
3777 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3778                        struct ixgbe_dcb_config *dcb_config)
3779 {
3780         uint32_t reg;
3781         uint32_t vlanctrl;
3782         uint8_t i;
3783         uint32_t q;
3784         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3785
3786         PMD_INIT_FUNC_TRACE();
3787         /*
3788          * Disable the arbiter before changing parameters
3789          * (always enable recycle mode; WSP)
3790          */
3791         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3792         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3793
3794         if (hw->mac.type != ixgbe_mac_82598EB) {
3795                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3796                 if (dcb_config->num_tcs.pg_tcs == 4) {
3797                         if (dcb_config->vt_mode)
3798                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3799                                         IXGBE_MRQC_VMDQRT4TCEN;
3800                         else {
3801                                 /* no matter the mode is DCB or DCB_RSS, just
3802                                  * set the MRQE to RSSXTCEN. RSS is controlled
3803                                  * by RSS_FIELD
3804                                  */
3805                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3806                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3807                                         IXGBE_MRQC_RTRSS4TCEN;
3808                         }
3809                 }
3810                 if (dcb_config->num_tcs.pg_tcs == 8) {
3811                         if (dcb_config->vt_mode)
3812                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3813                                         IXGBE_MRQC_VMDQRT8TCEN;
3814                         else {
3815                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3816                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3817                                         IXGBE_MRQC_RTRSS8TCEN;
3818                         }
3819                 }
3820
3821                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3822
3823                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3824                         /* Disable drop for all queues in VMDQ mode*/
3825                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3826                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3827                                                 (IXGBE_QDE_WRITE |
3828                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3829                 } else {
3830                         /* Enable drop for all queues in SRIOV mode */
3831                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3832                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3833                                                 (IXGBE_QDE_WRITE |
3834                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3835                                                  IXGBE_QDE_ENABLE));
3836                 }
3837         }
3838
3839         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3840         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3841         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3842         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3843
3844         /* VFTA - enable all vlan filters */
3845         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3846                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3847         }
3848
3849         /*
3850          * Configure Rx packet plane (recycle mode; WSP) and
3851          * enable arbiter
3852          */
3853         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3854         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3855 }
3856
3857 static void
3858 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3859                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3860 {
3861         switch (hw->mac.type) {
3862         case ixgbe_mac_82598EB:
3863                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3864                 break;
3865         case ixgbe_mac_82599EB:
3866         case ixgbe_mac_X540:
3867         case ixgbe_mac_X550:
3868         case ixgbe_mac_X550EM_x:
3869         case ixgbe_mac_X550EM_a:
3870                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3871                                                   tsa, map);
3872                 break;
3873         default:
3874                 break;
3875         }
3876 }
3877
3878 static void
3879 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3880                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3881 {
3882         switch (hw->mac.type) {
3883         case ixgbe_mac_82598EB:
3884                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3885                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3886                 break;
3887         case ixgbe_mac_82599EB:
3888         case ixgbe_mac_X540:
3889         case ixgbe_mac_X550:
3890         case ixgbe_mac_X550EM_x:
3891         case ixgbe_mac_X550EM_a:
3892                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3893                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3894                 break;
3895         default:
3896                 break;
3897         }
3898 }
3899
3900 #define DCB_RX_CONFIG  1
3901 #define DCB_TX_CONFIG  1
3902 #define DCB_TX_PB      1024
3903 /**
3904  * ixgbe_dcb_hw_configure - Enable DCB and configure
3905  * general DCB in VT mode and non-VT mode parameters
3906  * @dev: pointer to rte_eth_dev structure
3907  * @dcb_config: pointer to ixgbe_dcb_config structure
3908  */
3909 static int
3910 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3911                         struct ixgbe_dcb_config *dcb_config)
3912 {
3913         int     ret = 0;
3914         uint8_t i, pfc_en, nb_tcs;
3915         uint16_t pbsize, rx_buffer_size;
3916         uint8_t config_dcb_rx = 0;
3917         uint8_t config_dcb_tx = 0;
3918         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3919         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3920         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3921         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3922         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3923         struct ixgbe_dcb_tc_config *tc;
3924         uint32_t max_frame = dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
3925         struct ixgbe_hw *hw =
3926                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3927         struct ixgbe_bw_conf *bw_conf =
3928                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3929
3930         switch (dev->data->dev_conf.rxmode.mq_mode) {
3931         case ETH_MQ_RX_VMDQ_DCB:
3932                 dcb_config->vt_mode = true;
3933                 if (hw->mac.type != ixgbe_mac_82598EB) {
3934                         config_dcb_rx = DCB_RX_CONFIG;
3935                         /*
3936                          *get dcb and VT rx configuration parameters
3937                          *from rte_eth_conf
3938                          */
3939                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
3940                         /*Configure general VMDQ and DCB RX parameters*/
3941                         ixgbe_vmdq_dcb_configure(dev);
3942                 }
3943                 break;
3944         case ETH_MQ_RX_DCB:
3945         case ETH_MQ_RX_DCB_RSS:
3946                 dcb_config->vt_mode = false;
3947                 config_dcb_rx = DCB_RX_CONFIG;
3948                 /* Get dcb TX configuration parameters from rte_eth_conf */
3949                 ixgbe_dcb_rx_config(dev, dcb_config);
3950                 /*Configure general DCB RX parameters*/
3951                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
3952                 break;
3953         default:
3954                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
3955                 break;
3956         }
3957         switch (dev->data->dev_conf.txmode.mq_mode) {
3958         case ETH_MQ_TX_VMDQ_DCB:
3959                 dcb_config->vt_mode = true;
3960                 config_dcb_tx = DCB_TX_CONFIG;
3961                 /* get DCB and VT TX configuration parameters
3962                  * from rte_eth_conf
3963                  */
3964                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
3965                 /*Configure general VMDQ and DCB TX parameters*/
3966                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
3967                 break;
3968
3969         case ETH_MQ_TX_DCB:
3970                 dcb_config->vt_mode = false;
3971                 config_dcb_tx = DCB_TX_CONFIG;
3972                 /*get DCB TX configuration parameters from rte_eth_conf*/
3973                 ixgbe_dcb_tx_config(dev, dcb_config);
3974                 /*Configure general DCB TX parameters*/
3975                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
3976                 break;
3977         default:
3978                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
3979                 break;
3980         }
3981
3982         nb_tcs = dcb_config->num_tcs.pfc_tcs;
3983         /* Unpack map */
3984         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
3985         if (nb_tcs == ETH_4_TCS) {
3986                 /* Avoid un-configured priority mapping to TC0 */
3987                 uint8_t j = 4;
3988                 uint8_t mask = 0xFF;
3989
3990                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
3991                         mask = (uint8_t)(mask & (~(1 << map[i])));
3992                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
3993                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
3994                                 map[j++] = i;
3995                         mask >>= 1;
3996                 }
3997                 /* Re-configure 4 TCs BW */
3998                 for (i = 0; i < nb_tcs; i++) {
3999                         tc = &dcb_config->tc_config[i];
4000                         if (bw_conf->tc_num != nb_tcs)
4001                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4002                                         (uint8_t)(100 / nb_tcs);
4003                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4004                                                 (uint8_t)(100 / nb_tcs);
4005                 }
4006                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4007                         tc = &dcb_config->tc_config[i];
4008                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4009                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4010                 }
4011         } else {
4012                 /* Re-configure 8 TCs BW */
4013                 for (i = 0; i < nb_tcs; i++) {
4014                         tc = &dcb_config->tc_config[i];
4015                         if (bw_conf->tc_num != nb_tcs)
4016                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4017                                         (uint8_t)(100 / nb_tcs + (i & 1));
4018                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4019                                 (uint8_t)(100 / nb_tcs + (i & 1));
4020                 }
4021         }
4022
4023         switch (hw->mac.type) {
4024         case ixgbe_mac_X550:
4025         case ixgbe_mac_X550EM_x:
4026         case ixgbe_mac_X550EM_a:
4027                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4028                 break;
4029         default:
4030                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4031                 break;
4032         }
4033
4034         if (config_dcb_rx) {
4035                 /* Set RX buffer size */
4036                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4037                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4038
4039                 for (i = 0; i < nb_tcs; i++) {
4040                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4041                 }
4042                 /* zero alloc all unused TCs */
4043                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4044                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4045                 }
4046         }
4047         if (config_dcb_tx) {
4048                 /* Only support an equally distributed
4049                  *  Tx packet buffer strategy.
4050                  */
4051                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4052                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4053
4054                 for (i = 0; i < nb_tcs; i++) {
4055                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4056                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4057                 }
4058                 /* Clear unused TCs, if any, to zero buffer size*/
4059                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4060                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4061                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4062                 }
4063         }
4064
4065         /*Calculates traffic class credits*/
4066         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4067                                 IXGBE_DCB_TX_CONFIG);
4068         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4069                                 IXGBE_DCB_RX_CONFIG);
4070
4071         if (config_dcb_rx) {
4072                 /* Unpack CEE standard containers */
4073                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4074                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4075                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4076                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4077                 /* Configure PG(ETS) RX */
4078                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4079         }
4080
4081         if (config_dcb_tx) {
4082                 /* Unpack CEE standard containers */
4083                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4084                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4085                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4086                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4087                 /* Configure PG(ETS) TX */
4088                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4089         }
4090
4091         /*Configure queue statistics registers*/
4092         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4093
4094         /* Check if the PFC is supported */
4095         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4096                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4097                 for (i = 0; i < nb_tcs; i++) {
4098                         /*
4099                         * If the TC count is 8,and the default high_water is 48,
4100                         * the low_water is 16 as default.
4101                         */
4102                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4103                         hw->fc.low_water[i] = pbsize / 4;
4104                         /* Enable pfc for this TC */
4105                         tc = &dcb_config->tc_config[i];
4106                         tc->pfc = ixgbe_dcb_pfc_enabled;
4107                 }
4108                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4109                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4110                         pfc_en &= 0x0F;
4111                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4112         }
4113
4114         return ret;
4115 }
4116
4117 /**
4118  * ixgbe_configure_dcb - Configure DCB  Hardware
4119  * @dev: pointer to rte_eth_dev
4120  */
4121 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4122 {
4123         struct ixgbe_dcb_config *dcb_cfg =
4124                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4125         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4126
4127         PMD_INIT_FUNC_TRACE();
4128
4129         /* check support mq_mode for DCB */
4130         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4131             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4132             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4133                 return;
4134
4135         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4136                 return;
4137
4138         /** Configure DCB hardware **/
4139         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4140 }
4141
4142 /*
4143  * VMDq only support for 10 GbE NIC.
4144  */
4145 static void
4146 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4147 {
4148         struct rte_eth_vmdq_rx_conf *cfg;
4149         struct ixgbe_hw *hw;
4150         enum rte_eth_nb_pools num_pools;
4151         uint32_t mrqc, vt_ctl, vlanctrl;
4152         uint32_t vmolr = 0;
4153         int i;
4154
4155         PMD_INIT_FUNC_TRACE();
4156         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4157         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4158         num_pools = cfg->nb_queue_pools;
4159
4160         ixgbe_rss_disable(dev);
4161
4162         /* MRQC: enable vmdq */
4163         mrqc = IXGBE_MRQC_VMDQEN;
4164         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4165
4166         /* PFVTCTL: turn on virtualisation and set the default pool */
4167         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4168         if (cfg->enable_default_pool)
4169                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4170         else
4171                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4172
4173         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4174
4175         for (i = 0; i < (int)num_pools; i++) {
4176                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4177                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4178         }
4179
4180         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4181         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4182         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4183         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4184
4185         /* VFTA - enable all vlan filters */
4186         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4187                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4188
4189         /* VFRE: pool enabling for receive - 64 */
4190         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4191         if (num_pools == ETH_64_POOLS)
4192                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4193
4194         /*
4195          * MPSAR - allow pools to read specific mac addresses
4196          * In this case, all pools should be able to read from mac addr 0
4197          */
4198         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4199         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4200
4201         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4202         for (i = 0; i < cfg->nb_pool_maps; i++) {
4203                 /* set vlan id in VF register and set the valid bit */
4204                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4205                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4206                 /*
4207                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4208                  * pools, we only need to use the first half of the register
4209                  * i.e. bits 0-31
4210                  */
4211                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4212                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4213                                         (cfg->pool_map[i].pools & UINT32_MAX));
4214                 else
4215                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4216                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4217
4218         }
4219
4220         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4221         if (cfg->enable_loop_back) {
4222                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4223                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4224                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4225         }
4226
4227         IXGBE_WRITE_FLUSH(hw);
4228 }
4229
4230 /*
4231  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4232  * @hw: pointer to hardware structure
4233  */
4234 static void
4235 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4236 {
4237         uint32_t reg;
4238         uint32_t q;
4239
4240         PMD_INIT_FUNC_TRACE();
4241         /*PF VF Transmit Enable*/
4242         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4243         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4244
4245         /* Disable the Tx desc arbiter so that MTQC can be changed */
4246         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4247         reg |= IXGBE_RTTDCS_ARBDIS;
4248         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4249
4250         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4251         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4252
4253         /* Disable drop for all queues */
4254         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4255                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4256                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4257
4258         /* Enable the Tx desc arbiter */
4259         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4260         reg &= ~IXGBE_RTTDCS_ARBDIS;
4261         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4262
4263         IXGBE_WRITE_FLUSH(hw);
4264 }
4265
4266 static int __attribute__((cold))
4267 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4268 {
4269         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4270         uint64_t dma_addr;
4271         unsigned int i;
4272
4273         /* Initialize software ring entries */
4274         for (i = 0; i < rxq->nb_rx_desc; i++) {
4275                 volatile union ixgbe_adv_rx_desc *rxd;
4276                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4277
4278                 if (mbuf == NULL) {
4279                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4280                                      (unsigned) rxq->queue_id);
4281                         return -ENOMEM;
4282                 }
4283
4284                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4285                 mbuf->port = rxq->port_id;
4286
4287                 dma_addr =
4288                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4289                 rxd = &rxq->rx_ring[i];
4290                 rxd->read.hdr_addr = 0;
4291                 rxd->read.pkt_addr = dma_addr;
4292                 rxe[i].mbuf = mbuf;
4293         }
4294
4295         return 0;
4296 }
4297
4298 static int
4299 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4300 {
4301         struct ixgbe_hw *hw;
4302         uint32_t mrqc;
4303
4304         ixgbe_rss_configure(dev);
4305
4306         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4307
4308         /* MRQC: enable VF RSS */
4309         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4310         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4311         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4312         case ETH_64_POOLS:
4313                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4314                 break;
4315
4316         case ETH_32_POOLS:
4317                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4318                 break;
4319
4320         default:
4321                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4322                 return -EINVAL;
4323         }
4324
4325         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4326
4327         return 0;
4328 }
4329
4330 static int
4331 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4332 {
4333         struct ixgbe_hw *hw =
4334                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4335
4336         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4337         case ETH_64_POOLS:
4338                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4339                         IXGBE_MRQC_VMDQEN);
4340                 break;
4341
4342         case ETH_32_POOLS:
4343                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4344                         IXGBE_MRQC_VMDQRT4TCEN);
4345                 break;
4346
4347         case ETH_16_POOLS:
4348                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4349                         IXGBE_MRQC_VMDQRT8TCEN);
4350                 break;
4351         default:
4352                 PMD_INIT_LOG(ERR,
4353                         "invalid pool number in IOV mode");
4354                 break;
4355         }
4356         return 0;
4357 }
4358
4359 static int
4360 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4361 {
4362         struct ixgbe_hw *hw =
4363                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4364
4365         if (hw->mac.type == ixgbe_mac_82598EB)
4366                 return 0;
4367
4368         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4369                 /*
4370                  * SRIOV inactive scheme
4371                  * any DCB/RSS w/o VMDq multi-queue setting
4372                  */
4373                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4374                 case ETH_MQ_RX_RSS:
4375                 case ETH_MQ_RX_DCB_RSS:
4376                 case ETH_MQ_RX_VMDQ_RSS:
4377                         ixgbe_rss_configure(dev);
4378                         break;
4379
4380                 case ETH_MQ_RX_VMDQ_DCB:
4381                         ixgbe_vmdq_dcb_configure(dev);
4382                         break;
4383
4384                 case ETH_MQ_RX_VMDQ_ONLY:
4385                         ixgbe_vmdq_rx_hw_configure(dev);
4386                         break;
4387
4388                 case ETH_MQ_RX_NONE:
4389                 default:
4390                         /* if mq_mode is none, disable rss mode.*/
4391                         ixgbe_rss_disable(dev);
4392                         break;
4393                 }
4394         } else {
4395                 /* SRIOV active scheme
4396                  * Support RSS together with SRIOV.
4397                  */
4398                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4399                 case ETH_MQ_RX_RSS:
4400                 case ETH_MQ_RX_VMDQ_RSS:
4401                         ixgbe_config_vf_rss(dev);
4402                         break;
4403                 case ETH_MQ_RX_VMDQ_DCB:
4404                 case ETH_MQ_RX_DCB:
4405                 /* In SRIOV, the configuration is the same as VMDq case */
4406                         ixgbe_vmdq_dcb_configure(dev);
4407                         break;
4408                 /* DCB/RSS together with SRIOV is not supported */
4409                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4410                 case ETH_MQ_RX_DCB_RSS:
4411                         PMD_INIT_LOG(ERR,
4412                                 "Could not support DCB/RSS with VMDq & SRIOV");
4413                         return -1;
4414                 default:
4415                         ixgbe_config_vf_default(dev);
4416                         break;
4417                 }
4418         }
4419
4420         return 0;
4421 }
4422
4423 static int
4424 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4425 {
4426         struct ixgbe_hw *hw =
4427                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4428         uint32_t mtqc;
4429         uint32_t rttdcs;
4430
4431         if (hw->mac.type == ixgbe_mac_82598EB)
4432                 return 0;
4433
4434         /* disable arbiter before setting MTQC */
4435         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4436         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4437         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4438
4439         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4440                 /*
4441                  * SRIOV inactive scheme
4442                  * any DCB w/o VMDq multi-queue setting
4443                  */
4444                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4445                         ixgbe_vmdq_tx_hw_configure(hw);
4446                 else {
4447                         mtqc = IXGBE_MTQC_64Q_1PB;
4448                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4449                 }
4450         } else {
4451                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4452
4453                 /*
4454                  * SRIOV active scheme
4455                  * FIXME if support DCB together with VMDq & SRIOV
4456                  */
4457                 case ETH_64_POOLS:
4458                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4459                         break;
4460                 case ETH_32_POOLS:
4461                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4462                         break;
4463                 case ETH_16_POOLS:
4464                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4465                                 IXGBE_MTQC_8TC_8TQ;
4466                         break;
4467                 default:
4468                         mtqc = IXGBE_MTQC_64Q_1PB;
4469                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4470                 }
4471                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4472         }
4473
4474         /* re-enable arbiter */
4475         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4476         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4477
4478         return 0;
4479 }
4480
4481 /**
4482  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4483  *
4484  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4485  * spec rev. 3.0 chapter 8.2.3.8.13.
4486  *
4487  * @pool Memory pool of the Rx queue
4488  */
4489 static inline uint32_t
4490 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4491 {
4492         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4493
4494         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4495         uint16_t maxdesc =
4496                 IPV4_MAX_PKT_LEN /
4497                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4498
4499         if (maxdesc >= 16)
4500                 return IXGBE_RSCCTL_MAXDESC_16;
4501         else if (maxdesc >= 8)
4502                 return IXGBE_RSCCTL_MAXDESC_8;
4503         else if (maxdesc >= 4)
4504                 return IXGBE_RSCCTL_MAXDESC_4;
4505         else
4506                 return IXGBE_RSCCTL_MAXDESC_1;
4507 }
4508
4509 /**
4510  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4511  * interrupt
4512  *
4513  * (Taken from FreeBSD tree)
4514  * (yes this is all very magic and confusing :)
4515  *
4516  * @dev port handle
4517  * @entry the register array entry
4518  * @vector the MSIX vector for this queue
4519  * @type RX/TX/MISC
4520  */
4521 static void
4522 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4523 {
4524         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4525         u32 ivar, index;
4526
4527         vector |= IXGBE_IVAR_ALLOC_VAL;
4528
4529         switch (hw->mac.type) {
4530
4531         case ixgbe_mac_82598EB:
4532                 if (type == -1)
4533                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4534                 else
4535                         entry += (type * 64);
4536                 index = (entry >> 2) & 0x1F;
4537                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4538                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4539                 ivar |= (vector << (8 * (entry & 0x3)));
4540                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4541                 break;
4542
4543         case ixgbe_mac_82599EB:
4544         case ixgbe_mac_X540:
4545                 if (type == -1) { /* MISC IVAR */
4546                         index = (entry & 1) * 8;
4547                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4548                         ivar &= ~(0xFF << index);
4549                         ivar |= (vector << index);
4550                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4551                 } else {        /* RX/TX IVARS */
4552                         index = (16 * (entry & 1)) + (8 * type);
4553                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4554                         ivar &= ~(0xFF << index);
4555                         ivar |= (vector << index);
4556                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4557                 }
4558
4559                 break;
4560
4561         default:
4562                 break;
4563         }
4564 }
4565
4566 void __attribute__((cold))
4567 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4568 {
4569         uint16_t i, rx_using_sse;
4570         struct ixgbe_adapter *adapter =
4571                 (struct ixgbe_adapter *)dev->data->dev_private;
4572
4573         /*
4574          * In order to allow Vector Rx there are a few configuration
4575          * conditions to be met and Rx Bulk Allocation should be allowed.
4576          */
4577         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4578             !adapter->rx_bulk_alloc_allowed) {
4579                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4580                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4581                                     "not enabled",
4582                              dev->data->port_id);
4583
4584                 adapter->rx_vec_allowed = false;
4585         }
4586
4587         /*
4588          * Initialize the appropriate LRO callback.
4589          *
4590          * If all queues satisfy the bulk allocation preconditions
4591          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4592          * Otherwise use a single allocation version.
4593          */
4594         if (dev->data->lro) {
4595                 if (adapter->rx_bulk_alloc_allowed) {
4596                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4597                                            "allocation version");
4598                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4599                 } else {
4600                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4601                                            "allocation version");
4602                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4603                 }
4604         } else if (dev->data->scattered_rx) {
4605                 /*
4606                  * Set the non-LRO scattered callback: there are Vector and
4607                  * single allocation versions.
4608                  */
4609                 if (adapter->rx_vec_allowed) {
4610                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4611                                             "callback (port=%d).",
4612                                      dev->data->port_id);
4613
4614                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4615                 } else if (adapter->rx_bulk_alloc_allowed) {
4616                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4617                                            "allocation callback (port=%d).",
4618                                      dev->data->port_id);
4619                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4620                 } else {
4621                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4622                                             "single allocation) "
4623                                             "Scattered Rx callback "
4624                                             "(port=%d).",
4625                                      dev->data->port_id);
4626
4627                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4628                 }
4629         /*
4630          * Below we set "simple" callbacks according to port/queues parameters.
4631          * If parameters allow we are going to choose between the following
4632          * callbacks:
4633          *    - Vector
4634          *    - Bulk Allocation
4635          *    - Single buffer allocation (the simplest one)
4636          */
4637         } else if (adapter->rx_vec_allowed) {
4638                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4639                                     "burst size no less than %d (port=%d).",
4640                              RTE_IXGBE_DESCS_PER_LOOP,
4641                              dev->data->port_id);
4642
4643                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4644         } else if (adapter->rx_bulk_alloc_allowed) {
4645                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4646                                     "satisfied. Rx Burst Bulk Alloc function "
4647                                     "will be used on port=%d.",
4648                              dev->data->port_id);
4649
4650                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4651         } else {
4652                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4653                                     "satisfied, or Scattered Rx is requested "
4654                                     "(port=%d).",
4655                              dev->data->port_id);
4656
4657                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4658         }
4659
4660         /* Propagate information about RX function choice through all queues. */
4661
4662         rx_using_sse =
4663                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4664                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4665
4666         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4667                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4668
4669                 rxq->rx_using_sse = rx_using_sse;
4670 #ifdef RTE_LIBRTE_SECURITY
4671                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4672                                 DEV_RX_OFFLOAD_SECURITY);
4673 #endif
4674         }
4675 }
4676
4677 /**
4678  * ixgbe_set_rsc - configure RSC related port HW registers
4679  *
4680  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4681  * of 82599 Spec (x540 configuration is virtually the same).
4682  *
4683  * @dev port handle
4684  *
4685  * Returns 0 in case of success or a non-zero error code
4686  */
4687 static int
4688 ixgbe_set_rsc(struct rte_eth_dev *dev)
4689 {
4690         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4691         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4692         struct rte_eth_dev_info dev_info = { 0 };
4693         bool rsc_capable = false;
4694         uint16_t i;
4695         uint32_t rdrxctl;
4696         uint32_t rfctl;
4697
4698         /* Sanity check */
4699         dev->dev_ops->dev_infos_get(dev, &dev_info);
4700         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4701                 rsc_capable = true;
4702
4703         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4704                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4705                                    "support it");
4706                 return -EINVAL;
4707         }
4708
4709         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4710
4711         if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
4712              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4713                 /*
4714                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4715                  * 3.0 RSC configuration requires HW CRC stripping being
4716                  * enabled. If user requested both HW CRC stripping off
4717                  * and RSC on - return an error.
4718                  */
4719                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4720                                     "is disabled");
4721                 return -EINVAL;
4722         }
4723
4724         /* RFCTL configuration  */
4725         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4726         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4727                 /*
4728                  * Since NFS packets coalescing is not supported - clear
4729                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4730                  * enabled.
4731                  */
4732                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4733                            IXGBE_RFCTL_NFSR_DIS);
4734         else
4735                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4736         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4737
4738         /* If LRO hasn't been requested - we are done here. */
4739         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4740                 return 0;
4741
4742         /* Set RDRXCTL.RSCACKC bit */
4743         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4744         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4745         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4746
4747         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4748         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4749                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4750                 uint32_t srrctl =
4751                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4752                 uint32_t rscctl =
4753                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4754                 uint32_t psrtype =
4755                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4756                 uint32_t eitr =
4757                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4758
4759                 /*
4760                  * ixgbe PMD doesn't support header-split at the moment.
4761                  *
4762                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4763                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4764                  * should be configured even if header split is not
4765                  * enabled. We will configure it 128 bytes following the
4766                  * recommendation in the spec.
4767                  */
4768                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4769                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4770                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4771
4772                 /*
4773                  * TODO: Consider setting the Receive Descriptor Minimum
4774                  * Threshold Size for an RSC case. This is not an obviously
4775                  * beneficiary option but the one worth considering...
4776                  */
4777
4778                 rscctl |= IXGBE_RSCCTL_RSCEN;
4779                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4780                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4781
4782                 /*
4783                  * RSC: Set ITR interval corresponding to 2K ints/s.
4784                  *
4785                  * Full-sized RSC aggregations for a 10Gb/s link will
4786                  * arrive at about 20K aggregation/s rate.
4787                  *
4788                  * 2K inst/s rate will make only 10% of the
4789                  * aggregations to be closed due to the interrupt timer
4790                  * expiration for a streaming at wire-speed case.
4791                  *
4792                  * For a sparse streaming case this setting will yield
4793                  * at most 500us latency for a single RSC aggregation.
4794                  */
4795                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4796                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
4797                 eitr |= IXGBE_EITR_CNT_WDIS;
4798
4799                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4800                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4801                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4802                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4803
4804                 /*
4805                  * RSC requires the mapping of the queue to the
4806                  * interrupt vector.
4807                  */
4808                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4809         }
4810
4811         dev->data->lro = 1;
4812
4813         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4814
4815         return 0;
4816 }
4817
4818 /*
4819  * Initializes Receive Unit.
4820  */
4821 int __attribute__((cold))
4822 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4823 {
4824         struct ixgbe_hw     *hw;
4825         struct ixgbe_rx_queue *rxq;
4826         uint64_t bus_addr;
4827         uint32_t rxctrl;
4828         uint32_t fctrl;
4829         uint32_t hlreg0;
4830         uint32_t maxfrs;
4831         uint32_t srrctl;
4832         uint32_t rdrxctl;
4833         uint32_t rxcsum;
4834         uint16_t buf_size;
4835         uint16_t i;
4836         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4837         int rc;
4838
4839         PMD_INIT_FUNC_TRACE();
4840         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4841
4842         /*
4843          * Make sure receives are disabled while setting
4844          * up the RX context (registers, descriptor rings, etc.).
4845          */
4846         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4847         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4848
4849         /* Enable receipt of broadcasted frames */
4850         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4851         fctrl |= IXGBE_FCTRL_BAM;
4852         fctrl |= IXGBE_FCTRL_DPF;
4853         fctrl |= IXGBE_FCTRL_PMCF;
4854         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4855
4856         /*
4857          * Configure CRC stripping, if any.
4858          */
4859         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4860         if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4861                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4862         else
4863                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4864
4865         /*
4866          * Configure jumbo frame support, if any.
4867          */
4868         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
4869                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4870                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4871                 maxfrs &= 0x0000FFFF;
4872                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4873                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4874         } else
4875                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4876
4877         /*
4878          * If loopback mode is configured for 82599, set LPBK bit.
4879          */
4880         if (hw->mac.type == ixgbe_mac_82599EB &&
4881                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
4882                 hlreg0 |= IXGBE_HLREG0_LPBK;
4883         else
4884                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4885
4886         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4887
4888         /*
4889          * Assume no header split and no VLAN strip support
4890          * on any Rx queue first .
4891          */
4892         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4893         /* Setup RX queues */
4894         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4895                 rxq = dev->data->rx_queues[i];
4896
4897                 /*
4898                  * Reset crc_len in case it was changed after queue setup by a
4899                  * call to configure.
4900                  */
4901                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4902                         rxq->crc_len = ETHER_CRC_LEN;
4903                 else
4904                         rxq->crc_len = 0;
4905
4906                 /* Setup the Base and Length of the Rx Descriptor Rings */
4907                 bus_addr = rxq->rx_ring_phys_addr;
4908                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4909                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4910                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4911                                 (uint32_t)(bus_addr >> 32));
4912                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4913                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4914                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4915                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4916
4917                 /* Configure the SRRCTL register */
4918                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4919
4920                 /* Set if packets are dropped when no descriptors available */
4921                 if (rxq->drop_en)
4922                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4923
4924                 /*
4925                  * Configure the RX buffer size in the BSIZEPACKET field of
4926                  * the SRRCTL register of the queue.
4927                  * The value is in 1 KB resolution. Valid values can be from
4928                  * 1 KB to 16 KB.
4929                  */
4930                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4931                         RTE_PKTMBUF_HEADROOM);
4932                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4933                            IXGBE_SRRCTL_BSIZEPKT_MASK);
4934
4935                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4936
4937                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
4938                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
4939
4940                 /* It adds dual VLAN length for supporting dual VLAN */
4941                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
4942                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
4943                         dev->data->scattered_rx = 1;
4944                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
4945                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4946         }
4947
4948         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
4949                 dev->data->scattered_rx = 1;
4950
4951         /*
4952          * Device configured with multiple RX queues.
4953          */
4954         ixgbe_dev_mq_rx_configure(dev);
4955
4956         /*
4957          * Setup the Checksum Register.
4958          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
4959          * Enable IP/L4 checkum computation by hardware if requested to do so.
4960          */
4961         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
4962         rxcsum |= IXGBE_RXCSUM_PCSD;
4963         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
4964                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
4965         else
4966                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
4967
4968         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
4969
4970         if (hw->mac.type == ixgbe_mac_82599EB ||
4971             hw->mac.type == ixgbe_mac_X540) {
4972                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4973                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4974                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
4975                 else
4976                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
4977                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
4978                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4979         }
4980
4981         rc = ixgbe_set_rsc(dev);
4982         if (rc)
4983                 return rc;
4984
4985         ixgbe_set_rx_function(dev);
4986
4987         return 0;
4988 }
4989
4990 /*
4991  * Initializes Transmit Unit.
4992  */
4993 void __attribute__((cold))
4994 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
4995 {
4996         struct ixgbe_hw     *hw;
4997         struct ixgbe_tx_queue *txq;
4998         uint64_t bus_addr;
4999         uint32_t hlreg0;
5000         uint32_t txctrl;
5001         uint16_t i;
5002
5003         PMD_INIT_FUNC_TRACE();
5004         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5005
5006         /* Enable TX CRC (checksum offload requirement) and hw padding
5007          * (TSO requirement)
5008          */
5009         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5010         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5011         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5012
5013         /* Setup the Base and Length of the Tx Descriptor Rings */
5014         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5015                 txq = dev->data->tx_queues[i];
5016
5017                 bus_addr = txq->tx_ring_phys_addr;
5018                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5019                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5020                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5021                                 (uint32_t)(bus_addr >> 32));
5022                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5023                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5024                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5025                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5026                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5027
5028                 /*
5029                  * Disable Tx Head Writeback RO bit, since this hoses
5030                  * bookkeeping if things aren't delivered in order.
5031                  */
5032                 switch (hw->mac.type) {
5033                 case ixgbe_mac_82598EB:
5034                         txctrl = IXGBE_READ_REG(hw,
5035                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5036                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5037                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5038                                         txctrl);
5039                         break;
5040
5041                 case ixgbe_mac_82599EB:
5042                 case ixgbe_mac_X540:
5043                 case ixgbe_mac_X550:
5044                 case ixgbe_mac_X550EM_x:
5045                 case ixgbe_mac_X550EM_a:
5046                 default:
5047                         txctrl = IXGBE_READ_REG(hw,
5048                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5049                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5050                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5051                                         txctrl);
5052                         break;
5053                 }
5054         }
5055
5056         /* Device configured with multiple TX queues. */
5057         ixgbe_dev_mq_tx_configure(dev);
5058 }
5059
5060 /*
5061  * Set up link for 82599 loopback mode Tx->Rx.
5062  */
5063 static inline void __attribute__((cold))
5064 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5065 {
5066         PMD_INIT_FUNC_TRACE();
5067
5068         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5069                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5070                                 IXGBE_SUCCESS) {
5071                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5072                         /* ignore error */
5073                         return;
5074                 }
5075         }
5076
5077         /* Restart link */
5078         IXGBE_WRITE_REG(hw,
5079                         IXGBE_AUTOC,
5080                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5081         ixgbe_reset_pipeline_82599(hw);
5082
5083         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5084         msec_delay(50);
5085 }
5086
5087
5088 /*
5089  * Start Transmit and Receive Units.
5090  */
5091 int __attribute__((cold))
5092 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5093 {
5094         struct ixgbe_hw     *hw;
5095         struct ixgbe_tx_queue *txq;
5096         struct ixgbe_rx_queue *rxq;
5097         uint32_t txdctl;
5098         uint32_t dmatxctl;
5099         uint32_t rxctrl;
5100         uint16_t i;
5101         int ret = 0;
5102
5103         PMD_INIT_FUNC_TRACE();
5104         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5105
5106         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5107                 txq = dev->data->tx_queues[i];
5108                 /* Setup Transmit Threshold Registers */
5109                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5110                 txdctl |= txq->pthresh & 0x7F;
5111                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5112                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5113                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5114         }
5115
5116         if (hw->mac.type != ixgbe_mac_82598EB) {
5117                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5118                 dmatxctl |= IXGBE_DMATXCTL_TE;
5119                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5120         }
5121
5122         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5123                 txq = dev->data->tx_queues[i];
5124                 if (!txq->tx_deferred_start) {
5125                         ret = ixgbe_dev_tx_queue_start(dev, i);
5126                         if (ret < 0)
5127                                 return ret;
5128                 }
5129         }
5130
5131         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5132                 rxq = dev->data->rx_queues[i];
5133                 if (!rxq->rx_deferred_start) {
5134                         ret = ixgbe_dev_rx_queue_start(dev, i);
5135                         if (ret < 0)
5136                                 return ret;
5137                 }
5138         }
5139
5140         /* Enable Receive engine */
5141         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5142         if (hw->mac.type == ixgbe_mac_82598EB)
5143                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5144         rxctrl |= IXGBE_RXCTRL_RXEN;
5145         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5146
5147         /* If loopback mode is enabled for 82599, set up the link accordingly */
5148         if (hw->mac.type == ixgbe_mac_82599EB &&
5149                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
5150                 ixgbe_setup_loopback_link_82599(hw);
5151
5152 #ifdef RTE_LIBRTE_SECURITY
5153         if ((dev->data->dev_conf.rxmode.offloads &
5154                         DEV_RX_OFFLOAD_SECURITY) ||
5155                 (dev->data->dev_conf.txmode.offloads &
5156                         DEV_TX_OFFLOAD_SECURITY)) {
5157                 ret = ixgbe_crypto_enable_ipsec(dev);
5158                 if (ret != 0) {
5159                         PMD_DRV_LOG(ERR,
5160                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5161                                     ret);
5162                         return ret;
5163                 }
5164         }
5165 #endif
5166
5167         return 0;
5168 }
5169
5170 /*
5171  * Start Receive Units for specified queue.
5172  */
5173 int __attribute__((cold))
5174 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5175 {
5176         struct ixgbe_hw     *hw;
5177         struct ixgbe_rx_queue *rxq;
5178         uint32_t rxdctl;
5179         int poll_ms;
5180
5181         PMD_INIT_FUNC_TRACE();
5182         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5183
5184         rxq = dev->data->rx_queues[rx_queue_id];
5185
5186         /* Allocate buffers for descriptor rings */
5187         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5188                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5189                              rx_queue_id);
5190                 return -1;
5191         }
5192         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5193         rxdctl |= IXGBE_RXDCTL_ENABLE;
5194         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5195
5196         /* Wait until RX Enable ready */
5197         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5198         do {
5199                 rte_delay_ms(1);
5200                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5201         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5202         if (!poll_ms)
5203                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5204         rte_wmb();
5205         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5206         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5207         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5208
5209         return 0;
5210 }
5211
5212 /*
5213  * Stop Receive Units for specified queue.
5214  */
5215 int __attribute__((cold))
5216 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5217 {
5218         struct ixgbe_hw     *hw;
5219         struct ixgbe_adapter *adapter =
5220                 (struct ixgbe_adapter *)dev->data->dev_private;
5221         struct ixgbe_rx_queue *rxq;
5222         uint32_t rxdctl;
5223         int poll_ms;
5224
5225         PMD_INIT_FUNC_TRACE();
5226         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5227
5228         rxq = dev->data->rx_queues[rx_queue_id];
5229
5230         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5231         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5232         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5233
5234         /* Wait until RX Enable bit clear */
5235         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5236         do {
5237                 rte_delay_ms(1);
5238                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5239         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5240         if (!poll_ms)
5241                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5242
5243         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5244
5245         ixgbe_rx_queue_release_mbufs(rxq);
5246         ixgbe_reset_rx_queue(adapter, rxq);
5247         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5248
5249         return 0;
5250 }
5251
5252
5253 /*
5254  * Start Transmit Units for specified queue.
5255  */
5256 int __attribute__((cold))
5257 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5258 {
5259         struct ixgbe_hw     *hw;
5260         struct ixgbe_tx_queue *txq;
5261         uint32_t txdctl;
5262         int poll_ms;
5263
5264         PMD_INIT_FUNC_TRACE();
5265         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5266
5267         txq = dev->data->tx_queues[tx_queue_id];
5268         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5269         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5270         txdctl |= IXGBE_TXDCTL_ENABLE;
5271         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5272
5273         /* Wait until TX Enable ready */
5274         if (hw->mac.type == ixgbe_mac_82599EB) {
5275                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5276                 do {
5277                         rte_delay_ms(1);
5278                         txdctl = IXGBE_READ_REG(hw,
5279                                 IXGBE_TXDCTL(txq->reg_idx));
5280                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5281                 if (!poll_ms)
5282                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5283                                 tx_queue_id);
5284         }
5285         rte_wmb();
5286         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5287         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5288
5289         return 0;
5290 }
5291
5292 /*
5293  * Stop Transmit Units for specified queue.
5294  */
5295 int __attribute__((cold))
5296 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5297 {
5298         struct ixgbe_hw     *hw;
5299         struct ixgbe_tx_queue *txq;
5300         uint32_t txdctl;
5301         uint32_t txtdh, txtdt;
5302         int poll_ms;
5303
5304         PMD_INIT_FUNC_TRACE();
5305         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5306
5307         txq = dev->data->tx_queues[tx_queue_id];
5308
5309         /* Wait until TX queue is empty */
5310         if (hw->mac.type == ixgbe_mac_82599EB) {
5311                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5312                 do {
5313                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5314                         txtdh = IXGBE_READ_REG(hw,
5315                                                IXGBE_TDH(txq->reg_idx));
5316                         txtdt = IXGBE_READ_REG(hw,
5317                                                IXGBE_TDT(txq->reg_idx));
5318                 } while (--poll_ms && (txtdh != txtdt));
5319                 if (!poll_ms)
5320                         PMD_INIT_LOG(ERR,
5321                                 "Tx Queue %d is not empty when stopping.",
5322                                 tx_queue_id);
5323         }
5324
5325         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5326         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5327         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5328
5329         /* Wait until TX Enable bit clear */
5330         if (hw->mac.type == ixgbe_mac_82599EB) {
5331                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5332                 do {
5333                         rte_delay_ms(1);
5334                         txdctl = IXGBE_READ_REG(hw,
5335                                                 IXGBE_TXDCTL(txq->reg_idx));
5336                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5337                 if (!poll_ms)
5338                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5339                                 tx_queue_id);
5340         }
5341
5342         if (txq->ops != NULL) {
5343                 txq->ops->release_mbufs(txq);
5344                 txq->ops->reset(txq);
5345         }
5346         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5347
5348         return 0;
5349 }
5350
5351 void
5352 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5353         struct rte_eth_rxq_info *qinfo)
5354 {
5355         struct ixgbe_rx_queue *rxq;
5356
5357         rxq = dev->data->rx_queues[queue_id];
5358
5359         qinfo->mp = rxq->mb_pool;
5360         qinfo->scattered_rx = dev->data->scattered_rx;
5361         qinfo->nb_desc = rxq->nb_rx_desc;
5362
5363         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5364         qinfo->conf.rx_drop_en = rxq->drop_en;
5365         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5366         qinfo->conf.offloads = rxq->offloads;
5367 }
5368
5369 void
5370 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5371         struct rte_eth_txq_info *qinfo)
5372 {
5373         struct ixgbe_tx_queue *txq;
5374
5375         txq = dev->data->tx_queues[queue_id];
5376
5377         qinfo->nb_desc = txq->nb_tx_desc;
5378
5379         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5380         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5381         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5382
5383         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5384         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5385         qinfo->conf.offloads = txq->offloads;
5386         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5387 }
5388
5389 /*
5390  * [VF] Initializes Receive Unit.
5391  */
5392 int __attribute__((cold))
5393 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5394 {
5395         struct ixgbe_hw     *hw;
5396         struct ixgbe_rx_queue *rxq;
5397         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5398         uint64_t bus_addr;
5399         uint32_t srrctl, psrtype = 0;
5400         uint16_t buf_size;
5401         uint16_t i;
5402         int ret;
5403
5404         PMD_INIT_FUNC_TRACE();
5405         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5406
5407         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5408                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5409                         "it should be power of 2");
5410                 return -1;
5411         }
5412
5413         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5414                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5415                         "it should be equal to or less than %d",
5416                         hw->mac.max_rx_queues);
5417                 return -1;
5418         }
5419
5420         /*
5421          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5422          * disables the VF receipt of packets if the PF MTU is > 1500.
5423          * This is done to deal with 82599 limitations that imposes
5424          * the PF and all VFs to share the same MTU.
5425          * Then, the PF driver enables again the VF receipt of packet when
5426          * the VF driver issues a IXGBE_VF_SET_LPE request.
5427          * In the meantime, the VF device cannot be used, even if the VF driver
5428          * and the Guest VM network stack are ready to accept packets with a
5429          * size up to the PF MTU.
5430          * As a work-around to this PF behaviour, force the call to
5431          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5432          * VF packets received can work in all cases.
5433          */
5434         ixgbevf_rlpml_set_vf(hw,
5435                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5436
5437         /*
5438          * Assume no header split and no VLAN strip support
5439          * on any Rx queue first .
5440          */
5441         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5442         /* Setup RX queues */
5443         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5444                 rxq = dev->data->rx_queues[i];
5445
5446                 /* Allocate buffers for descriptor rings */
5447                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5448                 if (ret)
5449                         return ret;
5450
5451                 /* Setup the Base and Length of the Rx Descriptor Rings */
5452                 bus_addr = rxq->rx_ring_phys_addr;
5453
5454                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5455                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5456                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5457                                 (uint32_t)(bus_addr >> 32));
5458                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5459                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5460                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5461                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5462
5463
5464                 /* Configure the SRRCTL register */
5465                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5466
5467                 /* Set if packets are dropped when no descriptors available */
5468                 if (rxq->drop_en)
5469                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5470
5471                 /*
5472                  * Configure the RX buffer size in the BSIZEPACKET field of
5473                  * the SRRCTL register of the queue.
5474                  * The value is in 1 KB resolution. Valid values can be from
5475                  * 1 KB to 16 KB.
5476                  */
5477                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5478                         RTE_PKTMBUF_HEADROOM);
5479                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5480                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5481
5482                 /*
5483                  * VF modification to write virtual function SRRCTL register
5484                  */
5485                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5486
5487                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5488                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5489
5490                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5491                     /* It adds dual VLAN length for supporting dual VLAN */
5492                     (rxmode->max_rx_pkt_len +
5493                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5494                         if (!dev->data->scattered_rx)
5495                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5496                         dev->data->scattered_rx = 1;
5497                 }
5498
5499                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5500                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5501         }
5502
5503         /* Set RQPL for VF RSS according to max Rx queue */
5504         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5505                 IXGBE_PSRTYPE_RQPL_SHIFT;
5506         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5507
5508         ixgbe_set_rx_function(dev);
5509
5510         return 0;
5511 }
5512
5513 /*
5514  * [VF] Initializes Transmit Unit.
5515  */
5516 void __attribute__((cold))
5517 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5518 {
5519         struct ixgbe_hw     *hw;
5520         struct ixgbe_tx_queue *txq;
5521         uint64_t bus_addr;
5522         uint32_t txctrl;
5523         uint16_t i;
5524
5525         PMD_INIT_FUNC_TRACE();
5526         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5527
5528         /* Setup the Base and Length of the Tx Descriptor Rings */
5529         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5530                 txq = dev->data->tx_queues[i];
5531                 bus_addr = txq->tx_ring_phys_addr;
5532                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5533                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5534                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5535                                 (uint32_t)(bus_addr >> 32));
5536                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5537                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5538                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5539                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5540                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5541
5542                 /*
5543                  * Disable Tx Head Writeback RO bit, since this hoses
5544                  * bookkeeping if things aren't delivered in order.
5545                  */
5546                 txctrl = IXGBE_READ_REG(hw,
5547                                 IXGBE_VFDCA_TXCTRL(i));
5548                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5549                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5550                                 txctrl);
5551         }
5552 }
5553
5554 /*
5555  * [VF] Start Transmit and Receive Units.
5556  */
5557 void __attribute__((cold))
5558 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5559 {
5560         struct ixgbe_hw     *hw;
5561         struct ixgbe_tx_queue *txq;
5562         struct ixgbe_rx_queue *rxq;
5563         uint32_t txdctl;
5564         uint32_t rxdctl;
5565         uint16_t i;
5566         int poll_ms;
5567
5568         PMD_INIT_FUNC_TRACE();
5569         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5570
5571         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5572                 txq = dev->data->tx_queues[i];
5573                 /* Setup Transmit Threshold Registers */
5574                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5575                 txdctl |= txq->pthresh & 0x7F;
5576                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5577                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5578                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5579         }
5580
5581         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5582
5583                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5584                 txdctl |= IXGBE_TXDCTL_ENABLE;
5585                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5586
5587                 poll_ms = 10;
5588                 /* Wait until TX Enable ready */
5589                 do {
5590                         rte_delay_ms(1);
5591                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5592                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5593                 if (!poll_ms)
5594                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5595         }
5596         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5597
5598                 rxq = dev->data->rx_queues[i];
5599
5600                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5601                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5602                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5603
5604                 /* Wait until RX Enable ready */
5605                 poll_ms = 10;
5606                 do {
5607                         rte_delay_ms(1);
5608                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5609                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5610                 if (!poll_ms)
5611                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5612                 rte_wmb();
5613                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5614
5615         }
5616 }
5617
5618 int
5619 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5620                     const struct rte_flow_action_rss *in)
5621 {
5622         if (in->key_len > RTE_DIM(out->key) ||
5623             in->queue_num > RTE_DIM(out->queue))
5624                 return -EINVAL;
5625         out->conf = (struct rte_flow_action_rss){
5626                 .func = in->func,
5627                 .level = in->level,
5628                 .types = in->types,
5629                 .key_len = in->key_len,
5630                 .queue_num = in->queue_num,
5631                 .key = memcpy(out->key, in->key, in->key_len),
5632                 .queue = memcpy(out->queue, in->queue,
5633                                 sizeof(*in->queue) * in->queue_num),
5634         };
5635         return 0;
5636 }
5637
5638 int
5639 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5640                       const struct rte_flow_action_rss *with)
5641 {
5642         return (comp->func == with->func &&
5643                 comp->level == with->level &&
5644                 comp->types == with->types &&
5645                 comp->key_len == with->key_len &&
5646                 comp->queue_num == with->queue_num &&
5647                 !memcmp(comp->key, with->key, with->key_len) &&
5648                 !memcmp(comp->queue, with->queue,
5649                         sizeof(*with->queue) * with->queue_num));
5650 }
5651
5652 int
5653 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5654                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5655 {
5656         struct ixgbe_hw *hw;
5657         uint32_t reta;
5658         uint16_t i;
5659         uint16_t j;
5660         uint16_t sp_reta_size;
5661         uint32_t reta_reg;
5662         struct rte_eth_rss_conf rss_conf = {
5663                 .rss_key = conf->conf.key_len ?
5664                         (void *)(uintptr_t)conf->conf.key : NULL,
5665                 .rss_key_len = conf->conf.key_len,
5666                 .rss_hf = conf->conf.types,
5667         };
5668         struct ixgbe_filter_info *filter_info =
5669                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5670
5671         PMD_INIT_FUNC_TRACE();
5672         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5673
5674         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5675
5676         if (!add) {
5677                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5678                                           &conf->conf)) {
5679                         ixgbe_rss_disable(dev);
5680                         memset(&filter_info->rss_info, 0,
5681                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5682                         return 0;
5683                 }
5684                 return -EINVAL;
5685         }
5686
5687         if (filter_info->rss_info.conf.queue_num)
5688                 return -EINVAL;
5689         /* Fill in redirection table
5690          * The byte-swap is needed because NIC registers are in
5691          * little-endian order.
5692          */
5693         reta = 0;
5694         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5695                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5696
5697                 if (j == conf->conf.queue_num)
5698                         j = 0;
5699                 reta = (reta << 8) | conf->conf.queue[j];
5700                 if ((i & 3) == 3)
5701                         IXGBE_WRITE_REG(hw, reta_reg,
5702                                         rte_bswap32(reta));
5703         }
5704
5705         /* Configure the RSS key and the RSS protocols used to compute
5706          * the RSS hash of input packets.
5707          */
5708         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5709                 ixgbe_rss_disable(dev);
5710                 return 0;
5711         }
5712         if (rss_conf.rss_key == NULL)
5713                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5714         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5715
5716         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5717                 return -EINVAL;
5718
5719         return 0;
5720 }
5721
5722 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5723 __rte_weak int
5724 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5725 {
5726         return -1;
5727 }
5728
5729 __rte_weak uint16_t
5730 ixgbe_recv_pkts_vec(
5731         void __rte_unused *rx_queue,
5732         struct rte_mbuf __rte_unused **rx_pkts,
5733         uint16_t __rte_unused nb_pkts)
5734 {
5735         return 0;
5736 }
5737
5738 __rte_weak uint16_t
5739 ixgbe_recv_scattered_pkts_vec(
5740         void __rte_unused *rx_queue,
5741         struct rte_mbuf __rte_unused **rx_pkts,
5742         uint16_t __rte_unused nb_pkts)
5743 {
5744         return 0;
5745 }
5746
5747 __rte_weak int
5748 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5749 {
5750         return -1;
5751 }