net/mlx4: fix Tx packet drop application report
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 #define WQE_ONE_DATA_SEG_SIZE \
65         (sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))
66
67 /**
68  * Pointer-value pair structure used in tx_post_send for saving the first
69  * DWORD (32 byte) of a TXBB.
70  */
71 struct pv {
72         volatile struct mlx4_wqe_data_seg *dseg;
73         uint32_t val;
74 };
75
76 /** A table to translate Rx completion flags to packet type. */
77 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
78         /*
79          * The index to the array should have:
80          *  bit[7] - MLX4_CQE_L2_TUNNEL
81          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
82          *  bit[5] - MLX4_CQE_STATUS_UDP
83          *  bit[4] - MLX4_CQE_STATUS_TCP
84          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
85          *  bit[2] - MLX4_CQE_STATUS_IPV6
86          *  bit[1] - MLX4_CQE_STATUS_IPV4F
87          *  bit[0] - MLX4_CQE_STATUS_IPV4
88          * giving a total of up to 256 entries.
89          */
90         [0x00] = RTE_PTYPE_L2_ETHER,
91         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
92         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG,
94         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
95                      RTE_PTYPE_L4_FRAG,
96         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
97         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
98         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
99                      RTE_PTYPE_L4_FRAG,
100         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_TCP,
102         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_TCP,
104         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_TCP,
106         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
107                      RTE_PTYPE_L4_TCP,
108         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
109                      RTE_PTYPE_L4_TCP,
110         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
111                      RTE_PTYPE_L4_TCP,
112         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
113                      RTE_PTYPE_L4_UDP,
114         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_UDP,
116         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_UDP,
118         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
119                      RTE_PTYPE_L4_UDP,
120         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
121                      RTE_PTYPE_L4_UDP,
122         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
123                      RTE_PTYPE_L4_UDP,
124         /* Tunneled - L3 IPV6 */
125         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
126         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
128         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L4_FRAG,
134         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
136         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
137                      RTE_PTYPE_INNER_L3_IPV4_EXT,
138         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L3_IPV4_EXT,
140         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
142         /* Tunneled - L3 IPV6, TCP */
143         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_TCP,
146         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_FRAG |
149                      RTE_PTYPE_INNER_L4_TCP,
150         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L4_FRAG |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT |
162                      RTE_PTYPE_INNER_L4_TCP,
163         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
165                      RTE_PTYPE_INNER_L4_TCP,
166         /* Tunneled - L3 IPV6, UDP */
167         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_UDP,
170         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L4_FRAG |
173                      RTE_PTYPE_INNER_L4_UDP,
174         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L4_FRAG |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT |
186                      RTE_PTYPE_INNER_L4_UDP,
187         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
189                      RTE_PTYPE_INNER_L4_UDP,
190         /* Tunneled - L3 IPV4 */
191         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
192         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
194         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L4_FRAG,
200         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
202         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203                      RTE_PTYPE_INNER_L3_IPV4_EXT,
204         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L3_IPV4_EXT,
206         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT |
208                      RTE_PTYPE_INNER_L4_FRAG,
209         /* Tunneled - L3 IPV4, TCP */
210         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_TCP,
216         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L4_FRAG |
219                      RTE_PTYPE_INNER_L4_TCP,
220         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
221                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L4_FRAG |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT |
232                      RTE_PTYPE_INNER_L4_TCP,
233         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
234                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
235                      RTE_PTYPE_INNER_L4_TCP,
236         /* Tunneled - L3 IPV4, UDP */
237         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_UDP,
243         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
244                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L4_FRAG |
246                      RTE_PTYPE_INNER_L4_UDP,
247         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
248                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L4_FRAG |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
253                      RTE_PTYPE_INNER_L4_UDP,
254         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
255                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
256         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
257                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
258         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
259                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
260                      RTE_PTYPE_INNER_L4_UDP,
261 };
262
263 /**
264  * Stamp a WQE so it won't be reused by the HW.
265  *
266  * Routine is used when freeing WQE used by the chip or when failing
267  * building an WQ entry has failed leaving partial information on the queue.
268  *
269  * @param sq
270  *   Pointer to the SQ structure.
271  * @param index
272  *   Index of the freed WQE.
273  * @param num_txbbs
274  *   Number of blocks to stamp.
275  *   If < 0 the routine will use the size written in the WQ entry.
276  * @param owner
277  *   The value of the WQE owner bit to use in the stamp.
278  *
279  * @return
280  *   The number of Tx basic blocs (TXBB) the WQE contained.
281  */
282 static int
283 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
284 {
285         uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
286                                           (!!owner << MLX4_SQ_STAMP_SHIFT));
287         volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
288                                                 (index & sq->txbb_cnt_mask));
289         volatile uint32_t *ptr = (volatile uint32_t *)wqe;
290         int i;
291         int txbbs_size;
292         int num_txbbs;
293
294         /* Extract the size from the control segment of the WQE. */
295         num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
296                                          wqe)->fence_size & 0x3f) << 4);
297         txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
298         /* Optimize the common case when there is no wrap-around. */
299         if (wqe + txbbs_size <= sq->eob) {
300                 /* Stamp the freed descriptor. */
301                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
302                         *ptr = stamp;
303                         ptr += MLX4_SQ_STAMP_DWORDS;
304                 }
305         } else {
306                 /* Stamp the freed descriptor. */
307                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
308                         *ptr = stamp;
309                         ptr += MLX4_SQ_STAMP_DWORDS;
310                         if ((volatile uint8_t *)ptr >= sq->eob) {
311                                 ptr = (volatile uint32_t *)sq->buf;
312                                 stamp ^= RTE_BE32(0x80000000);
313                         }
314                 }
315         }
316         return num_txbbs;
317 }
318
319 /**
320  * Manage Tx completions.
321  *
322  * When sending a burst, mlx4_tx_burst() posts several WRs.
323  * To improve performance, a completion event is only required once every
324  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
325  * for other WRs, but this information would not be used anyway.
326  *
327  * @param txq
328  *   Pointer to Tx queue structure.
329  *
330  * @return
331  *   0 on success, -1 on failure.
332  */
333 static int
334 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
335                                   struct mlx4_sq *sq)
336 {
337         unsigned int elts_comp = txq->elts_comp;
338         unsigned int elts_tail = txq->elts_tail;
339         unsigned int sq_tail = sq->tail;
340         struct mlx4_cq *cq = &txq->mcq;
341         volatile struct mlx4_cqe *cqe;
342         uint32_t cons_index = cq->cons_index;
343         uint16_t new_index;
344         uint16_t nr_txbbs = 0;
345         int pkts = 0;
346
347         /*
348          * Traverse over all CQ entries reported and handle each WQ entry
349          * reported by them.
350          */
351         do {
352                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
353                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
354                     !!(cons_index & cq->cqe_cnt)))
355                         break;
356                 /*
357                  * Make sure we read the CQE after we read the ownership bit.
358                  */
359                 rte_io_rmb();
360 #ifndef NDEBUG
361                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
362                              MLX4_CQE_OPCODE_ERROR)) {
363                         volatile struct mlx4_err_cqe *cqe_err =
364                                 (volatile struct mlx4_err_cqe *)cqe;
365                         ERROR("%p CQE error - vendor syndrome: 0x%x"
366                               " syndrome: 0x%x\n",
367                               (void *)txq, cqe_err->vendor_err,
368                               cqe_err->syndrome);
369                 }
370 #endif /* NDEBUG */
371                 /* Get WQE index reported in the CQE. */
372                 new_index =
373                         rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
374                 do {
375                         /* Free next descriptor. */
376                         sq_tail += nr_txbbs;
377                         nr_txbbs =
378                                 mlx4_txq_stamp_freed_wqe(sq,
379                                      sq_tail & sq->txbb_cnt_mask,
380                                      !!(sq_tail & sq->txbb_cnt));
381                         pkts++;
382                 } while ((sq_tail & sq->txbb_cnt_mask) != new_index);
383                 cons_index++;
384         } while (1);
385         if (unlikely(pkts == 0))
386                 return 0;
387         /* Update CQ. */
388         cq->cons_index = cons_index;
389         *cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
390         sq->tail = sq_tail + nr_txbbs;
391         /* Update the list of packets posted for transmission. */
392         elts_comp -= pkts;
393         assert(elts_comp <= txq->elts_comp);
394         /*
395          * Assume completion status is successful as nothing can be done about
396          * it anyway.
397          */
398         elts_tail += pkts;
399         if (elts_tail >= elts_n)
400                 elts_tail -= elts_n;
401         txq->elts_tail = elts_tail;
402         txq->elts_comp = elts_comp;
403         return 0;
404 }
405
406 /**
407  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
408  * the cloned mbuf is allocated is returned instead.
409  *
410  * @param buf
411  *   Pointer to mbuf.
412  *
413  * @return
414  *   Memory pool where data is located for given mbuf.
415  */
416 static struct rte_mempool *
417 mlx4_txq_mb2mp(struct rte_mbuf *buf)
418 {
419         if (unlikely(RTE_MBUF_INDIRECT(buf)))
420                 return rte_mbuf_from_indirect(buf)->pool;
421         return buf->pool;
422 }
423
424 static int
425 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
426                    volatile struct mlx4_wqe_ctrl_seg **pctrl)
427 {
428         int wqe_real_size;
429         int nr_txbbs;
430         struct pv *pv = (struct pv *)txq->bounce_buf;
431         struct mlx4_sq *sq = &txq->msq;
432         uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
433         volatile struct mlx4_wqe_ctrl_seg *ctrl;
434         volatile struct mlx4_wqe_data_seg *dseg;
435         struct rte_mbuf *sbuf;
436         uint32_t lkey;
437         uintptr_t addr;
438         uint32_t byte_count;
439         int pv_counter = 0;
440
441         /* Calculate the needed work queue entry size for this packet. */
442         wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
443                 buf->nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
444         nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
445         /*
446          * Check that there is room for this WQE in the send queue and that
447          * the WQE size is legal.
448          */
449         if (((sq->head - sq->tail) + nr_txbbs +
450                                 sq->headroom_txbbs) >= sq->txbb_cnt ||
451                         nr_txbbs > MLX4_MAX_WQE_TXBBS) {
452                 return -1;
453         }
454         /* Get the control and data entries of the WQE. */
455         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
456                         mlx4_get_send_wqe(sq, head_idx);
457         dseg = (volatile struct mlx4_wqe_data_seg *)
458                         ((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
459         *pctrl = ctrl;
460         /* Fill the data segments with buffer information. */
461         for (sbuf = buf; sbuf != NULL; sbuf = sbuf->next, dseg++) {
462                 addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
463                 rte_prefetch0((volatile void *)addr);
464                 /* Handle WQE wraparound. */
465                 if (dseg >= (volatile struct mlx4_wqe_data_seg *)sq->eob)
466                         dseg = (volatile struct mlx4_wqe_data_seg *)sq->buf;
467                 dseg->addr = rte_cpu_to_be_64(addr);
468                 /* Memory region key (big endian) for this memory pool. */
469                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
470                 dseg->lkey = rte_cpu_to_be_32(lkey);
471                 /* Calculate the needed work queue entry size for this packet */
472                 if (unlikely(dseg->lkey == rte_cpu_to_be_32((uint32_t)-1))) {
473                         /* MR does not exist. */
474                         DEBUG("%p: unable to get MP <-> MR association",
475                                         (void *)txq);
476                         /*
477                          * Restamp entry in case of failure.
478                          * Make sure that size is written correctly
479                          * Note that we give ownership to the SW, not the HW.
480                          */
481                         wqe_real_size = sizeof(struct mlx4_wqe_ctrl_seg) +
482                                 buf->nb_segs * sizeof(struct mlx4_wqe_data_seg);
483                         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
484                         mlx4_txq_stamp_freed_wqe(sq, head_idx,
485                                         (sq->head & sq->txbb_cnt) ? 0 : 1);
486                         return -1;
487                 }
488                 if (likely(sbuf->data_len)) {
489                         byte_count = rte_cpu_to_be_32(sbuf->data_len);
490                 } else {
491                         /*
492                          * Zero length segment is treated as inline segment
493                          * with zero data.
494                          */
495                         byte_count = RTE_BE32(0x80000000);
496                 }
497                 /*
498                  * If the data segment is not at the beginning of a
499                  * Tx basic block (TXBB) then write the byte count,
500                  * else postpone the writing to just before updating the
501                  * control segment.
502                  */
503                 if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
504 #if RTE_CACHE_LINE_SIZE < 64
505                         /*
506                          * Need a barrier here before writing the byte_count
507                          * fields to make sure that all the data is visible
508                          * before the byte_count field is set.
509                          * Otherwise, if the segment begins a new cacheline,
510                          * the HCA prefetcher could grab the 64-byte chunk and
511                          * get a valid (!= 0xffffffff) byte count but stale
512                          * data, and end up sending the wrong data.
513                          */
514                         rte_io_wmb();
515 #endif /* RTE_CACHE_LINE_SIZE */
516                         dseg->byte_count = byte_count;
517                 } else {
518                         /*
519                          * This data segment starts at the beginning of a new
520                          * TXBB, so we need to postpone its byte_count writing
521                          * for later.
522                          */
523                         pv[pv_counter].dseg = dseg;
524                         pv[pv_counter++].val = byte_count;
525                 }
526         }
527         /* Write the first DWORD of each TXBB save earlier. */
528         if (pv_counter) {
529                 /* Need a barrier here before writing the byte_count. */
530                 rte_io_wmb();
531                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
532                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
533         }
534         /* Fill the control parameters for this packet. */
535         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
536         return nr_txbbs;
537 }
538
539 /**
540  * DPDK callback for Tx.
541  *
542  * @param dpdk_txq
543  *   Generic pointer to Tx queue structure.
544  * @param[in] pkts
545  *   Packets to transmit.
546  * @param pkts_n
547  *   Number of packets in array.
548  *
549  * @return
550  *   Number of packets successfully transmitted (<= pkts_n).
551  */
552 uint16_t
553 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
554 {
555         struct txq *txq = (struct txq *)dpdk_txq;
556         unsigned int elts_head = txq->elts_head;
557         const unsigned int elts_n = txq->elts_n;
558         unsigned int bytes_sent = 0;
559         unsigned int i;
560         unsigned int max;
561         struct mlx4_sq *sq = &txq->msq;
562         int nr_txbbs;
563
564         assert(txq->elts_comp_cd != 0);
565         if (likely(txq->elts_comp != 0))
566                 mlx4_txq_complete(txq, elts_n, sq);
567         max = (elts_n - (elts_head - txq->elts_tail));
568         if (max > elts_n)
569                 max -= elts_n;
570         assert(max >= 1);
571         assert(max <= elts_n);
572         /* Always leave one free entry in the ring. */
573         --max;
574         if (max > pkts_n)
575                 max = pkts_n;
576         for (i = 0; (i != max); ++i) {
577                 struct rte_mbuf *buf = pkts[i];
578                 unsigned int elts_head_next =
579                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
580                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
581                 struct txq_elt *elt = &(*txq->elts)[elts_head];
582                 uint32_t owner_opcode = MLX4_OPCODE_SEND;
583                 volatile struct mlx4_wqe_ctrl_seg *ctrl;
584                 volatile struct mlx4_wqe_data_seg *dseg;
585                 union {
586                         uint32_t flags;
587                         uint16_t flags16[2];
588                 } srcrb;
589                 uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
590                 uint32_t lkey;
591                 uintptr_t addr;
592
593                 /* Clean up old buffer. */
594                 if (likely(elt->buf != NULL)) {
595                         struct rte_mbuf *tmp = elt->buf;
596
597 #ifndef NDEBUG
598                         /* Poisoning. */
599                         memset(elt, 0x66, sizeof(*elt));
600 #endif
601                         /* Faster than rte_pktmbuf_free(). */
602                         do {
603                                 struct rte_mbuf *next = tmp->next;
604
605                                 rte_pktmbuf_free_seg(tmp);
606                                 tmp = next;
607                         } while (tmp != NULL);
608                 }
609                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
610                 if (buf->nb_segs == 1) {
611                         /*
612                          * Check that there is room for this WQE in the send
613                          * queue and that the WQE size is legal
614                          */
615                         if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
616                              sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
617                                 elt->buf = NULL;
618                                 break;
619                         }
620                         /* Get the control and data entries of the WQE. */
621                         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
622                                         mlx4_get_send_wqe(sq, head_idx);
623                         dseg = (volatile struct mlx4_wqe_data_seg *)
624                                         ((uintptr_t)ctrl +
625                                         sizeof(struct mlx4_wqe_ctrl_seg));
626                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
627                         rte_prefetch0((volatile void *)addr);
628                         /* Handle WQE wraparound. */
629                         if (dseg >=
630                                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
631                                 dseg = (volatile struct mlx4_wqe_data_seg *)
632                                                 sq->buf;
633                         dseg->addr = rte_cpu_to_be_64(addr);
634                         /* Memory region key (big endian). */
635                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
636                         dseg->lkey = rte_cpu_to_be_32(lkey);
637                         if (unlikely(dseg->lkey ==
638                                 rte_cpu_to_be_32((uint32_t)-1))) {
639                                 /* MR does not exist. */
640                                 DEBUG("%p: unable to get MP <-> MR association",
641                                       (void *)txq);
642                                 /*
643                                  * Restamp entry in case of failure.
644                                  * Make sure that size is written correctly
645                                  * Note that we give ownership to the SW,
646                                  * not the HW.
647                                  */
648                                 ctrl->fence_size =
649                                         (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
650                                 mlx4_txq_stamp_freed_wqe(sq, head_idx,
651                                              (sq->head & sq->txbb_cnt) ? 0 : 1);
652                                 elt->buf = NULL;
653                                 break;
654                         }
655                         /* Never be TXBB aligned, no need compiler barrier. */
656                         dseg->byte_count = rte_cpu_to_be_32(buf->data_len);
657                         /* Fill the control parameters for this packet. */
658                         ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
659                         nr_txbbs = 1;
660                 } else {
661                         nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
662                         if (nr_txbbs < 0) {
663                                 elt->buf = NULL;
664                                 break;
665                         }
666                 }
667                 /*
668                  * For raw Ethernet, the SOLICIT flag is used to indicate
669                  * that no ICRC should be calculated.
670                  */
671                 txq->elts_comp_cd -= nr_txbbs;
672                 if (unlikely(txq->elts_comp_cd <= 0)) {
673                         txq->elts_comp_cd = txq->elts_comp_cd_init;
674                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
675                                                MLX4_WQE_CTRL_CQ_UPDATE);
676                 } else {
677                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
678                 }
679                 /* Enable HW checksum offload if requested */
680                 if (txq->csum &&
681                     (buf->ol_flags &
682                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
683                         const uint64_t is_tunneled = (buf->ol_flags &
684                                                       (PKT_TX_TUNNEL_GRE |
685                                                        PKT_TX_TUNNEL_VXLAN));
686
687                         if (is_tunneled && txq->csum_l2tun) {
688                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
689                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
690                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
691                                         srcrb.flags |=
692                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
693                         } else {
694                                 srcrb.flags |=
695                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
696                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
697                         }
698                 }
699                 if (txq->lb) {
700                         /*
701                          * Copy destination MAC address to the WQE, this allows
702                          * loopback in eSwitch, so that VFs and PF can
703                          * communicate with each other.
704                          */
705                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
706                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
707                                               sizeof(uint16_t)));
708                 } else {
709                         ctrl->imm = 0;
710                 }
711                 ctrl->srcrb_flags = srcrb.flags;
712                 /*
713                  * Make sure descriptor is fully written before
714                  * setting ownership bit (because HW can start
715                  * executing as soon as we do).
716                  */
717                 rte_io_wmb();
718                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
719                                               ((sq->head & sq->txbb_cnt) ?
720                                                        MLX4_BIT_WQE_OWN : 0));
721                 sq->head += nr_txbbs;
722                 elt->buf = buf;
723                 bytes_sent += buf->pkt_len;
724                 elts_head = elts_head_next;
725         }
726         /* Take a shortcut if nothing must be sent. */
727         if (unlikely(i == 0))
728                 return 0;
729         /* Increment send statistics counters. */
730         txq->stats.opackets += i;
731         txq->stats.obytes += bytes_sent;
732         /* Make sure that descriptors are written before doorbell record. */
733         rte_wmb();
734         /* Ring QP doorbell. */
735         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
736         txq->elts_head = elts_head;
737         txq->elts_comp += i;
738         return i;
739 }
740
741 /**
742  * Translate Rx completion flags to packet type.
743  *
744  * @param[in] cqe
745  *   Pointer to CQE.
746  *
747  * @return
748  *   Packet type for struct rte_mbuf.
749  */
750 static inline uint32_t
751 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
752                    uint32_t l2tun_offload)
753 {
754         uint8_t idx = 0;
755         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
756         uint32_t status = rte_be_to_cpu_32(cqe->status);
757
758         /*
759          * The index to the array should have:
760          *  bit[7] - MLX4_CQE_L2_TUNNEL
761          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
762          */
763         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
764                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
765                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
766         /*
767          * The index to the array should have:
768          *  bit[5] - MLX4_CQE_STATUS_UDP
769          *  bit[4] - MLX4_CQE_STATUS_TCP
770          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
771          *  bit[2] - MLX4_CQE_STATUS_IPV6
772          *  bit[1] - MLX4_CQE_STATUS_IPV4F
773          *  bit[0] - MLX4_CQE_STATUS_IPV4
774          * giving a total of up to 256 entries.
775          */
776         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
777         return mlx4_ptype_table[idx];
778 }
779
780 /**
781  * Translate Rx completion flags to offload flags.
782  *
783  * @param flags
784  *   Rx completion flags returned by mlx4_cqe_flags().
785  * @param csum
786  *   Whether Rx checksums are enabled.
787  * @param csum_l2tun
788  *   Whether Rx L2 tunnel checksums are enabled.
789  *
790  * @return
791  *   Offload flags (ol_flags) in mbuf format.
792  */
793 static inline uint32_t
794 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
795 {
796         uint32_t ol_flags = 0;
797
798         if (csum)
799                 ol_flags |=
800                         mlx4_transpose(flags,
801                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
802                                        PKT_RX_IP_CKSUM_GOOD) |
803                         mlx4_transpose(flags,
804                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
805                                        PKT_RX_L4_CKSUM_GOOD);
806         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
807                 ol_flags |=
808                         mlx4_transpose(flags,
809                                        MLX4_CQE_L2_TUNNEL_IPOK,
810                                        PKT_RX_IP_CKSUM_GOOD) |
811                         mlx4_transpose(flags,
812                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
813                                        PKT_RX_L4_CKSUM_GOOD);
814         return ol_flags;
815 }
816
817 /**
818  * Extract checksum information from CQE flags.
819  *
820  * @param cqe
821  *   Pointer to CQE structure.
822  * @param csum
823  *   Whether Rx checksums are enabled.
824  * @param csum_l2tun
825  *   Whether Rx L2 tunnel checksums are enabled.
826  *
827  * @return
828  *   CQE checksum information.
829  */
830 static inline uint32_t
831 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
832 {
833         uint32_t flags = 0;
834
835         /*
836          * The relevant bits are in different locations on their
837          * CQE fields therefore we can join them in one 32bit
838          * variable.
839          */
840         if (csum)
841                 flags = (rte_be_to_cpu_32(cqe->status) &
842                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
843         if (csum_l2tun)
844                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
845                           (MLX4_CQE_L2_TUNNEL |
846                            MLX4_CQE_L2_TUNNEL_IPOK |
847                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
848                            MLX4_CQE_L2_TUNNEL_IPV4));
849         return flags;
850 }
851
852 /**
853  * Poll one CQE from CQ.
854  *
855  * @param rxq
856  *   Pointer to the receive queue structure.
857  * @param[out] out
858  *   Just polled CQE.
859  *
860  * @return
861  *   Number of bytes of the CQE, 0 in case there is no completion.
862  */
863 static unsigned int
864 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
865 {
866         int ret = 0;
867         volatile struct mlx4_cqe *cqe = NULL;
868         struct mlx4_cq *cq = &rxq->mcq;
869
870         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
871         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
872             !!(cq->cons_index & cq->cqe_cnt))
873                 goto out;
874         /*
875          * Make sure we read CQ entry contents after we've checked the
876          * ownership bit.
877          */
878         rte_rmb();
879         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
880         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
881                MLX4_CQE_OPCODE_ERROR);
882         ret = rte_be_to_cpu_32(cqe->byte_cnt);
883         ++cq->cons_index;
884 out:
885         *out = cqe;
886         return ret;
887 }
888
889 /**
890  * DPDK callback for Rx with scattered packets support.
891  *
892  * @param dpdk_rxq
893  *   Generic pointer to Rx queue structure.
894  * @param[out] pkts
895  *   Array to store received packets.
896  * @param pkts_n
897  *   Maximum number of packets in array.
898  *
899  * @return
900  *   Number of packets successfully received (<= pkts_n).
901  */
902 uint16_t
903 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
904 {
905         struct rxq *rxq = dpdk_rxq;
906         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
907         const uint16_t sges_n = rxq->sges_n;
908         struct rte_mbuf *pkt = NULL;
909         struct rte_mbuf *seg = NULL;
910         unsigned int i = 0;
911         uint32_t rq_ci = rxq->rq_ci << sges_n;
912         int len = 0;
913
914         while (pkts_n) {
915                 volatile struct mlx4_cqe *cqe;
916                 uint32_t idx = rq_ci & wr_cnt;
917                 struct rte_mbuf *rep = (*rxq->elts)[idx];
918                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
919
920                 /* Update the 'next' pointer of the previous segment. */
921                 if (pkt)
922                         seg->next = rep;
923                 seg = rep;
924                 rte_prefetch0(seg);
925                 rte_prefetch0(scat);
926                 rep = rte_mbuf_raw_alloc(rxq->mp);
927                 if (unlikely(rep == NULL)) {
928                         ++rxq->stats.rx_nombuf;
929                         if (!pkt) {
930                                 /*
931                                  * No buffers before we even started,
932                                  * bail out silently.
933                                  */
934                                 break;
935                         }
936                         while (pkt != seg) {
937                                 assert(pkt != (*rxq->elts)[idx]);
938                                 rep = pkt->next;
939                                 pkt->next = NULL;
940                                 pkt->nb_segs = 1;
941                                 rte_mbuf_raw_free(pkt);
942                                 pkt = rep;
943                         }
944                         break;
945                 }
946                 if (!pkt) {
947                         /* Looking for the new packet. */
948                         len = mlx4_cq_poll_one(rxq, &cqe);
949                         if (!len) {
950                                 rte_mbuf_raw_free(rep);
951                                 break;
952                         }
953                         if (unlikely(len < 0)) {
954                                 /* Rx error, packet is likely too large. */
955                                 rte_mbuf_raw_free(rep);
956                                 ++rxq->stats.idropped;
957                                 goto skip;
958                         }
959                         pkt = seg;
960                         /* Update packet information. */
961                         pkt->packet_type =
962                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
963                         pkt->ol_flags = PKT_RX_RSS_HASH;
964                         pkt->hash.rss = cqe->immed_rss_invalid;
965                         pkt->pkt_len = len;
966                         if (rxq->csum | rxq->csum_l2tun) {
967                                 uint32_t flags =
968                                         mlx4_cqe_flags(cqe,
969                                                        rxq->csum,
970                                                        rxq->csum_l2tun);
971
972                                 pkt->ol_flags =
973                                         rxq_cq_to_ol_flags(flags,
974                                                            rxq->csum,
975                                                            rxq->csum_l2tun);
976                         }
977                 }
978                 rep->nb_segs = 1;
979                 rep->port = rxq->port_id;
980                 rep->data_len = seg->data_len;
981                 rep->data_off = seg->data_off;
982                 (*rxq->elts)[idx] = rep;
983                 /*
984                  * Fill NIC descriptor with the new buffer. The lkey and size
985                  * of the buffers are already known, only the buffer address
986                  * changes.
987                  */
988                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
989                 if (len > seg->data_len) {
990                         len -= seg->data_len;
991                         ++pkt->nb_segs;
992                         ++rq_ci;
993                         continue;
994                 }
995                 /* The last segment. */
996                 seg->data_len = len;
997                 /* Increment bytes counter. */
998                 rxq->stats.ibytes += pkt->pkt_len;
999                 /* Return packet. */
1000                 *(pkts++) = pkt;
1001                 pkt = NULL;
1002                 --pkts_n;
1003                 ++i;
1004 skip:
1005                 /* Align consumer index to the next stride. */
1006                 rq_ci >>= sges_n;
1007                 ++rq_ci;
1008                 rq_ci <<= sges_n;
1009         }
1010         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1011                 return 0;
1012         /* Update the consumer index. */
1013         rxq->rq_ci = rq_ci >> sges_n;
1014         rte_wmb();
1015         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1016         *rxq->mcq.set_ci_db =
1017                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1018         /* Increment packets counter. */
1019         rxq->stats.ipackets += i;
1020         return i;
1021 }
1022
1023 /**
1024  * Dummy DPDK callback for Tx.
1025  *
1026  * This function is used to temporarily replace the real callback during
1027  * unsafe control operations on the queue, or in case of error.
1028  *
1029  * @param dpdk_txq
1030  *   Generic pointer to Tx queue structure.
1031  * @param[in] pkts
1032  *   Packets to transmit.
1033  * @param pkts_n
1034  *   Number of packets in array.
1035  *
1036  * @return
1037  *   Number of packets successfully transmitted (<= pkts_n).
1038  */
1039 uint16_t
1040 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1041 {
1042         (void)dpdk_txq;
1043         (void)pkts;
1044         (void)pkts_n;
1045         return 0;
1046 }
1047
1048 /**
1049  * Dummy DPDK callback for Rx.
1050  *
1051  * This function is used to temporarily replace the real callback during
1052  * unsafe control operations on the queue, or in case of error.
1053  *
1054  * @param dpdk_rxq
1055  *   Generic pointer to Rx queue structure.
1056  * @param[out] pkts
1057  *   Array to store received packets.
1058  * @param pkts_n
1059  *   Maximum number of packets in array.
1060  *
1061  * @return
1062  *   Number of packets successfully received (<= pkts_n).
1063  */
1064 uint16_t
1065 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1066 {
1067         (void)dpdk_rxq;
1068         (void)pkts;
1069         (void)pkts_n;
1070         return 0;
1071 }