1148db018081776da37cbf41da92c8b38f74312f
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE,
131                          MLX5_EXPANSION_IPV4,
132                          MLX5_EXPANSION_IPV6),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP,
151                          MLX5_EXPANSION_IPV4,
152                          MLX5_EXPANSION_IPV6),
153                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
154                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155                         ETH_RSS_NONFRAG_IPV6_OTHER,
156         },
157         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159                                                  MLX5_EXPANSION_VXLAN_GPE),
160                 .type = RTE_FLOW_ITEM_TYPE_UDP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162         },
163         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164                 .type = RTE_FLOW_ITEM_TYPE_TCP,
165                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166         },
167         [MLX5_EXPANSION_VXLAN] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
170         },
171         [MLX5_EXPANSION_VXLAN_GPE] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173                                                  MLX5_EXPANSION_IPV4,
174                                                  MLX5_EXPANSION_IPV6),
175                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176         },
177         [MLX5_EXPANSION_GRE] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179                 .type = RTE_FLOW_ITEM_TYPE_GRE,
180         },
181         [MLX5_EXPANSION_MPLS] = {
182                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183                                                  MLX5_EXPANSION_IPV6),
184                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
185         },
186         [MLX5_EXPANSION_ETH] = {
187                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188                                                  MLX5_EXPANSION_IPV6),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_ETH_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193                 .type = RTE_FLOW_ITEM_TYPE_ETH,
194         },
195         [MLX5_EXPANSION_VLAN] = {
196                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197                                                  MLX5_EXPANSION_IPV6),
198                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
199         },
200         [MLX5_EXPANSION_IPV4] = {
201                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202                                                  MLX5_EXPANSION_IPV4_TCP),
203                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
204                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205                         ETH_RSS_NONFRAG_IPV4_OTHER,
206         },
207         [MLX5_EXPANSION_IPV4_UDP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_UDP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210         },
211         [MLX5_EXPANSION_IPV4_TCP] = {
212                 .type = RTE_FLOW_ITEM_TYPE_TCP,
213                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214         },
215         [MLX5_EXPANSION_IPV6] = {
216                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217                                                  MLX5_EXPANSION_IPV6_TCP),
218                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
219                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220                         ETH_RSS_NONFRAG_IPV6_OTHER,
221         },
222         [MLX5_EXPANSION_IPV6_UDP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_UDP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225         },
226         [MLX5_EXPANSION_IPV6_TCP] = {
227                 .type = RTE_FLOW_ITEM_TYPE_TCP,
228                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229         },
230 };
231
232 static const struct rte_flow_ops mlx5_flow_ops = {
233         .validate = mlx5_flow_validate,
234         .create = mlx5_flow_create,
235         .destroy = mlx5_flow_destroy,
236         .flush = mlx5_flow_flush,
237         .isolate = mlx5_flow_isolate,
238         .query = mlx5_flow_query,
239 };
240
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243         struct rte_flow_attr attr;
244         struct rte_flow_item items[4];
245         struct rte_flow_item_eth l2;
246         struct rte_flow_item_eth l2_mask;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3;
251         union {
252                 struct rte_flow_item_ipv4 ipv4;
253                 struct rte_flow_item_ipv6 ipv6;
254         } l3_mask;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4;
259         union {
260                 struct rte_flow_item_udp udp;
261                 struct rte_flow_item_tcp tcp;
262         } l4_mask;
263         struct rte_flow_action actions[2];
264         struct rte_flow_action_queue queue;
265 };
266
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275         { 9, 10, 11 }, { 12, 13, 14 },
276 };
277
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_GRE,
295                 .ptype = RTE_PTYPE_TUNNEL_GRE,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300         },
301         {
302                 .tunnel = MLX5_FLOW_LAYER_MPLS,
303                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304         },
305         {
306                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
307                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
308         },
309         {
310                 .tunnel = MLX5_FLOW_LAYER_IPIP,
311                 .ptype = RTE_PTYPE_TUNNEL_IP,
312         },
313         {
314                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315                 .ptype = RTE_PTYPE_TUNNEL_IP,
316         },
317 };
318
319 enum mlx5_feature_name {
320         MLX5_HAIRPIN_RX,
321         MLX5_HAIRPIN_TX,
322         MLX5_APPLICATION,
323 };
324
325 /**
326  * Translate tag ID to register.
327  *
328  * @param[in] dev
329  *   Pointer to the Ethernet device structure.
330  * @param[in] feature
331  *   The feature that request the register.
332  * @param[in] id
333  *   The request register ID.
334  * @param[out] error
335  *   Error description in case of any.
336  *
337  * @return
338  *   The request register on success, a negative errno
339  *   value otherwise and rte_errno is set.
340  */
341 __rte_unused
342 static enum modify_reg flow_get_reg_id(struct rte_eth_dev *dev,
343                                        enum mlx5_feature_name feature,
344                                        uint32_t id,
345                                        struct rte_flow_error *error)
346 {
347         static enum modify_reg id2reg[] = {
348                 [0] = REG_A,
349                 [1] = REG_C_2,
350                 [2] = REG_C_3,
351                 [3] = REG_C_4,
352                 [4] = REG_B,};
353
354         dev = (void *)dev;
355         switch (feature) {
356         case MLX5_HAIRPIN_RX:
357                 return REG_B;
358         case MLX5_HAIRPIN_TX:
359                 return REG_A;
360         case MLX5_APPLICATION:
361                 if (id > 4)
362                         return rte_flow_error_set(error, EINVAL,
363                                                   RTE_FLOW_ERROR_TYPE_ITEM,
364                                                   NULL, "invalid tag id");
365                 return id2reg[id];
366         }
367         return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
368                                   NULL, "invalid feature name");
369 }
370
371 /**
372  * Discover the maximum number of priority available.
373  *
374  * @param[in] dev
375  *   Pointer to the Ethernet device structure.
376  *
377  * @return
378  *   number of supported flow priority on success, a negative errno
379  *   value otherwise and rte_errno is set.
380  */
381 int
382 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
383 {
384         struct mlx5_priv *priv = dev->data->dev_private;
385         struct {
386                 struct ibv_flow_attr attr;
387                 struct ibv_flow_spec_eth eth;
388                 struct ibv_flow_spec_action_drop drop;
389         } flow_attr = {
390                 .attr = {
391                         .num_of_specs = 2,
392                         .port = (uint8_t)priv->ibv_port,
393                 },
394                 .eth = {
395                         .type = IBV_FLOW_SPEC_ETH,
396                         .size = sizeof(struct ibv_flow_spec_eth),
397                 },
398                 .drop = {
399                         .size = sizeof(struct ibv_flow_spec_action_drop),
400                         .type = IBV_FLOW_SPEC_ACTION_DROP,
401                 },
402         };
403         struct ibv_flow *flow;
404         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
405         uint16_t vprio[] = { 8, 16 };
406         int i;
407         int priority = 0;
408
409         if (!drop) {
410                 rte_errno = ENOTSUP;
411                 return -rte_errno;
412         }
413         for (i = 0; i != RTE_DIM(vprio); i++) {
414                 flow_attr.attr.priority = vprio[i] - 1;
415                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
416                 if (!flow)
417                         break;
418                 claim_zero(mlx5_glue->destroy_flow(flow));
419                 priority = vprio[i];
420         }
421         mlx5_hrxq_drop_release(dev);
422         switch (priority) {
423         case 8:
424                 priority = RTE_DIM(priority_map_3);
425                 break;
426         case 16:
427                 priority = RTE_DIM(priority_map_5);
428                 break;
429         default:
430                 rte_errno = ENOTSUP;
431                 DRV_LOG(ERR,
432                         "port %u verbs maximum priority: %d expected 8/16",
433                         dev->data->port_id, priority);
434                 return -rte_errno;
435         }
436         DRV_LOG(INFO, "port %u flow maximum priority: %d",
437                 dev->data->port_id, priority);
438         return priority;
439 }
440
441 /**
442  * Adjust flow priority based on the highest layer and the request priority.
443  *
444  * @param[in] dev
445  *   Pointer to the Ethernet device structure.
446  * @param[in] priority
447  *   The rule base priority.
448  * @param[in] subpriority
449  *   The priority based on the items.
450  *
451  * @return
452  *   The new priority.
453  */
454 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
455                                    uint32_t subpriority)
456 {
457         uint32_t res = 0;
458         struct mlx5_priv *priv = dev->data->dev_private;
459
460         switch (priv->config.flow_prio) {
461         case RTE_DIM(priority_map_3):
462                 res = priority_map_3[priority][subpriority];
463                 break;
464         case RTE_DIM(priority_map_5):
465                 res = priority_map_5[priority][subpriority];
466                 break;
467         }
468         return  res;
469 }
470
471 /**
472  * Verify the @p item specifications (spec, last, mask) are compatible with the
473  * NIC capabilities.
474  *
475  * @param[in] item
476  *   Item specification.
477  * @param[in] mask
478  *   @p item->mask or flow default bit-masks.
479  * @param[in] nic_mask
480  *   Bit-masks covering supported fields by the NIC to compare with user mask.
481  * @param[in] size
482  *   Bit-masks size in bytes.
483  * @param[out] error
484  *   Pointer to error structure.
485  *
486  * @return
487  *   0 on success, a negative errno value otherwise and rte_errno is set.
488  */
489 int
490 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
491                           const uint8_t *mask,
492                           const uint8_t *nic_mask,
493                           unsigned int size,
494                           struct rte_flow_error *error)
495 {
496         unsigned int i;
497
498         assert(nic_mask);
499         for (i = 0; i < size; ++i)
500                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
501                         return rte_flow_error_set(error, ENOTSUP,
502                                                   RTE_FLOW_ERROR_TYPE_ITEM,
503                                                   item,
504                                                   "mask enables non supported"
505                                                   " bits");
506         if (!item->spec && (item->mask || item->last))
507                 return rte_flow_error_set(error, EINVAL,
508                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
509                                           "mask/last without a spec is not"
510                                           " supported");
511         if (item->spec && item->last) {
512                 uint8_t spec[size];
513                 uint8_t last[size];
514                 unsigned int i;
515                 int ret;
516
517                 for (i = 0; i < size; ++i) {
518                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
519                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
520                 }
521                 ret = memcmp(spec, last, size);
522                 if (ret != 0)
523                         return rte_flow_error_set(error, EINVAL,
524                                                   RTE_FLOW_ERROR_TYPE_ITEM,
525                                                   item,
526                                                   "range is not valid");
527         }
528         return 0;
529 }
530
531 /**
532  * Adjust the hash fields according to the @p flow information.
533  *
534  * @param[in] dev_flow.
535  *   Pointer to the mlx5_flow.
536  * @param[in] tunnel
537  *   1 when the hash field is for a tunnel item.
538  * @param[in] layer_types
539  *   ETH_RSS_* types.
540  * @param[in] hash_fields
541  *   Item hash fields.
542  *
543  * @return
544  *   The hash fields that should be used.
545  */
546 uint64_t
547 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
548                             int tunnel __rte_unused, uint64_t layer_types,
549                             uint64_t hash_fields)
550 {
551         struct rte_flow *flow = dev_flow->flow;
552 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
553         int rss_request_inner = flow->rss.level >= 2;
554
555         /* Check RSS hash level for tunnel. */
556         if (tunnel && rss_request_inner)
557                 hash_fields |= IBV_RX_HASH_INNER;
558         else if (tunnel || rss_request_inner)
559                 return 0;
560 #endif
561         /* Check if requested layer matches RSS hash fields. */
562         if (!(flow->rss.types & layer_types))
563                 return 0;
564         return hash_fields;
565 }
566
567 /**
568  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
569  * if several tunnel rules are used on this queue, the tunnel ptype will be
570  * cleared.
571  *
572  * @param rxq_ctrl
573  *   Rx queue to update.
574  */
575 static void
576 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
577 {
578         unsigned int i;
579         uint32_t tunnel_ptype = 0;
580
581         /* Look up for the ptype to use. */
582         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
583                 if (!rxq_ctrl->flow_tunnels_n[i])
584                         continue;
585                 if (!tunnel_ptype) {
586                         tunnel_ptype = tunnels_info[i].ptype;
587                 } else {
588                         tunnel_ptype = 0;
589                         break;
590                 }
591         }
592         rxq_ctrl->rxq.tunnel = tunnel_ptype;
593 }
594
595 /**
596  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
597  * flow.
598  *
599  * @param[in] dev
600  *   Pointer to the Ethernet device structure.
601  * @param[in] dev_flow
602  *   Pointer to device flow structure.
603  */
604 static void
605 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
606 {
607         struct mlx5_priv *priv = dev->data->dev_private;
608         struct rte_flow *flow = dev_flow->flow;
609         const int mark = !!(flow->actions &
610                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
611         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
612         unsigned int i;
613
614         for (i = 0; i != flow->rss.queue_num; ++i) {
615                 int idx = (*flow->queue)[i];
616                 struct mlx5_rxq_ctrl *rxq_ctrl =
617                         container_of((*priv->rxqs)[idx],
618                                      struct mlx5_rxq_ctrl, rxq);
619
620                 if (mark) {
621                         rxq_ctrl->rxq.mark = 1;
622                         rxq_ctrl->flow_mark_n++;
623                 }
624                 if (tunnel) {
625                         unsigned int j;
626
627                         /* Increase the counter matching the flow. */
628                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629                                 if ((tunnels_info[j].tunnel &
630                                      dev_flow->layers) ==
631                                     tunnels_info[j].tunnel) {
632                                         rxq_ctrl->flow_tunnels_n[j]++;
633                                         break;
634                                 }
635                         }
636                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
637                 }
638         }
639 }
640
641 /**
642  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
643  *
644  * @param[in] dev
645  *   Pointer to the Ethernet device structure.
646  * @param[in] flow
647  *   Pointer to flow structure.
648  */
649 static void
650 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
651 {
652         struct mlx5_flow *dev_flow;
653
654         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
655                 flow_drv_rxq_flags_set(dev, dev_flow);
656 }
657
658 /**
659  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
660  * device flow if no other flow uses it with the same kind of request.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  * @param[in] dev_flow
665  *   Pointer to the device flow.
666  */
667 static void
668 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
669 {
670         struct mlx5_priv *priv = dev->data->dev_private;
671         struct rte_flow *flow = dev_flow->flow;
672         const int mark = !!(flow->actions &
673                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
674         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
675         unsigned int i;
676
677         assert(dev->data->dev_started);
678         for (i = 0; i != flow->rss.queue_num; ++i) {
679                 int idx = (*flow->queue)[i];
680                 struct mlx5_rxq_ctrl *rxq_ctrl =
681                         container_of((*priv->rxqs)[idx],
682                                      struct mlx5_rxq_ctrl, rxq);
683
684                 if (mark) {
685                         rxq_ctrl->flow_mark_n--;
686                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
687                 }
688                 if (tunnel) {
689                         unsigned int j;
690
691                         /* Decrease the counter matching the flow. */
692                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
693                                 if ((tunnels_info[j].tunnel &
694                                      dev_flow->layers) ==
695                                     tunnels_info[j].tunnel) {
696                                         rxq_ctrl->flow_tunnels_n[j]--;
697                                         break;
698                                 }
699                         }
700                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
701                 }
702         }
703 }
704
705 /**
706  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
707  * @p flow if no other flow uses it with the same kind of request.
708  *
709  * @param dev
710  *   Pointer to Ethernet device.
711  * @param[in] flow
712  *   Pointer to the flow.
713  */
714 static void
715 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
716 {
717         struct mlx5_flow *dev_flow;
718
719         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
720                 flow_drv_rxq_flags_trim(dev, dev_flow);
721 }
722
723 /**
724  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
725  *
726  * @param dev
727  *   Pointer to Ethernet device.
728  */
729 static void
730 flow_rxq_flags_clear(struct rte_eth_dev *dev)
731 {
732         struct mlx5_priv *priv = dev->data->dev_private;
733         unsigned int i;
734
735         for (i = 0; i != priv->rxqs_n; ++i) {
736                 struct mlx5_rxq_ctrl *rxq_ctrl;
737                 unsigned int j;
738
739                 if (!(*priv->rxqs)[i])
740                         continue;
741                 rxq_ctrl = container_of((*priv->rxqs)[i],
742                                         struct mlx5_rxq_ctrl, rxq);
743                 rxq_ctrl->flow_mark_n = 0;
744                 rxq_ctrl->rxq.mark = 0;
745                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
746                         rxq_ctrl->flow_tunnels_n[j] = 0;
747                 rxq_ctrl->rxq.tunnel = 0;
748         }
749 }
750
751 /*
752  * return a pointer to the desired action in the list of actions.
753  *
754  * @param[in] actions
755  *   The list of actions to search the action in.
756  * @param[in] action
757  *   The action to find.
758  *
759  * @return
760  *   Pointer to the action in the list, if found. NULL otherwise.
761  */
762 const struct rte_flow_action *
763 mlx5_flow_find_action(const struct rte_flow_action *actions,
764                       enum rte_flow_action_type action)
765 {
766         if (actions == NULL)
767                 return NULL;
768         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
769                 if (actions->type == action)
770                         return actions;
771         return NULL;
772 }
773
774 /*
775  * Validate the flag action.
776  *
777  * @param[in] action_flags
778  *   Bit-fields that holds the actions detected until now.
779  * @param[in] attr
780  *   Attributes of flow that includes this action.
781  * @param[out] error
782  *   Pointer to error structure.
783  *
784  * @return
785  *   0 on success, a negative errno value otherwise and rte_errno is set.
786  */
787 int
788 mlx5_flow_validate_action_flag(uint64_t action_flags,
789                                const struct rte_flow_attr *attr,
790                                struct rte_flow_error *error)
791 {
792
793         if (action_flags & MLX5_FLOW_ACTION_DROP)
794                 return rte_flow_error_set(error, EINVAL,
795                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
796                                           "can't drop and flag in same flow");
797         if (action_flags & MLX5_FLOW_ACTION_MARK)
798                 return rte_flow_error_set(error, EINVAL,
799                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
800                                           "can't mark and flag in same flow");
801         if (action_flags & MLX5_FLOW_ACTION_FLAG)
802                 return rte_flow_error_set(error, EINVAL,
803                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
804                                           "can't have 2 flag"
805                                           " actions in same flow");
806         if (attr->egress)
807                 return rte_flow_error_set(error, ENOTSUP,
808                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
809                                           "flag action not supported for "
810                                           "egress");
811         return 0;
812 }
813
814 /*
815  * Validate the mark action.
816  *
817  * @param[in] action
818  *   Pointer to the queue action.
819  * @param[in] action_flags
820  *   Bit-fields that holds the actions detected until now.
821  * @param[in] attr
822  *   Attributes of flow that includes this action.
823  * @param[out] error
824  *   Pointer to error structure.
825  *
826  * @return
827  *   0 on success, a negative errno value otherwise and rte_errno is set.
828  */
829 int
830 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
831                                uint64_t action_flags,
832                                const struct rte_flow_attr *attr,
833                                struct rte_flow_error *error)
834 {
835         const struct rte_flow_action_mark *mark = action->conf;
836
837         if (!mark)
838                 return rte_flow_error_set(error, EINVAL,
839                                           RTE_FLOW_ERROR_TYPE_ACTION,
840                                           action,
841                                           "configuration cannot be null");
842         if (mark->id >= MLX5_FLOW_MARK_MAX)
843                 return rte_flow_error_set(error, EINVAL,
844                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
845                                           &mark->id,
846                                           "mark id must in 0 <= id < "
847                                           RTE_STR(MLX5_FLOW_MARK_MAX));
848         if (action_flags & MLX5_FLOW_ACTION_DROP)
849                 return rte_flow_error_set(error, EINVAL,
850                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851                                           "can't drop and mark in same flow");
852         if (action_flags & MLX5_FLOW_ACTION_FLAG)
853                 return rte_flow_error_set(error, EINVAL,
854                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
855                                           "can't flag and mark in same flow");
856         if (action_flags & MLX5_FLOW_ACTION_MARK)
857                 return rte_flow_error_set(error, EINVAL,
858                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
859                                           "can't have 2 mark actions in same"
860                                           " flow");
861         if (attr->egress)
862                 return rte_flow_error_set(error, ENOTSUP,
863                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
864                                           "mark action not supported for "
865                                           "egress");
866         return 0;
867 }
868
869 /*
870  * Validate the drop action.
871  *
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] attr
875  *   Attributes of flow that includes this action.
876  * @param[out] error
877  *   Pointer to error structure.
878  *
879  * @return
880  *   0 on success, a negative errno value otherwise and rte_errno is set.
881  */
882 int
883 mlx5_flow_validate_action_drop(uint64_t action_flags,
884                                const struct rte_flow_attr *attr,
885                                struct rte_flow_error *error)
886 {
887         if (action_flags & MLX5_FLOW_ACTION_FLAG)
888                 return rte_flow_error_set(error, EINVAL,
889                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
890                                           "can't drop and flag in same flow");
891         if (action_flags & MLX5_FLOW_ACTION_MARK)
892                 return rte_flow_error_set(error, EINVAL,
893                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
894                                           "can't drop and mark in same flow");
895         if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
896                             MLX5_FLOW_FATE_ESWITCH_ACTIONS))
897                 return rte_flow_error_set(error, EINVAL,
898                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
899                                           "can't have 2 fate actions in"
900                                           " same flow");
901         if (attr->egress)
902                 return rte_flow_error_set(error, ENOTSUP,
903                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
904                                           "drop action not supported for "
905                                           "egress");
906         return 0;
907 }
908
909 /*
910  * Validate the queue action.
911  *
912  * @param[in] action
913  *   Pointer to the queue action.
914  * @param[in] action_flags
915  *   Bit-fields that holds the actions detected until now.
916  * @param[in] dev
917  *   Pointer to the Ethernet device structure.
918  * @param[in] attr
919  *   Attributes of flow that includes this action.
920  * @param[out] error
921  *   Pointer to error structure.
922  *
923  * @return
924  *   0 on success, a negative errno value otherwise and rte_errno is set.
925  */
926 int
927 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
928                                 uint64_t action_flags,
929                                 struct rte_eth_dev *dev,
930                                 const struct rte_flow_attr *attr,
931                                 struct rte_flow_error *error)
932 {
933         struct mlx5_priv *priv = dev->data->dev_private;
934         const struct rte_flow_action_queue *queue = action->conf;
935
936         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
937                 return rte_flow_error_set(error, EINVAL,
938                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
939                                           "can't have 2 fate actions in"
940                                           " same flow");
941         if (!priv->rxqs_n)
942                 return rte_flow_error_set(error, EINVAL,
943                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944                                           NULL, "No Rx queues configured");
945         if (queue->index >= priv->rxqs_n)
946                 return rte_flow_error_set(error, EINVAL,
947                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
948                                           &queue->index,
949                                           "queue index out of range");
950         if (!(*priv->rxqs)[queue->index])
951                 return rte_flow_error_set(error, EINVAL,
952                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953                                           &queue->index,
954                                           "queue is not configured");
955         if (attr->egress)
956                 return rte_flow_error_set(error, ENOTSUP,
957                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
958                                           "queue action not supported for "
959                                           "egress");
960         return 0;
961 }
962
963 /*
964  * Validate the rss action.
965  *
966  * @param[in] action
967  *   Pointer to the queue action.
968  * @param[in] action_flags
969  *   Bit-fields that holds the actions detected until now.
970  * @param[in] dev
971  *   Pointer to the Ethernet device structure.
972  * @param[in] attr
973  *   Attributes of flow that includes this action.
974  * @param[in] item_flags
975  *   Items that were detected.
976  * @param[out] error
977  *   Pointer to error structure.
978  *
979  * @return
980  *   0 on success, a negative errno value otherwise and rte_errno is set.
981  */
982 int
983 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
984                               uint64_t action_flags,
985                               struct rte_eth_dev *dev,
986                               const struct rte_flow_attr *attr,
987                               uint64_t item_flags,
988                               struct rte_flow_error *error)
989 {
990         struct mlx5_priv *priv = dev->data->dev_private;
991         const struct rte_flow_action_rss *rss = action->conf;
992         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
993         unsigned int i;
994
995         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
996                 return rte_flow_error_set(error, EINVAL,
997                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
998                                           "can't have 2 fate actions"
999                                           " in same flow");
1000         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1001             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1002                 return rte_flow_error_set(error, ENOTSUP,
1003                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1004                                           &rss->func,
1005                                           "RSS hash function not supported");
1006 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1007         if (rss->level > 2)
1008 #else
1009         if (rss->level > 1)
1010 #endif
1011                 return rte_flow_error_set(error, ENOTSUP,
1012                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1013                                           &rss->level,
1014                                           "tunnel RSS is not supported");
1015         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
1016         if (rss->key_len == 0 && rss->key != NULL)
1017                 return rte_flow_error_set(error, ENOTSUP,
1018                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1019                                           &rss->key_len,
1020                                           "RSS hash key length 0");
1021         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1022                 return rte_flow_error_set(error, ENOTSUP,
1023                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1024                                           &rss->key_len,
1025                                           "RSS hash key too small");
1026         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1027                 return rte_flow_error_set(error, ENOTSUP,
1028                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1029                                           &rss->key_len,
1030                                           "RSS hash key too large");
1031         if (rss->queue_num > priv->config.ind_table_max_size)
1032                 return rte_flow_error_set(error, ENOTSUP,
1033                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1034                                           &rss->queue_num,
1035                                           "number of queues too large");
1036         if (rss->types & MLX5_RSS_HF_MASK)
1037                 return rte_flow_error_set(error, ENOTSUP,
1038                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1039                                           &rss->types,
1040                                           "some RSS protocols are not"
1041                                           " supported");
1042         if (!priv->rxqs_n)
1043                 return rte_flow_error_set(error, EINVAL,
1044                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1045                                           NULL, "No Rx queues configured");
1046         if (!rss->queue_num)
1047                 return rte_flow_error_set(error, EINVAL,
1048                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1049                                           NULL, "No queues configured");
1050         for (i = 0; i != rss->queue_num; ++i) {
1051                 if (!(*priv->rxqs)[rss->queue[i]])
1052                         return rte_flow_error_set
1053                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1054                                  &rss->queue[i], "queue is not configured");
1055         }
1056         if (attr->egress)
1057                 return rte_flow_error_set(error, ENOTSUP,
1058                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1059                                           "rss action not supported for "
1060                                           "egress");
1061         if (rss->level > 1 &&  !tunnel)
1062                 return rte_flow_error_set(error, EINVAL,
1063                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1064                                           "inner RSS is not supported for "
1065                                           "non-tunnel flows");
1066         return 0;
1067 }
1068
1069 /*
1070  * Validate the count action.
1071  *
1072  * @param[in] dev
1073  *   Pointer to the Ethernet device structure.
1074  * @param[in] attr
1075  *   Attributes of flow that includes this action.
1076  * @param[out] error
1077  *   Pointer to error structure.
1078  *
1079  * @return
1080  *   0 on success, a negative errno value otherwise and rte_errno is set.
1081  */
1082 int
1083 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1084                                 const struct rte_flow_attr *attr,
1085                                 struct rte_flow_error *error)
1086 {
1087         if (attr->egress)
1088                 return rte_flow_error_set(error, ENOTSUP,
1089                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1090                                           "count action not supported for "
1091                                           "egress");
1092         return 0;
1093 }
1094
1095 /**
1096  * Verify the @p attributes will be correctly understood by the NIC and store
1097  * them in the @p flow if everything is correct.
1098  *
1099  * @param[in] dev
1100  *   Pointer to the Ethernet device structure.
1101  * @param[in] attributes
1102  *   Pointer to flow attributes
1103  * @param[out] error
1104  *   Pointer to error structure.
1105  *
1106  * @return
1107  *   0 on success, a negative errno value otherwise and rte_errno is set.
1108  */
1109 int
1110 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1111                               const struct rte_flow_attr *attributes,
1112                               struct rte_flow_error *error)
1113 {
1114         struct mlx5_priv *priv = dev->data->dev_private;
1115         uint32_t priority_max = priv->config.flow_prio - 1;
1116
1117         if (attributes->group)
1118                 return rte_flow_error_set(error, ENOTSUP,
1119                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1120                                           NULL, "groups is not supported");
1121         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1122             attributes->priority >= priority_max)
1123                 return rte_flow_error_set(error, ENOTSUP,
1124                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1125                                           NULL, "priority out of range");
1126         if (attributes->egress)
1127                 return rte_flow_error_set(error, ENOTSUP,
1128                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1129                                           "egress is not supported");
1130         if (attributes->transfer && !priv->config.dv_esw_en)
1131                 return rte_flow_error_set(error, ENOTSUP,
1132                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1133                                           NULL, "transfer is not supported");
1134         if (!attributes->ingress)
1135                 return rte_flow_error_set(error, EINVAL,
1136                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1137                                           NULL,
1138                                           "ingress attribute is mandatory");
1139         return 0;
1140 }
1141
1142 /**
1143  * Validate ICMP6 item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1157                                uint64_t item_flags,
1158                                uint8_t target_protocol,
1159                                struct rte_flow_error *error)
1160 {
1161         const struct rte_flow_item_icmp6 *mask = item->mask;
1162         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1164                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1165         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166                                       MLX5_FLOW_LAYER_OUTER_L4;
1167         int ret;
1168
1169         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1170                 return rte_flow_error_set(error, EINVAL,
1171                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1172                                           "protocol filtering not compatible"
1173                                           " with ICMP6 layer");
1174         if (!(item_flags & l3m))
1175                 return rte_flow_error_set(error, EINVAL,
1176                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1177                                           "IPv6 is mandatory to filter on"
1178                                           " ICMP6");
1179         if (item_flags & l4m)
1180                 return rte_flow_error_set(error, EINVAL,
1181                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1182                                           "multiple L4 layers not supported");
1183         if (!mask)
1184                 mask = &rte_flow_item_icmp6_mask;
1185         ret = mlx5_flow_item_acceptable
1186                 (item, (const uint8_t *)mask,
1187                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1188                  sizeof(struct rte_flow_item_icmp6), error);
1189         if (ret < 0)
1190                 return ret;
1191         return 0;
1192 }
1193
1194 /**
1195  * Validate ICMP item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1209                              uint64_t item_flags,
1210                              uint8_t target_protocol,
1211                              struct rte_flow_error *error)
1212 {
1213         const struct rte_flow_item_icmp *mask = item->mask;
1214         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1215         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1216                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1217         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1218                                       MLX5_FLOW_LAYER_OUTER_L4;
1219         int ret;
1220
1221         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1222                 return rte_flow_error_set(error, EINVAL,
1223                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1224                                           "protocol filtering not compatible"
1225                                           " with ICMP layer");
1226         if (!(item_flags & l3m))
1227                 return rte_flow_error_set(error, EINVAL,
1228                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1229                                           "IPv4 is mandatory to filter"
1230                                           " on ICMP");
1231         if (item_flags & l4m)
1232                 return rte_flow_error_set(error, EINVAL,
1233                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1234                                           "multiple L4 layers not supported");
1235         if (!mask)
1236                 mask = &rte_flow_item_icmp_mask;
1237         ret = mlx5_flow_item_acceptable
1238                 (item, (const uint8_t *)mask,
1239                  (const uint8_t *)&rte_flow_item_icmp_mask,
1240                  sizeof(struct rte_flow_item_icmp), error);
1241         if (ret < 0)
1242                 return ret;
1243         return 0;
1244 }
1245
1246 /**
1247  * Validate Ethernet item.
1248  *
1249  * @param[in] item
1250  *   Item specification.
1251  * @param[in] item_flags
1252  *   Bit-fields that holds the items detected until now.
1253  * @param[out] error
1254  *   Pointer to error structure.
1255  *
1256  * @return
1257  *   0 on success, a negative errno value otherwise and rte_errno is set.
1258  */
1259 int
1260 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1261                             uint64_t item_flags,
1262                             struct rte_flow_error *error)
1263 {
1264         const struct rte_flow_item_eth *mask = item->mask;
1265         const struct rte_flow_item_eth nic_mask = {
1266                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1267                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1268                 .type = RTE_BE16(0xffff),
1269         };
1270         int ret;
1271         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1272         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1273                                        MLX5_FLOW_LAYER_OUTER_L2;
1274
1275         if (item_flags & ethm)
1276                 return rte_flow_error_set(error, ENOTSUP,
1277                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1278                                           "multiple L2 layers not supported");
1279         if (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))
1280                 return rte_flow_error_set(error, EINVAL,
1281                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1282                                           "inner L2 layer should not "
1283                                           "follow inner L3 layers");
1284         if (!mask)
1285                 mask = &rte_flow_item_eth_mask;
1286         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1287                                         (const uint8_t *)&nic_mask,
1288                                         sizeof(struct rte_flow_item_eth),
1289                                         error);
1290         return ret;
1291 }
1292
1293 /**
1294  * Validate VLAN item.
1295  *
1296  * @param[in] item
1297  *   Item specification.
1298  * @param[in] item_flags
1299  *   Bit-fields that holds the items detected until now.
1300  * @param[in] dev
1301  *   Ethernet device flow is being created on.
1302  * @param[out] error
1303  *   Pointer to error structure.
1304  *
1305  * @return
1306  *   0 on success, a negative errno value otherwise and rte_errno is set.
1307  */
1308 int
1309 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1310                              uint64_t item_flags,
1311                              struct rte_eth_dev *dev,
1312                              struct rte_flow_error *error)
1313 {
1314         const struct rte_flow_item_vlan *spec = item->spec;
1315         const struct rte_flow_item_vlan *mask = item->mask;
1316         const struct rte_flow_item_vlan nic_mask = {
1317                 .tci = RTE_BE16(UINT16_MAX),
1318                 .inner_type = RTE_BE16(UINT16_MAX),
1319         };
1320         uint16_t vlan_tag = 0;
1321         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1322         int ret;
1323         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1324                                         MLX5_FLOW_LAYER_INNER_L4) :
1325                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1326                                         MLX5_FLOW_LAYER_OUTER_L4);
1327         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1328                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1329
1330         const uint64_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1331                                       MLX5_FLOW_LAYER_OUTER_L2;
1332         if (item_flags & vlanm)
1333                 return rte_flow_error_set(error, EINVAL,
1334                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1335                                           "multiple VLAN layers not supported");
1336         else if ((item_flags & l34m) != 0)
1337                 return rte_flow_error_set(error, EINVAL,
1338                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1339                                           "L2 layer cannot follow L3/L4 layer");
1340         else if ((item_flags & l2m) == 0)
1341                 return rte_flow_error_set(error, EINVAL,
1342                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1343                                           "no L2 layer before VLAN");
1344         if (!mask)
1345                 mask = &rte_flow_item_vlan_mask;
1346         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1347                                         (const uint8_t *)&nic_mask,
1348                                         sizeof(struct rte_flow_item_vlan),
1349                                         error);
1350         if (ret)
1351                 return ret;
1352         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1353                 struct mlx5_priv *priv = dev->data->dev_private;
1354
1355                 if (priv->vmwa_context) {
1356                         /*
1357                          * Non-NULL context means we have a virtual machine
1358                          * and SR-IOV enabled, we have to create VLAN interface
1359                          * to make hypervisor to setup E-Switch vport
1360                          * context correctly. We avoid creating the multiple
1361                          * VLAN interfaces, so we cannot support VLAN tag mask.
1362                          */
1363                         return rte_flow_error_set(error, EINVAL,
1364                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1365                                                   item,
1366                                                   "VLAN tag mask is not"
1367                                                   " supported in virtual"
1368                                                   " environment");
1369                 }
1370         }
1371         if (spec) {
1372                 vlan_tag = spec->tci;
1373                 vlan_tag &= mask->tci;
1374         }
1375         /*
1376          * From verbs perspective an empty VLAN is equivalent
1377          * to a packet without VLAN layer.
1378          */
1379         if (!vlan_tag)
1380                 return rte_flow_error_set(error, EINVAL,
1381                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1382                                           item->spec,
1383                                           "VLAN cannot be empty");
1384         return 0;
1385 }
1386
1387 /**
1388  * Validate IPV4 item.
1389  *
1390  * @param[in] item
1391  *   Item specification.
1392  * @param[in] item_flags
1393  *   Bit-fields that holds the items detected until now.
1394  * @param[in] acc_mask
1395  *   Acceptable mask, if NULL default internal default mask
1396  *   will be used to check whether item fields are supported.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1405                              uint64_t item_flags,
1406                              const struct rte_flow_item_ipv4 *acc_mask,
1407                              struct rte_flow_error *error)
1408 {
1409         const struct rte_flow_item_ipv4 *mask = item->mask;
1410         const struct rte_flow_item_ipv4 *spec = item->spec;
1411         const struct rte_flow_item_ipv4 nic_mask = {
1412                 .hdr = {
1413                         .src_addr = RTE_BE32(0xffffffff),
1414                         .dst_addr = RTE_BE32(0xffffffff),
1415                         .type_of_service = 0xff,
1416                         .next_proto_id = 0xff,
1417                 },
1418         };
1419         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1420         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1421                                       MLX5_FLOW_LAYER_OUTER_L3;
1422         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1423                                       MLX5_FLOW_LAYER_OUTER_L4;
1424         int ret;
1425         uint8_t next_proto = 0xFF;
1426
1427         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1428                 if (mask && spec)
1429                         next_proto = mask->hdr.next_proto_id &
1430                                      spec->hdr.next_proto_id;
1431                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1432                         return rte_flow_error_set(error, EINVAL,
1433                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1434                                                   item,
1435                                                   "multiple tunnel "
1436                                                   "not supported");
1437         }
1438         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1439                 return rte_flow_error_set(error, EINVAL,
1440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1441                                           "wrong tunnel type - IPv6 specified "
1442                                           "but IPv4 item provided");
1443         if (item_flags & l3m)
1444                 return rte_flow_error_set(error, ENOTSUP,
1445                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1446                                           "multiple L3 layers not supported");
1447         else if (item_flags & l4m)
1448                 return rte_flow_error_set(error, EINVAL,
1449                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1450                                           "L3 cannot follow an L4 layer.");
1451         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1452                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1453                 return rte_flow_error_set(error, EINVAL,
1454                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1455                                           "L3 cannot follow an NVGRE layer.");
1456         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1457                 return rte_flow_error_set(error, EINVAL,
1458                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1459                                           "no L2 layer before IPV4");
1460         if (!mask)
1461                 mask = &rte_flow_item_ipv4_mask;
1462         else if (mask->hdr.next_proto_id != 0 &&
1463                  mask->hdr.next_proto_id != 0xff)
1464                 return rte_flow_error_set(error, EINVAL,
1465                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1466                                           "partial mask is not supported"
1467                                           " for protocol");
1468         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1469                                         acc_mask ? (const uint8_t *)acc_mask
1470                                                  : (const uint8_t *)&nic_mask,
1471                                         sizeof(struct rte_flow_item_ipv4),
1472                                         error);
1473         if (ret < 0)
1474                 return ret;
1475         return 0;
1476 }
1477
1478 /**
1479  * Validate IPV6 item.
1480  *
1481  * @param[in] item
1482  *   Item specification.
1483  * @param[in] item_flags
1484  *   Bit-fields that holds the items detected until now.
1485  * @param[in] acc_mask
1486  *   Acceptable mask, if NULL default internal default mask
1487  *   will be used to check whether item fields are supported.
1488  * @param[out] error
1489  *   Pointer to error structure.
1490  *
1491  * @return
1492  *   0 on success, a negative errno value otherwise and rte_errno is set.
1493  */
1494 int
1495 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1496                              uint64_t item_flags,
1497                              const struct rte_flow_item_ipv6 *acc_mask,
1498                              struct rte_flow_error *error)
1499 {
1500         const struct rte_flow_item_ipv6 *mask = item->mask;
1501         const struct rte_flow_item_ipv6 *spec = item->spec;
1502         const struct rte_flow_item_ipv6 nic_mask = {
1503                 .hdr = {
1504                         .src_addr =
1505                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1506                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1507                         .dst_addr =
1508                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1509                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1510                         .vtc_flow = RTE_BE32(0xffffffff),
1511                         .proto = 0xff,
1512                         .hop_limits = 0xff,
1513                 },
1514         };
1515         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1516         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1517                                       MLX5_FLOW_LAYER_OUTER_L3;
1518         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1519                                       MLX5_FLOW_LAYER_OUTER_L4;
1520         int ret;
1521         uint8_t next_proto = 0xFF;
1522
1523         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1524                 if (mask && spec)
1525                         next_proto = mask->hdr.proto & spec->hdr.proto;
1526                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1527                         return rte_flow_error_set(error, EINVAL,
1528                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1529                                                   item,
1530                                                   "multiple tunnel "
1531                                                   "not supported");
1532         }
1533         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1534                 return rte_flow_error_set(error, EINVAL,
1535                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1536                                           "wrong tunnel type - IPv4 specified "
1537                                           "but IPv6 item provided");
1538         if (item_flags & l3m)
1539                 return rte_flow_error_set(error, ENOTSUP,
1540                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1541                                           "multiple L3 layers not supported");
1542         else if (item_flags & l4m)
1543                 return rte_flow_error_set(error, EINVAL,
1544                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1545                                           "L3 cannot follow an L4 layer.");
1546         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1547                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1548                 return rte_flow_error_set(error, EINVAL,
1549                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1550                                           "L3 cannot follow an NVGRE layer.");
1551         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1552                 return rte_flow_error_set(error, EINVAL,
1553                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1554                                           "no L2 layer before IPV6");
1555         if (!mask)
1556                 mask = &rte_flow_item_ipv6_mask;
1557         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1558                                         acc_mask ? (const uint8_t *)acc_mask
1559                                                  : (const uint8_t *)&nic_mask,
1560                                         sizeof(struct rte_flow_item_ipv6),
1561                                         error);
1562         if (ret < 0)
1563                 return ret;
1564         return 0;
1565 }
1566
1567 /**
1568  * Validate UDP item.
1569  *
1570  * @param[in] item
1571  *   Item specification.
1572  * @param[in] item_flags
1573  *   Bit-fields that holds the items detected until now.
1574  * @param[in] target_protocol
1575  *   The next protocol in the previous item.
1576  * @param[in] flow_mask
1577  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1578  * @param[out] error
1579  *   Pointer to error structure.
1580  *
1581  * @return
1582  *   0 on success, a negative errno value otherwise and rte_errno is set.
1583  */
1584 int
1585 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1586                             uint64_t item_flags,
1587                             uint8_t target_protocol,
1588                             struct rte_flow_error *error)
1589 {
1590         const struct rte_flow_item_udp *mask = item->mask;
1591         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1592         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1593                                       MLX5_FLOW_LAYER_OUTER_L3;
1594         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1595                                       MLX5_FLOW_LAYER_OUTER_L4;
1596         int ret;
1597
1598         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1599                 return rte_flow_error_set(error, EINVAL,
1600                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1601                                           "protocol filtering not compatible"
1602                                           " with UDP layer");
1603         if (!(item_flags & l3m))
1604                 return rte_flow_error_set(error, EINVAL,
1605                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1606                                           "L3 is mandatory to filter on L4");
1607         if (item_flags & l4m)
1608                 return rte_flow_error_set(error, EINVAL,
1609                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1610                                           "multiple L4 layers not supported");
1611         if (!mask)
1612                 mask = &rte_flow_item_udp_mask;
1613         ret = mlx5_flow_item_acceptable
1614                 (item, (const uint8_t *)mask,
1615                  (const uint8_t *)&rte_flow_item_udp_mask,
1616                  sizeof(struct rte_flow_item_udp), error);
1617         if (ret < 0)
1618                 return ret;
1619         return 0;
1620 }
1621
1622 /**
1623  * Validate TCP item.
1624  *
1625  * @param[in] item
1626  *   Item specification.
1627  * @param[in] item_flags
1628  *   Bit-fields that holds the items detected until now.
1629  * @param[in] target_protocol
1630  *   The next protocol in the previous item.
1631  * @param[out] error
1632  *   Pointer to error structure.
1633  *
1634  * @return
1635  *   0 on success, a negative errno value otherwise and rte_errno is set.
1636  */
1637 int
1638 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1639                             uint64_t item_flags,
1640                             uint8_t target_protocol,
1641                             const struct rte_flow_item_tcp *flow_mask,
1642                             struct rte_flow_error *error)
1643 {
1644         const struct rte_flow_item_tcp *mask = item->mask;
1645         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1646         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1647                                       MLX5_FLOW_LAYER_OUTER_L3;
1648         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1649                                       MLX5_FLOW_LAYER_OUTER_L4;
1650         int ret;
1651
1652         assert(flow_mask);
1653         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1654                 return rte_flow_error_set(error, EINVAL,
1655                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1656                                           "protocol filtering not compatible"
1657                                           " with TCP layer");
1658         if (!(item_flags & l3m))
1659                 return rte_flow_error_set(error, EINVAL,
1660                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1661                                           "L3 is mandatory to filter on L4");
1662         if (item_flags & l4m)
1663                 return rte_flow_error_set(error, EINVAL,
1664                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1665                                           "multiple L4 layers not supported");
1666         if (!mask)
1667                 mask = &rte_flow_item_tcp_mask;
1668         ret = mlx5_flow_item_acceptable
1669                 (item, (const uint8_t *)mask,
1670                  (const uint8_t *)flow_mask,
1671                  sizeof(struct rte_flow_item_tcp), error);
1672         if (ret < 0)
1673                 return ret;
1674         return 0;
1675 }
1676
1677 /**
1678  * Validate VXLAN item.
1679  *
1680  * @param[in] item
1681  *   Item specification.
1682  * @param[in] item_flags
1683  *   Bit-fields that holds the items detected until now.
1684  * @param[in] target_protocol
1685  *   The next protocol in the previous item.
1686  * @param[out] error
1687  *   Pointer to error structure.
1688  *
1689  * @return
1690  *   0 on success, a negative errno value otherwise and rte_errno is set.
1691  */
1692 int
1693 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1694                               uint64_t item_flags,
1695                               struct rte_flow_error *error)
1696 {
1697         const struct rte_flow_item_vxlan *spec = item->spec;
1698         const struct rte_flow_item_vxlan *mask = item->mask;
1699         int ret;
1700         union vni {
1701                 uint32_t vlan_id;
1702                 uint8_t vni[4];
1703         } id = { .vlan_id = 0, };
1704         uint32_t vlan_id = 0;
1705
1706
1707         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1708                 return rte_flow_error_set(error, ENOTSUP,
1709                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1710                                           "multiple tunnel layers not"
1711                                           " supported");
1712         /*
1713          * Verify only UDPv4 is present as defined in
1714          * https://tools.ietf.org/html/rfc7348
1715          */
1716         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1717                 return rte_flow_error_set(error, EINVAL,
1718                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1719                                           "no outer UDP layer found");
1720         if (!mask)
1721                 mask = &rte_flow_item_vxlan_mask;
1722         ret = mlx5_flow_item_acceptable
1723                 (item, (const uint8_t *)mask,
1724                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1725                  sizeof(struct rte_flow_item_vxlan),
1726                  error);
1727         if (ret < 0)
1728                 return ret;
1729         if (spec) {
1730                 memcpy(&id.vni[1], spec->vni, 3);
1731                 vlan_id = id.vlan_id;
1732                 memcpy(&id.vni[1], mask->vni, 3);
1733                 vlan_id &= id.vlan_id;
1734         }
1735         /*
1736          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1737          * only this layer is defined in the Verbs specification it is
1738          * interpreted as wildcard and all packets will match this
1739          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1740          * udp), all packets matching the layers before will also
1741          * match this rule.  To avoid such situation, VNI 0 is
1742          * currently refused.
1743          */
1744         if (!vlan_id)
1745                 return rte_flow_error_set(error, ENOTSUP,
1746                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1747                                           "VXLAN vni cannot be 0");
1748         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1749                 return rte_flow_error_set(error, ENOTSUP,
1750                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1751                                           "VXLAN tunnel must be fully defined");
1752         return 0;
1753 }
1754
1755 /**
1756  * Validate VXLAN_GPE item.
1757  *
1758  * @param[in] item
1759  *   Item specification.
1760  * @param[in] item_flags
1761  *   Bit-fields that holds the items detected until now.
1762  * @param[in] priv
1763  *   Pointer to the private data structure.
1764  * @param[in] target_protocol
1765  *   The next protocol in the previous item.
1766  * @param[out] error
1767  *   Pointer to error structure.
1768  *
1769  * @return
1770  *   0 on success, a negative errno value otherwise and rte_errno is set.
1771  */
1772 int
1773 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1774                                   uint64_t item_flags,
1775                                   struct rte_eth_dev *dev,
1776                                   struct rte_flow_error *error)
1777 {
1778         struct mlx5_priv *priv = dev->data->dev_private;
1779         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1780         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1781         int ret;
1782         union vni {
1783                 uint32_t vlan_id;
1784                 uint8_t vni[4];
1785         } id = { .vlan_id = 0, };
1786         uint32_t vlan_id = 0;
1787
1788         if (!priv->config.l3_vxlan_en)
1789                 return rte_flow_error_set(error, ENOTSUP,
1790                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1791                                           "L3 VXLAN is not enabled by device"
1792                                           " parameter and/or not configured in"
1793                                           " firmware");
1794         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1795                 return rte_flow_error_set(error, ENOTSUP,
1796                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1797                                           "multiple tunnel layers not"
1798                                           " supported");
1799         /*
1800          * Verify only UDPv4 is present as defined in
1801          * https://tools.ietf.org/html/rfc7348
1802          */
1803         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1804                 return rte_flow_error_set(error, EINVAL,
1805                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1806                                           "no outer UDP layer found");
1807         if (!mask)
1808                 mask = &rte_flow_item_vxlan_gpe_mask;
1809         ret = mlx5_flow_item_acceptable
1810                 (item, (const uint8_t *)mask,
1811                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1812                  sizeof(struct rte_flow_item_vxlan_gpe),
1813                  error);
1814         if (ret < 0)
1815                 return ret;
1816         if (spec) {
1817                 if (spec->protocol)
1818                         return rte_flow_error_set(error, ENOTSUP,
1819                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1820                                                   item,
1821                                                   "VxLAN-GPE protocol"
1822                                                   " not supported");
1823                 memcpy(&id.vni[1], spec->vni, 3);
1824                 vlan_id = id.vlan_id;
1825                 memcpy(&id.vni[1], mask->vni, 3);
1826                 vlan_id &= id.vlan_id;
1827         }
1828         /*
1829          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1830          * layer is defined in the Verbs specification it is interpreted as
1831          * wildcard and all packets will match this rule, if it follows a full
1832          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1833          * before will also match this rule.  To avoid such situation, VNI 0
1834          * is currently refused.
1835          */
1836         if (!vlan_id)
1837                 return rte_flow_error_set(error, ENOTSUP,
1838                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1839                                           "VXLAN-GPE vni cannot be 0");
1840         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1841                 return rte_flow_error_set(error, ENOTSUP,
1842                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1843                                           "VXLAN-GPE tunnel must be fully"
1844                                           " defined");
1845         return 0;
1846 }
1847 /**
1848  * Validate GRE Key item.
1849  *
1850  * @param[in] item
1851  *   Item specification.
1852  * @param[in] item_flags
1853  *   Bit flags to mark detected items.
1854  * @param[in] gre_item
1855  *   Pointer to gre_item
1856  * @param[out] error
1857  *   Pointer to error structure.
1858  *
1859  * @return
1860  *   0 on success, a negative errno value otherwise and rte_errno is set.
1861  */
1862 int
1863 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1864                                 uint64_t item_flags,
1865                                 const struct rte_flow_item *gre_item,
1866                                 struct rte_flow_error *error)
1867 {
1868         const rte_be32_t *mask = item->mask;
1869         int ret = 0;
1870         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1871         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1872         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1873
1874         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1875                 return rte_flow_error_set(error, ENOTSUP,
1876                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1877                                           "Multiple GRE key not support");
1878         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1879                 return rte_flow_error_set(error, ENOTSUP,
1880                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1881                                           "No preceding GRE header");
1882         if (item_flags & MLX5_FLOW_LAYER_INNER)
1883                 return rte_flow_error_set(error, ENOTSUP,
1884                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1885                                           "GRE key following a wrong item");
1886         if (!gre_mask)
1887                 gre_mask = &rte_flow_item_gre_mask;
1888         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1889                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1890                 return rte_flow_error_set(error, EINVAL,
1891                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1892                                           "Key bit must be on");
1893
1894         if (!mask)
1895                 mask = &gre_key_default_mask;
1896         ret = mlx5_flow_item_acceptable
1897                 (item, (const uint8_t *)mask,
1898                  (const uint8_t *)&gre_key_default_mask,
1899                  sizeof(rte_be32_t), error);
1900         return ret;
1901 }
1902
1903 /**
1904  * Validate GRE item.
1905  *
1906  * @param[in] item
1907  *   Item specification.
1908  * @param[in] item_flags
1909  *   Bit flags to mark detected items.
1910  * @param[in] target_protocol
1911  *   The next protocol in the previous item.
1912  * @param[out] error
1913  *   Pointer to error structure.
1914  *
1915  * @return
1916  *   0 on success, a negative errno value otherwise and rte_errno is set.
1917  */
1918 int
1919 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1920                             uint64_t item_flags,
1921                             uint8_t target_protocol,
1922                             struct rte_flow_error *error)
1923 {
1924         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1925         const struct rte_flow_item_gre *mask = item->mask;
1926         int ret;
1927         const struct rte_flow_item_gre nic_mask = {
1928                 .c_rsvd0_ver = RTE_BE16(0xB000),
1929                 .protocol = RTE_BE16(UINT16_MAX),
1930         };
1931
1932         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1933                 return rte_flow_error_set(error, EINVAL,
1934                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1935                                           "protocol filtering not compatible"
1936                                           " with this GRE layer");
1937         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1938                 return rte_flow_error_set(error, ENOTSUP,
1939                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1940                                           "multiple tunnel layers not"
1941                                           " supported");
1942         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1943                 return rte_flow_error_set(error, ENOTSUP,
1944                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1945                                           "L3 Layer is missing");
1946         if (!mask)
1947                 mask = &rte_flow_item_gre_mask;
1948         ret = mlx5_flow_item_acceptable
1949                 (item, (const uint8_t *)mask,
1950                  (const uint8_t *)&nic_mask,
1951                  sizeof(struct rte_flow_item_gre), error);
1952         if (ret < 0)
1953                 return ret;
1954 #ifndef HAVE_MLX5DV_DR
1955 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1956         if (spec && (spec->protocol & mask->protocol))
1957                 return rte_flow_error_set(error, ENOTSUP,
1958                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1959                                           "without MPLS support the"
1960                                           " specification cannot be used for"
1961                                           " filtering");
1962 #endif
1963 #endif
1964         return 0;
1965 }
1966
1967 /**
1968  * Validate Geneve item.
1969  *
1970  * @param[in] item
1971  *   Item specification.
1972  * @param[in] itemFlags
1973  *   Bit-fields that holds the items detected until now.
1974  * @param[in] enPriv
1975  *   Pointer to the private data structure.
1976  * @param[out] error
1977  *   Pointer to error structure.
1978  *
1979  * @return
1980  *   0 on success, a negative errno value otherwise and rte_errno is set.
1981  */
1982
1983 int
1984 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
1985                                uint64_t item_flags,
1986                                struct rte_eth_dev *dev,
1987                                struct rte_flow_error *error)
1988 {
1989         struct mlx5_priv *priv = dev->data->dev_private;
1990         const struct rte_flow_item_geneve *spec = item->spec;
1991         const struct rte_flow_item_geneve *mask = item->mask;
1992         int ret;
1993         uint16_t gbhdr;
1994         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
1995                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
1996         const struct rte_flow_item_geneve nic_mask = {
1997                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
1998                 .vni = "\xff\xff\xff",
1999                 .protocol = RTE_BE16(UINT16_MAX),
2000         };
2001
2002         if (!(priv->config.hca_attr.flex_parser_protocols &
2003               MLX5_HCA_FLEX_GENEVE_ENABLED) ||
2004             !priv->config.hca_attr.tunnel_stateless_geneve_rx)
2005                 return rte_flow_error_set(error, ENOTSUP,
2006                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2007                                           "L3 Geneve is not enabled by device"
2008                                           " parameter and/or not configured in"
2009                                           " firmware");
2010         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2011                 return rte_flow_error_set(error, ENOTSUP,
2012                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2013                                           "multiple tunnel layers not"
2014                                           " supported");
2015         /*
2016          * Verify only UDPv4 is present as defined in
2017          * https://tools.ietf.org/html/rfc7348
2018          */
2019         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2020                 return rte_flow_error_set(error, EINVAL,
2021                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2022                                           "no outer UDP layer found");
2023         if (!mask)
2024                 mask = &rte_flow_item_geneve_mask;
2025         ret = mlx5_flow_item_acceptable
2026                                   (item, (const uint8_t *)mask,
2027                                    (const uint8_t *)&nic_mask,
2028                                    sizeof(struct rte_flow_item_geneve), error);
2029         if (ret)
2030                 return ret;
2031         if (spec) {
2032                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2033                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2034                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2035                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2036                         return rte_flow_error_set(error, ENOTSUP,
2037                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2038                                                   item,
2039                                                   "Geneve protocol unsupported"
2040                                                   " fields are being used");
2041                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2042                         return rte_flow_error_set
2043                                         (error, ENOTSUP,
2044                                          RTE_FLOW_ERROR_TYPE_ITEM,
2045                                          item,
2046                                          "Unsupported Geneve options length");
2047         }
2048         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2049                 return rte_flow_error_set
2050                                     (error, ENOTSUP,
2051                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2052                                      "Geneve tunnel must be fully defined");
2053         return 0;
2054 }
2055
2056 /**
2057  * Validate MPLS item.
2058  *
2059  * @param[in] dev
2060  *   Pointer to the rte_eth_dev structure.
2061  * @param[in] item
2062  *   Item specification.
2063  * @param[in] item_flags
2064  *   Bit-fields that holds the items detected until now.
2065  * @param[in] prev_layer
2066  *   The protocol layer indicated in previous item.
2067  * @param[out] error
2068  *   Pointer to error structure.
2069  *
2070  * @return
2071  *   0 on success, a negative errno value otherwise and rte_errno is set.
2072  */
2073 int
2074 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2075                              const struct rte_flow_item *item __rte_unused,
2076                              uint64_t item_flags __rte_unused,
2077                              uint64_t prev_layer __rte_unused,
2078                              struct rte_flow_error *error)
2079 {
2080 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2081         const struct rte_flow_item_mpls *mask = item->mask;
2082         struct mlx5_priv *priv = dev->data->dev_private;
2083         int ret;
2084
2085         if (!priv->config.mpls_en)
2086                 return rte_flow_error_set(error, ENOTSUP,
2087                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2088                                           "MPLS not supported or"
2089                                           " disabled in firmware"
2090                                           " configuration.");
2091         /* MPLS over IP, UDP, GRE is allowed */
2092         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2093                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2094                             MLX5_FLOW_LAYER_GRE)))
2095                 return rte_flow_error_set(error, EINVAL,
2096                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2097                                           "protocol filtering not compatible"
2098                                           " with MPLS layer");
2099         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2100         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2101             !(item_flags & MLX5_FLOW_LAYER_GRE))
2102                 return rte_flow_error_set(error, ENOTSUP,
2103                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2104                                           "multiple tunnel layers not"
2105                                           " supported");
2106         if (!mask)
2107                 mask = &rte_flow_item_mpls_mask;
2108         ret = mlx5_flow_item_acceptable
2109                 (item, (const uint8_t *)mask,
2110                  (const uint8_t *)&rte_flow_item_mpls_mask,
2111                  sizeof(struct rte_flow_item_mpls), error);
2112         if (ret < 0)
2113                 return ret;
2114         return 0;
2115 #endif
2116         return rte_flow_error_set(error, ENOTSUP,
2117                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2118                                   "MPLS is not supported by Verbs, please"
2119                                   " update.");
2120 }
2121
2122 /**
2123  * Validate NVGRE item.
2124  *
2125  * @param[in] item
2126  *   Item specification.
2127  * @param[in] item_flags
2128  *   Bit flags to mark detected items.
2129  * @param[in] target_protocol
2130  *   The next protocol in the previous item.
2131  * @param[out] error
2132  *   Pointer to error structure.
2133  *
2134  * @return
2135  *   0 on success, a negative errno value otherwise and rte_errno is set.
2136  */
2137 int
2138 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2139                               uint64_t item_flags,
2140                               uint8_t target_protocol,
2141                               struct rte_flow_error *error)
2142 {
2143         const struct rte_flow_item_nvgre *mask = item->mask;
2144         int ret;
2145
2146         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2147                 return rte_flow_error_set(error, EINVAL,
2148                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2149                                           "protocol filtering not compatible"
2150                                           " with this GRE layer");
2151         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2152                 return rte_flow_error_set(error, ENOTSUP,
2153                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2154                                           "multiple tunnel layers not"
2155                                           " supported");
2156         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2157                 return rte_flow_error_set(error, ENOTSUP,
2158                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2159                                           "L3 Layer is missing");
2160         if (!mask)
2161                 mask = &rte_flow_item_nvgre_mask;
2162         ret = mlx5_flow_item_acceptable
2163                 (item, (const uint8_t *)mask,
2164                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2165                  sizeof(struct rte_flow_item_nvgre), error);
2166         if (ret < 0)
2167                 return ret;
2168         return 0;
2169 }
2170
2171 static int
2172 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2173                    const struct rte_flow_attr *attr __rte_unused,
2174                    const struct rte_flow_item items[] __rte_unused,
2175                    const struct rte_flow_action actions[] __rte_unused,
2176                    bool external __rte_unused,
2177                    struct rte_flow_error *error)
2178 {
2179         return rte_flow_error_set(error, ENOTSUP,
2180                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2181 }
2182
2183 static struct mlx5_flow *
2184 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2185                   const struct rte_flow_item items[] __rte_unused,
2186                   const struct rte_flow_action actions[] __rte_unused,
2187                   struct rte_flow_error *error)
2188 {
2189         rte_flow_error_set(error, ENOTSUP,
2190                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2191         return NULL;
2192 }
2193
2194 static int
2195 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2196                     struct mlx5_flow *dev_flow __rte_unused,
2197                     const struct rte_flow_attr *attr __rte_unused,
2198                     const struct rte_flow_item items[] __rte_unused,
2199                     const struct rte_flow_action actions[] __rte_unused,
2200                     struct rte_flow_error *error)
2201 {
2202         return rte_flow_error_set(error, ENOTSUP,
2203                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2204 }
2205
2206 static int
2207 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2208                 struct rte_flow *flow __rte_unused,
2209                 struct rte_flow_error *error)
2210 {
2211         return rte_flow_error_set(error, ENOTSUP,
2212                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2213 }
2214
2215 static void
2216 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2217                  struct rte_flow *flow __rte_unused)
2218 {
2219 }
2220
2221 static void
2222 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2223                   struct rte_flow *flow __rte_unused)
2224 {
2225 }
2226
2227 static int
2228 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2229                 struct rte_flow *flow __rte_unused,
2230                 const struct rte_flow_action *actions __rte_unused,
2231                 void *data __rte_unused,
2232                 struct rte_flow_error *error)
2233 {
2234         return rte_flow_error_set(error, ENOTSUP,
2235                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2236 }
2237
2238 /* Void driver to protect from null pointer reference. */
2239 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2240         .validate = flow_null_validate,
2241         .prepare = flow_null_prepare,
2242         .translate = flow_null_translate,
2243         .apply = flow_null_apply,
2244         .remove = flow_null_remove,
2245         .destroy = flow_null_destroy,
2246         .query = flow_null_query,
2247 };
2248
2249 /**
2250  * Select flow driver type according to flow attributes and device
2251  * configuration.
2252  *
2253  * @param[in] dev
2254  *   Pointer to the dev structure.
2255  * @param[in] attr
2256  *   Pointer to the flow attributes.
2257  *
2258  * @return
2259  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2260  */
2261 static enum mlx5_flow_drv_type
2262 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2263 {
2264         struct mlx5_priv *priv = dev->data->dev_private;
2265         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2266
2267         if (attr->transfer && priv->config.dv_esw_en)
2268                 type = MLX5_FLOW_TYPE_DV;
2269         if (!attr->transfer)
2270                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2271                                                  MLX5_FLOW_TYPE_VERBS;
2272         return type;
2273 }
2274
2275 #define flow_get_drv_ops(type) flow_drv_ops[type]
2276
2277 /**
2278  * Flow driver validation API. This abstracts calling driver specific functions.
2279  * The type of flow driver is determined according to flow attributes.
2280  *
2281  * @param[in] dev
2282  *   Pointer to the dev structure.
2283  * @param[in] attr
2284  *   Pointer to the flow attributes.
2285  * @param[in] items
2286  *   Pointer to the list of items.
2287  * @param[in] actions
2288  *   Pointer to the list of actions.
2289  * @param[in] external
2290  *   This flow rule is created by request external to PMD.
2291  * @param[out] error
2292  *   Pointer to the error structure.
2293  *
2294  * @return
2295  *   0 on success, a negative errno value otherwise and rte_errno is set.
2296  */
2297 static inline int
2298 flow_drv_validate(struct rte_eth_dev *dev,
2299                   const struct rte_flow_attr *attr,
2300                   const struct rte_flow_item items[],
2301                   const struct rte_flow_action actions[],
2302                   bool external, struct rte_flow_error *error)
2303 {
2304         const struct mlx5_flow_driver_ops *fops;
2305         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2306
2307         fops = flow_get_drv_ops(type);
2308         return fops->validate(dev, attr, items, actions, external, error);
2309 }
2310
2311 /**
2312  * Flow driver preparation API. This abstracts calling driver specific
2313  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2314  * calculates the size of memory required for device flow, allocates the memory,
2315  * initializes the device flow and returns the pointer.
2316  *
2317  * @note
2318  *   This function initializes device flow structure such as dv or verbs in
2319  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2320  *   rest. For example, adding returning device flow to flow->dev_flow list and
2321  *   setting backward reference to the flow should be done out of this function.
2322  *   layers field is not filled either.
2323  *
2324  * @param[in] attr
2325  *   Pointer to the flow attributes.
2326  * @param[in] items
2327  *   Pointer to the list of items.
2328  * @param[in] actions
2329  *   Pointer to the list of actions.
2330  * @param[out] error
2331  *   Pointer to the error structure.
2332  *
2333  * @return
2334  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2335  */
2336 static inline struct mlx5_flow *
2337 flow_drv_prepare(const struct rte_flow *flow,
2338                  const struct rte_flow_attr *attr,
2339                  const struct rte_flow_item items[],
2340                  const struct rte_flow_action actions[],
2341                  struct rte_flow_error *error)
2342 {
2343         const struct mlx5_flow_driver_ops *fops;
2344         enum mlx5_flow_drv_type type = flow->drv_type;
2345
2346         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2347         fops = flow_get_drv_ops(type);
2348         return fops->prepare(attr, items, actions, error);
2349 }
2350
2351 /**
2352  * Flow driver translation API. This abstracts calling driver specific
2353  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2354  * translates a generic flow into a driver flow. flow_drv_prepare() must
2355  * precede.
2356  *
2357  * @note
2358  *   dev_flow->layers could be filled as a result of parsing during translation
2359  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2360  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2361  *   flow->actions could be overwritten even though all the expanded dev_flows
2362  *   have the same actions.
2363  *
2364  * @param[in] dev
2365  *   Pointer to the rte dev structure.
2366  * @param[in, out] dev_flow
2367  *   Pointer to the mlx5 flow.
2368  * @param[in] attr
2369  *   Pointer to the flow attributes.
2370  * @param[in] items
2371  *   Pointer to the list of items.
2372  * @param[in] actions
2373  *   Pointer to the list of actions.
2374  * @param[out] error
2375  *   Pointer to the error structure.
2376  *
2377  * @return
2378  *   0 on success, a negative errno value otherwise and rte_errno is set.
2379  */
2380 static inline int
2381 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2382                    const struct rte_flow_attr *attr,
2383                    const struct rte_flow_item items[],
2384                    const struct rte_flow_action actions[],
2385                    struct rte_flow_error *error)
2386 {
2387         const struct mlx5_flow_driver_ops *fops;
2388         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2389
2390         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2391         fops = flow_get_drv_ops(type);
2392         return fops->translate(dev, dev_flow, attr, items, actions, error);
2393 }
2394
2395 /**
2396  * Flow driver apply API. This abstracts calling driver specific functions.
2397  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2398  * translated driver flows on to device. flow_drv_translate() must precede.
2399  *
2400  * @param[in] dev
2401  *   Pointer to Ethernet device structure.
2402  * @param[in, out] flow
2403  *   Pointer to flow structure.
2404  * @param[out] error
2405  *   Pointer to error structure.
2406  *
2407  * @return
2408  *   0 on success, a negative errno value otherwise and rte_errno is set.
2409  */
2410 static inline int
2411 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2412                struct rte_flow_error *error)
2413 {
2414         const struct mlx5_flow_driver_ops *fops;
2415         enum mlx5_flow_drv_type type = flow->drv_type;
2416
2417         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2418         fops = flow_get_drv_ops(type);
2419         return fops->apply(dev, flow, error);
2420 }
2421
2422 /**
2423  * Flow driver remove API. This abstracts calling driver specific functions.
2424  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2425  * on device. All the resources of the flow should be freed by calling
2426  * flow_drv_destroy().
2427  *
2428  * @param[in] dev
2429  *   Pointer to Ethernet device.
2430  * @param[in, out] flow
2431  *   Pointer to flow structure.
2432  */
2433 static inline void
2434 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2435 {
2436         const struct mlx5_flow_driver_ops *fops;
2437         enum mlx5_flow_drv_type type = flow->drv_type;
2438
2439         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2440         fops = flow_get_drv_ops(type);
2441         fops->remove(dev, flow);
2442 }
2443
2444 /**
2445  * Flow driver destroy API. This abstracts calling driver specific functions.
2446  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2447  * on device and releases resources of the flow.
2448  *
2449  * @param[in] dev
2450  *   Pointer to Ethernet device.
2451  * @param[in, out] flow
2452  *   Pointer to flow structure.
2453  */
2454 static inline void
2455 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2456 {
2457         const struct mlx5_flow_driver_ops *fops;
2458         enum mlx5_flow_drv_type type = flow->drv_type;
2459
2460         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2461         fops = flow_get_drv_ops(type);
2462         fops->destroy(dev, flow);
2463 }
2464
2465 /**
2466  * Validate a flow supported by the NIC.
2467  *
2468  * @see rte_flow_validate()
2469  * @see rte_flow_ops
2470  */
2471 int
2472 mlx5_flow_validate(struct rte_eth_dev *dev,
2473                    const struct rte_flow_attr *attr,
2474                    const struct rte_flow_item items[],
2475                    const struct rte_flow_action actions[],
2476                    struct rte_flow_error *error)
2477 {
2478         int ret;
2479
2480         ret = flow_drv_validate(dev, attr, items, actions, true, error);
2481         if (ret < 0)
2482                 return ret;
2483         return 0;
2484 }
2485
2486 /**
2487  * Get RSS action from the action list.
2488  *
2489  * @param[in] actions
2490  *   Pointer to the list of actions.
2491  *
2492  * @return
2493  *   Pointer to the RSS action if exist, else return NULL.
2494  */
2495 static const struct rte_flow_action_rss*
2496 flow_get_rss_action(const struct rte_flow_action actions[])
2497 {
2498         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2499                 switch (actions->type) {
2500                 case RTE_FLOW_ACTION_TYPE_RSS:
2501                         return (const struct rte_flow_action_rss *)
2502                                actions->conf;
2503                 default:
2504                         break;
2505                 }
2506         }
2507         return NULL;
2508 }
2509
2510 static unsigned int
2511 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2512 {
2513         const struct rte_flow_item *item;
2514         unsigned int has_vlan = 0;
2515
2516         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2517                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2518                         has_vlan = 1;
2519                         break;
2520                 }
2521         }
2522         if (has_vlan)
2523                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2524                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2525         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2526                                MLX5_EXPANSION_ROOT_OUTER;
2527 }
2528
2529 /**
2530  * Create a flow and add it to @p list.
2531  *
2532  * @param dev
2533  *   Pointer to Ethernet device.
2534  * @param list
2535  *   Pointer to a TAILQ flow list.
2536  * @param[in] attr
2537  *   Flow rule attributes.
2538  * @param[in] items
2539  *   Pattern specification (list terminated by the END pattern item).
2540  * @param[in] actions
2541  *   Associated actions (list terminated by the END action).
2542  * @param[in] external
2543  *   This flow rule is created by request external to PMD.
2544  * @param[out] error
2545  *   Perform verbose error reporting if not NULL.
2546  *
2547  * @return
2548  *   A flow on success, NULL otherwise and rte_errno is set.
2549  */
2550 static struct rte_flow *
2551 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2552                  const struct rte_flow_attr *attr,
2553                  const struct rte_flow_item items[],
2554                  const struct rte_flow_action actions[],
2555                  bool external, struct rte_flow_error *error)
2556 {
2557         struct rte_flow *flow = NULL;
2558         struct mlx5_flow *dev_flow;
2559         const struct rte_flow_action_rss *rss;
2560         union {
2561                 struct rte_flow_expand_rss buf;
2562                 uint8_t buffer[2048];
2563         } expand_buffer;
2564         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2565         int ret;
2566         uint32_t i;
2567         uint32_t flow_size;
2568
2569         ret = flow_drv_validate(dev, attr, items, actions, external, error);
2570         if (ret < 0)
2571                 return NULL;
2572         flow_size = sizeof(struct rte_flow);
2573         rss = flow_get_rss_action(actions);
2574         if (rss)
2575                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2576                                             sizeof(void *));
2577         else
2578                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2579         flow = rte_calloc(__func__, 1, flow_size, 0);
2580         if (!flow) {
2581                 rte_errno = ENOMEM;
2582                 return NULL;
2583         }
2584         flow->drv_type = flow_get_drv_type(dev, attr);
2585         flow->ingress = attr->ingress;
2586         flow->transfer = attr->transfer;
2587         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2588                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2589         flow->queue = (void *)(flow + 1);
2590         LIST_INIT(&flow->dev_flows);
2591         if (rss && rss->types) {
2592                 unsigned int graph_root;
2593
2594                 graph_root = find_graph_root(items, rss->level);
2595                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2596                                           items, rss->types,
2597                                           mlx5_support_expansion,
2598                                           graph_root);
2599                 assert(ret > 0 &&
2600                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2601         } else {
2602                 buf->entries = 1;
2603                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2604         }
2605         for (i = 0; i < buf->entries; ++i) {
2606                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2607                                             actions, error);
2608                 if (!dev_flow)
2609                         goto error;
2610                 dev_flow->flow = flow;
2611                 dev_flow->external = external;
2612                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2613                 ret = flow_drv_translate(dev, dev_flow, attr,
2614                                          buf->entry[i].pattern,
2615                                          actions, error);
2616                 if (ret < 0)
2617                         goto error;
2618         }
2619         if (dev->data->dev_started) {
2620                 ret = flow_drv_apply(dev, flow, error);
2621                 if (ret < 0)
2622                         goto error;
2623         }
2624         TAILQ_INSERT_TAIL(list, flow, next);
2625         flow_rxq_flags_set(dev, flow);
2626         return flow;
2627 error:
2628         ret = rte_errno; /* Save rte_errno before cleanup. */
2629         assert(flow);
2630         flow_drv_destroy(dev, flow);
2631         rte_free(flow);
2632         rte_errno = ret; /* Restore rte_errno. */
2633         return NULL;
2634 }
2635
2636 /**
2637  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2638  * incoming packets to table 1.
2639  *
2640  * Other flow rules, requested for group n, will be created in
2641  * e-switch table n+1.
2642  * Jump action to e-switch group n will be created to group n+1.
2643  *
2644  * Used when working in switchdev mode, to utilise advantages of table 1
2645  * and above.
2646  *
2647  * @param dev
2648  *   Pointer to Ethernet device.
2649  *
2650  * @return
2651  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2652  */
2653 struct rte_flow *
2654 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2655 {
2656         const struct rte_flow_attr attr = {
2657                 .group = 0,
2658                 .priority = 0,
2659                 .ingress = 1,
2660                 .egress = 0,
2661                 .transfer = 1,
2662         };
2663         const struct rte_flow_item pattern = {
2664                 .type = RTE_FLOW_ITEM_TYPE_END,
2665         };
2666         struct rte_flow_action_jump jump = {
2667                 .group = 1,
2668         };
2669         const struct rte_flow_action actions[] = {
2670                 {
2671                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
2672                         .conf = &jump,
2673                 },
2674                 {
2675                         .type = RTE_FLOW_ACTION_TYPE_END,
2676                 },
2677         };
2678         struct mlx5_priv *priv = dev->data->dev_private;
2679         struct rte_flow_error error;
2680
2681         return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2682                                 actions, false, &error);
2683 }
2684
2685 /**
2686  * Create a flow.
2687  *
2688  * @see rte_flow_create()
2689  * @see rte_flow_ops
2690  */
2691 struct rte_flow *
2692 mlx5_flow_create(struct rte_eth_dev *dev,
2693                  const struct rte_flow_attr *attr,
2694                  const struct rte_flow_item items[],
2695                  const struct rte_flow_action actions[],
2696                  struct rte_flow_error *error)
2697 {
2698         struct mlx5_priv *priv = dev->data->dev_private;
2699
2700         return flow_list_create(dev, &priv->flows,
2701                                 attr, items, actions, true, error);
2702 }
2703
2704 /**
2705  * Destroy a flow in a list.
2706  *
2707  * @param dev
2708  *   Pointer to Ethernet device.
2709  * @param list
2710  *   Pointer to a TAILQ flow list.
2711  * @param[in] flow
2712  *   Flow to destroy.
2713  */
2714 static void
2715 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2716                   struct rte_flow *flow)
2717 {
2718         /*
2719          * Update RX queue flags only if port is started, otherwise it is
2720          * already clean.
2721          */
2722         if (dev->data->dev_started)
2723                 flow_rxq_flags_trim(dev, flow);
2724         flow_drv_destroy(dev, flow);
2725         TAILQ_REMOVE(list, flow, next);
2726         rte_free(flow->fdir);
2727         rte_free(flow);
2728 }
2729
2730 /**
2731  * Destroy all flows.
2732  *
2733  * @param dev
2734  *   Pointer to Ethernet device.
2735  * @param list
2736  *   Pointer to a TAILQ flow list.
2737  */
2738 void
2739 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2740 {
2741         while (!TAILQ_EMPTY(list)) {
2742                 struct rte_flow *flow;
2743
2744                 flow = TAILQ_FIRST(list);
2745                 flow_list_destroy(dev, list, flow);
2746         }
2747 }
2748
2749 /**
2750  * Remove all flows.
2751  *
2752  * @param dev
2753  *   Pointer to Ethernet device.
2754  * @param list
2755  *   Pointer to a TAILQ flow list.
2756  */
2757 void
2758 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2759 {
2760         struct rte_flow *flow;
2761
2762         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2763                 flow_drv_remove(dev, flow);
2764         flow_rxq_flags_clear(dev);
2765 }
2766
2767 /**
2768  * Add all flows.
2769  *
2770  * @param dev
2771  *   Pointer to Ethernet device.
2772  * @param list
2773  *   Pointer to a TAILQ flow list.
2774  *
2775  * @return
2776  *   0 on success, a negative errno value otherwise and rte_errno is set.
2777  */
2778 int
2779 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2780 {
2781         struct rte_flow *flow;
2782         struct rte_flow_error error;
2783         int ret = 0;
2784
2785         TAILQ_FOREACH(flow, list, next) {
2786                 ret = flow_drv_apply(dev, flow, &error);
2787                 if (ret < 0)
2788                         goto error;
2789                 flow_rxq_flags_set(dev, flow);
2790         }
2791         return 0;
2792 error:
2793         ret = rte_errno; /* Save rte_errno before cleanup. */
2794         mlx5_flow_stop(dev, list);
2795         rte_errno = ret; /* Restore rte_errno. */
2796         return -rte_errno;
2797 }
2798
2799 /**
2800  * Verify the flow list is empty
2801  *
2802  * @param dev
2803  *  Pointer to Ethernet device.
2804  *
2805  * @return the number of flows not released.
2806  */
2807 int
2808 mlx5_flow_verify(struct rte_eth_dev *dev)
2809 {
2810         struct mlx5_priv *priv = dev->data->dev_private;
2811         struct rte_flow *flow;
2812         int ret = 0;
2813
2814         TAILQ_FOREACH(flow, &priv->flows, next) {
2815                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2816                         dev->data->port_id, (void *)flow);
2817                 ++ret;
2818         }
2819         return ret;
2820 }
2821
2822 /**
2823  * Enable default hairpin egress flow.
2824  *
2825  * @param dev
2826  *   Pointer to Ethernet device.
2827  * @param queue
2828  *   The queue index.
2829  *
2830  * @return
2831  *   0 on success, a negative errno value otherwise and rte_errno is set.
2832  */
2833 int
2834 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
2835                             uint32_t queue)
2836 {
2837         struct mlx5_priv *priv = dev->data->dev_private;
2838         const struct rte_flow_attr attr = {
2839                 .egress = 1,
2840                 .priority = 0,
2841         };
2842         struct mlx5_rte_flow_item_tx_queue queue_spec = {
2843                 .queue = queue,
2844         };
2845         struct mlx5_rte_flow_item_tx_queue queue_mask = {
2846                 .queue = UINT32_MAX,
2847         };
2848         struct rte_flow_item items[] = {
2849                 {
2850                         .type = MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
2851                         .spec = &queue_spec,
2852                         .last = NULL,
2853                         .mask = &queue_mask,
2854                 },
2855                 {
2856                         .type = RTE_FLOW_ITEM_TYPE_END,
2857                 },
2858         };
2859         struct rte_flow_action_jump jump = {
2860                 .group = MLX5_HAIRPIN_TX_TABLE,
2861         };
2862         struct rte_flow_action actions[2];
2863         struct rte_flow *flow;
2864         struct rte_flow_error error;
2865
2866         actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
2867         actions[0].conf = &jump;
2868         actions[1].type = RTE_FLOW_ACTION_TYPE_END;
2869         flow = flow_list_create(dev, &priv->ctrl_flows,
2870                                 &attr, items, actions, false, &error);
2871         if (!flow) {
2872                 DRV_LOG(DEBUG,
2873                         "Failed to create ctrl flow: rte_errno(%d),"
2874                         " type(%d), message(%s)\n",
2875                         rte_errno, error.type,
2876                         error.message ? error.message : " (no stated reason)");
2877                 return -rte_errno;
2878         }
2879         return 0;
2880 }
2881
2882 /**
2883  * Enable a control flow configured from the control plane.
2884  *
2885  * @param dev
2886  *   Pointer to Ethernet device.
2887  * @param eth_spec
2888  *   An Ethernet flow spec to apply.
2889  * @param eth_mask
2890  *   An Ethernet flow mask to apply.
2891  * @param vlan_spec
2892  *   A VLAN flow spec to apply.
2893  * @param vlan_mask
2894  *   A VLAN flow mask to apply.
2895  *
2896  * @return
2897  *   0 on success, a negative errno value otherwise and rte_errno is set.
2898  */
2899 int
2900 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2901                     struct rte_flow_item_eth *eth_spec,
2902                     struct rte_flow_item_eth *eth_mask,
2903                     struct rte_flow_item_vlan *vlan_spec,
2904                     struct rte_flow_item_vlan *vlan_mask)
2905 {
2906         struct mlx5_priv *priv = dev->data->dev_private;
2907         const struct rte_flow_attr attr = {
2908                 .ingress = 1,
2909                 .priority = MLX5_FLOW_PRIO_RSVD,
2910         };
2911         struct rte_flow_item items[] = {
2912                 {
2913                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2914                         .spec = eth_spec,
2915                         .last = NULL,
2916                         .mask = eth_mask,
2917                 },
2918                 {
2919                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2920                                               RTE_FLOW_ITEM_TYPE_END,
2921                         .spec = vlan_spec,
2922                         .last = NULL,
2923                         .mask = vlan_mask,
2924                 },
2925                 {
2926                         .type = RTE_FLOW_ITEM_TYPE_END,
2927                 },
2928         };
2929         uint16_t queue[priv->reta_idx_n];
2930         struct rte_flow_action_rss action_rss = {
2931                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2932                 .level = 0,
2933                 .types = priv->rss_conf.rss_hf,
2934                 .key_len = priv->rss_conf.rss_key_len,
2935                 .queue_num = priv->reta_idx_n,
2936                 .key = priv->rss_conf.rss_key,
2937                 .queue = queue,
2938         };
2939         struct rte_flow_action actions[] = {
2940                 {
2941                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2942                         .conf = &action_rss,
2943                 },
2944                 {
2945                         .type = RTE_FLOW_ACTION_TYPE_END,
2946                 },
2947         };
2948         struct rte_flow *flow;
2949         struct rte_flow_error error;
2950         unsigned int i;
2951
2952         if (!priv->reta_idx_n || !priv->rxqs_n) {
2953                 return 0;
2954         }
2955         for (i = 0; i != priv->reta_idx_n; ++i)
2956                 queue[i] = (*priv->reta_idx)[i];
2957         flow = flow_list_create(dev, &priv->ctrl_flows,
2958                                 &attr, items, actions, false, &error);
2959         if (!flow)
2960                 return -rte_errno;
2961         return 0;
2962 }
2963
2964 /**
2965  * Enable a flow control configured from the control plane.
2966  *
2967  * @param dev
2968  *   Pointer to Ethernet device.
2969  * @param eth_spec
2970  *   An Ethernet flow spec to apply.
2971  * @param eth_mask
2972  *   An Ethernet flow mask to apply.
2973  *
2974  * @return
2975  *   0 on success, a negative errno value otherwise and rte_errno is set.
2976  */
2977 int
2978 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2979                struct rte_flow_item_eth *eth_spec,
2980                struct rte_flow_item_eth *eth_mask)
2981 {
2982         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2983 }
2984
2985 /**
2986  * Destroy a flow.
2987  *
2988  * @see rte_flow_destroy()
2989  * @see rte_flow_ops
2990  */
2991 int
2992 mlx5_flow_destroy(struct rte_eth_dev *dev,
2993                   struct rte_flow *flow,
2994                   struct rte_flow_error *error __rte_unused)
2995 {
2996         struct mlx5_priv *priv = dev->data->dev_private;
2997
2998         flow_list_destroy(dev, &priv->flows, flow);
2999         return 0;
3000 }
3001
3002 /**
3003  * Destroy all flows.
3004  *
3005  * @see rte_flow_flush()
3006  * @see rte_flow_ops
3007  */
3008 int
3009 mlx5_flow_flush(struct rte_eth_dev *dev,
3010                 struct rte_flow_error *error __rte_unused)
3011 {
3012         struct mlx5_priv *priv = dev->data->dev_private;
3013
3014         mlx5_flow_list_flush(dev, &priv->flows);
3015         return 0;
3016 }
3017
3018 /**
3019  * Isolated mode.
3020  *
3021  * @see rte_flow_isolate()
3022  * @see rte_flow_ops
3023  */
3024 int
3025 mlx5_flow_isolate(struct rte_eth_dev *dev,
3026                   int enable,
3027                   struct rte_flow_error *error)
3028 {
3029         struct mlx5_priv *priv = dev->data->dev_private;
3030
3031         if (dev->data->dev_started) {
3032                 rte_flow_error_set(error, EBUSY,
3033                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3034                                    NULL,
3035                                    "port must be stopped first");
3036                 return -rte_errno;
3037         }
3038         priv->isolated = !!enable;
3039         if (enable)
3040                 dev->dev_ops = &mlx5_dev_ops_isolate;
3041         else
3042                 dev->dev_ops = &mlx5_dev_ops;
3043         return 0;
3044 }
3045
3046 /**
3047  * Query a flow.
3048  *
3049  * @see rte_flow_query()
3050  * @see rte_flow_ops
3051  */
3052 static int
3053 flow_drv_query(struct rte_eth_dev *dev,
3054                struct rte_flow *flow,
3055                const struct rte_flow_action *actions,
3056                void *data,
3057                struct rte_flow_error *error)
3058 {
3059         const struct mlx5_flow_driver_ops *fops;
3060         enum mlx5_flow_drv_type ftype = flow->drv_type;
3061
3062         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
3063         fops = flow_get_drv_ops(ftype);
3064
3065         return fops->query(dev, flow, actions, data, error);
3066 }
3067
3068 /**
3069  * Query a flow.
3070  *
3071  * @see rte_flow_query()
3072  * @see rte_flow_ops
3073  */
3074 int
3075 mlx5_flow_query(struct rte_eth_dev *dev,
3076                 struct rte_flow *flow,
3077                 const struct rte_flow_action *actions,
3078                 void *data,
3079                 struct rte_flow_error *error)
3080 {
3081         int ret;
3082
3083         ret = flow_drv_query(dev, flow, actions, data, error);
3084         if (ret < 0)
3085                 return ret;
3086         return 0;
3087 }
3088
3089 /**
3090  * Convert a flow director filter to a generic flow.
3091  *
3092  * @param dev
3093  *   Pointer to Ethernet device.
3094  * @param fdir_filter
3095  *   Flow director filter to add.
3096  * @param attributes
3097  *   Generic flow parameters structure.
3098  *
3099  * @return
3100  *   0 on success, a negative errno value otherwise and rte_errno is set.
3101  */
3102 static int
3103 flow_fdir_filter_convert(struct rte_eth_dev *dev,
3104                          const struct rte_eth_fdir_filter *fdir_filter,
3105                          struct mlx5_fdir *attributes)
3106 {
3107         struct mlx5_priv *priv = dev->data->dev_private;
3108         const struct rte_eth_fdir_input *input = &fdir_filter->input;
3109         const struct rte_eth_fdir_masks *mask =
3110                 &dev->data->dev_conf.fdir_conf.mask;
3111
3112         /* Validate queue number. */
3113         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3114                 DRV_LOG(ERR, "port %u invalid queue number %d",
3115                         dev->data->port_id, fdir_filter->action.rx_queue);
3116                 rte_errno = EINVAL;
3117                 return -rte_errno;
3118         }
3119         attributes->attr.ingress = 1;
3120         attributes->items[0] = (struct rte_flow_item) {
3121                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3122                 .spec = &attributes->l2,
3123                 .mask = &attributes->l2_mask,
3124         };
3125         switch (fdir_filter->action.behavior) {
3126         case RTE_ETH_FDIR_ACCEPT:
3127                 attributes->actions[0] = (struct rte_flow_action){
3128                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
3129                         .conf = &attributes->queue,
3130                 };
3131                 break;
3132         case RTE_ETH_FDIR_REJECT:
3133                 attributes->actions[0] = (struct rte_flow_action){
3134                         .type = RTE_FLOW_ACTION_TYPE_DROP,
3135                 };
3136                 break;
3137         default:
3138                 DRV_LOG(ERR, "port %u invalid behavior %d",
3139                         dev->data->port_id,
3140                         fdir_filter->action.behavior);
3141                 rte_errno = ENOTSUP;
3142                 return -rte_errno;
3143         }
3144         attributes->queue.index = fdir_filter->action.rx_queue;
3145         /* Handle L3. */
3146         switch (fdir_filter->input.flow_type) {
3147         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3148         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3149         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3150                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
3151                         .src_addr = input->flow.ip4_flow.src_ip,
3152                         .dst_addr = input->flow.ip4_flow.dst_ip,
3153                         .time_to_live = input->flow.ip4_flow.ttl,
3154                         .type_of_service = input->flow.ip4_flow.tos,
3155                 };
3156                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
3157                         .src_addr = mask->ipv4_mask.src_ip,
3158                         .dst_addr = mask->ipv4_mask.dst_ip,
3159                         .time_to_live = mask->ipv4_mask.ttl,
3160                         .type_of_service = mask->ipv4_mask.tos,
3161                         .next_proto_id = mask->ipv4_mask.proto,
3162                 };
3163                 attributes->items[1] = (struct rte_flow_item){
3164                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
3165                         .spec = &attributes->l3,
3166                         .mask = &attributes->l3_mask,
3167                 };
3168                 break;
3169         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3170         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3171         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3172                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
3173                         .hop_limits = input->flow.ipv6_flow.hop_limits,
3174                         .proto = input->flow.ipv6_flow.proto,
3175                 };
3176
3177                 memcpy(attributes->l3.ipv6.hdr.src_addr,
3178                        input->flow.ipv6_flow.src_ip,
3179                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3180                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
3181                        input->flow.ipv6_flow.dst_ip,
3182                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3183                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3184                        mask->ipv6_mask.src_ip,
3185                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3186                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3187                        mask->ipv6_mask.dst_ip,
3188                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3189                 attributes->items[1] = (struct rte_flow_item){
3190                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3191                         .spec = &attributes->l3,
3192                         .mask = &attributes->l3_mask,
3193                 };
3194                 break;
3195         default:
3196                 DRV_LOG(ERR, "port %u invalid flow type%d",
3197                         dev->data->port_id, fdir_filter->input.flow_type);
3198                 rte_errno = ENOTSUP;
3199                 return -rte_errno;
3200         }
3201         /* Handle L4. */
3202         switch (fdir_filter->input.flow_type) {
3203         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3204                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3205                         .src_port = input->flow.udp4_flow.src_port,
3206                         .dst_port = input->flow.udp4_flow.dst_port,
3207                 };
3208                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3209                         .src_port = mask->src_port_mask,
3210                         .dst_port = mask->dst_port_mask,
3211                 };
3212                 attributes->items[2] = (struct rte_flow_item){
3213                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3214                         .spec = &attributes->l4,
3215                         .mask = &attributes->l4_mask,
3216                 };
3217                 break;
3218         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3219                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3220                         .src_port = input->flow.tcp4_flow.src_port,
3221                         .dst_port = input->flow.tcp4_flow.dst_port,
3222                 };
3223                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3224                         .src_port = mask->src_port_mask,
3225                         .dst_port = mask->dst_port_mask,
3226                 };
3227                 attributes->items[2] = (struct rte_flow_item){
3228                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3229                         .spec = &attributes->l4,
3230                         .mask = &attributes->l4_mask,
3231                 };
3232                 break;
3233         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3234                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3235                         .src_port = input->flow.udp6_flow.src_port,
3236                         .dst_port = input->flow.udp6_flow.dst_port,
3237                 };
3238                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3239                         .src_port = mask->src_port_mask,
3240                         .dst_port = mask->dst_port_mask,
3241                 };
3242                 attributes->items[2] = (struct rte_flow_item){
3243                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3244                         .spec = &attributes->l4,
3245                         .mask = &attributes->l4_mask,
3246                 };
3247                 break;
3248         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3249                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3250                         .src_port = input->flow.tcp6_flow.src_port,
3251                         .dst_port = input->flow.tcp6_flow.dst_port,
3252                 };
3253                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3254                         .src_port = mask->src_port_mask,
3255                         .dst_port = mask->dst_port_mask,
3256                 };
3257                 attributes->items[2] = (struct rte_flow_item){
3258                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3259                         .spec = &attributes->l4,
3260                         .mask = &attributes->l4_mask,
3261                 };
3262                 break;
3263         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3264         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3265                 break;
3266         default:
3267                 DRV_LOG(ERR, "port %u invalid flow type%d",
3268                         dev->data->port_id, fdir_filter->input.flow_type);
3269                 rte_errno = ENOTSUP;
3270                 return -rte_errno;
3271         }
3272         return 0;
3273 }
3274
3275 #define FLOW_FDIR_CMP(f1, f2, fld) \
3276         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3277
3278 /**
3279  * Compare two FDIR flows. If items and actions are identical, the two flows are
3280  * regarded as same.
3281  *
3282  * @param dev
3283  *   Pointer to Ethernet device.
3284  * @param f1
3285  *   FDIR flow to compare.
3286  * @param f2
3287  *   FDIR flow to compare.
3288  *
3289  * @return
3290  *   Zero on match, 1 otherwise.
3291  */
3292 static int
3293 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3294 {
3295         if (FLOW_FDIR_CMP(f1, f2, attr) ||
3296             FLOW_FDIR_CMP(f1, f2, l2) ||
3297             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3298             FLOW_FDIR_CMP(f1, f2, l3) ||
3299             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3300             FLOW_FDIR_CMP(f1, f2, l4) ||
3301             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3302             FLOW_FDIR_CMP(f1, f2, actions[0].type))
3303                 return 1;
3304         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3305             FLOW_FDIR_CMP(f1, f2, queue))
3306                 return 1;
3307         return 0;
3308 }
3309
3310 /**
3311  * Search device flow list to find out a matched FDIR flow.
3312  *
3313  * @param dev
3314  *   Pointer to Ethernet device.
3315  * @param fdir_flow
3316  *   FDIR flow to lookup.
3317  *
3318  * @return
3319  *   Pointer of flow if found, NULL otherwise.
3320  */
3321 static struct rte_flow *
3322 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3323 {
3324         struct mlx5_priv *priv = dev->data->dev_private;
3325         struct rte_flow *flow = NULL;
3326
3327         assert(fdir_flow);
3328         TAILQ_FOREACH(flow, &priv->flows, next) {
3329                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3330                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3331                                 dev->data->port_id, (void *)flow);
3332                         break;
3333                 }
3334         }
3335         return flow;
3336 }
3337
3338 /**
3339  * Add new flow director filter and store it in list.
3340  *
3341  * @param dev
3342  *   Pointer to Ethernet device.
3343  * @param fdir_filter
3344  *   Flow director filter to add.
3345  *
3346  * @return
3347  *   0 on success, a negative errno value otherwise and rte_errno is set.
3348  */
3349 static int
3350 flow_fdir_filter_add(struct rte_eth_dev *dev,
3351                      const struct rte_eth_fdir_filter *fdir_filter)
3352 {
3353         struct mlx5_priv *priv = dev->data->dev_private;
3354         struct mlx5_fdir *fdir_flow;
3355         struct rte_flow *flow;
3356         int ret;
3357
3358         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3359         if (!fdir_flow) {
3360                 rte_errno = ENOMEM;
3361                 return -rte_errno;
3362         }
3363         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3364         if (ret)
3365                 goto error;
3366         flow = flow_fdir_filter_lookup(dev, fdir_flow);
3367         if (flow) {
3368                 rte_errno = EEXIST;
3369                 goto error;
3370         }
3371         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3372                                 fdir_flow->items, fdir_flow->actions, true,
3373                                 NULL);
3374         if (!flow)
3375                 goto error;
3376         assert(!flow->fdir);
3377         flow->fdir = fdir_flow;
3378         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3379                 dev->data->port_id, (void *)flow);
3380         return 0;
3381 error:
3382         rte_free(fdir_flow);
3383         return -rte_errno;
3384 }
3385
3386 /**
3387  * Delete specific filter.
3388  *
3389  * @param dev
3390  *   Pointer to Ethernet device.
3391  * @param fdir_filter
3392  *   Filter to be deleted.
3393  *
3394  * @return
3395  *   0 on success, a negative errno value otherwise and rte_errno is set.
3396  */
3397 static int
3398 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3399                         const struct rte_eth_fdir_filter *fdir_filter)
3400 {
3401         struct mlx5_priv *priv = dev->data->dev_private;
3402         struct rte_flow *flow;
3403         struct mlx5_fdir fdir_flow = {
3404                 .attr.group = 0,
3405         };
3406         int ret;
3407
3408         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3409         if (ret)
3410                 return -rte_errno;
3411         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3412         if (!flow) {
3413                 rte_errno = ENOENT;
3414                 return -rte_errno;
3415         }
3416         flow_list_destroy(dev, &priv->flows, flow);
3417         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3418                 dev->data->port_id, (void *)flow);
3419         return 0;
3420 }
3421
3422 /**
3423  * Update queue for specific filter.
3424  *
3425  * @param dev
3426  *   Pointer to Ethernet device.
3427  * @param fdir_filter
3428  *   Filter to be updated.
3429  *
3430  * @return
3431  *   0 on success, a negative errno value otherwise and rte_errno is set.
3432  */
3433 static int
3434 flow_fdir_filter_update(struct rte_eth_dev *dev,
3435                         const struct rte_eth_fdir_filter *fdir_filter)
3436 {
3437         int ret;
3438
3439         ret = flow_fdir_filter_delete(dev, fdir_filter);
3440         if (ret)
3441                 return ret;
3442         return flow_fdir_filter_add(dev, fdir_filter);
3443 }
3444
3445 /**
3446  * Flush all filters.
3447  *
3448  * @param dev
3449  *   Pointer to Ethernet device.
3450  */
3451 static void
3452 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3453 {
3454         struct mlx5_priv *priv = dev->data->dev_private;
3455
3456         mlx5_flow_list_flush(dev, &priv->flows);
3457 }
3458
3459 /**
3460  * Get flow director information.
3461  *
3462  * @param dev
3463  *   Pointer to Ethernet device.
3464  * @param[out] fdir_info
3465  *   Resulting flow director information.
3466  */
3467 static void
3468 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3469 {
3470         struct rte_eth_fdir_masks *mask =
3471                 &dev->data->dev_conf.fdir_conf.mask;
3472
3473         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3474         fdir_info->guarant_spc = 0;
3475         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3476         fdir_info->max_flexpayload = 0;
3477         fdir_info->flow_types_mask[0] = 0;
3478         fdir_info->flex_payload_unit = 0;
3479         fdir_info->max_flex_payload_segment_num = 0;
3480         fdir_info->flex_payload_limit = 0;
3481         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3482 }
3483
3484 /**
3485  * Deal with flow director operations.
3486  *
3487  * @param dev
3488  *   Pointer to Ethernet device.
3489  * @param filter_op
3490  *   Operation to perform.
3491  * @param arg
3492  *   Pointer to operation-specific structure.
3493  *
3494  * @return
3495  *   0 on success, a negative errno value otherwise and rte_errno is set.
3496  */
3497 static int
3498 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3499                     void *arg)
3500 {
3501         enum rte_fdir_mode fdir_mode =
3502                 dev->data->dev_conf.fdir_conf.mode;
3503
3504         if (filter_op == RTE_ETH_FILTER_NOP)
3505                 return 0;
3506         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3507             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3508                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3509                         dev->data->port_id, fdir_mode);
3510                 rte_errno = EINVAL;
3511                 return -rte_errno;
3512         }
3513         switch (filter_op) {
3514         case RTE_ETH_FILTER_ADD:
3515                 return flow_fdir_filter_add(dev, arg);
3516         case RTE_ETH_FILTER_UPDATE:
3517                 return flow_fdir_filter_update(dev, arg);
3518         case RTE_ETH_FILTER_DELETE:
3519                 return flow_fdir_filter_delete(dev, arg);
3520         case RTE_ETH_FILTER_FLUSH:
3521                 flow_fdir_filter_flush(dev);
3522                 break;
3523         case RTE_ETH_FILTER_INFO:
3524                 flow_fdir_info_get(dev, arg);
3525                 break;
3526         default:
3527                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3528                         dev->data->port_id, filter_op);
3529                 rte_errno = EINVAL;
3530                 return -rte_errno;
3531         }
3532         return 0;
3533 }
3534
3535 /**
3536  * Manage filter operations.
3537  *
3538  * @param dev
3539  *   Pointer to Ethernet device structure.
3540  * @param filter_type
3541  *   Filter type.
3542  * @param filter_op
3543  *   Operation to perform.
3544  * @param arg
3545  *   Pointer to operation-specific structure.
3546  *
3547  * @return
3548  *   0 on success, a negative errno value otherwise and rte_errno is set.
3549  */
3550 int
3551 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3552                      enum rte_filter_type filter_type,
3553                      enum rte_filter_op filter_op,
3554                      void *arg)
3555 {
3556         switch (filter_type) {
3557         case RTE_ETH_FILTER_GENERIC:
3558                 if (filter_op != RTE_ETH_FILTER_GET) {
3559                         rte_errno = EINVAL;
3560                         return -rte_errno;
3561                 }
3562                 *(const void **)arg = &mlx5_flow_ops;
3563                 return 0;
3564         case RTE_ETH_FILTER_FDIR:
3565                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3566         default:
3567                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3568                         dev->data->port_id, filter_type);
3569                 rte_errno = ENOTSUP;
3570                 return -rte_errno;
3571         }
3572         return 0;
3573 }
3574
3575 #define MLX5_POOL_QUERY_FREQ_US 1000000
3576
3577 /**
3578  * Set the periodic procedure for triggering asynchronous batch queries for all
3579  * the counter pools.
3580  *
3581  * @param[in] sh
3582  *   Pointer to mlx5_ibv_shared object.
3583  */
3584 void
3585 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3586 {
3587         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3588         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3589         uint32_t us;
3590
3591         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3592         pools_n += rte_atomic16_read(&cont->n_valid);
3593         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3594         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3595         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3596                 sh->cmng.query_thread_on = 0;
3597                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3598         } else {
3599                 sh->cmng.query_thread_on = 1;
3600         }
3601 }
3602
3603 /**
3604  * The periodic procedure for triggering asynchronous batch queries for all the
3605  * counter pools. This function is probably called by the host thread.
3606  *
3607  * @param[in] arg
3608  *   The parameter for the alarm process.
3609  */
3610 void
3611 mlx5_flow_query_alarm(void *arg)
3612 {
3613         struct mlx5_ibv_shared *sh = arg;
3614         struct mlx5_devx_obj *dcs;
3615         uint16_t offset;
3616         int ret;
3617         uint8_t batch = sh->cmng.batch;
3618         uint16_t pool_index = sh->cmng.pool_index;
3619         struct mlx5_pools_container *cont;
3620         struct mlx5_pools_container *mcont;
3621         struct mlx5_flow_counter_pool *pool;
3622
3623         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3624                 goto set_alarm;
3625 next_container:
3626         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3627         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3628         /* Check if resize was done and need to flip a container. */
3629         if (cont != mcont) {
3630                 if (cont->pools) {
3631                         /* Clean the old container. */
3632                         rte_free(cont->pools);
3633                         memset(cont, 0, sizeof(*cont));
3634                 }
3635                 rte_cio_wmb();
3636                  /* Flip the host container. */
3637                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3638                 cont = mcont;
3639         }
3640         if (!cont->pools) {
3641                 /* 2 empty containers case is unexpected. */
3642                 if (unlikely(batch != sh->cmng.batch))
3643                         goto set_alarm;
3644                 batch ^= 0x1;
3645                 pool_index = 0;
3646                 goto next_container;
3647         }
3648         pool = cont->pools[pool_index];
3649         if (pool->raw_hw)
3650                 /* There is a pool query in progress. */
3651                 goto set_alarm;
3652         pool->raw_hw =
3653                 LIST_FIRST(&sh->cmng.free_stat_raws);
3654         if (!pool->raw_hw)
3655                 /* No free counter statistics raw memory. */
3656                 goto set_alarm;
3657         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3658                                                               (&pool->a64_dcs);
3659         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3660         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3661                                                offset, NULL, NULL,
3662                                                pool->raw_hw->mem_mng->dm->id,
3663                                                (void *)(uintptr_t)
3664                                                (pool->raw_hw->data + offset),
3665                                                sh->devx_comp,
3666                                                (uint64_t)(uintptr_t)pool);
3667         if (ret) {
3668                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3669                         " %d\n", pool->min_dcs->id);
3670                 pool->raw_hw = NULL;
3671                 goto set_alarm;
3672         }
3673         pool->raw_hw->min_dcs_id = dcs->id;
3674         LIST_REMOVE(pool->raw_hw, next);
3675         sh->cmng.pending_queries++;
3676         pool_index++;
3677         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3678                 batch ^= 0x1;
3679                 pool_index = 0;
3680         }
3681 set_alarm:
3682         sh->cmng.batch = batch;
3683         sh->cmng.pool_index = pool_index;
3684         mlx5_set_query_alarm(sh);
3685 }
3686
3687 /**
3688  * Handler for the HW respond about ready values from an asynchronous batch
3689  * query. This function is probably called by the host thread.
3690  *
3691  * @param[in] sh
3692  *   The pointer to the shared IB device context.
3693  * @param[in] async_id
3694  *   The Devx async ID.
3695  * @param[in] status
3696  *   The status of the completion.
3697  */
3698 void
3699 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3700                                   uint64_t async_id, int status)
3701 {
3702         struct mlx5_flow_counter_pool *pool =
3703                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3704         struct mlx5_counter_stats_raw *raw_to_free;
3705
3706         if (unlikely(status)) {
3707                 raw_to_free = pool->raw_hw;
3708         } else {
3709                 raw_to_free = pool->raw;
3710                 rte_spinlock_lock(&pool->sl);
3711                 pool->raw = pool->raw_hw;
3712                 rte_spinlock_unlock(&pool->sl);
3713                 rte_atomic64_add(&pool->query_gen, 1);
3714                 /* Be sure the new raw counters data is updated in memory. */
3715                 rte_cio_wmb();
3716         }
3717         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3718         pool->raw_hw = NULL;
3719         sh->cmng.pending_queries--;
3720 }
3721
3722 /**
3723  * Translate the rte_flow group index to HW table value.
3724  *
3725  * @param[in] attributes
3726  *   Pointer to flow attributes
3727  * @param[in] external
3728  *   Value is part of flow rule created by request external to PMD.
3729  * @param[in] group
3730  *   rte_flow group index value.
3731  * @param[out] table
3732  *   HW table value.
3733  * @param[out] error
3734  *   Pointer to error structure.
3735  *
3736  * @return
3737  *   0 on success, a negative errno value otherwise and rte_errno is set.
3738  */
3739 int
3740 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
3741                          uint32_t group, uint32_t *table,
3742                          struct rte_flow_error *error)
3743 {
3744         if (attributes->transfer && external) {
3745                 if (group == UINT32_MAX)
3746                         return rte_flow_error_set
3747                                                 (error, EINVAL,
3748                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
3749                                                  NULL,
3750                                                  "group index not supported");
3751                 *table = group + 1;
3752         } else {
3753                 *table = group;
3754         }
3755         return 0;
3756 }