4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include <rte_ethdev.h>
36 #include <rte_malloc.h>
38 #include "ixgbe_ethdev.h"
39 #include "ixgbe_rxtx.h"
40 #include "ixgbe_rxtx_vec_common.h"
42 #include <tmmintrin.h>
44 #ifndef __INTEL_COMPILER
45 #pragma GCC diagnostic ignored "-Wcast-qual"
49 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
53 volatile union ixgbe_adv_rx_desc *rxdp;
54 struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
55 struct rte_mbuf *mb0, *mb1;
56 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
57 RTE_PKTMBUF_HEADROOM);
58 __m128i dma_addr0, dma_addr1;
60 const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
62 rxdp = rxq->rx_ring + rxq->rxrearm_start;
64 /* Pull 'n' more MBUFs into the software ring */
65 if (rte_mempool_get_bulk(rxq->mb_pool,
67 RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
68 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
70 dma_addr0 = _mm_setzero_si128();
71 for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
72 rxep[i].mbuf = &rxq->fake_mbuf;
73 _mm_store_si128((__m128i *)&rxdp[i].read,
77 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
78 RTE_IXGBE_RXQ_REARM_THRESH;
82 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
83 for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
84 __m128i vaddr0, vaddr1;
89 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
90 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
91 offsetof(struct rte_mbuf, buf_addr) + 8);
92 vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
93 vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
95 /* convert pa to dma_addr hdr/data */
96 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
97 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
99 /* add headroom to pa values */
100 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
101 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
103 /* set Header Buffer Address to zero */
104 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
105 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
107 /* flush desc with pa dma_addr */
108 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
109 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
112 rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
113 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
114 rxq->rxrearm_start = 0;
116 rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
118 rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
119 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
121 /* Update the tail pointer on the NIC */
122 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
126 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
127 struct rte_mbuf **rx_pkts)
129 __m128i ptype0, ptype1, vtag0, vtag1, csum;
130 __m128i rearm0, rearm1, rearm2, rearm3;
132 /* mask everything except rss type */
133 const __m128i rsstype_msk = _mm_set_epi16(
134 0x0000, 0x0000, 0x0000, 0x0000,
135 0x000F, 0x000F, 0x000F, 0x000F);
137 /* mask the lower byte of ol_flags */
138 const __m128i ol_flags_msk = _mm_set_epi16(
139 0x0000, 0x0000, 0x0000, 0x0000,
140 0x00FF, 0x00FF, 0x00FF, 0x00FF);
142 /* map rss type to rss hash flag */
143 const __m128i rss_flags = _mm_set_epi8(PKT_RX_FDIR, 0, 0, 0,
144 0, 0, 0, PKT_RX_RSS_HASH,
145 PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
146 PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
148 /* mask everything except vlan present and l4/ip csum error */
149 const __m128i vlan_csum_msk = _mm_set_epi16(
150 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
151 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
152 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
153 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
154 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
155 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
156 /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
157 const __m128i vlan_csum_map_lo = _mm_set_epi8(
159 vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
160 vlan_flags | PKT_RX_IP_CKSUM_BAD,
161 vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
162 vlan_flags | PKT_RX_IP_CKSUM_GOOD,
164 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
166 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
167 PKT_RX_IP_CKSUM_GOOD);
169 const __m128i vlan_csum_map_hi = _mm_set_epi8(
171 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
172 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
174 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
175 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
177 ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
178 ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
179 vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
180 vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
182 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
183 ptype0 = _mm_and_si128(ptype0, rsstype_msk);
184 ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
186 vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
187 vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
189 /* csum bits are in the most significant, to use shuffle we need to
190 * shift them. Change mask to 0xc000 to 0x0003.
192 csum = _mm_srli_epi16(vtag1, 14);
194 /* now or the most significant 64 bits containing the checksum
195 * flags with the vlan present flags.
197 csum = _mm_srli_si128(csum, 8);
198 vtag1 = _mm_or_si128(csum, vtag1);
200 /* convert VP, IPE, L4E to ol_flags */
201 vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
202 vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
204 vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
205 vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
206 vtag1 = _mm_or_si128(vtag0, vtag1);
208 vtag1 = _mm_or_si128(ptype0, vtag1);
211 * At this point, we have the 4 sets of flags in the low 64-bits
213 * We want to extract these, and merge them with the mbuf init data
214 * so we can do a single 16-byte write to the mbuf to set the flags
215 * and all the other initialization fields. Extracting the
216 * appropriate flags means that we have to do a shift and blend for
217 * each mbuf before we do the write.
219 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
220 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
221 rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
222 rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
224 /* write the rearm data and the olflags in one write */
225 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
226 offsetof(struct rte_mbuf, rearm_data) + 8);
227 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
228 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
229 _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
230 _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
231 _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
232 _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
235 static inline uint32_t get_packet_type(int index,
238 uint32_t tunnel_check)
240 if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
241 return RTE_PTYPE_UNKNOWN;
243 if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
244 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
245 return ptype_table_tn[pkt_info];
248 pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
249 return ptype_table[pkt_info];
253 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
254 struct rte_mbuf **rx_pkts)
256 __m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
257 __m128i ptype_mask = _mm_set_epi32(
258 pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
259 __m128i tunnel_mask =
260 _mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
262 uint32_t etqf_check, tunnel_check, pkt_info;
264 __m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
265 __m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
267 /* interleave low 32 bits,
268 * now we have 4 ptypes in a XMM register
270 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
272 /* create a etqf bitmask based on the etqf bit. */
273 etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
275 /* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
276 ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
279 /* create a tunnel bitmask based on the tunnel bit */
280 tunnel_check = _mm_movemask_epi8(
281 _mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
283 pkt_info = _mm_extract_epi32(ptype0, 0);
284 rx_pkts[0]->packet_type =
285 get_packet_type(0, pkt_info, etqf_check, tunnel_check);
286 pkt_info = _mm_extract_epi32(ptype0, 1);
287 rx_pkts[1]->packet_type =
288 get_packet_type(1, pkt_info, etqf_check, tunnel_check);
289 pkt_info = _mm_extract_epi32(ptype0, 2);
290 rx_pkts[2]->packet_type =
291 get_packet_type(2, pkt_info, etqf_check, tunnel_check);
292 pkt_info = _mm_extract_epi32(ptype0, 3);
293 rx_pkts[3]->packet_type =
294 get_packet_type(3, pkt_info, etqf_check, tunnel_check);
298 * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
301 * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
302 * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
304 * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
306 static inline uint16_t
307 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
308 uint16_t nb_pkts, uint8_t *split_packet)
310 volatile union ixgbe_adv_rx_desc *rxdp;
311 struct ixgbe_rx_entry *sw_ring;
312 uint16_t nb_pkts_recd;
316 __m128i crc_adjust = _mm_set_epi16(
317 0, 0, 0, /* ignore non-length fields */
318 -rxq->crc_len, /* sub crc on data_len */
319 0, /* ignore high-16bits of pkt_len */
320 -rxq->crc_len, /* sub crc on pkt_len */
321 0, 0 /* ignore pkt_type field */
324 * compile-time check the above crc_adjust layout is correct.
325 * NOTE: the first field (lowest address) is given last in set_epi16
328 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
329 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
330 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
331 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
332 __m128i dd_check, eop_check;
336 /* nb_pkts shall be less equal than RTE_IXGBE_MAX_RX_BURST */
337 nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_MAX_RX_BURST);
339 /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
340 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
342 /* Just the act of getting into the function from the application is
343 * going to cost about 7 cycles
345 rxdp = rxq->rx_ring + rxq->rx_tail;
349 /* See if we need to rearm the RX queue - gives the prefetch a bit
352 if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
353 ixgbe_rxq_rearm(rxq);
355 /* Before we start moving massive data around, check to see if
356 * there is actually a packet available
358 if (!(rxdp->wb.upper.status_error &
359 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
362 /* 4 packets DD mask */
363 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
365 /* 4 packets EOP mask */
366 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
368 /* mask to shuffle from desc. to mbuf */
369 shuf_msk = _mm_set_epi8(
370 7, 6, 5, 4, /* octet 4~7, 32bits rss */
371 15, 14, /* octet 14~15, low 16 bits vlan_macip */
372 13, 12, /* octet 12~13, 16 bits data_len */
373 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
374 13, 12, /* octet 12~13, low 16 bits pkt_len */
375 0xFF, 0xFF, /* skip 32 bit pkt_type */
379 * Compile-time verify the shuffle mask
380 * NOTE: some field positions already verified above, but duplicated
381 * here for completeness in case of future modifications.
383 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
384 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
385 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
386 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
387 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
388 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
389 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
390 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
392 mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
394 /* Cache is empty -> need to scan the buffer rings, but first move
395 * the next 'n' mbufs into the cache
397 sw_ring = &rxq->sw_ring[rxq->rx_tail];
399 /* ensure these 2 flags are in the lower 8 bits */
400 RTE_BUILD_BUG_ON((PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED) > UINT8_MAX);
401 vlan_flags = rxq->vlan_flags & UINT8_MAX;
403 /* A. load 4 packet in one loop
404 * [A*. mask out 4 unused dirty field in desc]
405 * B. copy 4 mbuf point from swring to rx_pkts
406 * C. calc the number of DD bits among the 4 packets
407 * [C*. extract the end-of-packet bit, if requested]
408 * D. fill info. from desc to mbuf
410 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
411 pos += RTE_IXGBE_DESCS_PER_LOOP,
412 rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
413 __m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
414 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
415 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
416 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
418 #if defined(RTE_ARCH_X86_64)
422 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
423 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
425 /* Read desc statuses backwards to avoid race condition */
426 /* A.1 load 4 pkts desc */
427 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
428 rte_compiler_barrier();
430 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
431 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
433 #if defined(RTE_ARCH_X86_64)
434 /* B.1 load 2 64 bit mbuf points */
435 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
438 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
439 rte_compiler_barrier();
440 /* B.1 load 2 mbuf point */
441 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
442 rte_compiler_barrier();
443 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
445 #if defined(RTE_ARCH_X86_64)
446 /* B.2 copy 2 mbuf point into rx_pkts */
447 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
451 rte_mbuf_prefetch_part2(rx_pkts[pos]);
452 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
453 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
454 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
457 /* avoid compiler reorder optimization */
458 rte_compiler_barrier();
460 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
461 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
462 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
464 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
465 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
466 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
468 /* C.1 4=>2 filter staterr info only */
469 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
470 /* C.1 4=>2 filter staterr info only */
471 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
473 /* set ol_flags with vlan packet type */
474 desc_to_olflags_v(descs, mbuf_init, vlan_flags, &rx_pkts[pos]);
476 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
477 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
478 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
480 /* C.2 get 4 pkts staterr value */
481 zero = _mm_xor_si128(dd_check, dd_check);
482 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
484 /* D.3 copy final 3,4 data to rx_pkts */
485 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
487 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
490 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
491 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
492 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
494 /* C* extract and record EOP bit */
496 __m128i eop_shuf_mask = _mm_set_epi8(
497 0xFF, 0xFF, 0xFF, 0xFF,
498 0xFF, 0xFF, 0xFF, 0xFF,
499 0xFF, 0xFF, 0xFF, 0xFF,
500 0x04, 0x0C, 0x00, 0x08
503 /* and with mask to extract bits, flipping 1-0 */
504 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
505 /* the staterr values are not in order, as the count
506 * count of dd bits doesn't care. However, for end of
507 * packet tracking, we do care, so shuffle. This also
508 * compresses the 32-bit values to 8-bit
510 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
511 /* store the resulting 32-bit value */
512 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
513 split_packet += RTE_IXGBE_DESCS_PER_LOOP;
516 /* C.3 calc available number of desc */
517 staterr = _mm_and_si128(staterr, dd_check);
518 staterr = _mm_packs_epi32(staterr, zero);
520 /* D.3 copy final 1,2 data to rx_pkts */
521 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
523 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
526 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
528 /* C.4 calc avaialbe number of desc */
529 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
531 if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
535 /* Update our internal tail pointer */
536 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
537 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
538 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
544 * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
547 * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
548 * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
550 * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
553 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
556 return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
560 * vPMD receive routine that reassembles scattered packets
563 * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
564 * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
566 * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
569 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
572 struct ixgbe_rx_queue *rxq = rx_queue;
573 uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
575 /* get some new buffers */
576 uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
581 /* happy day case, full burst + no packets to be joined */
582 const uint64_t *split_fl64 = (uint64_t *)split_flags;
583 if (rxq->pkt_first_seg == NULL &&
584 split_fl64[0] == 0 && split_fl64[1] == 0 &&
585 split_fl64[2] == 0 && split_fl64[3] == 0)
588 /* reassemble any packets that need reassembly*/
590 if (rxq->pkt_first_seg == NULL) {
591 /* find the first split flag, and only reassemble then*/
592 while (i < nb_bufs && !split_flags[i])
597 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
602 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
603 struct rte_mbuf *pkt, uint64_t flags)
605 __m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
606 flags | pkt->data_len,
607 pkt->buf_physaddr + pkt->data_off);
608 _mm_store_si128((__m128i *)&txdp->read, descriptor);
612 vtx(volatile union ixgbe_adv_tx_desc *txdp,
613 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
617 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
618 vtx1(txdp, *pkt, flags);
622 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
625 struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
626 volatile union ixgbe_adv_tx_desc *txdp;
627 struct ixgbe_tx_entry_v *txep;
628 uint16_t n, nb_commit, tx_id;
629 uint64_t flags = DCMD_DTYP_FLAGS;
630 uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
633 /* cross rx_thresh boundary is not allowed */
634 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
636 if (txq->nb_tx_free < txq->tx_free_thresh)
637 ixgbe_tx_free_bufs(txq);
639 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
640 if (unlikely(nb_pkts == 0))
643 tx_id = txq->tx_tail;
644 txdp = &txq->tx_ring[tx_id];
645 txep = &txq->sw_ring_v[tx_id];
647 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
649 n = (uint16_t)(txq->nb_tx_desc - tx_id);
650 if (nb_commit >= n) {
652 tx_backlog_entry(txep, tx_pkts, n);
654 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
655 vtx1(txdp, *tx_pkts, flags);
657 vtx1(txdp, *tx_pkts++, rs);
659 nb_commit = (uint16_t)(nb_commit - n);
662 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
664 /* avoid reach the end of ring */
665 txdp = &(txq->tx_ring[tx_id]);
666 txep = &txq->sw_ring_v[tx_id];
669 tx_backlog_entry(txep, tx_pkts, nb_commit);
671 vtx(txdp, tx_pkts, nb_commit, flags);
673 tx_id = (uint16_t)(tx_id + nb_commit);
674 if (tx_id > txq->tx_next_rs) {
675 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
676 rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
677 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
681 txq->tx_tail = tx_id;
683 IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
688 static void __attribute__((cold))
689 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
691 _ixgbe_tx_queue_release_mbufs_vec(txq);
694 void __attribute__((cold))
695 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
697 _ixgbe_rx_queue_release_mbufs_vec(rxq);
700 static void __attribute__((cold))
701 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
703 _ixgbe_tx_free_swring_vec(txq);
706 static void __attribute__((cold))
707 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
709 _ixgbe_reset_tx_queue_vec(txq);
712 static const struct ixgbe_txq_ops vec_txq_ops = {
713 .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
714 .free_swring = ixgbe_tx_free_swring,
715 .reset = ixgbe_reset_tx_queue,
718 int __attribute__((cold))
719 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
721 return ixgbe_rxq_vec_setup_default(rxq);
724 int __attribute__((cold))
725 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
727 return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
730 int __attribute__((cold))
731 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
733 return ixgbe_rx_vec_dev_conf_condition_check_default(dev);