ethdev: make driver-only headers private
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 #include <rte_vect.h>
9
10 #include "ixgbe_ethdev.h"
11 #include "ixgbe_rxtx.h"
12 #include "ixgbe_rxtx_vec_common.h"
13
14 #pragma GCC diagnostic ignored "-Wcast-qual"
15
16 static inline void
17 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
18 {
19         int i;
20         uint16_t rx_id;
21         volatile union ixgbe_adv_rx_desc *rxdp;
22         struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
23         struct rte_mbuf *mb0, *mb1;
24         uint64x2_t dma_addr0, dma_addr1;
25         uint64x2_t zero = vdupq_n_u64(0);
26         uint64_t paddr;
27         uint8x8_t p;
28
29         rxdp = rxq->rx_ring + rxq->rxrearm_start;
30
31         /* Pull 'n' more MBUFs into the software ring */
32         if (unlikely(rte_mempool_get_bulk(rxq->mb_pool,
33                                           (void *)rxep,
34                                           RTE_IXGBE_RXQ_REARM_THRESH) < 0)) {
35                 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
36                     rxq->nb_rx_desc) {
37                         for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
38                                 rxep[i].mbuf = &rxq->fake_mbuf;
39                                 vst1q_u64((uint64_t *)&rxdp[i].read,
40                                           zero);
41                         }
42                 }
43                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
44                         RTE_IXGBE_RXQ_REARM_THRESH;
45                 return;
46         }
47
48         p = vld1_u8((uint8_t *)&rxq->mbuf_initializer);
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 /*
56                  * Flush mbuf with pkt template.
57                  * Data to be rearmed is 6 bytes long.
58                  */
59                 vst1_u8((uint8_t *)&mb0->rearm_data, p);
60                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
61                 dma_addr0 = vsetq_lane_u64(paddr, zero, 0);
62                 /* flush desc with pa dma_addr */
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
64
65                 vst1_u8((uint8_t *)&mb1->rearm_data, p);
66                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
67                 dma_addr1 = vsetq_lane_u64(paddr, zero, 0);
68                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
69         }
70
71         rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
72         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
73                 rxq->rxrearm_start = 0;
74
75         rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
76
77         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
78                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
79
80         /* Update the tail pointer on the NIC */
81         IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
82 }
83
84 static inline void
85 desc_to_olflags_v(uint8x16x2_t sterr_tmp1, uint8x16x2_t sterr_tmp2,
86                   uint8x16_t staterr, uint8_t vlan_flags, struct rte_mbuf **rx_pkts)
87 {
88         uint8x16_t ptype;
89         uint8x16_t vtag_lo, vtag_hi, vtag;
90         uint8x16_t temp_csum;
91         uint32x4_t csum = {0, 0, 0, 0};
92
93         union {
94                 uint16_t e[4];
95                 uint64_t word;
96         } vol;
97
98         const uint8x16_t rsstype_msk = {
99                         0x0F, 0x0F, 0x0F, 0x0F,
100                         0x00, 0x00, 0x00, 0x00,
101                         0x00, 0x00, 0x00, 0x00,
102                         0x00, 0x00, 0x00, 0x00};
103
104         const uint8x16_t rss_flags = {
105                         0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
106                         0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
107                         PKT_RX_RSS_HASH, 0, 0, 0,
108                         0, 0, 0, PKT_RX_FDIR};
109
110         /* mask everything except vlan present and l4/ip csum error */
111         const uint8x16_t vlan_csum_msk = {
112                         IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
113                         IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
114                         0, 0, 0, 0,
115                         0, 0, 0, 0,
116                         (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
117                         (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
118                         (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
119                         (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24};
120
121         /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
122         const uint8x16_t vlan_csum_map_lo = {
123                         PKT_RX_IP_CKSUM_GOOD,
124                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
125                         PKT_RX_IP_CKSUM_BAD,
126                         PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
127                         0, 0, 0, 0,
128                         vlan_flags | PKT_RX_IP_CKSUM_GOOD,
129                         vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
130                         vlan_flags | PKT_RX_IP_CKSUM_BAD,
131                         vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
132                         0, 0, 0, 0};
133
134         const uint8x16_t vlan_csum_map_hi = {
135                         PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
136                         PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
137                         0, 0, 0, 0,
138                         PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
139                         PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
140                         0, 0, 0, 0};
141
142         ptype = vzipq_u8(sterr_tmp1.val[0], sterr_tmp2.val[0]).val[0];
143         ptype = vandq_u8(ptype, rsstype_msk);
144         ptype = vqtbl1q_u8(rss_flags, ptype);
145
146         /* extract vlan_flags and csum_error from staterr */
147         vtag = vandq_u8(staterr, vlan_csum_msk);
148
149         /* csum bits are in the most significant, to use shuffle we need to
150          * shift them. Change mask from 0xc0 to 0x03.
151          */
152         temp_csum = vshrq_n_u8(vtag, 6);
153
154         /* 'OR' the most significant 32 bits containing the checksum
155          * flags with the vlan present flags
156          * Then bits layout of each lane(8bits) will be 'xxxx,VP,x,IPE,L4E'
157          */
158         csum = vsetq_lane_u32(vgetq_lane_u32(vreinterpretq_u32_u8(temp_csum), 3), csum, 0);
159         vtag = vorrq_u8(vreinterpretq_u8_u32(csum), vtag);
160
161         /* convert L4 checksum correct type to vtag_hi */
162         vtag_hi = vqtbl1q_u8(vlan_csum_map_hi, vtag);
163         vtag_hi = vshrq_n_u8(vtag_hi, 7);
164
165         /* convert VP, IPE, L4E to vtag_lo */
166         vtag_lo = vqtbl1q_u8(vlan_csum_map_lo, vtag);
167         vtag_lo = vorrq_u8(ptype, vtag_lo);
168
169         vtag = vzipq_u8(vtag_lo, vtag_hi).val[0];
170         vol.word = vgetq_lane_u64(vreinterpretq_u64_u8(vtag), 0);
171
172         rx_pkts[0]->ol_flags = vol.e[0];
173         rx_pkts[1]->ol_flags = vol.e[1];
174         rx_pkts[2]->ol_flags = vol.e[2];
175         rx_pkts[3]->ol_flags = vol.e[3];
176 }
177
178 #define IXGBE_VPMD_DESC_EOP_MASK        0x02020202
179 #define IXGBE_UINT8_BIT                 (CHAR_BIT * sizeof(uint8_t))
180
181 static inline uint32_t
182 get_packet_type(uint32_t pkt_info,
183                 uint32_t etqf_check,
184                 uint32_t tunnel_check)
185 {
186         if (etqf_check)
187                 return RTE_PTYPE_UNKNOWN;
188
189         if (tunnel_check) {
190                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
191                 return ptype_table_tn[pkt_info];
192         }
193
194         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
195         return ptype_table[pkt_info];
196 }
197
198 static inline void
199 desc_to_ptype_v(uint64x2_t descs[4], uint16_t pkt_type_mask,
200                 struct rte_mbuf **rx_pkts)
201 {
202         uint32x4_t etqf_check, tunnel_check;
203         uint32x4_t etqf_mask = vdupq_n_u32(0x8000);
204         uint32x4_t tunnel_mask = vdupq_n_u32(0x10000);
205         uint32x4_t ptype_mask = vdupq_n_u32((uint32_t)pkt_type_mask);
206         uint32x4_t ptype0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
207                                 vreinterpretq_u32_u64(descs[2])).val[0];
208         uint32x4_t ptype1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
209                                 vreinterpretq_u32_u64(descs[3])).val[0];
210
211         /* interleave low 32 bits,
212          * now we have 4 ptypes in a NEON register
213          */
214         ptype0 = vzipq_u32(ptype0, ptype1).val[0];
215
216         /* mask etqf bits */
217         etqf_check = vandq_u32(ptype0, etqf_mask);
218         /* mask tunnel bits */
219         tunnel_check = vandq_u32(ptype0, tunnel_mask);
220
221         /* shift right by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
222         ptype0 = vandq_u32(vshrq_n_u32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
223                         ptype_mask);
224
225         rx_pkts[0]->packet_type =
226                 get_packet_type(vgetq_lane_u32(ptype0, 0),
227                                 vgetq_lane_u32(etqf_check, 0),
228                                 vgetq_lane_u32(tunnel_check, 0));
229         rx_pkts[1]->packet_type =
230                 get_packet_type(vgetq_lane_u32(ptype0, 1),
231                                 vgetq_lane_u32(etqf_check, 1),
232                                 vgetq_lane_u32(tunnel_check, 1));
233         rx_pkts[2]->packet_type =
234                 get_packet_type(vgetq_lane_u32(ptype0, 2),
235                                 vgetq_lane_u32(etqf_check, 2),
236                                 vgetq_lane_u32(tunnel_check, 2));
237         rx_pkts[3]->packet_type =
238                 get_packet_type(vgetq_lane_u32(ptype0, 3),
239                                 vgetq_lane_u32(etqf_check, 3),
240                                 vgetq_lane_u32(tunnel_check, 3));
241 }
242
243 /**
244  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
245  *
246  * Notice:
247  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
248  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
249  */
250 static inline uint16_t
251 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
252                    uint16_t nb_pkts, uint8_t *split_packet)
253 {
254         volatile union ixgbe_adv_rx_desc *rxdp;
255         struct ixgbe_rx_entry *sw_ring;
256         uint16_t nb_pkts_recd;
257         int pos;
258         uint8x16_t shuf_msk = {
259                 0xFF, 0xFF,
260                 0xFF, 0xFF,  /* skip 32 bits pkt_type */
261                 12, 13,      /* octet 12~13, low 16 bits pkt_len */
262                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
263                 12, 13,      /* octet 12~13, 16 bits data_len */
264                 14, 15,      /* octet 14~15, low 16 bits vlan_macip */
265                 4, 5, 6, 7  /* octet 4~7, 32bits rss */
266                 };
267         uint16x8_t crc_adjust = {0, 0, rxq->crc_len, 0,
268                                  rxq->crc_len, 0, 0, 0};
269         uint8_t vlan_flags;
270
271         /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
272         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
273
274         /* Just the act of getting into the function from the application is
275          * going to cost about 7 cycles
276          */
277         rxdp = rxq->rx_ring + rxq->rx_tail;
278
279         rte_prefetch_non_temporal(rxdp);
280
281         /* See if we need to rearm the RX queue - gives the prefetch a bit
282          * of time to act
283          */
284         if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
285                 ixgbe_rxq_rearm(rxq);
286
287         /* Before we start moving massive data around, check to see if
288          * there is actually a packet available
289          */
290         if (!(rxdp->wb.upper.status_error &
291                                 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
292                 return 0;
293
294         /* Cache is empty -> need to scan the buffer rings, but first move
295          * the next 'n' mbufs into the cache
296          */
297         sw_ring = &rxq->sw_ring[rxq->rx_tail];
298
299         /* ensure these 2 flags are in the lower 8 bits */
300         RTE_BUILD_BUG_ON((PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED) > UINT8_MAX);
301         vlan_flags = rxq->vlan_flags & UINT8_MAX;
302
303         /* A. load 4 packet in one loop
304          * B. copy 4 mbuf point from swring to rx_pkts
305          * C. calc the number of DD bits among the 4 packets
306          * [C*. extract the end-of-packet bit, if requested]
307          * D. fill info. from desc to mbuf
308          */
309         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
310                         pos += RTE_IXGBE_DESCS_PER_LOOP,
311                         rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
312                 uint64x2_t descs[RTE_IXGBE_DESCS_PER_LOOP];
313                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
314                 uint8x16x2_t sterr_tmp1, sterr_tmp2;
315                 uint64x2_t mbp1, mbp2;
316                 uint8x16_t staterr;
317                 uint16x8_t tmp;
318                 uint32_t stat;
319
320                 /* B.1 load 2 mbuf point */
321                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
322
323                 /* B.2 copy 2 mbuf point into rx_pkts  */
324                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
325
326                 /* B.1 load 2 mbuf point */
327                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
328
329                 /* A. load 4 pkts descs */
330                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
331                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
332                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
333                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
334
335                 /* B.2 copy 2 mbuf point into rx_pkts  */
336                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
337
338                 if (split_packet) {
339                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
340                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
341                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
342                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
343                 }
344
345                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
346                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
347                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
348
349                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
350                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
351                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
352
353                 /* C.1 4=>2 filter staterr info only */
354                 sterr_tmp2 = vzipq_u8(vreinterpretq_u8_u64(descs[1]),
355                                       vreinterpretq_u8_u64(descs[3]));
356                 /* C.1 4=>2 filter staterr info only */
357                 sterr_tmp1 = vzipq_u8(vreinterpretq_u8_u64(descs[0]),
358                                       vreinterpretq_u8_u64(descs[2]));
359
360                 /* C.2 get 4 pkts staterr value  */
361                 staterr = vzipq_u8(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0];
362
363                 /* set ol_flags with vlan packet type */
364                 desc_to_olflags_v(sterr_tmp1, sterr_tmp2, staterr, vlan_flags,
365                                   &rx_pkts[pos]);
366
367                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
368                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
369                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
370                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
371                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
372
373                 /* D.3 copy final 3,4 data to rx_pkts */
374                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
375                          pkt_mb4);
376                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
377                          pkt_mb3);
378
379                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
380                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
381                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
382                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
383                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
384
385                 /* C* extract and record EOP bit */
386                 if (split_packet) {
387                         stat = vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
388                         /* and with mask to extract bits, flipping 1-0 */
389                         *(int *)split_packet = ~stat & IXGBE_VPMD_DESC_EOP_MASK;
390
391                         split_packet += RTE_IXGBE_DESCS_PER_LOOP;
392                 }
393
394                 /* C.4 expand DD bit to saturate UINT8 */
395                 staterr = vshlq_n_u8(staterr, IXGBE_UINT8_BIT - 1);
396                 staterr = vreinterpretq_u8_s8
397                                 (vshrq_n_s8(vreinterpretq_s8_u8(staterr),
398                                         IXGBE_UINT8_BIT - 1));
399                 stat = ~vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
400
401                 rte_prefetch_non_temporal(rxdp + RTE_IXGBE_DESCS_PER_LOOP);
402
403                 /* D.3 copy final 1,2 data to rx_pkts */
404                 vst1q_u8((uint8_t *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
405                          pkt_mb2);
406                 vst1q_u8((uint8_t *)&rx_pkts[pos]->rx_descriptor_fields1,
407                          pkt_mb1);
408
409                 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
410
411                 /* C.5 calc available number of desc */
412                 if (unlikely(stat == 0)) {
413                         nb_pkts_recd += RTE_IXGBE_DESCS_PER_LOOP;
414                 } else {
415                         nb_pkts_recd += __builtin_ctz(stat) / IXGBE_UINT8_BIT;
416                         break;
417                 }
418         }
419
420         /* Update our internal tail pointer */
421         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
422         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
423         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
424
425         return nb_pkts_recd;
426 }
427
428 /**
429  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
430  *
431  * Notice:
432  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
433  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
434  */
435 uint16_t
436 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
437                 uint16_t nb_pkts)
438 {
439         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
440 }
441
442 /**
443  * vPMD receive routine that reassembles scattered packets
444  *
445  * Notice:
446  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
447  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
448  */
449 static uint16_t
450 ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
451                                uint16_t nb_pkts)
452 {
453         struct ixgbe_rx_queue *rxq = rx_queue;
454         uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
455
456         /* get some new buffers */
457         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
458                         split_flags);
459         if (nb_bufs == 0)
460                 return 0;
461
462         /* happy day case, full burst + no packets to be joined */
463         const uint64_t *split_fl64 = (uint64_t *)split_flags;
464         if (rxq->pkt_first_seg == NULL &&
465                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
466                         split_fl64[2] == 0 && split_fl64[3] == 0)
467                 return nb_bufs;
468
469         /* reassemble any packets that need reassembly*/
470         unsigned int i = 0;
471         if (rxq->pkt_first_seg == NULL) {
472                 /* find the first split flag, and only reassemble then*/
473                 while (i < nb_bufs && !split_flags[i])
474                         i++;
475                 if (i == nb_bufs)
476                         return nb_bufs;
477                 rxq->pkt_first_seg = rx_pkts[i];
478         }
479         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
480                 &split_flags[i]);
481 }
482
483 /**
484  * vPMD receive routine that reassembles scattered packets.
485  */
486 uint16_t
487 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
488                               uint16_t nb_pkts)
489 {
490         uint16_t retval = 0;
491
492         while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
493                 uint16_t burst;
494
495                 burst = ixgbe_recv_scattered_burst_vec(rx_queue,
496                                                        rx_pkts + retval,
497                                                        RTE_IXGBE_MAX_RX_BURST);
498                 retval += burst;
499                 nb_pkts -= burst;
500                 if (burst < RTE_IXGBE_MAX_RX_BURST)
501                         return retval;
502         }
503
504         return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
505                                                        rx_pkts + retval,
506                                                        nb_pkts);
507 }
508
509 static inline void
510 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
511                 struct rte_mbuf *pkt, uint64_t flags)
512 {
513         uint64x2_t descriptor = {
514                         pkt->buf_iova + pkt->data_off,
515                         (uint64_t)pkt->pkt_len << 46 | flags | pkt->data_len};
516
517         vst1q_u64((uint64_t *)&txdp->read, descriptor);
518 }
519
520 static inline void
521 vtx(volatile union ixgbe_adv_tx_desc *txdp,
522                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
523 {
524         int i;
525
526         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
527                 vtx1(txdp, *pkt, flags);
528 }
529
530 uint16_t
531 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
532                            uint16_t nb_pkts)
533 {
534         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
535         volatile union ixgbe_adv_tx_desc *txdp;
536         struct ixgbe_tx_entry_v *txep;
537         uint16_t n, nb_commit, tx_id;
538         uint64_t flags = DCMD_DTYP_FLAGS;
539         uint64_t rs = IXGBE_ADVTXD_DCMD_RS | DCMD_DTYP_FLAGS;
540         int i;
541
542         /* cross rx_thresh boundary is not allowed */
543         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
544
545         if (txq->nb_tx_free < txq->tx_free_thresh)
546                 ixgbe_tx_free_bufs(txq);
547
548         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
549         if (unlikely(nb_pkts == 0))
550                 return 0;
551
552         tx_id = txq->tx_tail;
553         txdp = &txq->tx_ring[tx_id];
554         txep = &txq->sw_ring_v[tx_id];
555
556         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
557
558         n = (uint16_t)(txq->nb_tx_desc - tx_id);
559         if (nb_commit >= n) {
560                 tx_backlog_entry(txep, tx_pkts, n);
561
562                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
563                         vtx1(txdp, *tx_pkts, flags);
564
565                 vtx1(txdp, *tx_pkts++, rs);
566
567                 nb_commit = (uint16_t)(nb_commit - n);
568
569                 tx_id = 0;
570                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
571
572                 /* avoid reach the end of ring */
573                 txdp = &txq->tx_ring[tx_id];
574                 txep = &txq->sw_ring_v[tx_id];
575         }
576
577         tx_backlog_entry(txep, tx_pkts, nb_commit);
578
579         vtx(txdp, tx_pkts, nb_commit, flags);
580
581         tx_id = (uint16_t)(tx_id + nb_commit);
582         if (tx_id > txq->tx_next_rs) {
583                 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
584                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
585                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
586                         txq->tx_rs_thresh);
587         }
588
589         txq->tx_tail = tx_id;
590
591         IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
592
593         return nb_pkts;
594 }
595
596 static void __rte_cold
597 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
598 {
599         _ixgbe_tx_queue_release_mbufs_vec(txq);
600 }
601
602 void __rte_cold
603 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
604 {
605         _ixgbe_rx_queue_release_mbufs_vec(rxq);
606 }
607
608 static void __rte_cold
609 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
610 {
611         _ixgbe_tx_free_swring_vec(txq);
612 }
613
614 static void __rte_cold
615 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
616 {
617         _ixgbe_reset_tx_queue_vec(txq);
618 }
619
620 static const struct ixgbe_txq_ops vec_txq_ops = {
621         .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
622         .free_swring = ixgbe_tx_free_swring,
623         .reset = ixgbe_reset_tx_queue,
624 };
625
626 int __rte_cold
627 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
628 {
629         return ixgbe_rxq_vec_setup_default(rxq);
630 }
631
632 int __rte_cold
633 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
634 {
635         return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
636 }
637
638 int __rte_cold
639 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
640 {
641         return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
642 }