1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
8 * Data plane functions for mlx4 driver.
15 /* Verbs headers do not support -pedantic. */
17 #pragma GCC diagnostic ignored "-Wpedantic"
19 #include <infiniband/verbs.h>
21 #pragma GCC diagnostic error "-Wpedantic"
24 #include <rte_branch_prediction.h>
25 #include <rte_common.h>
28 #include <rte_mempool.h>
29 #include <rte_prefetch.h>
33 #include "mlx4_rxtx.h"
34 #include "mlx4_utils.h"
37 * Pointer-value pair structure used in tx_post_send for saving the first
38 * DWORD (32 byte) of a TXBB.
42 volatile struct mlx4_wqe_data_seg *dseg;
43 volatile uint32_t *dst;
48 /** A helper structure for TSO packet handling. */
50 /** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
52 /** Current entry in the pv array. */
54 /** Total size of the WQE including padding. */
56 /** Size of TSO header to prepend to each packet to send. */
57 uint16_t tso_header_size;
58 /** Total size of the TSO segment in the WQE. */
59 uint16_t wqe_tso_seg_size;
60 /** Raw WQE size in units of 16 Bytes and without padding. */
64 /** A table to translate Rx completion flags to packet type. */
65 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
67 * The index to the array should have:
68 * bit[7] - MLX4_CQE_L2_TUNNEL
69 * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
70 * bit[5] - MLX4_CQE_STATUS_UDP
71 * bit[4] - MLX4_CQE_STATUS_TCP
72 * bit[3] - MLX4_CQE_STATUS_IPV4OPT
73 * bit[2] - MLX4_CQE_STATUS_IPV6
74 * bit[1] - MLX4_CQE_STATUS_IPF
75 * bit[0] - MLX4_CQE_STATUS_IPV4
76 * giving a total of up to 256 entries.
79 [0x00] = RTE_PTYPE_L2_ETHER,
81 [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
83 [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
85 [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
87 [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
89 [0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91 [0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
93 [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
95 [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
97 [0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
100 [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102 [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104 [0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
106 [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
108 [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
111 [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
113 [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
115 [0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
117 [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
119 [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
121 /* Tunneled - L3 IPV6 */
122 [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123 [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
125 RTE_PTYPE_INNER_L4_NONFRAG,
126 [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
128 RTE_PTYPE_INNER_L4_FRAG,
129 [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
131 RTE_PTYPE_INNER_L4_FRAG,
132 [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
133 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
134 RTE_PTYPE_INNER_L4_NONFRAG,
135 [0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
137 RTE_PTYPE_INNER_L4_FRAG,
138 [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139 RTE_PTYPE_INNER_L3_IPV4_EXT |
140 RTE_PTYPE_INNER_L4_NONFRAG,
141 [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
142 RTE_PTYPE_INNER_L3_IPV4_EXT |
143 RTE_PTYPE_INNER_L4_NONFRAG,
144 [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
145 RTE_PTYPE_INNER_L3_IPV4_EXT |
146 RTE_PTYPE_INNER_L4_FRAG,
147 [0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148 RTE_PTYPE_INNER_L3_IPV4_EXT |
149 RTE_PTYPE_INNER_L4_FRAG,
150 /* Tunneled - L3 IPV6, TCP */
151 [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
153 RTE_PTYPE_INNER_L4_TCP,
154 [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156 RTE_PTYPE_INNER_L4_TCP,
157 [0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
159 RTE_PTYPE_INNER_L4_FRAG,
160 [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
162 [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
164 /* Tunneled - L3 IPV6, UDP */
165 [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
166 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
167 RTE_PTYPE_INNER_L4_UDP,
168 [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
169 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
170 RTE_PTYPE_INNER_L4_UDP,
171 [0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
172 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173 RTE_PTYPE_INNER_L4_FRAG,
174 [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
175 RTE_PTYPE_INNER_L3_IPV4_EXT |
176 RTE_PTYPE_INNER_L4_UDP,
177 [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
178 RTE_PTYPE_INNER_L3_IPV4_EXT |
179 RTE_PTYPE_INNER_L4_UDP,
180 /* Tunneled - L3 IPV4 */
181 [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
182 [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184 RTE_PTYPE_INNER_L4_NONFRAG,
185 [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
186 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
187 RTE_PTYPE_INNER_L4_FRAG,
188 [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
189 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190 RTE_PTYPE_INNER_L4_FRAG,
191 [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
193 RTE_PTYPE_INNER_L4_NONFRAG,
194 [0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
196 RTE_PTYPE_INNER_L4_FRAG,
197 [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198 RTE_PTYPE_INNER_L3_IPV4_EXT |
199 RTE_PTYPE_INNER_L4_NONFRAG,
200 [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201 RTE_PTYPE_INNER_L3_IPV4_EXT |
202 RTE_PTYPE_INNER_L4_NONFRAG,
203 [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 RTE_PTYPE_INNER_L3_IPV4_EXT |
205 RTE_PTYPE_INNER_L4_FRAG,
206 [0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 RTE_PTYPE_INNER_L3_IPV4_EXT |
208 RTE_PTYPE_INNER_L4_FRAG,
209 /* Tunneled - L3 IPV4, TCP */
210 [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212 RTE_PTYPE_INNER_L4_TCP,
213 [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
215 RTE_PTYPE_INNER_L4_TCP,
216 [0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
218 RTE_PTYPE_INNER_L4_FRAG,
219 [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220 RTE_PTYPE_INNER_L3_IPV4_EXT |
221 RTE_PTYPE_INNER_L4_TCP,
222 [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
223 RTE_PTYPE_INNER_L3_IPV4_EXT |
224 RTE_PTYPE_INNER_L4_TCP,
225 /* Tunneled - L3 IPV4, UDP */
226 [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
227 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
228 RTE_PTYPE_INNER_L4_UDP,
229 [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
230 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
231 RTE_PTYPE_INNER_L4_UDP,
232 [0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
234 RTE_PTYPE_INNER_L4_FRAG,
235 [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
236 RTE_PTYPE_INNER_L3_IPV4_EXT |
237 RTE_PTYPE_INNER_L4_UDP,
238 [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239 RTE_PTYPE_INNER_L3_IPV4_EXT |
240 RTE_PTYPE_INNER_L4_UDP,
244 * Stamp TXBB burst so it won't be reused by the HW.
246 * Routine is used when freeing WQE used by the chip or when failing
247 * building an WQ entry has failed leaving partial information on the queue.
250 * Pointer to the SQ structure.
252 * Pointer to the first TXBB to stamp.
254 * Pointer to the followed end TXBB to stamp.
257 * Stamping burst size in byte units.
260 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
261 volatile uint32_t *end)
263 uint32_t stamp = sq->stamp;
264 int32_t size = (intptr_t)end - (intptr_t)start;
266 MLX4_ASSERT(start != end);
267 /* Hold SQ ring wrap around. */
269 size = (int32_t)sq->size + size;
272 start += MLX4_SQ_STAMP_DWORDS;
273 } while (start != (volatile uint32_t *)sq->eob);
274 start = (volatile uint32_t *)sq->buf;
275 /* Flip invalid stamping ownership. */
276 stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
283 start += MLX4_SQ_STAMP_DWORDS;
284 } while (start != end);
285 return (uint32_t)size;
289 * Manage Tx completions.
291 * When sending a burst, mlx4_tx_burst() posts several WRs.
292 * To improve performance, a completion event is only required once every
293 * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
294 * for other WRs, but this information would not be used anyway.
297 * Pointer to Tx queue structure.
299 * Tx elements number mask.
301 * Pointer to the SQ structure.
304 mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
307 unsigned int elts_tail = txq->elts_tail;
308 struct mlx4_cq *cq = &txq->mcq;
309 volatile struct mlx4_cqe *cqe;
311 uint32_t cons_index = cq->cons_index;
312 volatile uint32_t *first_txbb;
315 * Traverse over all CQ entries reported and handle each WQ entry
319 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
320 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
321 !!(cons_index & cq->cqe_cnt)))
323 #ifdef RTE_LIBRTE_MLX4_DEBUG
325 * Make sure we read the CQE after we read the ownership bit.
328 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
329 MLX4_CQE_OPCODE_ERROR)) {
330 volatile struct mlx4_err_cqe *cqe_err =
331 (volatile struct mlx4_err_cqe *)cqe;
332 ERROR("%p CQE error - vendor syndrome: 0x%x"
334 (void *)txq, cqe_err->vendor_err,
338 #endif /* RTE_LIBRTE_MLX4_DEBUG */
341 completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
342 if (unlikely(!completed))
344 /* First stamping address is the end of the last one. */
345 first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
346 elts_tail += completed;
347 /* The new tail element holds the end address. */
348 sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
349 (&(*txq->elts)[elts_tail & elts_m])->eocb);
350 /* Update CQ consumer index. */
351 cq->cons_index = cons_index;
352 *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
353 txq->elts_tail = elts_tail;
357 * Write Tx data segment to the SQ.
360 * Pointer to data segment in SQ.
362 * Memory region lkey.
366 * Big endian bytes count of the data to send.
369 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
370 uint32_t lkey, uintptr_t addr, rte_be32_t byte_count)
372 dseg->addr = rte_cpu_to_be_64(addr);
374 #if RTE_CACHE_LINE_SIZE < 64
376 * Need a barrier here before writing the byte_count
377 * fields to make sure that all the data is visible
378 * before the byte_count field is set.
379 * Otherwise, if the segment begins a new cacheline,
380 * the HCA prefetcher could grab the 64-byte chunk and
381 * get a valid (!= 0xffffffff) byte count but stale
382 * data, and end up sending the wrong data.
385 #endif /* RTE_CACHE_LINE_SIZE */
386 dseg->byte_count = byte_count;
390 * Obtain and calculate TSO information needed for assembling a TSO WQE.
393 * Pointer to the first packet mbuf.
395 * Pointer to Tx queue structure.
397 * Pointer to a structure to fill the info with.
400 * 0 on success, negative value upon error.
403 mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
405 struct tso_info *tinfo)
407 struct mlx4_sq *sq = &txq->msq;
408 const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
409 (buf->ol_flags & PKT_TX_TUNNEL_MASK);
411 tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
413 tinfo->tso_header_size +=
414 buf->outer_l2_len + buf->outer_l3_len;
415 if (unlikely(buf->tso_segsz == 0 ||
416 tinfo->tso_header_size == 0 ||
417 tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
418 tinfo->tso_header_size > buf->data_len))
421 * Calculate the WQE TSO segment size
423 * 1. An LSO segment must be padded such that the subsequent data
424 * segment is 16-byte aligned.
425 * 2. The start address of the TSO segment is always 16 Bytes aligned.
427 tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
428 tinfo->tso_header_size,
429 sizeof(struct mlx4_wqe_data_seg));
430 tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
431 tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
434 RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
436 /* Validate WQE size and WQE space in the send queue. */
437 if (sq->remain_size < tinfo->wqe_size ||
438 tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
441 tinfo->pv = (struct pv *)txq->bounce_buf;
442 tinfo->pv_counter = 0;
447 * Fill the TSO WQE data segments with info on buffers to transmit .
450 * Pointer to the first packet mbuf.
452 * Pointer to Tx queue structure.
454 * Pointer to TSO info to use.
456 * Pointer to the first data segment in the TSO WQE.
458 * Pointer to the control segment in the TSO WQE.
461 * 0 on success, negative value upon error.
463 static inline volatile struct mlx4_wqe_ctrl_seg *
464 mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
466 struct tso_info *tinfo,
467 volatile struct mlx4_wqe_data_seg *dseg,
468 volatile struct mlx4_wqe_ctrl_seg *ctrl)
471 int nb_segs = buf->nb_segs;
473 struct mlx4_sq *sq = &txq->msq;
474 struct rte_mbuf *sbuf = buf;
475 struct pv *pv = tinfo->pv;
476 int *pv_counter = &tinfo->pv_counter;
477 volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
478 (volatile struct mlx4_wqe_ctrl_seg *)
479 ((volatile uint8_t *)ctrl + tinfo->wqe_size);
480 uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
481 uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
482 tinfo->tso_header_size);
485 /* how many dseg entries do we have in the current TXBB ? */
486 nb_segs_txbb = (MLX4_TXBB_SIZE -
487 ((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
489 switch (nb_segs_txbb) {
490 #ifdef RTE_LIBRTE_MLX4_DEBUG
492 /* Should never happen. */
493 rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
494 (void *)txq, nb_segs_txbb);
495 /* rte_panic never returns. */
497 #endif /* RTE_LIBRTE_MLX4_DEBUG */
499 /* Memory region key for this memory pool. */
500 lkey = mlx4_tx_mb2mr(txq, sbuf);
501 if (unlikely(lkey == (uint32_t)-1))
503 dseg->addr = rte_cpu_to_be_64(data_addr);
506 * This data segment starts at the beginning of a new
507 * TXBB, so we need to postpone its byte_count writing
510 pv[*pv_counter].dseg = dseg;
512 * Zero length segment is treated as inline segment
515 pv[(*pv_counter)++].val =
516 rte_cpu_to_be_32(data_len ?
521 /* Prepare next buf info */
524 data_len = sbuf->data_len;
525 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
528 lkey = mlx4_tx_mb2mr(txq, sbuf);
529 if (unlikely(lkey == (uint32_t)-1))
531 mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
532 rte_cpu_to_be_32(data_len ?
537 /* Prepare next buf info */
540 data_len = sbuf->data_len;
541 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
544 lkey = mlx4_tx_mb2mr(txq, sbuf);
545 if (unlikely(lkey == (uint32_t)-1))
547 mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
548 rte_cpu_to_be_32(data_len ?
553 /* Prepare next buf info */
556 data_len = sbuf->data_len;
557 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
560 lkey = mlx4_tx_mb2mr(txq, sbuf);
561 if (unlikely(lkey == (uint32_t)-1))
563 mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
564 rte_cpu_to_be_32(data_len ?
569 /* Prepare next buf info */
572 data_len = sbuf->data_len;
573 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
576 /* Wrap dseg if it points at the end of the queue. */
577 if ((volatile uint8_t *)dseg >= sq->eob)
578 dseg = (volatile struct mlx4_wqe_data_seg *)
579 ((volatile uint8_t *)dseg - sq->size);
586 * Fill the packet's l2, l3 and l4 headers to the WQE.
588 * This will be used as the header for each TSO segment that is transmitted.
591 * Pointer to the first packet mbuf.
593 * Pointer to Tx queue structure.
595 * Pointer to TSO info to use.
597 * Pointer to the control segment in the TSO WQE.
600 * 0 on success, negative value upon error.
602 static inline volatile struct mlx4_wqe_data_seg *
603 mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
605 struct tso_info *tinfo,
606 volatile struct mlx4_wqe_ctrl_seg *ctrl)
608 volatile struct mlx4_wqe_lso_seg *tseg =
609 (volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
610 struct mlx4_sq *sq = &txq->msq;
611 struct pv *pv = tinfo->pv;
612 int *pv_counter = &tinfo->pv_counter;
613 int remain_size = tinfo->tso_header_size;
614 char *from = rte_pktmbuf_mtod(buf, char *);
615 uint16_t txbb_avail_space;
616 /* Union to overcome volatile constraints when copying TSO header. */
618 volatile uint8_t *vto;
620 } thdr = { .vto = (volatile uint8_t *)tseg->header, };
623 * TSO data always starts at offset 20 from the beginning of the TXBB
624 * (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
625 * we can write the first 44 TSO header bytes without worry for TxQ
626 * wrapping or overwriting the first TXBB 32bit word.
628 txbb_avail_space = MLX4_TXBB_SIZE -
629 (sizeof(struct mlx4_wqe_ctrl_seg) +
630 sizeof(struct mlx4_wqe_lso_seg));
631 while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
632 /* Copy to end of txbb. */
633 rte_memcpy(thdr.to, from, txbb_avail_space);
634 from += txbb_avail_space;
635 thdr.to += txbb_avail_space;
636 /* New TXBB, Check for TxQ wrap. */
637 if (thdr.to >= sq->eob)
639 /* New TXBB, stash the first 32bits for later use. */
640 pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
641 pv[(*pv_counter)++].val = *(uint32_t *)from,
642 from += sizeof(uint32_t);
643 thdr.to += sizeof(uint32_t);
644 remain_size -= txbb_avail_space + sizeof(uint32_t);
645 /* Avail space in new TXBB is TXBB size - 4 */
646 txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
648 if (remain_size > txbb_avail_space) {
649 rte_memcpy(thdr.to, from, txbb_avail_space);
650 from += txbb_avail_space;
651 thdr.to += txbb_avail_space;
652 remain_size -= txbb_avail_space;
653 /* New TXBB, Check for TxQ wrap. */
654 if (thdr.to >= sq->eob)
656 pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
657 rte_memcpy(&pv[*pv_counter].val, from, remain_size);
659 } else if (remain_size) {
660 rte_memcpy(thdr.to, from, remain_size);
662 tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
663 tinfo->tso_header_size);
664 /* Calculate data segment location */
665 return (volatile struct mlx4_wqe_data_seg *)
666 ((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
670 * Write data segments and header for TSO uni/multi segment packet.
673 * Pointer to the first packet mbuf.
675 * Pointer to Tx queue structure.
677 * Pointer to the WQE control segment.
680 * Pointer to the next WQE control segment on success, NULL otherwise.
682 static volatile struct mlx4_wqe_ctrl_seg *
683 mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
684 volatile struct mlx4_wqe_ctrl_seg *ctrl)
686 volatile struct mlx4_wqe_data_seg *dseg;
687 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
688 struct mlx4_sq *sq = &txq->msq;
689 struct tso_info tinfo;
694 ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
697 dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
698 if (unlikely(dseg == NULL))
700 if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
701 dseg = (volatile struct mlx4_wqe_data_seg *)
702 ((uintptr_t)dseg - sq->size);
703 ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
704 if (unlikely(ctrl_next == NULL))
706 /* Write the first DWORD of each TXBB save earlier. */
707 if (likely(tinfo.pv_counter)) {
709 pv_counter = tinfo.pv_counter;
710 /* Need a barrier here before writing the first TXBB word. */
714 *pv[pv_counter].dst = pv[pv_counter].val;
715 } while (pv_counter > 0);
717 ctrl->fence_size = tinfo.fence_size;
718 sq->remain_size -= tinfo.wqe_size;
721 txq->stats.odropped++;
726 * Write data segments of multi-segment packet.
729 * Pointer to the first packet mbuf.
731 * Pointer to Tx queue structure.
733 * Pointer to the WQE control segment.
736 * Pointer to the next WQE control segment on success, NULL otherwise.
738 static volatile struct mlx4_wqe_ctrl_seg *
739 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
740 volatile struct mlx4_wqe_ctrl_seg *ctrl)
742 struct pv *pv = (struct pv *)txq->bounce_buf;
743 struct mlx4_sq *sq = &txq->msq;
744 struct rte_mbuf *sbuf = buf;
747 int nb_segs = buf->nb_segs;
749 volatile struct mlx4_wqe_data_seg *dseg =
750 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
752 ctrl->fence_size = 1 + nb_segs;
753 wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
755 /* Validate WQE size and WQE space in the send queue. */
756 if (sq->remain_size < wqe_size ||
757 wqe_size > MLX4_MAX_WQE_SIZE)
760 * Fill the data segments with buffer information.
761 * First WQE TXBB head segment is always control segment,
762 * so jump to tail TXBB data segments code for the first
763 * WQE data segments filling.
767 /* Memory region key (big endian) for this memory pool. */
768 lkey = mlx4_tx_mb2mr(txq, sbuf);
769 if (unlikely(lkey == (uint32_t)-1)) {
770 DEBUG("%p: unable to get MP <-> MR association",
774 /* Handle WQE wraparound. */
776 (volatile struct mlx4_wqe_data_seg *)sq->eob)
777 dseg = (volatile struct mlx4_wqe_data_seg *)
779 dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
782 * This data segment starts at the beginning of a new
783 * TXBB, so we need to postpone its byte_count writing
786 pv[pv_counter].dseg = dseg;
788 * Zero length segment is treated as inline segment
791 pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
792 sbuf->data_len : 0x80000000);
797 /* Jump to default if there are more than two segments remaining. */
800 lkey = mlx4_tx_mb2mr(txq, sbuf);
801 if (unlikely(lkey == (uint32_t)-1)) {
802 DEBUG("%p: unable to get MP <-> MR association",
806 mlx4_fill_tx_data_seg(dseg, lkey,
807 rte_pktmbuf_mtod(sbuf, uintptr_t),
808 rte_cpu_to_be_32(sbuf->data_len ?
816 lkey = mlx4_tx_mb2mr(txq, sbuf);
817 if (unlikely(lkey == (uint32_t)-1)) {
818 DEBUG("%p: unable to get MP <-> MR association",
822 mlx4_fill_tx_data_seg(dseg, lkey,
823 rte_pktmbuf_mtod(sbuf, uintptr_t),
824 rte_cpu_to_be_32(sbuf->data_len ?
832 lkey = mlx4_tx_mb2mr(txq, sbuf);
833 if (unlikely(lkey == (uint32_t)-1)) {
834 DEBUG("%p: unable to get MP <-> MR association",
838 mlx4_fill_tx_data_seg(dseg, lkey,
839 rte_pktmbuf_mtod(sbuf, uintptr_t),
840 rte_cpu_to_be_32(sbuf->data_len ?
853 /* Write the first DWORD of each TXBB save earlier. */
855 /* Need a barrier here before writing the byte_count. */
857 for (--pv_counter; pv_counter >= 0; pv_counter--)
858 pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
860 sq->remain_size -= wqe_size;
861 /* Align next WQE address to the next TXBB. */
862 return (volatile struct mlx4_wqe_ctrl_seg *)
863 ((volatile uint8_t *)ctrl + wqe_size);
867 * DPDK callback for Tx.
870 * Generic pointer to Tx queue structure.
872 * Packets to transmit.
874 * Number of packets in array.
877 * Number of packets successfully transmitted (<= pkts_n).
880 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
882 struct txq *txq = (struct txq *)dpdk_txq;
883 unsigned int elts_head = txq->elts_head;
884 const unsigned int elts_n = txq->elts_n;
885 const unsigned int elts_m = elts_n - 1;
886 unsigned int bytes_sent = 0;
888 unsigned int max = elts_head - txq->elts_tail;
889 struct mlx4_sq *sq = &txq->msq;
890 volatile struct mlx4_wqe_ctrl_seg *ctrl;
893 MLX4_ASSERT(txq->elts_comp_cd != 0);
894 if (likely(max >= txq->elts_comp_cd_init))
895 mlx4_txq_complete(txq, elts_m, sq);
897 MLX4_ASSERT(max >= 1);
898 MLX4_ASSERT(max <= elts_n);
899 /* Always leave one free entry in the ring. */
903 elt = &(*txq->elts)[elts_head & elts_m];
904 /* First Tx burst element saves the next WQE control segment. */
906 for (i = 0; (i != max); ++i) {
907 struct rte_mbuf *buf = pkts[i];
908 struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
909 uint32_t owner_opcode = sq->owner_opcode;
910 volatile struct mlx4_wqe_data_seg *dseg =
911 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
912 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
918 bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);
920 /* Clean up old buffer. */
921 if (likely(elt->buf != NULL)) {
922 struct rte_mbuf *tmp = elt->buf;
924 #ifdef RTE_LIBRTE_MLX4_DEBUG
926 memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
928 /* Faster than rte_pktmbuf_free(). */
930 struct rte_mbuf *next = tmp->next;
932 rte_pktmbuf_free_seg(tmp);
934 } while (tmp != NULL);
936 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
938 /* Change opcode to TSO */
939 owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
940 owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
941 ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
946 } else if (buf->nb_segs == 1) {
947 /* Validate WQE space in the send queue. */
948 if (sq->remain_size < MLX4_TXBB_SIZE) {
952 lkey = mlx4_tx_mb2mr(txq, buf);
953 if (unlikely(lkey == (uint32_t)-1)) {
954 /* MR does not exist. */
955 DEBUG("%p: unable to get MP <-> MR association",
960 mlx4_fill_tx_data_seg(dseg++, lkey,
961 rte_pktmbuf_mtod(buf, uintptr_t),
962 rte_cpu_to_be_32(buf->data_len));
963 /* Set WQE size in 16-byte units. */
964 ctrl->fence_size = 0x2;
965 sq->remain_size -= MLX4_TXBB_SIZE;
966 /* Align next WQE address to the next TXBB. */
967 ctrl_next = ctrl + 0x4;
969 ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
975 /* Hold SQ ring wrap around. */
976 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
977 ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
978 ((volatile uint8_t *)ctrl_next - sq->size);
979 /* Flip HW valid ownership. */
980 sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
983 * For raw Ethernet, the SOLICIT flag is used to indicate
984 * that no ICRC should be calculated.
986 if (--txq->elts_comp_cd == 0) {
987 /* Save the completion burst end address. */
988 elt_next->eocb = (volatile uint32_t *)ctrl_next;
989 txq->elts_comp_cd = txq->elts_comp_cd_init;
990 srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
991 MLX4_WQE_CTRL_CQ_UPDATE);
993 srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
995 /* Enable HW checksum offload if requested */
998 (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
999 const uint64_t is_tunneled = (buf->ol_flags &
1000 (PKT_TX_TUNNEL_GRE |
1001 PKT_TX_TUNNEL_VXLAN));
1003 if (is_tunneled && txq->csum_l2tun) {
1004 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
1005 MLX4_WQE_CTRL_IL4_HDR_CSUM;
1006 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
1008 RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
1011 RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
1012 MLX4_WQE_CTRL_TCP_UDP_CSUM);
1017 * Copy destination MAC address to the WQE, this allows
1018 * loopback in eSwitch, so that VFs and PF can
1019 * communicate with each other.
1021 srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
1022 ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
1027 ctrl->srcrb_flags = srcrb.flags;
1029 * Make sure descriptor is fully written before
1030 * setting ownership bit (because HW can start
1031 * executing as soon as we do).
1034 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
1036 bytes_sent += buf->pkt_len;
1040 /* Take a shortcut if nothing must be sent. */
1041 if (unlikely(i == 0))
1043 /* Save WQE address of the next Tx burst element. */
1045 /* Increment send statistics counters. */
1046 txq->stats.opackets += i;
1047 txq->stats.obytes += bytes_sent;
1048 /* Make sure that descriptors are written before doorbell record. */
1050 /* Ring QP doorbell. */
1051 rte_write32(txq->msq.doorbell_qpn, MLX4_TX_BFREG(txq));
1052 txq->elts_head += i;
1057 * Translate Rx completion flags to packet type.
1063 * Packet type for struct rte_mbuf.
1065 static inline uint32_t
1066 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
1067 uint32_t l2tun_offload)
1070 uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
1071 uint32_t status = rte_be_to_cpu_32(cqe->status);
1074 * The index to the array should have:
1075 * bit[7] - MLX4_CQE_L2_TUNNEL
1076 * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
1078 if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
1079 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
1080 ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
1082 * The index to the array should have:
1083 * bit[5] - MLX4_CQE_STATUS_UDP
1084 * bit[4] - MLX4_CQE_STATUS_TCP
1085 * bit[3] - MLX4_CQE_STATUS_IPV4OPT
1086 * bit[2] - MLX4_CQE_STATUS_IPV6
1087 * bit[1] - MLX4_CQE_STATUS_IPF
1088 * bit[0] - MLX4_CQE_STATUS_IPV4
1089 * giving a total of up to 256 entries.
1091 idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
1092 if (status & MLX4_CQE_STATUS_IPV6)
1093 idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
1094 return mlx4_ptype_table[idx];
1098 * Translate Rx completion flags to offload flags.
1101 * Rx completion flags returned by mlx4_cqe_flags().
1103 * Whether Rx checksums are enabled.
1105 * Whether Rx L2 tunnel checksums are enabled.
1108 * Offload flags (ol_flags) in mbuf format.
1110 static inline uint32_t
1111 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
1113 uint32_t ol_flags = 0;
1117 mlx4_transpose(flags,
1118 MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
1119 PKT_RX_IP_CKSUM_GOOD) |
1120 mlx4_transpose(flags,
1121 MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
1122 PKT_RX_L4_CKSUM_GOOD);
1123 if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
1125 mlx4_transpose(flags,
1126 MLX4_CQE_L2_TUNNEL_IPOK,
1127 PKT_RX_IP_CKSUM_GOOD) |
1128 mlx4_transpose(flags,
1129 MLX4_CQE_L2_TUNNEL_L4_CSUM,
1130 PKT_RX_L4_CKSUM_GOOD);
1135 * Extract checksum information from CQE flags.
1138 * Pointer to CQE structure.
1140 * Whether Rx checksums are enabled.
1142 * Whether Rx L2 tunnel checksums are enabled.
1145 * CQE checksum information.
1147 static inline uint32_t
1148 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
1153 * The relevant bits are in different locations on their
1154 * CQE fields therefore we can join them in one 32bit
1158 flags = (rte_be_to_cpu_32(cqe->status) &
1159 MLX4_CQE_STATUS_IPV4_CSUM_OK);
1161 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
1162 (MLX4_CQE_L2_TUNNEL |
1163 MLX4_CQE_L2_TUNNEL_IPOK |
1164 MLX4_CQE_L2_TUNNEL_L4_CSUM |
1165 MLX4_CQE_L2_TUNNEL_IPV4));
1170 * Poll one CQE from CQ.
1173 * Pointer to the receive queue structure.
1178 * Number of bytes of the CQE, 0 in case there is no completion.
1181 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
1184 volatile struct mlx4_cqe *cqe = NULL;
1185 struct mlx4_cq *cq = &rxq->mcq;
1187 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
1188 if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
1189 !!(cq->cons_index & cq->cqe_cnt))
1192 * Make sure we read CQ entry contents after we've checked the
1196 MLX4_ASSERT(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
1197 MLX4_ASSERT((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
1198 MLX4_CQE_OPCODE_ERROR);
1199 ret = rte_be_to_cpu_32(cqe->byte_cnt);
1207 * DPDK callback for Rx with scattered packets support.
1210 * Generic pointer to Rx queue structure.
1212 * Array to store received packets.
1214 * Maximum number of packets in array.
1217 * Number of packets successfully received (<= pkts_n).
1220 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1222 struct rxq *rxq = dpdk_rxq;
1223 const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
1224 const uint16_t sges_n = rxq->sges_n;
1225 struct rte_mbuf *pkt = NULL;
1226 struct rte_mbuf *seg = NULL;
1228 uint32_t rq_ci = rxq->rq_ci << sges_n;
1232 volatile struct mlx4_cqe *cqe;
1233 uint32_t idx = rq_ci & wr_cnt;
1234 struct rte_mbuf *rep = (*rxq->elts)[idx];
1235 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
1237 /* Update the 'next' pointer of the previous segment. */
1242 rte_prefetch0(scat);
1243 rep = rte_mbuf_raw_alloc(rxq->mp);
1244 if (unlikely(rep == NULL)) {
1245 ++rxq->stats.rx_nombuf;
1248 * No buffers before we even started,
1249 * bail out silently.
1253 while (pkt != seg) {
1254 MLX4_ASSERT(pkt != (*rxq->elts)[idx]);
1258 rte_mbuf_raw_free(pkt);
1264 /* Looking for the new packet. */
1265 len = mlx4_cq_poll_one(rxq, &cqe);
1267 rte_mbuf_raw_free(rep);
1270 if (unlikely(len < 0)) {
1271 /* Rx error, packet is likely too large. */
1272 rte_mbuf_raw_free(rep);
1273 ++rxq->stats.idropped;
1277 MLX4_ASSERT(len >= (rxq->crc_present << 2));
1278 /* Update packet information. */
1280 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
1281 pkt->ol_flags = PKT_RX_RSS_HASH;
1282 pkt->hash.rss = cqe->immed_rss_invalid;
1283 if (rxq->crc_present)
1284 len -= RTE_ETHER_CRC_LEN;
1286 if (rxq->csum | rxq->csum_l2tun) {
1293 rxq_cq_to_ol_flags(flags,
1299 rep->port = rxq->port_id;
1300 rep->data_len = seg->data_len;
1301 rep->data_off = seg->data_off;
1302 (*rxq->elts)[idx] = rep;
1304 * Fill NIC descriptor with the new buffer. The lkey and size
1305 * of the buffers are already known, only the buffer address
1308 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1309 /* If there's only one MR, no need to replace LKey in WQE. */
1310 if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1311 scat->lkey = mlx4_rx_mb2mr(rxq, rep);
1312 if (len > seg->data_len) {
1313 len -= seg->data_len;
1318 /* The last segment. */
1319 seg->data_len = len;
1320 /* Increment bytes counter. */
1321 rxq->stats.ibytes += pkt->pkt_len;
1322 /* Return packet. */
1328 /* Align consumer index to the next stride. */
1333 if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1335 /* Update the consumer index. */
1336 rxq->rq_ci = rq_ci >> sges_n;
1338 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1339 *rxq->mcq.set_ci_db =
1340 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1341 /* Increment packets counter. */
1342 rxq->stats.ipackets += i;
1347 * Dummy DPDK callback for Tx.
1349 * This function is used to temporarily replace the real callback during
1350 * unsafe control operations on the queue, or in case of error.
1353 * Generic pointer to Tx queue structure.
1355 * Packets to transmit.
1357 * Number of packets in array.
1360 * Number of packets successfully transmitted (<= pkts_n).
1363 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1373 * Dummy DPDK callback for Rx.
1375 * This function is used to temporarily replace the real callback during
1376 * unsafe control operations on the queue, or in case of error.
1379 * Generic pointer to Rx queue structure.
1381 * Array to store received packets.
1383 * Maximum number of packets in array.
1386 * Number of packets successfully received (<= pkts_n).
1389 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)