bb34b27168de8ae8edec2628aca9f34e2dea97d7
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "ixgbe_ethdev.h"
10 #include "ixgbe_rxtx.h"
11 #include "ixgbe_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
21 {
22         int i;
23         uint16_t rx_id;
24         volatile union ixgbe_adv_rx_desc *rxdp;
25         struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
26         struct rte_mbuf *mb0, *mb1;
27         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
28                         RTE_PKTMBUF_HEADROOM);
29         __m128i dma_addr0, dma_addr1;
30
31         const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
32
33         rxdp = rxq->rx_ring + rxq->rxrearm_start;
34
35         /* Pull 'n' more MBUFs into the software ring */
36         if (rte_mempool_get_bulk(rxq->mb_pool,
37                                  (void *)rxep,
38                                  RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
39                 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
40                     rxq->nb_rx_desc) {
41                         dma_addr0 = _mm_setzero_si128();
42                         for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
43                                 rxep[i].mbuf = &rxq->fake_mbuf;
44                                 _mm_store_si128((__m128i *)&rxdp[i].read,
45                                                 dma_addr0);
46                         }
47                 }
48                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49                         RTE_IXGBE_RXQ_REARM_THRESH;
50                 return;
51         }
52
53         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
54         for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55                 __m128i vaddr0, vaddr1;
56
57                 mb0 = rxep[0].mbuf;
58                 mb1 = rxep[1].mbuf;
59
60                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
61                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
62                                 offsetof(struct rte_mbuf, buf_addr) + 8);
63                 vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
64                 vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
65
66                 /* convert pa to dma_addr hdr/data */
67                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
68                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
69
70                 /* add headroom to pa values */
71                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
72                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
73
74                 /* set Header Buffer Address to zero */
75                 dma_addr0 =  _mm_and_si128(dma_addr0, hba_msk);
76                 dma_addr1 =  _mm_and_si128(dma_addr1, hba_msk);
77
78                 /* flush desc with pa dma_addr */
79                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
80                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
81         }
82
83         rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
84         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
85                 rxq->rxrearm_start = 0;
86
87         rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
88
89         rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
90                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
91
92         /* Update the tail pointer on the NIC */
93         IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
94 }
95
96 #ifdef RTE_LIB_SECURITY
97 static inline void
98 desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts)
99 {
100         __m128i sterr, rearm, tmp_e, tmp_p;
101         uint32_t *rearm0 = (uint32_t *)rx_pkts[0]->rearm_data + 2;
102         uint32_t *rearm1 = (uint32_t *)rx_pkts[1]->rearm_data + 2;
103         uint32_t *rearm2 = (uint32_t *)rx_pkts[2]->rearm_data + 2;
104         uint32_t *rearm3 = (uint32_t *)rx_pkts[3]->rearm_data + 2;
105         const __m128i ipsec_sterr_msk =
106                         _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP |
107                                        IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED);
108         const __m128i ipsec_proc_msk  =
109                         _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP);
110         const __m128i ipsec_err_flag  =
111                         _mm_set1_epi32(RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED |
112                                        RTE_MBUF_F_RX_SEC_OFFLOAD);
113         const __m128i ipsec_proc_flag = _mm_set1_epi32(RTE_MBUF_F_RX_SEC_OFFLOAD);
114
115         rearm = _mm_set_epi32(*rearm3, *rearm2, *rearm1, *rearm0);
116         sterr = _mm_set_epi32(_mm_extract_epi32(descs[3], 2),
117                               _mm_extract_epi32(descs[2], 2),
118                               _mm_extract_epi32(descs[1], 2),
119                               _mm_extract_epi32(descs[0], 2));
120         sterr = _mm_and_si128(sterr, ipsec_sterr_msk);
121         tmp_e = _mm_cmpeq_epi32(sterr, ipsec_sterr_msk);
122         tmp_p = _mm_cmpeq_epi32(sterr, ipsec_proc_msk);
123         sterr = _mm_or_si128(_mm_and_si128(tmp_e, ipsec_err_flag),
124                                 _mm_and_si128(tmp_p, ipsec_proc_flag));
125         rearm = _mm_or_si128(rearm, sterr);
126         *rearm0 = _mm_extract_epi32(rearm, 0);
127         *rearm1 = _mm_extract_epi32(rearm, 1);
128         *rearm2 = _mm_extract_epi32(rearm, 2);
129         *rearm3 = _mm_extract_epi32(rearm, 3);
130 }
131 #endif
132
133 static inline void
134 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
135                   uint16_t udp_p_flag, struct rte_mbuf **rx_pkts)
136 {
137         __m128i ptype0, ptype1, vtag0, vtag1, csum, udp_csum_skip;
138         __m128i rearm0, rearm1, rearm2, rearm3;
139
140         /* mask everything except rss type */
141         const __m128i rsstype_msk = _mm_set_epi16(
142                         0x0000, 0x0000, 0x0000, 0x0000,
143                         0x000F, 0x000F, 0x000F, 0x000F);
144
145         /* mask the lower byte of ol_flags */
146         const __m128i ol_flags_msk = _mm_set_epi16(
147                         0x0000, 0x0000, 0x0000, 0x0000,
148                         0x00FF, 0x00FF, 0x00FF, 0x00FF);
149
150         /* map rss type to rss hash flag */
151         const __m128i rss_flags = _mm_set_epi8(RTE_MBUF_F_RX_FDIR, 0, 0, 0,
152                         0, 0, 0, RTE_MBUF_F_RX_RSS_HASH,
153                         RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH, 0,
154                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, 0);
155
156         /* mask everything except vlan present and l4/ip csum error */
157         const __m128i vlan_csum_msk = _mm_set_epi16(
158                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
159                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
160                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
161                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
162                 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
163                 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
164
165         /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
166         const __m128i vlan_csum_map_lo = _mm_set_epi8(
167                 0, 0, 0, 0,
168                 vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
169                 vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD,
170                 vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
171                 vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD,
172                 0, 0, 0, 0,
173                 RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
174                 RTE_MBUF_F_RX_IP_CKSUM_BAD,
175                 RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
176                 RTE_MBUF_F_RX_IP_CKSUM_GOOD);
177
178         const __m128i vlan_csum_map_hi = _mm_set_epi8(
179                 0, 0, 0, 0,
180                 0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
181                 RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
182                 0, 0, 0, 0,
183                 0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
184                 RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
185
186         /* mask everything except UDP header present if specified */
187         const __m128i udp_hdr_p_msk = _mm_set_epi16
188                 (0, 0, 0, 0,
189                  udp_p_flag, udp_p_flag, udp_p_flag, udp_p_flag);
190
191         const __m128i udp_csum_bad_shuf = _mm_set_epi8
192                 (0, 0, 0, 0, 0, 0, 0, 0,
193                  0, 0, 0, 0, 0, 0, ~(uint8_t)RTE_MBUF_F_RX_L4_CKSUM_BAD, 0xFF);
194
195         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
196         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
197         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
198         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
199
200         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
201         /* save the UDP header present information */
202         udp_csum_skip = _mm_and_si128(ptype0, udp_hdr_p_msk);
203         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
204         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
205
206         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
207         vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
208
209         /* csum bits are in the most significant, to use shuffle we need to
210          * shift them. Change mask to 0xc000 to 0x0003.
211          */
212         csum = _mm_srli_epi16(vtag1, 14);
213
214         /* now or the most significant 64 bits containing the checksum
215          * flags with the vlan present flags.
216          */
217         csum = _mm_srli_si128(csum, 8);
218         vtag1 = _mm_or_si128(csum, vtag1);
219
220         /* convert VP, IPE, L4E to ol_flags */
221         vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
222         vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
223
224         vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
225         vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
226         vtag1 = _mm_or_si128(vtag0, vtag1);
227
228         vtag1 = _mm_or_si128(ptype0, vtag1);
229
230         /* convert the UDP header present 0x200 to 0x1 for aligning with each
231          * RTE_MBUF_F_RX_L4_CKSUM_BAD value in low byte of 16 bits word ol_flag in
232          * vtag1 (4x16). Then mask out the bad checksum value by shuffle and
233          * bit-mask.
234          */
235         udp_csum_skip = _mm_srli_epi16(udp_csum_skip, 9);
236         udp_csum_skip = _mm_shuffle_epi8(udp_csum_bad_shuf, udp_csum_skip);
237         vtag1 = _mm_and_si128(vtag1, udp_csum_skip);
238
239         /*
240          * At this point, we have the 4 sets of flags in the low 64-bits
241          * of vtag1 (4x16).
242          * We want to extract these, and merge them with the mbuf init data
243          * so we can do a single 16-byte write to the mbuf to set the flags
244          * and all the other initialization fields. Extracting the
245          * appropriate flags means that we have to do a shift and blend for
246          * each mbuf before we do the write.
247          */
248         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
249         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
250         rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
251         rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
252
253         /* write the rearm data and the olflags in one write */
254         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
255                         offsetof(struct rte_mbuf, rearm_data) + 8);
256         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
257                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
258         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
259         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
260         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
261         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
262 }
263
264 static inline uint32_t get_packet_type(int index,
265                                        uint32_t pkt_info,
266                                        uint32_t etqf_check,
267                                        uint32_t tunnel_check)
268 {
269         if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
270                 return RTE_PTYPE_UNKNOWN;
271
272         if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
273                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
274                 return ptype_table_tn[pkt_info];
275         }
276
277         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
278         return ptype_table[pkt_info];
279 }
280
281 static inline void
282 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
283                 struct rte_mbuf **rx_pkts)
284 {
285         __m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
286         __m128i ptype_mask = _mm_set_epi32(
287                 pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
288         __m128i tunnel_mask =
289                 _mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
290
291         uint32_t etqf_check, tunnel_check, pkt_info;
292
293         __m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
294         __m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
295
296         /* interleave low 32 bits,
297          * now we have 4 ptypes in a XMM register
298          */
299         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
300
301         /* create a etqf bitmask based on the etqf bit. */
302         etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
303
304         /* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
305         ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
306                                ptype_mask);
307
308         /* create a tunnel bitmask based on the tunnel bit */
309         tunnel_check = _mm_movemask_epi8(
310                 _mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
311
312         pkt_info = _mm_extract_epi32(ptype0, 0);
313         rx_pkts[0]->packet_type =
314                 get_packet_type(0, pkt_info, etqf_check, tunnel_check);
315         pkt_info = _mm_extract_epi32(ptype0, 1);
316         rx_pkts[1]->packet_type =
317                 get_packet_type(1, pkt_info, etqf_check, tunnel_check);
318         pkt_info = _mm_extract_epi32(ptype0, 2);
319         rx_pkts[2]->packet_type =
320                 get_packet_type(2, pkt_info, etqf_check, tunnel_check);
321         pkt_info = _mm_extract_epi32(ptype0, 3);
322         rx_pkts[3]->packet_type =
323                 get_packet_type(3, pkt_info, etqf_check, tunnel_check);
324 }
325
326 /**
327  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
328  *
329  * Notice:
330  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
331  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
332  */
333 static inline uint16_t
334 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
335                 uint16_t nb_pkts, uint8_t *split_packet)
336 {
337         volatile union ixgbe_adv_rx_desc *rxdp;
338         struct ixgbe_rx_entry *sw_ring;
339         uint16_t nb_pkts_recd;
340 #ifdef RTE_LIB_SECURITY
341         uint8_t use_ipsec = rxq->using_ipsec;
342 #endif
343         int pos;
344         uint64_t var;
345         __m128i shuf_msk;
346         __m128i crc_adjust = _mm_set_epi16(
347                                 0, 0, 0,    /* ignore non-length fields */
348                                 -rxq->crc_len, /* sub crc on data_len */
349                                 0,          /* ignore high-16bits of pkt_len */
350                                 -rxq->crc_len, /* sub crc on pkt_len */
351                                 0, 0            /* ignore pkt_type field */
352                         );
353         /*
354          * compile-time check the above crc_adjust layout is correct.
355          * NOTE: the first field (lowest address) is given last in set_epi16
356          * call above.
357          */
358         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
359                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
360         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
361                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
362         __m128i dd_check, eop_check;
363         __m128i mbuf_init;
364         uint8_t vlan_flags;
365         uint16_t udp_p_flag = 0; /* Rx Descriptor UDP header present */
366
367         /*
368          * Under the circumstance that `rx_tail` wrap back to zero
369          * and the advance speed of `rx_tail` is greater than `rxrearm_start`,
370          * `rx_tail` will catch up with `rxrearm_start` and surpass it.
371          * This may cause some mbufs be reused by application.
372          *
373          * So we need to make some restrictions to ensure that
374          * `rx_tail` will not exceed `rxrearm_start`.
375          */
376         nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_RXQ_REARM_THRESH);
377
378         /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
379         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
380
381         /* Just the act of getting into the function from the application is
382          * going to cost about 7 cycles
383          */
384         rxdp = rxq->rx_ring + rxq->rx_tail;
385
386         rte_prefetch0(rxdp);
387
388         /* See if we need to rearm the RX queue - gives the prefetch a bit
389          * of time to act
390          */
391         if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
392                 ixgbe_rxq_rearm(rxq);
393
394         /* Before we start moving massive data around, check to see if
395          * there is actually a packet available
396          */
397         if (!(rxdp->wb.upper.status_error &
398                                 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
399                 return 0;
400
401         if (rxq->rx_udp_csum_zero_err)
402                 udp_p_flag = IXGBE_RXDADV_PKTTYPE_UDP;
403
404         /* 4 packets DD mask */
405         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
406
407         /* 4 packets EOP mask */
408         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
409
410         /* mask to shuffle from desc. to mbuf */
411         shuf_msk = _mm_set_epi8(
412                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
413                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
414                 13, 12,      /* octet 12~13, 16 bits data_len */
415                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
416                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
417                 0xFF, 0xFF,  /* skip 32 bit pkt_type */
418                 0xFF, 0xFF
419                 );
420         /*
421          * Compile-time verify the shuffle mask
422          * NOTE: some field positions already verified above, but duplicated
423          * here for completeness in case of future modifications.
424          */
425         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
426                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
427         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
428                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
429         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
430                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
431         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
432                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
433
434         mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
435
436         /* Cache is empty -> need to scan the buffer rings, but first move
437          * the next 'n' mbufs into the cache
438          */
439         sw_ring = &rxq->sw_ring[rxq->rx_tail];
440
441         /* ensure these 2 flags are in the lower 8 bits */
442         RTE_BUILD_BUG_ON((RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED) > UINT8_MAX);
443         vlan_flags = rxq->vlan_flags & UINT8_MAX;
444
445         /* A. load 4 packet in one loop
446          * [A*. mask out 4 unused dirty field in desc]
447          * B. copy 4 mbuf point from swring to rx_pkts
448          * C. calc the number of DD bits among the 4 packets
449          * [C*. extract the end-of-packet bit, if requested]
450          * D. fill info. from desc to mbuf
451          */
452         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
453                         pos += RTE_IXGBE_DESCS_PER_LOOP,
454                         rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
455                 __m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
456                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
457                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
458                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
459                 __m128i mbp1;
460 #if defined(RTE_ARCH_X86_64)
461                 __m128i mbp2;
462 #endif
463
464                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
465                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
466
467                 /* Read desc statuses backwards to avoid race condition */
468                 /* A.1 load desc[3] */
469                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
470                 rte_compiler_barrier();
471
472                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
473                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
474
475 #if defined(RTE_ARCH_X86_64)
476                 /* B.1 load 2 64 bit mbuf points */
477                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
478 #endif
479
480                 /* A.1 load desc[2-0] */
481                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
482                 rte_compiler_barrier();
483                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
484                 rte_compiler_barrier();
485                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
486
487 #if defined(RTE_ARCH_X86_64)
488                 /* B.2 copy 2 mbuf point into rx_pkts  */
489                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
490 #endif
491
492                 if (split_packet) {
493                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
494                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
495                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
496                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
497                 }
498
499                 /* avoid compiler reorder optimization */
500                 rte_compiler_barrier();
501
502                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
503                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
504                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
505
506                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
507                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
508                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
509
510                 /* C.1 4=>2 filter staterr info only */
511                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
512                 /* C.1 4=>2 filter staterr info only */
513                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
514
515                 /* set ol_flags with vlan packet type */
516                 desc_to_olflags_v(descs, mbuf_init, vlan_flags, udp_p_flag,
517                                   &rx_pkts[pos]);
518
519 #ifdef RTE_LIB_SECURITY
520                 if (unlikely(use_ipsec))
521                         desc_to_olflags_v_ipsec(descs, &rx_pkts[pos]);
522 #endif
523
524                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
525                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
526                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
527
528                 /* C.2 get 4 pkts staterr value  */
529                 zero = _mm_xor_si128(dd_check, dd_check);
530                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
531
532                 /* D.3 copy final 3,4 data to rx_pkts */
533                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
534                                 pkt_mb4);
535                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
536                                 pkt_mb3);
537
538                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
539                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
540                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
541
542                 /* C* extract and record EOP bit */
543                 if (split_packet) {
544                         __m128i eop_shuf_mask = _mm_set_epi8(
545                                         0xFF, 0xFF, 0xFF, 0xFF,
546                                         0xFF, 0xFF, 0xFF, 0xFF,
547                                         0xFF, 0xFF, 0xFF, 0xFF,
548                                         0x04, 0x0C, 0x00, 0x08
549                                         );
550
551                         /* and with mask to extract bits, flipping 1-0 */
552                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
553                         /* the staterr values are not in order, as the count
554                          * of dd bits doesn't care. However, for end of
555                          * packet tracking, we do care, so shuffle. This also
556                          * compresses the 32-bit values to 8-bit
557                          */
558                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
559                         /* store the resulting 32-bit value */
560                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
561                         split_packet += RTE_IXGBE_DESCS_PER_LOOP;
562                 }
563
564                 /* C.3 calc available number of desc */
565                 staterr = _mm_and_si128(staterr, dd_check);
566                 staterr = _mm_packs_epi32(staterr, zero);
567
568                 /* D.3 copy final 1,2 data to rx_pkts */
569                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
570                                 pkt_mb2);
571                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
572                                 pkt_mb1);
573
574                 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
575
576                 /* C.4 calc available number of desc */
577                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
578                 nb_pkts_recd += var;
579                 if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
580                         break;
581         }
582
583         /* Update our internal tail pointer */
584         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
585         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
586         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
587
588         return nb_pkts_recd;
589 }
590
591 /**
592  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
593  *
594  * Notice:
595  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
596  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
597  */
598 uint16_t
599 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
600                 uint16_t nb_pkts)
601 {
602         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
603 }
604
605 /**
606  * vPMD receive routine that reassembles scattered packets
607  *
608  * Notice:
609  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
610  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
611  */
612 static uint16_t
613 ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
614                                uint16_t nb_pkts)
615 {
616         struct ixgbe_rx_queue *rxq = rx_queue;
617         uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
618
619         /* get some new buffers */
620         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
621                         split_flags);
622         if (nb_bufs == 0)
623                 return 0;
624
625         /* happy day case, full burst + no packets to be joined */
626         const uint64_t *split_fl64 = (uint64_t *)split_flags;
627         if (rxq->pkt_first_seg == NULL &&
628                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
629                         split_fl64[2] == 0 && split_fl64[3] == 0)
630                 return nb_bufs;
631
632         /* reassemble any packets that need reassembly*/
633         unsigned i = 0;
634         if (rxq->pkt_first_seg == NULL) {
635                 /* find the first split flag, and only reassemble then*/
636                 while (i < nb_bufs && !split_flags[i])
637                         i++;
638                 if (i == nb_bufs)
639                         return nb_bufs;
640                 rxq->pkt_first_seg = rx_pkts[i];
641         }
642         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
643                 &split_flags[i]);
644 }
645
646 /**
647  * vPMD receive routine that reassembles scattered packets.
648  */
649 uint16_t
650 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
651                               uint16_t nb_pkts)
652 {
653         uint16_t retval = 0;
654
655         while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
656                 uint16_t burst;
657
658                 burst = ixgbe_recv_scattered_burst_vec(rx_queue,
659                                                        rx_pkts + retval,
660                                                        RTE_IXGBE_MAX_RX_BURST);
661                 retval += burst;
662                 nb_pkts -= burst;
663                 if (burst < RTE_IXGBE_MAX_RX_BURST)
664                         return retval;
665         }
666
667         return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
668                                                        rx_pkts + retval,
669                                                        nb_pkts);
670 }
671
672 static inline void
673 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
674                 struct rte_mbuf *pkt, uint64_t flags)
675 {
676         __m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
677                         flags | pkt->data_len,
678                         pkt->buf_iova + pkt->data_off);
679         _mm_store_si128((__m128i *)&txdp->read, descriptor);
680 }
681
682 static inline void
683 vtx(volatile union ixgbe_adv_tx_desc *txdp,
684                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
685 {
686         int i;
687
688         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
689                 vtx1(txdp, *pkt, flags);
690 }
691
692 uint16_t
693 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
694                            uint16_t nb_pkts)
695 {
696         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
697         volatile union ixgbe_adv_tx_desc *txdp;
698         struct ixgbe_tx_entry_v *txep;
699         uint16_t n, nb_commit, tx_id;
700         uint64_t flags = DCMD_DTYP_FLAGS;
701         uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
702         int i;
703
704         /* cross rx_thresh boundary is not allowed */
705         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
706
707         if (txq->nb_tx_free < txq->tx_free_thresh)
708                 ixgbe_tx_free_bufs(txq);
709
710         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
711         if (unlikely(nb_pkts == 0))
712                 return 0;
713
714         tx_id = txq->tx_tail;
715         txdp = &txq->tx_ring[tx_id];
716         txep = &txq->sw_ring_v[tx_id];
717
718         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
719
720         n = (uint16_t)(txq->nb_tx_desc - tx_id);
721         if (nb_commit >= n) {
722
723                 tx_backlog_entry(txep, tx_pkts, n);
724
725                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
726                         vtx1(txdp, *tx_pkts, flags);
727
728                 vtx1(txdp, *tx_pkts++, rs);
729
730                 nb_commit = (uint16_t)(nb_commit - n);
731
732                 tx_id = 0;
733                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
734
735                 /* avoid reach the end of ring */
736                 txdp = &(txq->tx_ring[tx_id]);
737                 txep = &txq->sw_ring_v[tx_id];
738         }
739
740         tx_backlog_entry(txep, tx_pkts, nb_commit);
741
742         vtx(txdp, tx_pkts, nb_commit, flags);
743
744         tx_id = (uint16_t)(tx_id + nb_commit);
745         if (tx_id > txq->tx_next_rs) {
746                 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
747                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
748                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
749                         txq->tx_rs_thresh);
750         }
751
752         txq->tx_tail = tx_id;
753
754         IXGBE_PCI_REG_WC_WRITE(txq->tdt_reg_addr, txq->tx_tail);
755
756         return nb_pkts;
757 }
758
759 static void __rte_cold
760 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
761 {
762         _ixgbe_tx_queue_release_mbufs_vec(txq);
763 }
764
765 void __rte_cold
766 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
767 {
768         _ixgbe_rx_queue_release_mbufs_vec(rxq);
769 }
770
771 static void __rte_cold
772 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
773 {
774         _ixgbe_tx_free_swring_vec(txq);
775 }
776
777 static void __rte_cold
778 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
779 {
780         _ixgbe_reset_tx_queue_vec(txq);
781 }
782
783 static const struct ixgbe_txq_ops vec_txq_ops = {
784         .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
785         .free_swring = ixgbe_tx_free_swring,
786         .reset = ixgbe_reset_tx_queue,
787 };
788
789 int __rte_cold
790 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
791 {
792         return ixgbe_rxq_vec_setup_default(rxq);
793 }
794
795 int __rte_cold
796 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
797 {
798         return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
799 }
800
801 int __rte_cold
802 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
803 {
804         return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
805 }