1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
8 * Memory management functions for mlx4 driver.
18 /* Verbs headers do not support -pedantic. */
20 #pragma GCC diagnostic ignored "-Wpedantic"
22 #include <infiniband/verbs.h>
24 #pragma GCC diagnostic error "-Wpedantic"
27 #include <rte_branch_prediction.h>
28 #include <rte_common.h>
29 #include <rte_eal_memconfig.h>
30 #include <rte_errno.h>
31 #include <rte_malloc.h>
32 #include <rte_memory.h>
33 #include <rte_mempool.h>
34 #include <rte_rwlock.h>
36 #include "mlx4_glue.h"
38 #include "mlx4_rxtx.h"
39 #include "mlx4_utils.h"
41 struct mr_find_contig_memsegs_data {
45 const struct rte_memseg_list *msl;
48 struct mr_update_mp_data {
49 struct rte_eth_dev *dev;
50 struct mlx4_mr_ctrl *mr_ctrl;
55 * Expand B-tree table to a given size. Can't be called with holding
56 * memory_hotplug_lock or priv->mr.rwlock due to rte_realloc().
59 * Pointer to B-tree structure.
61 * Number of entries for expansion.
64 * 0 on success, -1 on failure.
67 mr_btree_expand(struct mlx4_mr_btree *bt, int n)
75 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
76 * used inside if there's no room to expand. Because this is a quite
77 * rare case and a part of very slow path, it is very acceptable.
78 * Initially cache_bh[] will be given practically enough space and once
79 * it is expanded, expansion wouldn't be needed again ever.
81 mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0);
83 /* Not an error, B-tree search will be skipped. */
84 WARN("failed to expand MR B-tree (%p) table", (void *)bt);
87 DEBUG("expanded MR B-tree table (size=%u)", n);
95 * Look up LKey from given B-tree lookup table, store the last index and return
99 * Pointer to B-tree structure.
101 * Pointer to index. Even on search failure, returns index where it stops
102 * searching so that index can be used when inserting a new entry.
107 * Searched LKey on success, UINT32_MAX on no match.
110 mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr)
112 struct mlx4_mr_cache *lkp_tbl;
117 lkp_tbl = *bt->table;
119 /* First entry must be NULL for comparison. */
120 assert(bt->len > 0 || (lkp_tbl[0].start == 0 &&
121 lkp_tbl[0].lkey == UINT32_MAX));
124 register uint16_t delta = n >> 1;
126 if (addr < lkp_tbl[base + delta].start) {
133 assert(addr >= lkp_tbl[base].start);
135 if (addr < lkp_tbl[base].end)
136 return lkp_tbl[base].lkey;
142 * Insert an entry to B-tree lookup table.
145 * Pointer to B-tree structure.
147 * Pointer to new entry to insert.
150 * 0 on success, -1 on failure.
153 mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry)
155 struct mlx4_mr_cache *lkp_tbl;
160 assert(bt->len <= bt->size);
162 lkp_tbl = *bt->table;
163 /* Find out the slot for insertion. */
164 if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
165 DEBUG("abort insertion to B-tree(%p): already exist at"
166 " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
167 (void *)bt, idx, entry->start, entry->end, entry->lkey);
168 /* Already exist, return. */
171 /* If table is full, return error. */
172 if (unlikely(bt->len == bt->size)) {
178 shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache);
180 memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
181 lkp_tbl[idx] = *entry;
183 DEBUG("inserted B-tree(%p)[%u],"
184 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
185 (void *)bt, idx, entry->start, entry->end, entry->lkey);
190 * Initialize B-tree and allocate memory for lookup table.
193 * Pointer to B-tree structure.
195 * Number of entries to allocate.
197 * NUMA socket on which memory must be allocated.
200 * 0 on success, a negative errno value otherwise and rte_errno is set.
203 mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket)
209 memset(bt, 0, sizeof(*bt));
210 bt->table = rte_calloc_socket("B-tree table",
211 n, sizeof(struct mlx4_mr_cache),
213 if (bt->table == NULL) {
215 ERROR("failed to allocate memory for btree cache on socket %d",
220 /* First entry must be NULL for binary search. */
221 (*bt->table)[bt->len++] = (struct mlx4_mr_cache) {
224 DEBUG("initialized B-tree %p with table %p",
225 (void *)bt, (void *)bt->table);
230 * Free B-tree resources.
233 * Pointer to B-tree structure.
236 mlx4_mr_btree_free(struct mlx4_mr_btree *bt)
240 DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table);
242 memset(bt, 0, sizeof(*bt));
247 * Dump all the entries in a B-tree
250 * Pointer to B-tree structure.
253 mlx4_mr_btree_dump(struct mlx4_mr_btree *bt)
256 struct mlx4_mr_cache *lkp_tbl;
260 lkp_tbl = *bt->table;
261 for (idx = 0; idx < bt->len; ++idx) {
262 struct mlx4_mr_cache *entry = &lkp_tbl[idx];
264 DEBUG("B-tree(%p)[%u],"
265 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
266 (void *)bt, idx, entry->start, entry->end, entry->lkey);
272 * Find virtually contiguous memory chunk in a given MR.
275 * Pointer to MR structure.
277 * Pointer to returning MR cache entry. If not found, this will not be
280 * Start index of the memseg bitmap.
283 * Next index to go on lookup.
286 mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry,
293 /* MR for external memory doesn't have memseg list. */
294 if (mr->msl == NULL) {
295 struct ibv_mr *ibv_mr = mr->ibv_mr;
297 assert(mr->ms_bmp_n == 1);
298 assert(mr->ms_n == 1);
299 assert(base_idx == 0);
301 * Can't search it from memseg list but get it directly from
302 * verbs MR as there's only one chunk.
304 entry->start = (uintptr_t)ibv_mr->addr;
305 entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length;
306 entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
307 /* Returning 1 ends iteration. */
310 for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
311 if (rte_bitmap_get(mr->ms_bmp, idx)) {
312 const struct rte_memseg_list *msl;
313 const struct rte_memseg *ms;
316 ms = rte_fbarray_get(&msl->memseg_arr,
317 mr->ms_base_idx + idx);
318 assert(msl->page_sz == ms->hugepage_sz);
321 end = ms->addr_64 + ms->hugepage_sz;
323 /* Passed the end of a fragment. */
328 /* Found one chunk. */
329 entry->start = start;
331 entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
337 * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
338 * Then, this entry will have to be searched by mr_lookup_dev_list() in
339 * mlx4_mr_create() on miss.
342 * Pointer to Ethernet device.
344 * Pointer to MR to insert.
347 * 0 on success, -1 on failure.
350 mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr)
352 struct mlx4_priv *priv = dev->data->dev_private;
355 DEBUG("port %u inserting MR(%p) to global cache",
356 dev->data->port_id, (void *)mr);
357 for (n = 0; n < mr->ms_bmp_n; ) {
358 struct mlx4_mr_cache entry;
360 memset(&entry, 0, sizeof(entry));
361 /* Find a contiguous chunk and advance the index. */
362 n = mr_find_next_chunk(mr, &entry, n);
365 if (mr_btree_insert(&priv->mr.cache, &entry) < 0) {
367 * Overflowed, but the global table cannot be expanded
368 * because of deadlock.
377 * Look up address in the original global MR list.
380 * Pointer to Ethernet device.
382 * Pointer to returning MR cache entry. If no match, this will not be updated.
387 * Found MR on match, NULL otherwise.
389 static struct mlx4_mr *
390 mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
393 struct mlx4_priv *priv = dev->data->dev_private;
396 /* Iterate all the existing MRs. */
397 LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
402 for (n = 0; n < mr->ms_bmp_n; ) {
403 struct mlx4_mr_cache ret;
405 memset(&ret, 0, sizeof(ret));
406 n = mr_find_next_chunk(mr, &ret, n);
407 if (addr >= ret.start && addr < ret.end) {
418 * Look up address on device.
421 * Pointer to Ethernet device.
423 * Pointer to returning MR cache entry. If no match, this will not be updated.
428 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
431 mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
434 struct mlx4_priv *priv = dev->data->dev_private;
436 uint32_t lkey = UINT32_MAX;
440 * If the global cache has overflowed since it failed to expand the
441 * B-tree table, it can't have all the existing MRs. Then, the address
442 * has to be searched by traversing the original MR list instead, which
443 * is very slow path. Otherwise, the global cache is all inclusive.
445 if (!unlikely(priv->mr.cache.overflow)) {
446 lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
447 if (lkey != UINT32_MAX)
448 *entry = (*priv->mr.cache.table)[idx];
450 /* Falling back to the slowest path. */
451 mr = mr_lookup_dev_list(dev, entry, addr);
455 assert(lkey == UINT32_MAX || (addr >= entry->start &&
461 * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
462 * can raise memory free event and the callback function will spin on the lock.
465 * Pointer to MR to free.
468 mr_free(struct mlx4_mr *mr)
472 DEBUG("freeing MR(%p):", (void *)mr);
473 if (mr->ibv_mr != NULL)
474 claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr));
475 if (mr->ms_bmp != NULL)
476 rte_bitmap_free(mr->ms_bmp);
481 * Release resources of detached MR having no online entry.
484 * Pointer to Ethernet device.
487 mlx4_mr_garbage_collect(struct rte_eth_dev *dev)
489 struct mlx4_priv *priv = dev->data->dev_private;
490 struct mlx4_mr *mr_next;
491 struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
493 /* Must be called from the primary process. */
494 assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
496 * MR can't be freed with holding the lock because rte_free() could call
497 * memory free callback function. This will be a deadlock situation.
499 rte_rwlock_write_lock(&priv->mr.rwlock);
500 /* Detach the whole free list and release it after unlocking. */
501 free_list = priv->mr.mr_free_list;
502 LIST_INIT(&priv->mr.mr_free_list);
503 rte_rwlock_write_unlock(&priv->mr.rwlock);
504 /* Release resources. */
505 mr_next = LIST_FIRST(&free_list);
506 while (mr_next != NULL) {
507 struct mlx4_mr *mr = mr_next;
509 mr_next = LIST_NEXT(mr, mr);
514 /* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */
516 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
517 const struct rte_memseg *ms, size_t len, void *arg)
519 struct mr_find_contig_memsegs_data *data = arg;
521 if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
523 /* Found, save it and stop walking. */
524 data->start = ms->addr_64;
525 data->end = ms->addr_64 + len;
531 * Create a new global Memory Region (MR) for a missing virtual address.
532 * This API should be called on a secondary process, then a request is sent to
533 * the primary process in order to create a MR for the address. As the global MR
534 * list is on the shared memory, following LKey lookup should succeed unless the
538 * Pointer to Ethernet device.
540 * Pointer to returning MR cache entry, found in the global cache or newly
541 * created. If failed to create one, this will not be updated.
543 * Target virtual address to register.
546 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
549 mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
552 struct mlx4_priv *priv = dev->data->dev_private;
555 DEBUG("port %u requesting MR creation for address (%p)",
556 dev->data->port_id, (void *)addr);
557 ret = mlx4_mp_req_mr_create(dev, addr);
559 DEBUG("port %u fail to request MR creation for address (%p)",
560 dev->data->port_id, (void *)addr);
563 rte_rwlock_read_lock(&priv->mr.rwlock);
564 /* Fill in output data. */
565 mr_lookup_dev(dev, entry, addr);
566 /* Lookup can't fail. */
567 assert(entry->lkey != UINT32_MAX);
568 rte_rwlock_read_unlock(&priv->mr.rwlock);
569 DEBUG("port %u MR CREATED by primary process for %p:\n"
570 " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
571 dev->data->port_id, (void *)addr,
572 entry->start, entry->end, entry->lkey);
577 * Create a new global Memory Region (MR) for a missing virtual address.
578 * Register entire virtually contiguous memory chunk around the address.
579 * This must be called from the primary process.
582 * Pointer to Ethernet device.
584 * Pointer to returning MR cache entry, found in the global cache or newly
585 * created. If failed to create one, this will not be updated.
587 * Target virtual address to register.
590 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
593 mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
596 struct mlx4_priv *priv = dev->data->dev_private;
597 const struct rte_memseg_list *msl;
598 const struct rte_memseg *ms;
599 struct mlx4_mr *mr = NULL;
604 int ms_idx_shift = -1;
606 struct mr_find_contig_memsegs_data data = {
609 struct mr_find_contig_memsegs_data data_re;
611 DEBUG("port %u creating a MR using address (%p)",
612 dev->data->port_id, (void *)addr);
614 * Release detached MRs if any. This can't be called with holding either
615 * memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have
616 * been detached by the memory free event but it couldn't be released
617 * inside the callback due to deadlock. As a result, releasing resources
618 * is quite opportunistic.
620 mlx4_mr_garbage_collect(dev);
622 * If enabled, find out a contiguous virtual address chunk in use, to
623 * which the given address belongs, in order to register maximum range.
624 * In the best case where mempools are not dynamically recreated and
625 * '--socket-mem' is specified as an EAL option, it is very likely to
626 * have only one MR(LKey) per a socket and per a hugepage-size even
627 * though the system memory is highly fragmented. As the whole memory
628 * chunk will be pinned by kernel, it can't be reused unless entire
629 * chunk is freed from EAL.
631 * If disabled, just register one memseg (page). Then, memory
632 * consumption will be minimized but it may drop performance if there
633 * are many MRs to lookup on the datapath.
635 if (!priv->mr_ext_memseg_en) {
636 data.msl = rte_mem_virt2memseg_list((void *)addr);
637 data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
638 data.end = data.start + data.msl->page_sz;
639 } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
640 WARN("port %u unable to find virtually contiguous"
641 " chunk for address (%p)."
642 " rte_memseg_contig_walk() failed.",
643 dev->data->port_id, (void *)addr);
648 /* Addresses must be page-aligned. */
649 assert(rte_is_aligned((void *)data.start, data.msl->page_sz));
650 assert(rte_is_aligned((void *)data.end, data.msl->page_sz));
652 ms = rte_mem_virt2memseg((void *)data.start, msl);
653 len = data.end - data.start;
654 assert(msl->page_sz == ms->hugepage_sz);
655 /* Number of memsegs in the range. */
656 ms_n = len / msl->page_sz;
657 DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
658 " page_sz=0x%" PRIx64 ", ms_n=%u",
659 dev->data->port_id, (void *)addr,
660 data.start, data.end, msl->page_sz, ms_n);
661 /* Size of memory for bitmap. */
662 bmp_size = rte_bitmap_get_memory_footprint(ms_n);
663 mr = rte_zmalloc_socket(NULL,
664 RTE_ALIGN_CEIL(sizeof(*mr),
665 RTE_CACHE_LINE_SIZE) +
667 RTE_CACHE_LINE_SIZE, msl->socket_id);
669 WARN("port %u unable to allocate memory for a new MR of"
671 dev->data->port_id, (void *)addr);
677 * Save the index of the first memseg and initialize memseg bitmap. To
678 * see if a memseg of ms_idx in the memseg-list is still valid, check:
679 * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
681 mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
682 bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
683 mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
684 if (mr->ms_bmp == NULL) {
685 WARN("port %u unable to initialize bitmap for a new MR of"
687 dev->data->port_id, (void *)addr);
692 * Should recheck whether the extended contiguous chunk is still valid.
693 * Because memory_hotplug_lock can't be held if there's any memory
694 * related calls in a critical path, resource allocation above can't be
695 * locked. If the memory has been changed at this point, try again with
696 * just single page. If not, go on with the big chunk atomically from
699 rte_mcfg_mem_read_lock();
701 if (len > msl->page_sz &&
702 !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
703 WARN("port %u unable to find virtually contiguous"
704 " chunk for address (%p)."
705 " rte_memseg_contig_walk() failed.",
706 dev->data->port_id, (void *)addr);
710 if (data.start != data_re.start || data.end != data_re.end) {
712 * The extended contiguous chunk has been changed. Try again
713 * with single memseg instead.
715 data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
716 data.end = data.start + msl->page_sz;
717 rte_mcfg_mem_read_unlock();
719 goto alloc_resources;
721 assert(data.msl == data_re.msl);
722 rte_rwlock_write_lock(&priv->mr.rwlock);
724 * Check the address is really missing. If other thread already created
725 * one or it is not found due to overflow, abort and return.
727 if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) {
729 * Insert to the global cache table. It may fail due to
730 * low-on-memory. Then, this entry will have to be searched
733 mr_btree_insert(&priv->mr.cache, entry);
734 DEBUG("port %u found MR for %p on final lookup, abort",
735 dev->data->port_id, (void *)addr);
736 rte_rwlock_write_unlock(&priv->mr.rwlock);
737 rte_mcfg_mem_read_unlock();
739 * Must be unlocked before calling rte_free() because
740 * mlx4_mr_mem_event_free_cb() can be called inside.
746 * Trim start and end addresses for verbs MR. Set bits for registering
747 * memsegs but exclude already registered ones. Bitmap can be
750 for (n = 0; n < ms_n; ++n) {
752 struct mlx4_mr_cache ret;
754 memset(&ret, 0, sizeof(ret));
755 start = data_re.start + n * msl->page_sz;
756 /* Exclude memsegs already registered by other MRs. */
757 if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) {
759 * Start from the first unregistered memseg in the
762 if (ms_idx_shift == -1) {
763 mr->ms_base_idx += n;
767 data.end = start + msl->page_sz;
768 rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
772 len = data.end - data.start;
773 mr->ms_bmp_n = len / msl->page_sz;
774 assert(ms_idx_shift + mr->ms_bmp_n <= ms_n);
776 * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
777 * called with holding the memory lock because it doesn't use
778 * mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket()
779 * through mlx4_alloc_verbs_buf().
781 mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len,
782 IBV_ACCESS_LOCAL_WRITE);
783 if (mr->ibv_mr == NULL) {
784 WARN("port %u fail to create a verbs MR for address (%p)",
785 dev->data->port_id, (void *)addr);
789 assert((uintptr_t)mr->ibv_mr->addr == data.start);
790 assert(mr->ibv_mr->length == len);
791 LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
792 DEBUG("port %u MR CREATED (%p) for %p:\n"
793 " [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
794 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
795 dev->data->port_id, (void *)mr, (void *)addr,
796 data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey),
797 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
798 /* Insert to the global cache table. */
799 mr_insert_dev_cache(dev, mr);
800 /* Fill in output data. */
801 mr_lookup_dev(dev, entry, addr);
802 /* Lookup can't fail. */
803 assert(entry->lkey != UINT32_MAX);
804 rte_rwlock_write_unlock(&priv->mr.rwlock);
805 rte_mcfg_mem_read_unlock();
808 rte_rwlock_write_unlock(&priv->mr.rwlock);
810 rte_mcfg_mem_read_unlock();
813 * In case of error, as this can be called in a datapath, a warning
814 * message per an error is preferable instead. Must be unlocked before
815 * calling rte_free() because mlx4_mr_mem_event_free_cb() can be called
823 * Create a new global Memory Region (MR) for a missing virtual address.
824 * This can be called from primary and secondary process.
827 * Pointer to Ethernet device.
829 * Pointer to returning MR cache entry, found in the global cache or newly
830 * created. If failed to create one, this will not be updated.
832 * Target virtual address to register.
835 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
838 mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
843 switch (rte_eal_process_type()) {
844 case RTE_PROC_PRIMARY:
845 ret = mlx4_mr_create_primary(dev, entry, addr);
847 case RTE_PROC_SECONDARY:
848 ret = mlx4_mr_create_secondary(dev, entry, addr);
857 * Rebuild the global B-tree cache of device from the original MR list.
860 * Pointer to Ethernet device.
863 mr_rebuild_dev_cache(struct rte_eth_dev *dev)
865 struct mlx4_priv *priv = dev->data->dev_private;
868 DEBUG("port %u rebuild dev cache[]", dev->data->port_id);
869 /* Flush cache to rebuild. */
870 priv->mr.cache.len = 1;
871 priv->mr.cache.overflow = 0;
872 /* Iterate all the existing MRs. */
873 LIST_FOREACH(mr, &priv->mr.mr_list, mr)
874 if (mr_insert_dev_cache(dev, mr) < 0)
879 * Callback for memory free event. Iterate freed memsegs and check whether it
880 * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
881 * result, the MR would be fragmented. If it becomes empty, the MR will be freed
882 * later by mlx4_mr_garbage_collect().
884 * The global cache must be rebuilt if there's any change and this event has to
885 * be propagated to dataplane threads to flush the local caches.
888 * Pointer to Ethernet device.
890 * Address of freed memory.
892 * Size of freed memory.
895 mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len)
897 struct mlx4_priv *priv = dev->data->dev_private;
898 const struct rte_memseg_list *msl;
904 DEBUG("port %u free callback: addr=%p, len=%zu",
905 dev->data->port_id, addr, len);
906 msl = rte_mem_virt2memseg_list(addr);
907 /* addr and len must be page-aligned. */
908 assert((uintptr_t)addr == RTE_ALIGN((uintptr_t)addr, msl->page_sz));
909 assert(len == RTE_ALIGN(len, msl->page_sz));
910 ms_n = len / msl->page_sz;
911 rte_rwlock_write_lock(&priv->mr.rwlock);
912 /* Clear bits of freed memsegs from MR. */
913 for (i = 0; i < ms_n; ++i) {
914 const struct rte_memseg *ms;
915 struct mlx4_mr_cache entry;
920 /* Find MR having this memseg. */
921 start = (uintptr_t)addr + i * msl->page_sz;
922 mr = mr_lookup_dev_list(dev, &entry, start);
925 assert(mr->msl); /* Can't be external memory. */
926 ms = rte_mem_virt2memseg((void *)start, msl);
928 assert(msl->page_sz == ms->hugepage_sz);
929 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
930 pos = ms_idx - mr->ms_base_idx;
931 assert(rte_bitmap_get(mr->ms_bmp, pos));
932 assert(pos < mr->ms_bmp_n);
933 DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p",
934 dev->data->port_id, (void *)mr, pos, (void *)start);
935 rte_bitmap_clear(mr->ms_bmp, pos);
936 if (--mr->ms_n == 0) {
938 LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
939 DEBUG("port %u remove MR(%p) from list",
940 dev->data->port_id, (void *)mr);
943 * MR is fragmented or will be freed. the global cache must be
949 mr_rebuild_dev_cache(dev);
951 * Flush local caches by propagating invalidation across cores.
952 * rte_smp_wmb() is enough to synchronize this event. If one of
953 * freed memsegs is seen by other core, that means the memseg
954 * has been allocated by allocator, which will come after this
955 * free call. Therefore, this store instruction (incrementing
956 * generation below) will be guaranteed to be seen by other core
957 * before the core sees the newly allocated memory.
960 DEBUG("broadcasting local cache flush, gen=%d",
964 rte_rwlock_write_unlock(&priv->mr.rwlock);
967 mlx4_mr_dump_dev(dev);
972 * Callback for memory event.
982 mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
983 size_t len, void *arg __rte_unused)
985 struct mlx4_priv *priv;
986 struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list;
988 /* Must be called from the primary process. */
989 assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
990 switch (event_type) {
991 case RTE_MEM_EVENT_FREE:
992 rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock);
993 /* Iterate all the existing mlx4 devices. */
994 LIST_FOREACH(priv, dev_list, mem_event_cb)
995 mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len);
996 rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock);
998 case RTE_MEM_EVENT_ALLOC:
1005 * Look up address in the global MR cache table. If not found, create a new MR.
1006 * Insert the found/created entry to local bottom-half cache table.
1009 * Pointer to Ethernet device.
1011 * Pointer to per-queue MR control structure.
1013 * Pointer to returning MR cache entry, found in the global cache or newly
1014 * created. If failed to create one, this is not written.
1019 * Searched LKey on success, UINT32_MAX on no match.
1022 mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1023 struct mlx4_mr_cache *entry, uintptr_t addr)
1025 struct mlx4_priv *priv = dev->data->dev_private;
1026 struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh;
1030 /* If local cache table is full, try to double it. */
1031 if (unlikely(bt->len == bt->size))
1032 mr_btree_expand(bt, bt->size << 1);
1033 /* Look up in the global cache. */
1034 rte_rwlock_read_lock(&priv->mr.rwlock);
1035 lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
1036 if (lkey != UINT32_MAX) {
1038 *entry = (*priv->mr.cache.table)[idx];
1039 rte_rwlock_read_unlock(&priv->mr.rwlock);
1041 * Update local cache. Even if it fails, return the found entry
1042 * to update top-half cache. Next time, this entry will be found
1043 * in the global cache.
1045 mr_btree_insert(bt, entry);
1048 rte_rwlock_read_unlock(&priv->mr.rwlock);
1049 /* First time to see the address? Create a new MR. */
1050 lkey = mlx4_mr_create(dev, entry, addr);
1052 * Update the local cache if successfully created a new global MR. Even
1053 * if failed to create one, there's no action to take in this datapath
1054 * code. As returning LKey is invalid, this will eventually make HW
1057 if (lkey != UINT32_MAX)
1058 mr_btree_insert(bt, entry);
1063 * Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if
1064 * misses, search in the global MR cache table and update the new entry to
1065 * per-queue local caches.
1068 * Pointer to Ethernet device.
1070 * Pointer to per-queue MR control structure.
1075 * Searched LKey on success, UINT32_MAX on no match.
1078 mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1082 uint16_t bh_idx = 0;
1083 /* Victim in top-half cache to replace with new entry. */
1084 struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head];
1086 /* Binary-search MR translation table. */
1087 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1088 /* Update top-half cache. */
1089 if (likely(lkey != UINT32_MAX)) {
1090 *repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1093 * If missed in local lookup table, search in the global cache
1094 * and local cache_bh[] will be updated inside if possible.
1095 * Top-half cache entry will also be updated.
1097 lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr);
1098 if (unlikely(lkey == UINT32_MAX))
1101 /* Update the most recently used entry. */
1102 mr_ctrl->mru = mr_ctrl->head;
1103 /* Point to the next victim, the oldest. */
1104 mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N;
1109 * Bottom-half of LKey search on Rx.
1112 * Pointer to Rx queue structure.
1117 * Searched LKey on success, UINT32_MAX on no match.
1120 mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr)
1122 struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
1123 struct mlx4_priv *priv = rxq->priv;
1125 return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
1129 * Bottom-half of LKey search on Tx.
1132 * Pointer to Tx queue structure.
1137 * Searched LKey on success, UINT32_MAX on no match.
1140 mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr)
1142 struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
1143 struct mlx4_priv *priv = txq->priv;
1145 return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
1149 * Bottom-half of LKey search on Tx. If it can't be searched in the memseg
1150 * list, register the mempool of the mbuf as externally allocated memory.
1153 * Pointer to Tx queue structure.
1158 * Searched LKey on success, UINT32_MAX on no match.
1161 mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb)
1163 uintptr_t addr = (uintptr_t)mb->buf_addr;
1166 lkey = mlx4_tx_addr2mr_bh(txq, addr);
1167 if (lkey == UINT32_MAX && rte_errno == ENXIO) {
1168 /* Mempool may have externally allocated memory. */
1169 return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb));
1175 * Flush all of the local cache entries.
1178 * Pointer to per-queue MR control structure.
1181 mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl)
1183 /* Reset the most-recently-used index. */
1185 /* Reset the linear search array. */
1187 memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1188 /* Reset the B-tree table. */
1189 mr_ctrl->cache_bh.len = 1;
1190 mr_ctrl->cache_bh.overflow = 0;
1191 /* Update the generation number. */
1192 mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1193 DEBUG("mr_ctrl(%p): flushed, cur_gen=%d",
1194 (void *)mr_ctrl, mr_ctrl->cur_gen);
1198 * Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp().
1200 * Externally allocated chunk is registered and a MR is created for the chunk.
1201 * The MR object is added to the global list. If memseg list of a MR object
1202 * (mr->msl) is null, the MR object can be regarded as externally allocated
1205 * Once external memory is registered, it should be static. If the memory is
1206 * freed and the virtual address range has different physical memory mapped
1207 * again, it may cause crash on device due to the wrong translation entry. PMD
1208 * can't track the free event of the external memory for now.
1211 mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
1212 struct rte_mempool_memhdr *memhdr,
1213 unsigned mem_idx __rte_unused)
1215 struct mr_update_mp_data *data = opaque;
1216 struct rte_eth_dev *dev = data->dev;
1217 struct mlx4_priv *priv = dev->data->dev_private;
1218 struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl;
1219 struct mlx4_mr *mr = NULL;
1220 uintptr_t addr = (uintptr_t)memhdr->addr;
1221 size_t len = memhdr->len;
1222 struct mlx4_mr_cache entry;
1225 assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
1226 /* If already registered, it should return. */
1227 rte_rwlock_read_lock(&priv->mr.rwlock);
1228 lkey = mr_lookup_dev(dev, &entry, addr);
1229 rte_rwlock_read_unlock(&priv->mr.rwlock);
1230 if (lkey != UINT32_MAX)
1232 mr = rte_zmalloc_socket(NULL,
1233 RTE_ALIGN_CEIL(sizeof(*mr),
1234 RTE_CACHE_LINE_SIZE),
1235 RTE_CACHE_LINE_SIZE, mp->socket_id);
1237 WARN("port %u unable to allocate memory for a new MR of"
1239 dev->data->port_id, mp->name);
1243 DEBUG("port %u register MR for chunk #%d of mempool (%s)",
1244 dev->data->port_id, mem_idx, mp->name);
1245 mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len,
1246 IBV_ACCESS_LOCAL_WRITE);
1247 if (mr->ibv_mr == NULL) {
1248 WARN("port %u fail to create a verbs MR for address (%p)",
1249 dev->data->port_id, (void *)addr);
1254 mr->msl = NULL; /* Mark it is external memory. */
1258 rte_rwlock_write_lock(&priv->mr.rwlock);
1259 LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
1260 DEBUG("port %u MR CREATED (%p) for external memory %p:\n"
1261 " [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1262 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1263 dev->data->port_id, (void *)mr, (void *)addr,
1264 addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey),
1265 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1266 /* Insert to the global cache table. */
1267 mr_insert_dev_cache(dev, mr);
1268 rte_rwlock_write_unlock(&priv->mr.rwlock);
1269 /* Insert to the local cache table */
1270 mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr);
1274 * Register MR for entire memory chunks in a Mempool having externally allocated
1275 * memory and fill in local cache.
1278 * Pointer to Ethernet device.
1280 * Pointer to per-queue MR control structure.
1282 * Pointer to registering Mempool.
1285 * 0 on success, -1 on failure.
1288 mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1289 struct rte_mempool *mp)
1291 struct mr_update_mp_data data = {
1297 rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data);
1302 * Register MR entire memory chunks in a Mempool having externally allocated
1303 * memory and search LKey of the address to return.
1306 * Pointer to Ethernet device.
1310 * Pointer to registering Mempool where addr belongs.
1313 * LKey for address on success, UINT32_MAX on failure.
1316 mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp)
1318 struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
1319 struct mlx4_priv *priv = txq->priv;
1321 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1322 WARN("port %u using address (%p) from unregistered mempool"
1323 " having externally allocated memory"
1324 " in secondary process, please create mempool"
1325 " prior to rte_eth_dev_start()",
1326 PORT_ID(priv), (void *)addr);
1329 mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp);
1330 return mlx4_tx_addr2mr_bh(txq, addr);
1333 /* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */
1335 mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
1336 struct rte_mempool_memhdr *memhdr,
1337 unsigned mem_idx __rte_unused)
1339 struct mr_update_mp_data *data = opaque;
1342 /* Stop iteration if failed in the previous walk. */
1345 /* Register address of the chunk and update local caches. */
1346 lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl,
1347 (uintptr_t)memhdr->addr);
1348 if (lkey == UINT32_MAX)
1353 * Register entire memory chunks in a Mempool.
1356 * Pointer to Ethernet device.
1358 * Pointer to per-queue MR control structure.
1360 * Pointer to registering Mempool.
1363 * 0 on success, -1 on failure.
1366 mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1367 struct rte_mempool *mp)
1369 struct mr_update_mp_data data = {
1375 rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data);
1376 if (data.ret < 0 && rte_errno == ENXIO) {
1377 /* Mempool may have externally allocated memory. */
1378 return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp);
1385 * Dump all the created MRs and the global cache entries.
1388 * Pointer to Ethernet device.
1391 mlx4_mr_dump_dev(struct rte_eth_dev *dev)
1393 struct mlx4_priv *priv = dev->data->dev_private;
1398 rte_rwlock_read_lock(&priv->mr.rwlock);
1399 /* Iterate all the existing MRs. */
1400 LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
1403 DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1404 dev->data->port_id, mr_n++,
1405 rte_cpu_to_be_32(mr->ibv_mr->lkey),
1406 mr->ms_n, mr->ms_bmp_n);
1409 for (n = 0; n < mr->ms_bmp_n; ) {
1410 struct mlx4_mr_cache ret;
1412 memset(&ret, 0, sizeof(ret));
1413 n = mr_find_next_chunk(mr, &ret, n);
1416 DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1417 chunk_n++, ret.start, ret.end);
1420 DEBUG("port %u dumping global cache", dev->data->port_id);
1421 mlx4_mr_btree_dump(&priv->mr.cache);
1422 rte_rwlock_read_unlock(&priv->mr.rwlock);
1427 * Release all the created MRs and resources. Remove device from memory callback
1431 * Pointer to Ethernet device.
1434 mlx4_mr_release(struct rte_eth_dev *dev)
1436 struct mlx4_priv *priv = dev->data->dev_private;
1437 struct mlx4_mr *mr_next;
1439 /* Remove from memory callback device list. */
1440 rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock);
1441 LIST_REMOVE(priv, mem_event_cb);
1442 rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock);
1444 mlx4_mr_dump_dev(dev);
1446 rte_rwlock_write_lock(&priv->mr.rwlock);
1447 /* Detach from MR list and move to free list. */
1448 mr_next = LIST_FIRST(&priv->mr.mr_list);
1449 while (mr_next != NULL) {
1450 struct mlx4_mr *mr = mr_next;
1452 mr_next = LIST_NEXT(mr, mr);
1453 LIST_REMOVE(mr, mr);
1454 LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
1456 LIST_INIT(&priv->mr.mr_list);
1457 /* Free global cache. */
1458 mlx4_mr_btree_free(&priv->mr.cache);
1459 rte_rwlock_write_unlock(&priv->mr.rwlock);
1460 /* Free all remaining MRs. */
1461 mlx4_mr_garbage_collect(dev);