c924de7a51e644b607029ef9d802b4b654d6c596
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 #define WQE_ONE_DATA_SEG_SIZE \
65         (sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))
66
67 /**
68  * Pointer-value pair structure used in tx_post_send for saving the first
69  * DWORD (32 byte) of a TXBB.
70  */
71 struct pv {
72         volatile struct mlx4_wqe_data_seg *dseg;
73         uint32_t val;
74 };
75
76 /** A table to translate Rx completion flags to packet type. */
77 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
78         /*
79          * The index to the array should have:
80          *  bit[7] - MLX4_CQE_L2_TUNNEL
81          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
82          *  bit[5] - MLX4_CQE_STATUS_UDP
83          *  bit[4] - MLX4_CQE_STATUS_TCP
84          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
85          *  bit[2] - MLX4_CQE_STATUS_IPV6
86          *  bit[1] - MLX4_CQE_STATUS_IPV4F
87          *  bit[0] - MLX4_CQE_STATUS_IPV4
88          * giving a total of up to 256 entries.
89          */
90         [0x00] = RTE_PTYPE_L2_ETHER,
91         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
92         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG,
94         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
95                      RTE_PTYPE_L4_FRAG,
96         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
97         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
98         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
99                      RTE_PTYPE_L4_FRAG,
100         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_TCP,
102         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_TCP,
104         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_TCP,
106         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
107                      RTE_PTYPE_L4_TCP,
108         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
109                      RTE_PTYPE_L4_TCP,
110         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
111                      RTE_PTYPE_L4_TCP,
112         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
113                      RTE_PTYPE_L4_UDP,
114         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_UDP,
116         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_UDP,
118         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
119                      RTE_PTYPE_L4_UDP,
120         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
121                      RTE_PTYPE_L4_UDP,
122         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
123                      RTE_PTYPE_L4_UDP,
124         /* Tunneled - L3 IPV6 */
125         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
126         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
128         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L4_FRAG,
134         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
136         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
137                      RTE_PTYPE_INNER_L3_IPV4_EXT,
138         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L3_IPV4_EXT,
140         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
142         /* Tunneled - L3 IPV6, TCP */
143         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_TCP,
146         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_FRAG |
149                      RTE_PTYPE_INNER_L4_TCP,
150         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L4_FRAG |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT |
162                      RTE_PTYPE_INNER_L4_TCP,
163         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
165                      RTE_PTYPE_INNER_L4_TCP,
166         /* Tunneled - L3 IPV6, UDP */
167         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_UDP,
170         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L4_FRAG |
173                      RTE_PTYPE_INNER_L4_UDP,
174         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L4_FRAG |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT |
186                      RTE_PTYPE_INNER_L4_UDP,
187         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
189                      RTE_PTYPE_INNER_L4_UDP,
190         /* Tunneled - L3 IPV4 */
191         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
192         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
194         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L4_FRAG,
200         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
202         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203                      RTE_PTYPE_INNER_L3_IPV4_EXT,
204         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L3_IPV4_EXT,
206         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT |
208                      RTE_PTYPE_INNER_L4_FRAG,
209         /* Tunneled - L3 IPV4, TCP */
210         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_TCP,
216         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L4_FRAG |
219                      RTE_PTYPE_INNER_L4_TCP,
220         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
221                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L4_FRAG |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT |
232                      RTE_PTYPE_INNER_L4_TCP,
233         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
234                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
235                      RTE_PTYPE_INNER_L4_TCP,
236         /* Tunneled - L3 IPV4, UDP */
237         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_UDP,
243         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
244                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L4_FRAG |
246                      RTE_PTYPE_INNER_L4_UDP,
247         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
248                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L4_FRAG |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
253                      RTE_PTYPE_INNER_L4_UDP,
254         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
255                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
256         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
257                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
258         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
259                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
260                      RTE_PTYPE_INNER_L4_UDP,
261 };
262
263 /**
264  * Stamp a WQE so it won't be reused by the HW.
265  *
266  * Routine is used when freeing WQE used by the chip or when failing
267  * building an WQ entry has failed leaving partial information on the queue.
268  *
269  * @param sq
270  *   Pointer to the SQ structure.
271  * @param index
272  *   Index of the freed WQE.
273  * @param num_txbbs
274  *   Number of blocks to stamp.
275  *   If < 0 the routine will use the size written in the WQ entry.
276  * @param owner
277  *   The value of the WQE owner bit to use in the stamp.
278  *
279  * @return
280  *   The number of Tx basic blocs (TXBB) the WQE contained.
281  */
282 static int
283 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
284 {
285         uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
286                                           (!!owner << MLX4_SQ_STAMP_SHIFT));
287         volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
288                                                 (index & sq->txbb_cnt_mask));
289         volatile uint32_t *ptr = (volatile uint32_t *)wqe;
290         int i;
291         int txbbs_size;
292         int num_txbbs;
293
294         /* Extract the size from the control segment of the WQE. */
295         num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
296                                          wqe)->fence_size & 0x3f) << 4);
297         txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
298         /* Optimize the common case when there is no wrap-around. */
299         if (wqe + txbbs_size <= sq->eob) {
300                 /* Stamp the freed descriptor. */
301                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
302                         *ptr = stamp;
303                         ptr += MLX4_SQ_STAMP_DWORDS;
304                 }
305         } else {
306                 /* Stamp the freed descriptor. */
307                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
308                         *ptr = stamp;
309                         ptr += MLX4_SQ_STAMP_DWORDS;
310                         if ((volatile uint8_t *)ptr >= sq->eob) {
311                                 ptr = (volatile uint32_t *)sq->buf;
312                                 stamp ^= RTE_BE32(0x80000000);
313                         }
314                 }
315         }
316         return num_txbbs;
317 }
318
319 /**
320  * Manage Tx completions.
321  *
322  * When sending a burst, mlx4_tx_burst() posts several WRs.
323  * To improve performance, a completion event is only required once every
324  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
325  * for other WRs, but this information would not be used anyway.
326  *
327  * @param txq
328  *   Pointer to Tx queue structure.
329  *
330  * @return
331  *   0 on success, -1 on failure.
332  */
333 static int
334 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
335                                   struct mlx4_sq *sq)
336 {
337         unsigned int elts_comp = txq->elts_comp;
338         unsigned int elts_tail = txq->elts_tail;
339         unsigned int sq_tail = sq->tail;
340         struct mlx4_cq *cq = &txq->mcq;
341         volatile struct mlx4_cqe *cqe;
342         uint32_t cons_index = cq->cons_index;
343         uint16_t new_index;
344         uint16_t nr_txbbs = 0;
345         int pkts = 0;
346
347         /*
348          * Traverse over all CQ entries reported and handle each WQ entry
349          * reported by them.
350          */
351         do {
352                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
353                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
354                     !!(cons_index & cq->cqe_cnt)))
355                         break;
356                 /*
357                  * Make sure we read the CQE after we read the ownership bit.
358                  */
359                 rte_io_rmb();
360 #ifndef NDEBUG
361                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
362                              MLX4_CQE_OPCODE_ERROR)) {
363                         volatile struct mlx4_err_cqe *cqe_err =
364                                 (volatile struct mlx4_err_cqe *)cqe;
365                         ERROR("%p CQE error - vendor syndrome: 0x%x"
366                               " syndrome: 0x%x\n",
367                               (void *)txq, cqe_err->vendor_err,
368                               cqe_err->syndrome);
369                 }
370 #endif /* NDEBUG */
371                 /* Get WQE index reported in the CQE. */
372                 new_index =
373                         rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
374                 do {
375                         /* Free next descriptor. */
376                         sq_tail += nr_txbbs;
377                         nr_txbbs =
378                                 mlx4_txq_stamp_freed_wqe(sq,
379                                      sq_tail & sq->txbb_cnt_mask,
380                                      !!(sq_tail & sq->txbb_cnt));
381                         pkts++;
382                 } while ((sq_tail & sq->txbb_cnt_mask) != new_index);
383                 cons_index++;
384         } while (1);
385         if (unlikely(pkts == 0))
386                 return 0;
387         /* Update CQ. */
388         cq->cons_index = cons_index;
389         *cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
390         sq->tail = sq_tail + nr_txbbs;
391         /* Update the list of packets posted for transmission. */
392         elts_comp -= pkts;
393         assert(elts_comp <= txq->elts_comp);
394         /*
395          * Assume completion status is successful as nothing can be done about
396          * it anyway.
397          */
398         elts_tail += pkts;
399         if (elts_tail >= elts_n)
400                 elts_tail -= elts_n;
401         txq->elts_tail = elts_tail;
402         txq->elts_comp = elts_comp;
403         return 0;
404 }
405
406 /**
407  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
408  * the cloned mbuf is allocated is returned instead.
409  *
410  * @param buf
411  *   Pointer to mbuf.
412  *
413  * @return
414  *   Memory pool where data is located for given mbuf.
415  */
416 static struct rte_mempool *
417 mlx4_txq_mb2mp(struct rte_mbuf *buf)
418 {
419         if (unlikely(RTE_MBUF_INDIRECT(buf)))
420                 return rte_mbuf_from_indirect(buf)->pool;
421         return buf->pool;
422 }
423
424 static int
425 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
426                    volatile struct mlx4_wqe_ctrl_seg **pctrl)
427 {
428         int wqe_real_size;
429         int nr_txbbs;
430         struct pv *pv = (struct pv *)txq->bounce_buf;
431         struct mlx4_sq *sq = &txq->msq;
432         uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
433         volatile struct mlx4_wqe_ctrl_seg *ctrl;
434         volatile struct mlx4_wqe_data_seg *dseg;
435         struct rte_mbuf *sbuf;
436         uint32_t lkey;
437         uintptr_t addr;
438         uint32_t byte_count;
439         int pv_counter = 0;
440
441         /* Calculate the needed work queue entry size for this packet. */
442         wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
443                 buf->nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
444         nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
445         /*
446          * Check that there is room for this WQE in the send queue and that
447          * the WQE size is legal.
448          */
449         if (((sq->head - sq->tail) + nr_txbbs +
450                                 sq->headroom_txbbs) >= sq->txbb_cnt ||
451                         nr_txbbs > MLX4_MAX_WQE_TXBBS) {
452                 return -1;
453         }
454         /* Get the control and data entries of the WQE. */
455         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
456                         mlx4_get_send_wqe(sq, head_idx);
457         dseg = (volatile struct mlx4_wqe_data_seg *)
458                         ((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
459         *pctrl = ctrl;
460         /* Fill the data segments with buffer information. */
461         for (sbuf = buf; sbuf != NULL; sbuf = sbuf->next, dseg++) {
462                 addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
463                 rte_prefetch0((volatile void *)addr);
464                 /* Memory region key (big endian) for this memory pool. */
465                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
466                 dseg->lkey = rte_cpu_to_be_32(lkey);
467                 /* Calculate the needed work queue entry size for this packet */
468                 if (unlikely(lkey == rte_cpu_to_be_32((uint32_t)-1))) {
469                         /* MR does not exist. */
470                         DEBUG("%p: unable to get MP <-> MR association",
471                               (void *)txq);
472                         return -1;
473                 }
474                 if (likely(sbuf->data_len)) {
475                         byte_count = rte_cpu_to_be_32(sbuf->data_len);
476                 } else {
477                         /*
478                          * Zero length segment is treated as inline segment
479                          * with zero data.
480                          */
481                         byte_count = RTE_BE32(0x80000000);
482                 }
483                 /*
484                  * If the data segment is not at the beginning of a
485                  * Tx basic block (TXBB) then write the byte count,
486                  * else postpone the writing to just before updating the
487                  * control segment.
488                  */
489                 if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
490                         dseg->addr = rte_cpu_to_be_64(addr);
491                         dseg->lkey = rte_cpu_to_be_32(lkey);
492 #if RTE_CACHE_LINE_SIZE < 64
493                         /*
494                          * Need a barrier here before writing the byte_count
495                          * fields to make sure that all the data is visible
496                          * before the byte_count field is set.
497                          * Otherwise, if the segment begins a new cacheline,
498                          * the HCA prefetcher could grab the 64-byte chunk and
499                          * get a valid (!= 0xffffffff) byte count but stale
500                          * data, and end up sending the wrong data.
501                          */
502                         rte_io_wmb();
503 #endif /* RTE_CACHE_LINE_SIZE */
504                         dseg->byte_count = byte_count;
505                 } else {
506                         /*
507                          * This data segment starts at the beginning of a new
508                          * TXBB, so we need to postpone its byte_count writing
509                          * for later.
510                          */
511                         /* Handle WQE wraparound. */
512                         if (dseg >=
513                             (volatile struct mlx4_wqe_data_seg *)sq->eob)
514                                 dseg = (volatile struct mlx4_wqe_data_seg *)
515                                         sq->buf;
516                         dseg->addr = rte_cpu_to_be_64(addr);
517                         dseg->lkey = rte_cpu_to_be_32(lkey);
518                         pv[pv_counter].dseg = dseg;
519                         pv[pv_counter++].val = byte_count;
520                 }
521         }
522         /* Write the first DWORD of each TXBB save earlier. */
523         if (pv_counter) {
524                 /* Need a barrier here before writing the byte_count. */
525                 rte_io_wmb();
526                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
527                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
528         }
529         /* Fill the control parameters for this packet. */
530         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
531         return nr_txbbs;
532 }
533
534 /**
535  * DPDK callback for Tx.
536  *
537  * @param dpdk_txq
538  *   Generic pointer to Tx queue structure.
539  * @param[in] pkts
540  *   Packets to transmit.
541  * @param pkts_n
542  *   Number of packets in array.
543  *
544  * @return
545  *   Number of packets successfully transmitted (<= pkts_n).
546  */
547 uint16_t
548 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
549 {
550         struct txq *txq = (struct txq *)dpdk_txq;
551         unsigned int elts_head = txq->elts_head;
552         const unsigned int elts_n = txq->elts_n;
553         unsigned int bytes_sent = 0;
554         unsigned int i;
555         unsigned int max;
556         struct mlx4_sq *sq = &txq->msq;
557         int nr_txbbs;
558
559         assert(txq->elts_comp_cd != 0);
560         if (likely(txq->elts_comp != 0))
561                 mlx4_txq_complete(txq, elts_n, sq);
562         max = (elts_n - (elts_head - txq->elts_tail));
563         if (max > elts_n)
564                 max -= elts_n;
565         assert(max >= 1);
566         assert(max <= elts_n);
567         /* Always leave one free entry in the ring. */
568         --max;
569         if (max > pkts_n)
570                 max = pkts_n;
571         for (i = 0; (i != max); ++i) {
572                 struct rte_mbuf *buf = pkts[i];
573                 unsigned int elts_head_next =
574                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
575                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
576                 struct txq_elt *elt = &(*txq->elts)[elts_head];
577                 uint32_t owner_opcode = MLX4_OPCODE_SEND;
578                 volatile struct mlx4_wqe_ctrl_seg *ctrl;
579                 volatile struct mlx4_wqe_data_seg *dseg;
580                 union {
581                         uint32_t flags;
582                         uint16_t flags16[2];
583                 } srcrb;
584                 uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
585                 uint32_t lkey;
586                 uintptr_t addr;
587
588                 /* Clean up old buffer. */
589                 if (likely(elt->buf != NULL)) {
590                         struct rte_mbuf *tmp = elt->buf;
591
592 #ifndef NDEBUG
593                         /* Poisoning. */
594                         memset(elt, 0x66, sizeof(*elt));
595 #endif
596                         /* Faster than rte_pktmbuf_free(). */
597                         do {
598                                 struct rte_mbuf *next = tmp->next;
599
600                                 rte_pktmbuf_free_seg(tmp);
601                                 tmp = next;
602                         } while (tmp != NULL);
603                 }
604                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
605                 if (buf->nb_segs == 1) {
606                         /*
607                          * Check that there is room for this WQE in the send
608                          * queue and that the WQE size is legal
609                          */
610                         if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
611                              sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
612                                 elt->buf = NULL;
613                                 break;
614                         }
615                         /* Get the control and data entries of the WQE. */
616                         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
617                                         mlx4_get_send_wqe(sq, head_idx);
618                         dseg = (volatile struct mlx4_wqe_data_seg *)
619                                         ((uintptr_t)ctrl +
620                                         sizeof(struct mlx4_wqe_ctrl_seg));
621                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
622                         rte_prefetch0((volatile void *)addr);
623                         dseg->addr = rte_cpu_to_be_64(addr);
624                         /* Memory region key (big endian). */
625                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
626                         dseg->lkey = rte_cpu_to_be_32(lkey);
627                         if (unlikely(dseg->lkey ==
628                                 rte_cpu_to_be_32((uint32_t)-1))) {
629                                 /* MR does not exist. */
630                                 DEBUG("%p: unable to get MP <-> MR association",
631                                       (void *)txq);
632                                 elt->buf = NULL;
633                                 break;
634                         }
635                         /* Never be TXBB aligned, no need compiler barrier. */
636                         dseg->byte_count = rte_cpu_to_be_32(buf->data_len);
637                         /* Fill the control parameters for this packet. */
638                         ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
639                         nr_txbbs = 1;
640                 } else {
641                         nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
642                         if (nr_txbbs < 0) {
643                                 elt->buf = NULL;
644                                 break;
645                         }
646                 }
647                 /*
648                  * For raw Ethernet, the SOLICIT flag is used to indicate
649                  * that no ICRC should be calculated.
650                  */
651                 txq->elts_comp_cd -= nr_txbbs;
652                 if (unlikely(txq->elts_comp_cd <= 0)) {
653                         txq->elts_comp_cd = txq->elts_comp_cd_init;
654                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
655                                                MLX4_WQE_CTRL_CQ_UPDATE);
656                 } else {
657                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
658                 }
659                 /* Enable HW checksum offload if requested */
660                 if (txq->csum &&
661                     (buf->ol_flags &
662                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
663                         const uint64_t is_tunneled = (buf->ol_flags &
664                                                       (PKT_TX_TUNNEL_GRE |
665                                                        PKT_TX_TUNNEL_VXLAN));
666
667                         if (is_tunneled && txq->csum_l2tun) {
668                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
669                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
670                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
671                                         srcrb.flags |=
672                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
673                         } else {
674                                 srcrb.flags |=
675                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
676                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
677                         }
678                 }
679                 if (txq->lb) {
680                         /*
681                          * Copy destination MAC address to the WQE, this allows
682                          * loopback in eSwitch, so that VFs and PF can
683                          * communicate with each other.
684                          */
685                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
686                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
687                                               sizeof(uint16_t)));
688                 } else {
689                         ctrl->imm = 0;
690                 }
691                 ctrl->srcrb_flags = srcrb.flags;
692                 /*
693                  * Make sure descriptor is fully written before
694                  * setting ownership bit (because HW can start
695                  * executing as soon as we do).
696                  */
697                 rte_io_wmb();
698                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
699                                               ((sq->head & sq->txbb_cnt) ?
700                                                        MLX4_BIT_WQE_OWN : 0));
701                 sq->head += nr_txbbs;
702                 elt->buf = buf;
703                 bytes_sent += buf->pkt_len;
704                 elts_head = elts_head_next;
705         }
706         /* Take a shortcut if nothing must be sent. */
707         if (unlikely(i == 0))
708                 return 0;
709         /* Increment send statistics counters. */
710         txq->stats.opackets += i;
711         txq->stats.obytes += bytes_sent;
712         /* Make sure that descriptors are written before doorbell record. */
713         rte_wmb();
714         /* Ring QP doorbell. */
715         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
716         txq->elts_head = elts_head;
717         txq->elts_comp += i;
718         return i;
719 }
720
721 /**
722  * Translate Rx completion flags to packet type.
723  *
724  * @param[in] cqe
725  *   Pointer to CQE.
726  *
727  * @return
728  *   Packet type for struct rte_mbuf.
729  */
730 static inline uint32_t
731 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
732                    uint32_t l2tun_offload)
733 {
734         uint8_t idx = 0;
735         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
736         uint32_t status = rte_be_to_cpu_32(cqe->status);
737
738         /*
739          * The index to the array should have:
740          *  bit[7] - MLX4_CQE_L2_TUNNEL
741          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
742          */
743         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
744                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
745                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
746         /*
747          * The index to the array should have:
748          *  bit[5] - MLX4_CQE_STATUS_UDP
749          *  bit[4] - MLX4_CQE_STATUS_TCP
750          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
751          *  bit[2] - MLX4_CQE_STATUS_IPV6
752          *  bit[1] - MLX4_CQE_STATUS_IPV4F
753          *  bit[0] - MLX4_CQE_STATUS_IPV4
754          * giving a total of up to 256 entries.
755          */
756         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
757         return mlx4_ptype_table[idx];
758 }
759
760 /**
761  * Translate Rx completion flags to offload flags.
762  *
763  * @param flags
764  *   Rx completion flags returned by mlx4_cqe_flags().
765  * @param csum
766  *   Whether Rx checksums are enabled.
767  * @param csum_l2tun
768  *   Whether Rx L2 tunnel checksums are enabled.
769  *
770  * @return
771  *   Offload flags (ol_flags) in mbuf format.
772  */
773 static inline uint32_t
774 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
775 {
776         uint32_t ol_flags = 0;
777
778         if (csum)
779                 ol_flags |=
780                         mlx4_transpose(flags,
781                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
782                                        PKT_RX_IP_CKSUM_GOOD) |
783                         mlx4_transpose(flags,
784                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
785                                        PKT_RX_L4_CKSUM_GOOD);
786         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
787                 ol_flags |=
788                         mlx4_transpose(flags,
789                                        MLX4_CQE_L2_TUNNEL_IPOK,
790                                        PKT_RX_IP_CKSUM_GOOD) |
791                         mlx4_transpose(flags,
792                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
793                                        PKT_RX_L4_CKSUM_GOOD);
794         return ol_flags;
795 }
796
797 /**
798  * Extract checksum information from CQE flags.
799  *
800  * @param cqe
801  *   Pointer to CQE structure.
802  * @param csum
803  *   Whether Rx checksums are enabled.
804  * @param csum_l2tun
805  *   Whether Rx L2 tunnel checksums are enabled.
806  *
807  * @return
808  *   CQE checksum information.
809  */
810 static inline uint32_t
811 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
812 {
813         uint32_t flags = 0;
814
815         /*
816          * The relevant bits are in different locations on their
817          * CQE fields therefore we can join them in one 32bit
818          * variable.
819          */
820         if (csum)
821                 flags = (rte_be_to_cpu_32(cqe->status) &
822                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
823         if (csum_l2tun)
824                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
825                           (MLX4_CQE_L2_TUNNEL |
826                            MLX4_CQE_L2_TUNNEL_IPOK |
827                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
828                            MLX4_CQE_L2_TUNNEL_IPV4));
829         return flags;
830 }
831
832 /**
833  * Poll one CQE from CQ.
834  *
835  * @param rxq
836  *   Pointer to the receive queue structure.
837  * @param[out] out
838  *   Just polled CQE.
839  *
840  * @return
841  *   Number of bytes of the CQE, 0 in case there is no completion.
842  */
843 static unsigned int
844 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
845 {
846         int ret = 0;
847         volatile struct mlx4_cqe *cqe = NULL;
848         struct mlx4_cq *cq = &rxq->mcq;
849
850         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
851         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
852             !!(cq->cons_index & cq->cqe_cnt))
853                 goto out;
854         /*
855          * Make sure we read CQ entry contents after we've checked the
856          * ownership bit.
857          */
858         rte_rmb();
859         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
860         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
861                MLX4_CQE_OPCODE_ERROR);
862         ret = rte_be_to_cpu_32(cqe->byte_cnt);
863         ++cq->cons_index;
864 out:
865         *out = cqe;
866         return ret;
867 }
868
869 /**
870  * DPDK callback for Rx with scattered packets support.
871  *
872  * @param dpdk_rxq
873  *   Generic pointer to Rx queue structure.
874  * @param[out] pkts
875  *   Array to store received packets.
876  * @param pkts_n
877  *   Maximum number of packets in array.
878  *
879  * @return
880  *   Number of packets successfully received (<= pkts_n).
881  */
882 uint16_t
883 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
884 {
885         struct rxq *rxq = dpdk_rxq;
886         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
887         const uint16_t sges_n = rxq->sges_n;
888         struct rte_mbuf *pkt = NULL;
889         struct rte_mbuf *seg = NULL;
890         unsigned int i = 0;
891         uint32_t rq_ci = rxq->rq_ci << sges_n;
892         int len = 0;
893
894         while (pkts_n) {
895                 volatile struct mlx4_cqe *cqe;
896                 uint32_t idx = rq_ci & wr_cnt;
897                 struct rte_mbuf *rep = (*rxq->elts)[idx];
898                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
899
900                 /* Update the 'next' pointer of the previous segment. */
901                 if (pkt)
902                         seg->next = rep;
903                 seg = rep;
904                 rte_prefetch0(seg);
905                 rte_prefetch0(scat);
906                 rep = rte_mbuf_raw_alloc(rxq->mp);
907                 if (unlikely(rep == NULL)) {
908                         ++rxq->stats.rx_nombuf;
909                         if (!pkt) {
910                                 /*
911                                  * No buffers before we even started,
912                                  * bail out silently.
913                                  */
914                                 break;
915                         }
916                         while (pkt != seg) {
917                                 assert(pkt != (*rxq->elts)[idx]);
918                                 rep = pkt->next;
919                                 pkt->next = NULL;
920                                 pkt->nb_segs = 1;
921                                 rte_mbuf_raw_free(pkt);
922                                 pkt = rep;
923                         }
924                         break;
925                 }
926                 if (!pkt) {
927                         /* Looking for the new packet. */
928                         len = mlx4_cq_poll_one(rxq, &cqe);
929                         if (!len) {
930                                 rte_mbuf_raw_free(rep);
931                                 break;
932                         }
933                         if (unlikely(len < 0)) {
934                                 /* Rx error, packet is likely too large. */
935                                 rte_mbuf_raw_free(rep);
936                                 ++rxq->stats.idropped;
937                                 goto skip;
938                         }
939                         pkt = seg;
940                         /* Update packet information. */
941                         pkt->packet_type =
942                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
943                         pkt->ol_flags = PKT_RX_RSS_HASH;
944                         pkt->hash.rss = cqe->immed_rss_invalid;
945                         pkt->pkt_len = len;
946                         if (rxq->csum | rxq->csum_l2tun) {
947                                 uint32_t flags =
948                                         mlx4_cqe_flags(cqe,
949                                                        rxq->csum,
950                                                        rxq->csum_l2tun);
951
952                                 pkt->ol_flags =
953                                         rxq_cq_to_ol_flags(flags,
954                                                            rxq->csum,
955                                                            rxq->csum_l2tun);
956                         }
957                 }
958                 rep->nb_segs = 1;
959                 rep->port = rxq->port_id;
960                 rep->data_len = seg->data_len;
961                 rep->data_off = seg->data_off;
962                 (*rxq->elts)[idx] = rep;
963                 /*
964                  * Fill NIC descriptor with the new buffer. The lkey and size
965                  * of the buffers are already known, only the buffer address
966                  * changes.
967                  */
968                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
969                 if (len > seg->data_len) {
970                         len -= seg->data_len;
971                         ++pkt->nb_segs;
972                         ++rq_ci;
973                         continue;
974                 }
975                 /* The last segment. */
976                 seg->data_len = len;
977                 /* Increment bytes counter. */
978                 rxq->stats.ibytes += pkt->pkt_len;
979                 /* Return packet. */
980                 *(pkts++) = pkt;
981                 pkt = NULL;
982                 --pkts_n;
983                 ++i;
984 skip:
985                 /* Align consumer index to the next stride. */
986                 rq_ci >>= sges_n;
987                 ++rq_ci;
988                 rq_ci <<= sges_n;
989         }
990         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
991                 return 0;
992         /* Update the consumer index. */
993         rxq->rq_ci = rq_ci >> sges_n;
994         rte_wmb();
995         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
996         *rxq->mcq.set_ci_db =
997                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
998         /* Increment packets counter. */
999         rxq->stats.ipackets += i;
1000         return i;
1001 }
1002
1003 /**
1004  * Dummy DPDK callback for Tx.
1005  *
1006  * This function is used to temporarily replace the real callback during
1007  * unsafe control operations on the queue, or in case of error.
1008  *
1009  * @param dpdk_txq
1010  *   Generic pointer to Tx queue structure.
1011  * @param[in] pkts
1012  *   Packets to transmit.
1013  * @param pkts_n
1014  *   Number of packets in array.
1015  *
1016  * @return
1017  *   Number of packets successfully transmitted (<= pkts_n).
1018  */
1019 uint16_t
1020 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1021 {
1022         (void)dpdk_txq;
1023         (void)pkts;
1024         (void)pkts_n;
1025         return 0;
1026 }
1027
1028 /**
1029  * Dummy DPDK callback for Rx.
1030  *
1031  * This function is used to temporarily replace the real callback during
1032  * unsafe control operations on the queue, or in case of error.
1033  *
1034  * @param dpdk_rxq
1035  *   Generic pointer to Rx queue structure.
1036  * @param[out] pkts
1037  *   Array to store received packets.
1038  * @param pkts_n
1039  *   Maximum number of packets in array.
1040  *
1041  * @return
1042  *   Number of packets successfully received (<= pkts_n).
1043  */
1044 uint16_t
1045 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1046 {
1047         (void)dpdk_rxq;
1048         (void)pkts;
1049         (void)pkts_n;
1050         return 0;
1051 }