3d38e11c8736467234febf9b3154d2bea7ccd141
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rxtx.h"
32
33 /** Device flow drivers. */
34 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
35
36 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
37
38 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
39         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
40 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
41         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
42 #endif
43         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
44         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
45 };
46
47 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
48 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
49         (const int []){ \
50                 __VA_ARGS__, 0, \
51         }
52
53 /** Node object of input graph for mlx5_flow_expand_rss(). */
54 struct mlx5_flow_expand_node {
55         const int *const next;
56         /**<
57          * List of next node indexes. Index 0 is interpreted as a terminator.
58          */
59         const enum rte_flow_item_type type;
60         /**< Pattern item type of current node. */
61         uint64_t rss_types;
62         /**<
63          * RSS types bit-field associated with this node
64          * (see ETH_RSS_* definitions).
65          */
66 };
67
68 /** Object returned by mlx5_flow_expand_rss(). */
69 struct mlx5_flow_expand_rss {
70         uint32_t entries;
71         /**< Number of entries @p patterns and @p priorities. */
72         struct {
73                 struct rte_flow_item *pattern; /**< Expanded pattern array. */
74                 uint32_t priority; /**< Priority offset for each expansion. */
75         } entry[];
76 };
77
78 static enum rte_flow_item_type
79 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
80 {
81         enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
82         uint16_t ether_type = 0;
83         uint16_t ether_type_m;
84         uint8_t ip_next_proto = 0;
85         uint8_t ip_next_proto_m;
86
87         if (item == NULL || item->spec == NULL)
88                 return ret;
89         switch (item->type) {
90         case RTE_FLOW_ITEM_TYPE_ETH:
91                 if (item->mask)
92                         ether_type_m = ((const struct rte_flow_item_eth *)
93                                                 (item->mask))->type;
94                 else
95                         ether_type_m = rte_flow_item_eth_mask.type;
96                 if (ether_type_m != RTE_BE16(0xFFFF))
97                         break;
98                 ether_type = ((const struct rte_flow_item_eth *)
99                                 (item->spec))->type;
100                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
101                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
102                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
103                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
104                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
105                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
106                 else
107                         ret = RTE_FLOW_ITEM_TYPE_END;
108                 break;
109         case RTE_FLOW_ITEM_TYPE_VLAN:
110                 if (item->mask)
111                         ether_type_m = ((const struct rte_flow_item_vlan *)
112                                                 (item->mask))->inner_type;
113                 else
114                         ether_type_m = rte_flow_item_vlan_mask.inner_type;
115                 if (ether_type_m != RTE_BE16(0xFFFF))
116                         break;
117                 ether_type = ((const struct rte_flow_item_vlan *)
118                                 (item->spec))->inner_type;
119                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
120                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
121                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
122                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
123                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
124                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
125                 else
126                         ret = RTE_FLOW_ITEM_TYPE_END;
127                 break;
128         case RTE_FLOW_ITEM_TYPE_IPV4:
129                 if (item->mask)
130                         ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
131                                         (item->mask))->hdr.next_proto_id;
132                 else
133                         ip_next_proto_m =
134                                 rte_flow_item_ipv4_mask.hdr.next_proto_id;
135                 if (ip_next_proto_m != 0xFF)
136                         break;
137                 ip_next_proto = ((const struct rte_flow_item_ipv4 *)
138                                 (item->spec))->hdr.next_proto_id;
139                 if (ip_next_proto == IPPROTO_UDP)
140                         ret = RTE_FLOW_ITEM_TYPE_UDP;
141                 else if (ip_next_proto == IPPROTO_TCP)
142                         ret = RTE_FLOW_ITEM_TYPE_TCP;
143                 else if (ip_next_proto == IPPROTO_IP)
144                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
145                 else if (ip_next_proto == IPPROTO_IPV6)
146                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
147                 else
148                         ret = RTE_FLOW_ITEM_TYPE_END;
149                 break;
150         case RTE_FLOW_ITEM_TYPE_IPV6:
151                 if (item->mask)
152                         ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
153                                                 (item->mask))->hdr.proto;
154                 else
155                         ip_next_proto_m =
156                                 rte_flow_item_ipv6_mask.hdr.proto;
157                 if (ip_next_proto_m != 0xFF)
158                         break;
159                 ip_next_proto = ((const struct rte_flow_item_ipv6 *)
160                                 (item->spec))->hdr.proto;
161                 if (ip_next_proto == IPPROTO_UDP)
162                         ret = RTE_FLOW_ITEM_TYPE_UDP;
163                 else if (ip_next_proto == IPPROTO_TCP)
164                         ret = RTE_FLOW_ITEM_TYPE_TCP;
165                 else if (ip_next_proto == IPPROTO_IP)
166                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
167                 else if (ip_next_proto == IPPROTO_IPV6)
168                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
169                 else
170                         ret = RTE_FLOW_ITEM_TYPE_END;
171                 break;
172         default:
173                 ret = RTE_FLOW_ITEM_TYPE_VOID;
174                 break;
175         }
176         return ret;
177 }
178
179 /**
180  * Expand RSS flows into several possible flows according to the RSS hash
181  * fields requested and the driver capabilities.
182  *
183  * @param[out] buf
184  *   Buffer to store the result expansion.
185  * @param[in] size
186  *   Buffer size in bytes. If 0, @p buf can be NULL.
187  * @param[in] pattern
188  *   User flow pattern.
189  * @param[in] types
190  *   RSS types to expand (see ETH_RSS_* definitions).
191  * @param[in] graph
192  *   Input graph to expand @p pattern according to @p types.
193  * @param[in] graph_root_index
194  *   Index of root node in @p graph, typically 0.
195  *
196  * @return
197  *   A positive value representing the size of @p buf in bytes regardless of
198  *   @p size on success, a negative errno value otherwise and rte_errno is
199  *   set, the following errors are defined:
200  *
201  *   -E2BIG: graph-depth @p graph is too deep.
202  */
203 static int
204 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
205                      const struct rte_flow_item *pattern, uint64_t types,
206                      const struct mlx5_flow_expand_node graph[],
207                      int graph_root_index)
208 {
209         const int elt_n = 8;
210         const struct rte_flow_item *item;
211         const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
212         const int *next_node;
213         const int *stack[elt_n];
214         int stack_pos = 0;
215         struct rte_flow_item flow_items[elt_n];
216         unsigned int i;
217         size_t lsize;
218         size_t user_pattern_size = 0;
219         void *addr = NULL;
220         const struct mlx5_flow_expand_node *next = NULL;
221         struct rte_flow_item missed_item;
222         int missed = 0;
223         int elt = 0;
224         const struct rte_flow_item *last_item = NULL;
225
226         memset(&missed_item, 0, sizeof(missed_item));
227         lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
228                 elt_n * sizeof(buf->entry[0]);
229         if (lsize <= size) {
230                 buf->entry[0].priority = 0;
231                 buf->entry[0].pattern = (void *)&buf->entry[elt_n];
232                 buf->entries = 0;
233                 addr = buf->entry[0].pattern;
234         }
235         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
236                 if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
237                         last_item = item;
238                 for (i = 0; node->next && node->next[i]; ++i) {
239                         next = &graph[node->next[i]];
240                         if (next->type == item->type)
241                                 break;
242                 }
243                 if (next)
244                         node = next;
245                 user_pattern_size += sizeof(*item);
246         }
247         user_pattern_size += sizeof(*item); /* Handle END item. */
248         lsize += user_pattern_size;
249         /* Copy the user pattern in the first entry of the buffer. */
250         if (lsize <= size) {
251                 rte_memcpy(addr, pattern, user_pattern_size);
252                 addr = (void *)(((uintptr_t)addr) + user_pattern_size);
253                 buf->entries = 1;
254         }
255         /* Start expanding. */
256         memset(flow_items, 0, sizeof(flow_items));
257         user_pattern_size -= sizeof(*item);
258         /*
259          * Check if the last valid item has spec set, need complete pattern,
260          * and the pattern can be used for expansion.
261          */
262         missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
263         if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
264                 /* Item type END indicates expansion is not required. */
265                 return lsize;
266         }
267         if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
268                 next = NULL;
269                 missed = 1;
270                 for (i = 0; node->next && node->next[i]; ++i) {
271                         next = &graph[node->next[i]];
272                         if (next->type == missed_item.type) {
273                                 flow_items[0].type = missed_item.type;
274                                 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
275                                 break;
276                         }
277                         next = NULL;
278                 }
279         }
280         if (next && missed) {
281                 elt = 2; /* missed item + item end. */
282                 node = next;
283                 lsize += elt * sizeof(*item) + user_pattern_size;
284                 if ((node->rss_types & types) && lsize <= size) {
285                         buf->entry[buf->entries].priority = 1;
286                         buf->entry[buf->entries].pattern = addr;
287                         buf->entries++;
288                         rte_memcpy(addr, buf->entry[0].pattern,
289                                    user_pattern_size);
290                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
291                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
292                         addr = (void *)(((uintptr_t)addr) +
293                                         elt * sizeof(*item));
294                 }
295         }
296         memset(flow_items, 0, sizeof(flow_items));
297         next_node = node->next;
298         stack[stack_pos] = next_node;
299         node = next_node ? &graph[*next_node] : NULL;
300         while (node) {
301                 flow_items[stack_pos].type = node->type;
302                 if (node->rss_types & types) {
303                         /*
304                          * compute the number of items to copy from the
305                          * expansion and copy it.
306                          * When the stack_pos is 0, there are 1 element in it,
307                          * plus the addition END item.
308                          */
309                         elt = stack_pos + 2;
310                         flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
311                         lsize += elt * sizeof(*item) + user_pattern_size;
312                         if (lsize <= size) {
313                                 size_t n = elt * sizeof(*item);
314
315                                 buf->entry[buf->entries].priority =
316                                         stack_pos + 1 + missed;
317                                 buf->entry[buf->entries].pattern = addr;
318                                 buf->entries++;
319                                 rte_memcpy(addr, buf->entry[0].pattern,
320                                            user_pattern_size);
321                                 addr = (void *)(((uintptr_t)addr) +
322                                                 user_pattern_size);
323                                 rte_memcpy(addr, &missed_item,
324                                            missed * sizeof(*item));
325                                 addr = (void *)(((uintptr_t)addr) +
326                                         missed * sizeof(*item));
327                                 rte_memcpy(addr, flow_items, n);
328                                 addr = (void *)(((uintptr_t)addr) + n);
329                         }
330                 }
331                 /* Go deeper. */
332                 if (node->next) {
333                         next_node = node->next;
334                         if (stack_pos++ == elt_n) {
335                                 rte_errno = E2BIG;
336                                 return -rte_errno;
337                         }
338                         stack[stack_pos] = next_node;
339                 } else if (*(next_node + 1)) {
340                         /* Follow up with the next possibility. */
341                         ++next_node;
342                 } else {
343                         /* Move to the next path. */
344                         if (stack_pos)
345                                 next_node = stack[--stack_pos];
346                         next_node++;
347                         stack[stack_pos] = next_node;
348                 }
349                 node = *next_node ? &graph[*next_node] : NULL;
350         };
351         /* no expanded flows but we have missed item, create one rule for it */
352         if (buf->entries == 1 && missed != 0) {
353                 elt = 2;
354                 lsize += elt * sizeof(*item) + user_pattern_size;
355                 if (lsize <= size) {
356                         buf->entry[buf->entries].priority = 1;
357                         buf->entry[buf->entries].pattern = addr;
358                         buf->entries++;
359                         flow_items[0].type = missed_item.type;
360                         flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
361                         rte_memcpy(addr, buf->entry[0].pattern,
362                                    user_pattern_size);
363                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
364                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
365                         addr = (void *)(((uintptr_t)addr) +
366                                         elt * sizeof(*item));
367                 }
368         }
369         return lsize;
370 }
371
372 enum mlx5_expansion {
373         MLX5_EXPANSION_ROOT,
374         MLX5_EXPANSION_ROOT_OUTER,
375         MLX5_EXPANSION_ROOT_ETH_VLAN,
376         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
377         MLX5_EXPANSION_OUTER_ETH,
378         MLX5_EXPANSION_OUTER_ETH_VLAN,
379         MLX5_EXPANSION_OUTER_VLAN,
380         MLX5_EXPANSION_OUTER_IPV4,
381         MLX5_EXPANSION_OUTER_IPV4_UDP,
382         MLX5_EXPANSION_OUTER_IPV4_TCP,
383         MLX5_EXPANSION_OUTER_IPV6,
384         MLX5_EXPANSION_OUTER_IPV6_UDP,
385         MLX5_EXPANSION_OUTER_IPV6_TCP,
386         MLX5_EXPANSION_VXLAN,
387         MLX5_EXPANSION_VXLAN_GPE,
388         MLX5_EXPANSION_GRE,
389         MLX5_EXPANSION_MPLS,
390         MLX5_EXPANSION_ETH,
391         MLX5_EXPANSION_ETH_VLAN,
392         MLX5_EXPANSION_VLAN,
393         MLX5_EXPANSION_IPV4,
394         MLX5_EXPANSION_IPV4_UDP,
395         MLX5_EXPANSION_IPV4_TCP,
396         MLX5_EXPANSION_IPV6,
397         MLX5_EXPANSION_IPV6_UDP,
398         MLX5_EXPANSION_IPV6_TCP,
399 };
400
401 /** Supported expansion of items. */
402 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
403         [MLX5_EXPANSION_ROOT] = {
404                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
405                                                   MLX5_EXPANSION_IPV4,
406                                                   MLX5_EXPANSION_IPV6),
407                 .type = RTE_FLOW_ITEM_TYPE_END,
408         },
409         [MLX5_EXPANSION_ROOT_OUTER] = {
410                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
411                                                   MLX5_EXPANSION_OUTER_IPV4,
412                                                   MLX5_EXPANSION_OUTER_IPV6),
413                 .type = RTE_FLOW_ITEM_TYPE_END,
414         },
415         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
416                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
417                 .type = RTE_FLOW_ITEM_TYPE_END,
418         },
419         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
420                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
421                                                 (MLX5_EXPANSION_OUTER_ETH_VLAN),
422                 .type = RTE_FLOW_ITEM_TYPE_END,
423         },
424         [MLX5_EXPANSION_OUTER_ETH] = {
425                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
426                                                   MLX5_EXPANSION_OUTER_IPV6,
427                                                   MLX5_EXPANSION_MPLS),
428                 .type = RTE_FLOW_ITEM_TYPE_ETH,
429                 .rss_types = 0,
430         },
431         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
432                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
433                 .type = RTE_FLOW_ITEM_TYPE_ETH,
434                 .rss_types = 0,
435         },
436         [MLX5_EXPANSION_OUTER_VLAN] = {
437                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
438                                                   MLX5_EXPANSION_OUTER_IPV6),
439                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
440         },
441         [MLX5_EXPANSION_OUTER_IPV4] = {
442                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
443                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
444                          MLX5_EXPANSION_OUTER_IPV4_TCP,
445                          MLX5_EXPANSION_GRE,
446                          MLX5_EXPANSION_IPV4,
447                          MLX5_EXPANSION_IPV6),
448                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
449                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
450                         ETH_RSS_NONFRAG_IPV4_OTHER,
451         },
452         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
453                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
454                                                   MLX5_EXPANSION_VXLAN_GPE),
455                 .type = RTE_FLOW_ITEM_TYPE_UDP,
456                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
457         },
458         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
459                 .type = RTE_FLOW_ITEM_TYPE_TCP,
460                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
461         },
462         [MLX5_EXPANSION_OUTER_IPV6] = {
463                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
464                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
465                          MLX5_EXPANSION_OUTER_IPV6_TCP,
466                          MLX5_EXPANSION_IPV4,
467                          MLX5_EXPANSION_IPV6),
468                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
469                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
470                         ETH_RSS_NONFRAG_IPV6_OTHER,
471         },
472         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
473                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
474                                                   MLX5_EXPANSION_VXLAN_GPE),
475                 .type = RTE_FLOW_ITEM_TYPE_UDP,
476                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
477         },
478         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
479                 .type = RTE_FLOW_ITEM_TYPE_TCP,
480                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
481         },
482         [MLX5_EXPANSION_VXLAN] = {
483                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
484                                                   MLX5_EXPANSION_IPV4,
485                                                   MLX5_EXPANSION_IPV6),
486                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
487         },
488         [MLX5_EXPANSION_VXLAN_GPE] = {
489                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
490                                                   MLX5_EXPANSION_IPV4,
491                                                   MLX5_EXPANSION_IPV6),
492                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
493         },
494         [MLX5_EXPANSION_GRE] = {
495                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
496                 .type = RTE_FLOW_ITEM_TYPE_GRE,
497         },
498         [MLX5_EXPANSION_MPLS] = {
499                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
500                                                   MLX5_EXPANSION_IPV6),
501                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
502         },
503         [MLX5_EXPANSION_ETH] = {
504                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
505                                                   MLX5_EXPANSION_IPV6),
506                 .type = RTE_FLOW_ITEM_TYPE_ETH,
507         },
508         [MLX5_EXPANSION_ETH_VLAN] = {
509                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
510                 .type = RTE_FLOW_ITEM_TYPE_ETH,
511         },
512         [MLX5_EXPANSION_VLAN] = {
513                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
514                                                   MLX5_EXPANSION_IPV6),
515                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
516         },
517         [MLX5_EXPANSION_IPV4] = {
518                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
519                                                   MLX5_EXPANSION_IPV4_TCP),
520                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
521                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
522                         ETH_RSS_NONFRAG_IPV4_OTHER,
523         },
524         [MLX5_EXPANSION_IPV4_UDP] = {
525                 .type = RTE_FLOW_ITEM_TYPE_UDP,
526                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
527         },
528         [MLX5_EXPANSION_IPV4_TCP] = {
529                 .type = RTE_FLOW_ITEM_TYPE_TCP,
530                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
531         },
532         [MLX5_EXPANSION_IPV6] = {
533                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
534                                                   MLX5_EXPANSION_IPV6_TCP),
535                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
536                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
537                         ETH_RSS_NONFRAG_IPV6_OTHER,
538         },
539         [MLX5_EXPANSION_IPV6_UDP] = {
540                 .type = RTE_FLOW_ITEM_TYPE_UDP,
541                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
542         },
543         [MLX5_EXPANSION_IPV6_TCP] = {
544                 .type = RTE_FLOW_ITEM_TYPE_TCP,
545                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
546         },
547 };
548
549 static const struct rte_flow_ops mlx5_flow_ops = {
550         .validate = mlx5_flow_validate,
551         .create = mlx5_flow_create,
552         .destroy = mlx5_flow_destroy,
553         .flush = mlx5_flow_flush,
554         .isolate = mlx5_flow_isolate,
555         .query = mlx5_flow_query,
556         .dev_dump = mlx5_flow_dev_dump,
557         .get_aged_flows = mlx5_flow_get_aged_flows,
558 };
559
560 /* Convert FDIR request to Generic flow. */
561 struct mlx5_fdir {
562         struct rte_flow_attr attr;
563         struct rte_flow_item items[4];
564         struct rte_flow_item_eth l2;
565         struct rte_flow_item_eth l2_mask;
566         union {
567                 struct rte_flow_item_ipv4 ipv4;
568                 struct rte_flow_item_ipv6 ipv6;
569         } l3;
570         union {
571                 struct rte_flow_item_ipv4 ipv4;
572                 struct rte_flow_item_ipv6 ipv6;
573         } l3_mask;
574         union {
575                 struct rte_flow_item_udp udp;
576                 struct rte_flow_item_tcp tcp;
577         } l4;
578         union {
579                 struct rte_flow_item_udp udp;
580                 struct rte_flow_item_tcp tcp;
581         } l4_mask;
582         struct rte_flow_action actions[2];
583         struct rte_flow_action_queue queue;
584 };
585
586 /* Tunnel information. */
587 struct mlx5_flow_tunnel_info {
588         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
589         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
590 };
591
592 static struct mlx5_flow_tunnel_info tunnels_info[] = {
593         {
594                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
595                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
596         },
597         {
598                 .tunnel = MLX5_FLOW_LAYER_GENEVE,
599                 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
600         },
601         {
602                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
603                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
604         },
605         {
606                 .tunnel = MLX5_FLOW_LAYER_GRE,
607                 .ptype = RTE_PTYPE_TUNNEL_GRE,
608         },
609         {
610                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
611                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
612         },
613         {
614                 .tunnel = MLX5_FLOW_LAYER_MPLS,
615                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
616         },
617         {
618                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
619                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
620         },
621         {
622                 .tunnel = MLX5_FLOW_LAYER_IPIP,
623                 .ptype = RTE_PTYPE_TUNNEL_IP,
624         },
625         {
626                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
627                 .ptype = RTE_PTYPE_TUNNEL_IP,
628         },
629         {
630                 .tunnel = MLX5_FLOW_LAYER_GTP,
631                 .ptype = RTE_PTYPE_TUNNEL_GTPU,
632         },
633 };
634
635 /**
636  * Translate tag ID to register.
637  *
638  * @param[in] dev
639  *   Pointer to the Ethernet device structure.
640  * @param[in] feature
641  *   The feature that request the register.
642  * @param[in] id
643  *   The request register ID.
644  * @param[out] error
645  *   Error description in case of any.
646  *
647  * @return
648  *   The request register on success, a negative errno
649  *   value otherwise and rte_errno is set.
650  */
651 int
652 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
653                      enum mlx5_feature_name feature,
654                      uint32_t id,
655                      struct rte_flow_error *error)
656 {
657         struct mlx5_priv *priv = dev->data->dev_private;
658         struct mlx5_dev_config *config = &priv->config;
659         enum modify_reg start_reg;
660         bool skip_mtr_reg = false;
661
662         switch (feature) {
663         case MLX5_HAIRPIN_RX:
664                 return REG_B;
665         case MLX5_HAIRPIN_TX:
666                 return REG_A;
667         case MLX5_METADATA_RX:
668                 switch (config->dv_xmeta_en) {
669                 case MLX5_XMETA_MODE_LEGACY:
670                         return REG_B;
671                 case MLX5_XMETA_MODE_META16:
672                         return REG_C_0;
673                 case MLX5_XMETA_MODE_META32:
674                         return REG_C_1;
675                 }
676                 break;
677         case MLX5_METADATA_TX:
678                 return REG_A;
679         case MLX5_METADATA_FDB:
680                 switch (config->dv_xmeta_en) {
681                 case MLX5_XMETA_MODE_LEGACY:
682                         return REG_NON;
683                 case MLX5_XMETA_MODE_META16:
684                         return REG_C_0;
685                 case MLX5_XMETA_MODE_META32:
686                         return REG_C_1;
687                 }
688                 break;
689         case MLX5_FLOW_MARK:
690                 switch (config->dv_xmeta_en) {
691                 case MLX5_XMETA_MODE_LEGACY:
692                         return REG_NON;
693                 case MLX5_XMETA_MODE_META16:
694                         return REG_C_1;
695                 case MLX5_XMETA_MODE_META32:
696                         return REG_C_0;
697                 }
698                 break;
699         case MLX5_MTR_SFX:
700                 /*
701                  * If meter color and flow match share one register, flow match
702                  * should use the meter color register for match.
703                  */
704                 if (priv->mtr_reg_share)
705                         return priv->mtr_color_reg;
706                 else
707                         return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
708                                REG_C_3;
709         case MLX5_MTR_COLOR:
710                 MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
711                 return priv->mtr_color_reg;
712         case MLX5_COPY_MARK:
713                 /*
714                  * Metadata COPY_MARK register using is in meter suffix sub
715                  * flow while with meter. It's safe to share the same register.
716                  */
717                 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
718         case MLX5_APP_TAG:
719                 /*
720                  * If meter is enable, it will engage the register for color
721                  * match and flow match. If meter color match is not using the
722                  * REG_C_2, need to skip the REG_C_x be used by meter color
723                  * match.
724                  * If meter is disable, free to use all available registers.
725                  */
726                 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
727                             (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
728                 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
729                 if (id > (REG_C_7 - start_reg))
730                         return rte_flow_error_set(error, EINVAL,
731                                                   RTE_FLOW_ERROR_TYPE_ITEM,
732                                                   NULL, "invalid tag id");
733                 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
734                         return rte_flow_error_set(error, ENOTSUP,
735                                                   RTE_FLOW_ERROR_TYPE_ITEM,
736                                                   NULL, "unsupported tag id");
737                 /*
738                  * This case means meter is using the REG_C_x great than 2.
739                  * Take care not to conflict with meter color REG_C_x.
740                  * If the available index REG_C_y >= REG_C_x, skip the
741                  * color register.
742                  */
743                 if (skip_mtr_reg && config->flow_mreg_c
744                     [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
745                         if (id >= (REG_C_7 - start_reg))
746                                 return rte_flow_error_set(error, EINVAL,
747                                                        RTE_FLOW_ERROR_TYPE_ITEM,
748                                                         NULL, "invalid tag id");
749                         if (config->flow_mreg_c
750                             [id + 1 + start_reg - REG_C_0] != REG_NON)
751                                 return config->flow_mreg_c
752                                                [id + 1 + start_reg - REG_C_0];
753                         return rte_flow_error_set(error, ENOTSUP,
754                                                   RTE_FLOW_ERROR_TYPE_ITEM,
755                                                   NULL, "unsupported tag id");
756                 }
757                 return config->flow_mreg_c[id + start_reg - REG_C_0];
758         }
759         MLX5_ASSERT(false);
760         return rte_flow_error_set(error, EINVAL,
761                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
762                                   NULL, "invalid feature name");
763 }
764
765 /**
766  * Check extensive flow metadata register support.
767  *
768  * @param dev
769  *   Pointer to rte_eth_dev structure.
770  *
771  * @return
772  *   True if device supports extensive flow metadata register, otherwise false.
773  */
774 bool
775 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
776 {
777         struct mlx5_priv *priv = dev->data->dev_private;
778         struct mlx5_dev_config *config = &priv->config;
779
780         /*
781          * Having available reg_c can be regarded inclusively as supporting
782          * extensive flow metadata register, which could mean,
783          * - metadata register copy action by modify header.
784          * - 16 modify header actions is supported.
785          * - reg_c's are preserved across different domain (FDB and NIC) on
786          *   packet loopback by flow lookup miss.
787          */
788         return config->flow_mreg_c[2] != REG_NON;
789 }
790
791 /**
792  * Verify the @p item specifications (spec, last, mask) are compatible with the
793  * NIC capabilities.
794  *
795  * @param[in] item
796  *   Item specification.
797  * @param[in] mask
798  *   @p item->mask or flow default bit-masks.
799  * @param[in] nic_mask
800  *   Bit-masks covering supported fields by the NIC to compare with user mask.
801  * @param[in] size
802  *   Bit-masks size in bytes.
803  * @param[out] error
804  *   Pointer to error structure.
805  *
806  * @return
807  *   0 on success, a negative errno value otherwise and rte_errno is set.
808  */
809 int
810 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
811                           const uint8_t *mask,
812                           const uint8_t *nic_mask,
813                           unsigned int size,
814                           struct rte_flow_error *error)
815 {
816         unsigned int i;
817
818         MLX5_ASSERT(nic_mask);
819         for (i = 0; i < size; ++i)
820                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
821                         return rte_flow_error_set(error, ENOTSUP,
822                                                   RTE_FLOW_ERROR_TYPE_ITEM,
823                                                   item,
824                                                   "mask enables non supported"
825                                                   " bits");
826         if (!item->spec && (item->mask || item->last))
827                 return rte_flow_error_set(error, EINVAL,
828                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
829                                           "mask/last without a spec is not"
830                                           " supported");
831         if (item->spec && item->last) {
832                 uint8_t spec[size];
833                 uint8_t last[size];
834                 unsigned int i;
835                 int ret;
836
837                 for (i = 0; i < size; ++i) {
838                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
839                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
840                 }
841                 ret = memcmp(spec, last, size);
842                 if (ret != 0)
843                         return rte_flow_error_set(error, EINVAL,
844                                                   RTE_FLOW_ERROR_TYPE_ITEM,
845                                                   item,
846                                                   "range is not valid");
847         }
848         return 0;
849 }
850
851 /**
852  * Adjust the hash fields according to the @p flow information.
853  *
854  * @param[in] dev_flow.
855  *   Pointer to the mlx5_flow.
856  * @param[in] tunnel
857  *   1 when the hash field is for a tunnel item.
858  * @param[in] layer_types
859  *   ETH_RSS_* types.
860  * @param[in] hash_fields
861  *   Item hash fields.
862  *
863  * @return
864  *   The hash fields that should be used.
865  */
866 uint64_t
867 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
868                             int tunnel __rte_unused, uint64_t layer_types,
869                             uint64_t hash_fields)
870 {
871 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
872         int rss_request_inner = rss_desc->level >= 2;
873
874         /* Check RSS hash level for tunnel. */
875         if (tunnel && rss_request_inner)
876                 hash_fields |= IBV_RX_HASH_INNER;
877         else if (tunnel || rss_request_inner)
878                 return 0;
879 #endif
880         /* Check if requested layer matches RSS hash fields. */
881         if (!(rss_desc->types & layer_types))
882                 return 0;
883         return hash_fields;
884 }
885
886 /**
887  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
888  * if several tunnel rules are used on this queue, the tunnel ptype will be
889  * cleared.
890  *
891  * @param rxq_ctrl
892  *   Rx queue to update.
893  */
894 static void
895 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
896 {
897         unsigned int i;
898         uint32_t tunnel_ptype = 0;
899
900         /* Look up for the ptype to use. */
901         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
902                 if (!rxq_ctrl->flow_tunnels_n[i])
903                         continue;
904                 if (!tunnel_ptype) {
905                         tunnel_ptype = tunnels_info[i].ptype;
906                 } else {
907                         tunnel_ptype = 0;
908                         break;
909                 }
910         }
911         rxq_ctrl->rxq.tunnel = tunnel_ptype;
912 }
913
914 /**
915  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
916  * flow.
917  *
918  * @param[in] dev
919  *   Pointer to the Ethernet device structure.
920  * @param[in] dev_handle
921  *   Pointer to device flow handle structure.
922  */
923 static void
924 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
925                        struct mlx5_flow_handle *dev_handle)
926 {
927         struct mlx5_priv *priv = dev->data->dev_private;
928         const int mark = dev_handle->mark;
929         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
930         struct mlx5_hrxq *hrxq;
931         unsigned int i;
932
933         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
934                 return;
935         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
936                               dev_handle->rix_hrxq);
937         if (!hrxq)
938                 return;
939         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
940                 int idx = hrxq->ind_table->queues[i];
941                 struct mlx5_rxq_ctrl *rxq_ctrl =
942                         container_of((*priv->rxqs)[idx],
943                                      struct mlx5_rxq_ctrl, rxq);
944
945                 /*
946                  * To support metadata register copy on Tx loopback,
947                  * this must be always enabled (metadata may arive
948                  * from other port - not from local flows only.
949                  */
950                 if (priv->config.dv_flow_en &&
951                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
952                     mlx5_flow_ext_mreg_supported(dev)) {
953                         rxq_ctrl->rxq.mark = 1;
954                         rxq_ctrl->flow_mark_n = 1;
955                 } else if (mark) {
956                         rxq_ctrl->rxq.mark = 1;
957                         rxq_ctrl->flow_mark_n++;
958                 }
959                 if (tunnel) {
960                         unsigned int j;
961
962                         /* Increase the counter matching the flow. */
963                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
964                                 if ((tunnels_info[j].tunnel &
965                                      dev_handle->layers) ==
966                                     tunnels_info[j].tunnel) {
967                                         rxq_ctrl->flow_tunnels_n[j]++;
968                                         break;
969                                 }
970                         }
971                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
972                 }
973         }
974 }
975
976 /**
977  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
978  *
979  * @param[in] dev
980  *   Pointer to the Ethernet device structure.
981  * @param[in] flow
982  *   Pointer to flow structure.
983  */
984 static void
985 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
986 {
987         struct mlx5_priv *priv = dev->data->dev_private;
988         uint32_t handle_idx;
989         struct mlx5_flow_handle *dev_handle;
990
991         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
992                        handle_idx, dev_handle, next)
993                 flow_drv_rxq_flags_set(dev, dev_handle);
994 }
995
996 /**
997  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
998  * device flow if no other flow uses it with the same kind of request.
999  *
1000  * @param dev
1001  *   Pointer to Ethernet device.
1002  * @param[in] dev_handle
1003  *   Pointer to the device flow handle structure.
1004  */
1005 static void
1006 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1007                         struct mlx5_flow_handle *dev_handle)
1008 {
1009         struct mlx5_priv *priv = dev->data->dev_private;
1010         const int mark = dev_handle->mark;
1011         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1012         struct mlx5_hrxq *hrxq;
1013         unsigned int i;
1014
1015         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1016                 return;
1017         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1018                               dev_handle->rix_hrxq);
1019         if (!hrxq)
1020                 return;
1021         MLX5_ASSERT(dev->data->dev_started);
1022         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1023                 int idx = hrxq->ind_table->queues[i];
1024                 struct mlx5_rxq_ctrl *rxq_ctrl =
1025                         container_of((*priv->rxqs)[idx],
1026                                      struct mlx5_rxq_ctrl, rxq);
1027
1028                 if (priv->config.dv_flow_en &&
1029                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1030                     mlx5_flow_ext_mreg_supported(dev)) {
1031                         rxq_ctrl->rxq.mark = 1;
1032                         rxq_ctrl->flow_mark_n = 1;
1033                 } else if (mark) {
1034                         rxq_ctrl->flow_mark_n--;
1035                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1036                 }
1037                 if (tunnel) {
1038                         unsigned int j;
1039
1040                         /* Decrease the counter matching the flow. */
1041                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1042                                 if ((tunnels_info[j].tunnel &
1043                                      dev_handle->layers) ==
1044                                     tunnels_info[j].tunnel) {
1045                                         rxq_ctrl->flow_tunnels_n[j]--;
1046                                         break;
1047                                 }
1048                         }
1049                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
1050                 }
1051         }
1052 }
1053
1054 /**
1055  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1056  * @p flow if no other flow uses it with the same kind of request.
1057  *
1058  * @param dev
1059  *   Pointer to Ethernet device.
1060  * @param[in] flow
1061  *   Pointer to the flow.
1062  */
1063 static void
1064 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1065 {
1066         struct mlx5_priv *priv = dev->data->dev_private;
1067         uint32_t handle_idx;
1068         struct mlx5_flow_handle *dev_handle;
1069
1070         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1071                        handle_idx, dev_handle, next)
1072                 flow_drv_rxq_flags_trim(dev, dev_handle);
1073 }
1074
1075 /**
1076  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1077  *
1078  * @param dev
1079  *   Pointer to Ethernet device.
1080  */
1081 static void
1082 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1083 {
1084         struct mlx5_priv *priv = dev->data->dev_private;
1085         unsigned int i;
1086
1087         for (i = 0; i != priv->rxqs_n; ++i) {
1088                 struct mlx5_rxq_ctrl *rxq_ctrl;
1089                 unsigned int j;
1090
1091                 if (!(*priv->rxqs)[i])
1092                         continue;
1093                 rxq_ctrl = container_of((*priv->rxqs)[i],
1094                                         struct mlx5_rxq_ctrl, rxq);
1095                 rxq_ctrl->flow_mark_n = 0;
1096                 rxq_ctrl->rxq.mark = 0;
1097                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1098                         rxq_ctrl->flow_tunnels_n[j] = 0;
1099                 rxq_ctrl->rxq.tunnel = 0;
1100         }
1101 }
1102
1103 /**
1104  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1105  *
1106  * @param[in] dev
1107  *   Pointer to the Ethernet device structure.
1108  */
1109 void
1110 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1111 {
1112         struct mlx5_priv *priv = dev->data->dev_private;
1113         struct mlx5_rxq_data *data;
1114         unsigned int i;
1115
1116         for (i = 0; i != priv->rxqs_n; ++i) {
1117                 if (!(*priv->rxqs)[i])
1118                         continue;
1119                 data = (*priv->rxqs)[i];
1120                 if (!rte_flow_dynf_metadata_avail()) {
1121                         data->dynf_meta = 0;
1122                         data->flow_meta_mask = 0;
1123                         data->flow_meta_offset = -1;
1124                 } else {
1125                         data->dynf_meta = 1;
1126                         data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1127                         data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1128                 }
1129         }
1130 }
1131
1132 /*
1133  * return a pointer to the desired action in the list of actions.
1134  *
1135  * @param[in] actions
1136  *   The list of actions to search the action in.
1137  * @param[in] action
1138  *   The action to find.
1139  *
1140  * @return
1141  *   Pointer to the action in the list, if found. NULL otherwise.
1142  */
1143 const struct rte_flow_action *
1144 mlx5_flow_find_action(const struct rte_flow_action *actions,
1145                       enum rte_flow_action_type action)
1146 {
1147         if (actions == NULL)
1148                 return NULL;
1149         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1150                 if (actions->type == action)
1151                         return actions;
1152         return NULL;
1153 }
1154
1155 /*
1156  * Validate the flag action.
1157  *
1158  * @param[in] action_flags
1159  *   Bit-fields that holds the actions detected until now.
1160  * @param[in] attr
1161  *   Attributes of flow that includes this action.
1162  * @param[out] error
1163  *   Pointer to error structure.
1164  *
1165  * @return
1166  *   0 on success, a negative errno value otherwise and rte_errno is set.
1167  */
1168 int
1169 mlx5_flow_validate_action_flag(uint64_t action_flags,
1170                                const struct rte_flow_attr *attr,
1171                                struct rte_flow_error *error)
1172 {
1173         if (action_flags & MLX5_FLOW_ACTION_MARK)
1174                 return rte_flow_error_set(error, EINVAL,
1175                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1176                                           "can't mark and flag in same flow");
1177         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1178                 return rte_flow_error_set(error, EINVAL,
1179                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1180                                           "can't have 2 flag"
1181                                           " actions in same flow");
1182         if (attr->egress)
1183                 return rte_flow_error_set(error, ENOTSUP,
1184                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1185                                           "flag action not supported for "
1186                                           "egress");
1187         return 0;
1188 }
1189
1190 /*
1191  * Validate the mark action.
1192  *
1193  * @param[in] action
1194  *   Pointer to the queue action.
1195  * @param[in] action_flags
1196  *   Bit-fields that holds the actions detected until now.
1197  * @param[in] attr
1198  *   Attributes of flow that includes this action.
1199  * @param[out] error
1200  *   Pointer to error structure.
1201  *
1202  * @return
1203  *   0 on success, a negative errno value otherwise and rte_errno is set.
1204  */
1205 int
1206 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1207                                uint64_t action_flags,
1208                                const struct rte_flow_attr *attr,
1209                                struct rte_flow_error *error)
1210 {
1211         const struct rte_flow_action_mark *mark = action->conf;
1212
1213         if (!mark)
1214                 return rte_flow_error_set(error, EINVAL,
1215                                           RTE_FLOW_ERROR_TYPE_ACTION,
1216                                           action,
1217                                           "configuration cannot be null");
1218         if (mark->id >= MLX5_FLOW_MARK_MAX)
1219                 return rte_flow_error_set(error, EINVAL,
1220                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1221                                           &mark->id,
1222                                           "mark id must in 0 <= id < "
1223                                           RTE_STR(MLX5_FLOW_MARK_MAX));
1224         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1225                 return rte_flow_error_set(error, EINVAL,
1226                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1227                                           "can't flag and mark in same flow");
1228         if (action_flags & MLX5_FLOW_ACTION_MARK)
1229                 return rte_flow_error_set(error, EINVAL,
1230                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1231                                           "can't have 2 mark actions in same"
1232                                           " flow");
1233         if (attr->egress)
1234                 return rte_flow_error_set(error, ENOTSUP,
1235                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1236                                           "mark action not supported for "
1237                                           "egress");
1238         return 0;
1239 }
1240
1241 /*
1242  * Validate the drop action.
1243  *
1244  * @param[in] action_flags
1245  *   Bit-fields that holds the actions detected until now.
1246  * @param[in] attr
1247  *   Attributes of flow that includes this action.
1248  * @param[out] error
1249  *   Pointer to error structure.
1250  *
1251  * @return
1252  *   0 on success, a negative errno value otherwise and rte_errno is set.
1253  */
1254 int
1255 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1256                                const struct rte_flow_attr *attr,
1257                                struct rte_flow_error *error)
1258 {
1259         if (attr->egress)
1260                 return rte_flow_error_set(error, ENOTSUP,
1261                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1262                                           "drop action not supported for "
1263                                           "egress");
1264         return 0;
1265 }
1266
1267 /*
1268  * Validate the queue action.
1269  *
1270  * @param[in] action
1271  *   Pointer to the queue action.
1272  * @param[in] action_flags
1273  *   Bit-fields that holds the actions detected until now.
1274  * @param[in] dev
1275  *   Pointer to the Ethernet device structure.
1276  * @param[in] attr
1277  *   Attributes of flow that includes this action.
1278  * @param[out] error
1279  *   Pointer to error structure.
1280  *
1281  * @return
1282  *   0 on success, a negative errno value otherwise and rte_errno is set.
1283  */
1284 int
1285 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1286                                 uint64_t action_flags,
1287                                 struct rte_eth_dev *dev,
1288                                 const struct rte_flow_attr *attr,
1289                                 struct rte_flow_error *error)
1290 {
1291         struct mlx5_priv *priv = dev->data->dev_private;
1292         const struct rte_flow_action_queue *queue = action->conf;
1293
1294         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1295                 return rte_flow_error_set(error, EINVAL,
1296                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1297                                           "can't have 2 fate actions in"
1298                                           " same flow");
1299         if (!priv->rxqs_n)
1300                 return rte_flow_error_set(error, EINVAL,
1301                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1302                                           NULL, "No Rx queues configured");
1303         if (queue->index >= priv->rxqs_n)
1304                 return rte_flow_error_set(error, EINVAL,
1305                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1306                                           &queue->index,
1307                                           "queue index out of range");
1308         if (!(*priv->rxqs)[queue->index])
1309                 return rte_flow_error_set(error, EINVAL,
1310                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1311                                           &queue->index,
1312                                           "queue is not configured");
1313         if (attr->egress)
1314                 return rte_flow_error_set(error, ENOTSUP,
1315                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1316                                           "queue action not supported for "
1317                                           "egress");
1318         return 0;
1319 }
1320
1321 /*
1322  * Validate the rss action.
1323  *
1324  * @param[in] action
1325  *   Pointer to the queue action.
1326  * @param[in] action_flags
1327  *   Bit-fields that holds the actions detected until now.
1328  * @param[in] dev
1329  *   Pointer to the Ethernet device structure.
1330  * @param[in] attr
1331  *   Attributes of flow that includes this action.
1332  * @param[in] item_flags
1333  *   Items that were detected.
1334  * @param[out] error
1335  *   Pointer to error structure.
1336  *
1337  * @return
1338  *   0 on success, a negative errno value otherwise and rte_errno is set.
1339  */
1340 int
1341 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1342                               uint64_t action_flags,
1343                               struct rte_eth_dev *dev,
1344                               const struct rte_flow_attr *attr,
1345                               uint64_t item_flags,
1346                               struct rte_flow_error *error)
1347 {
1348         struct mlx5_priv *priv = dev->data->dev_private;
1349         const struct rte_flow_action_rss *rss = action->conf;
1350         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1351         unsigned int i;
1352
1353         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1354                 return rte_flow_error_set(error, EINVAL,
1355                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1356                                           "can't have 2 fate actions"
1357                                           " in same flow");
1358         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1359             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1360                 return rte_flow_error_set(error, ENOTSUP,
1361                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1362                                           &rss->func,
1363                                           "RSS hash function not supported");
1364 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1365         if (rss->level > 2)
1366 #else
1367         if (rss->level > 1)
1368 #endif
1369                 return rte_flow_error_set(error, ENOTSUP,
1370                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1371                                           &rss->level,
1372                                           "tunnel RSS is not supported");
1373         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
1374         if (rss->key_len == 0 && rss->key != NULL)
1375                 return rte_flow_error_set(error, ENOTSUP,
1376                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1377                                           &rss->key_len,
1378                                           "RSS hash key length 0");
1379         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1380                 return rte_flow_error_set(error, ENOTSUP,
1381                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1382                                           &rss->key_len,
1383                                           "RSS hash key too small");
1384         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1385                 return rte_flow_error_set(error, ENOTSUP,
1386                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1387                                           &rss->key_len,
1388                                           "RSS hash key too large");
1389         if (rss->queue_num > priv->config.ind_table_max_size)
1390                 return rte_flow_error_set(error, ENOTSUP,
1391                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1392                                           &rss->queue_num,
1393                                           "number of queues too large");
1394         if (rss->types & MLX5_RSS_HF_MASK)
1395                 return rte_flow_error_set(error, ENOTSUP,
1396                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1397                                           &rss->types,
1398                                           "some RSS protocols are not"
1399                                           " supported");
1400         if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1401             !(rss->types & ETH_RSS_IP))
1402                 return rte_flow_error_set(error, EINVAL,
1403                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1404                                           "L3 partial RSS requested but L3 RSS"
1405                                           " type not specified");
1406         if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1407             !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1408                 return rte_flow_error_set(error, EINVAL,
1409                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1410                                           "L4 partial RSS requested but L4 RSS"
1411                                           " type not specified");
1412         if (!priv->rxqs_n)
1413                 return rte_flow_error_set(error, EINVAL,
1414                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1415                                           NULL, "No Rx queues configured");
1416         if (!rss->queue_num)
1417                 return rte_flow_error_set(error, EINVAL,
1418                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1419                                           NULL, "No queues configured");
1420         for (i = 0; i != rss->queue_num; ++i) {
1421                 if (rss->queue[i] >= priv->rxqs_n)
1422                         return rte_flow_error_set
1423                                 (error, EINVAL,
1424                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1425                                  &rss->queue[i], "queue index out of range");
1426                 if (!(*priv->rxqs)[rss->queue[i]])
1427                         return rte_flow_error_set
1428                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1429                                  &rss->queue[i], "queue is not configured");
1430         }
1431         if (attr->egress)
1432                 return rte_flow_error_set(error, ENOTSUP,
1433                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1434                                           "rss action not supported for "
1435                                           "egress");
1436         if (rss->level > 1 && !tunnel)
1437                 return rte_flow_error_set(error, EINVAL,
1438                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1439                                           "inner RSS is not supported for "
1440                                           "non-tunnel flows");
1441         if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1442             !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1443                 return rte_flow_error_set(error, EINVAL,
1444                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1445                                           "RSS on eCPRI is not supported now");
1446         }
1447         return 0;
1448 }
1449
1450 /*
1451  * Validate the default miss action.
1452  *
1453  * @param[in] action_flags
1454  *   Bit-fields that holds the actions detected until now.
1455  * @param[out] error
1456  *   Pointer to error structure.
1457  *
1458  * @return
1459  *   0 on success, a negative errno value otherwise and rte_errno is set.
1460  */
1461 int
1462 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1463                                 const struct rte_flow_attr *attr,
1464                                 struct rte_flow_error *error)
1465 {
1466         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1467                 return rte_flow_error_set(error, EINVAL,
1468                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1469                                           "can't have 2 fate actions in"
1470                                           " same flow");
1471         if (attr->egress)
1472                 return rte_flow_error_set(error, ENOTSUP,
1473                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1474                                           "default miss action not supported "
1475                                           "for egress");
1476         if (attr->group)
1477                 return rte_flow_error_set(error, ENOTSUP,
1478                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1479                                           "only group 0 is supported");
1480         if (attr->transfer)
1481                 return rte_flow_error_set(error, ENOTSUP,
1482                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1483                                           NULL, "transfer is not supported");
1484         return 0;
1485 }
1486
1487 /*
1488  * Validate the count action.
1489  *
1490  * @param[in] dev
1491  *   Pointer to the Ethernet device structure.
1492  * @param[in] attr
1493  *   Attributes of flow that includes this action.
1494  * @param[out] error
1495  *   Pointer to error structure.
1496  *
1497  * @return
1498  *   0 on success, a negative errno value otherwise and rte_errno is set.
1499  */
1500 int
1501 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1502                                 const struct rte_flow_attr *attr,
1503                                 struct rte_flow_error *error)
1504 {
1505         if (attr->egress)
1506                 return rte_flow_error_set(error, ENOTSUP,
1507                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1508                                           "count action not supported for "
1509                                           "egress");
1510         return 0;
1511 }
1512
1513 /**
1514  * Verify the @p attributes will be correctly understood by the NIC and store
1515  * them in the @p flow if everything is correct.
1516  *
1517  * @param[in] dev
1518  *   Pointer to the Ethernet device structure.
1519  * @param[in] attributes
1520  *   Pointer to flow attributes
1521  * @param[out] error
1522  *   Pointer to error structure.
1523  *
1524  * @return
1525  *   0 on success, a negative errno value otherwise and rte_errno is set.
1526  */
1527 int
1528 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1529                               const struct rte_flow_attr *attributes,
1530                               struct rte_flow_error *error)
1531 {
1532         struct mlx5_priv *priv = dev->data->dev_private;
1533         uint32_t priority_max = priv->config.flow_prio - 1;
1534
1535         if (attributes->group)
1536                 return rte_flow_error_set(error, ENOTSUP,
1537                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1538                                           NULL, "groups is not supported");
1539         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1540             attributes->priority >= priority_max)
1541                 return rte_flow_error_set(error, ENOTSUP,
1542                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1543                                           NULL, "priority out of range");
1544         if (attributes->egress)
1545                 return rte_flow_error_set(error, ENOTSUP,
1546                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1547                                           "egress is not supported");
1548         if (attributes->transfer && !priv->config.dv_esw_en)
1549                 return rte_flow_error_set(error, ENOTSUP,
1550                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1551                                           NULL, "transfer is not supported");
1552         if (!attributes->ingress)
1553                 return rte_flow_error_set(error, EINVAL,
1554                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1555                                           NULL,
1556                                           "ingress attribute is mandatory");
1557         return 0;
1558 }
1559
1560 /**
1561  * Validate ICMP6 item.
1562  *
1563  * @param[in] item
1564  *   Item specification.
1565  * @param[in] item_flags
1566  *   Bit-fields that holds the items detected until now.
1567  * @param[out] error
1568  *   Pointer to error structure.
1569  *
1570  * @return
1571  *   0 on success, a negative errno value otherwise and rte_errno is set.
1572  */
1573 int
1574 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1575                                uint64_t item_flags,
1576                                uint8_t target_protocol,
1577                                struct rte_flow_error *error)
1578 {
1579         const struct rte_flow_item_icmp6 *mask = item->mask;
1580         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1581         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1582                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1583         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1584                                       MLX5_FLOW_LAYER_OUTER_L4;
1585         int ret;
1586
1587         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1588                 return rte_flow_error_set(error, EINVAL,
1589                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1590                                           "protocol filtering not compatible"
1591                                           " with ICMP6 layer");
1592         if (!(item_flags & l3m))
1593                 return rte_flow_error_set(error, EINVAL,
1594                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1595                                           "IPv6 is mandatory to filter on"
1596                                           " ICMP6");
1597         if (item_flags & l4m)
1598                 return rte_flow_error_set(error, EINVAL,
1599                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1600                                           "multiple L4 layers not supported");
1601         if (!mask)
1602                 mask = &rte_flow_item_icmp6_mask;
1603         ret = mlx5_flow_item_acceptable
1604                 (item, (const uint8_t *)mask,
1605                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1606                  sizeof(struct rte_flow_item_icmp6), error);
1607         if (ret < 0)
1608                 return ret;
1609         return 0;
1610 }
1611
1612 /**
1613  * Validate ICMP item.
1614  *
1615  * @param[in] item
1616  *   Item specification.
1617  * @param[in] item_flags
1618  *   Bit-fields that holds the items detected until now.
1619  * @param[out] error
1620  *   Pointer to error structure.
1621  *
1622  * @return
1623  *   0 on success, a negative errno value otherwise and rte_errno is set.
1624  */
1625 int
1626 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1627                              uint64_t item_flags,
1628                              uint8_t target_protocol,
1629                              struct rte_flow_error *error)
1630 {
1631         const struct rte_flow_item_icmp *mask = item->mask;
1632         const struct rte_flow_item_icmp nic_mask = {
1633                 .hdr.icmp_type = 0xff,
1634                 .hdr.icmp_code = 0xff,
1635                 .hdr.icmp_ident = RTE_BE16(0xffff),
1636                 .hdr.icmp_seq_nb = RTE_BE16(0xffff),
1637         };
1638         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1639         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1640                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1641         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1642                                       MLX5_FLOW_LAYER_OUTER_L4;
1643         int ret;
1644
1645         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1646                 return rte_flow_error_set(error, EINVAL,
1647                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1648                                           "protocol filtering not compatible"
1649                                           " with ICMP layer");
1650         if (!(item_flags & l3m))
1651                 return rte_flow_error_set(error, EINVAL,
1652                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1653                                           "IPv4 is mandatory to filter"
1654                                           " on ICMP");
1655         if (item_flags & l4m)
1656                 return rte_flow_error_set(error, EINVAL,
1657                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1658                                           "multiple L4 layers not supported");
1659         if (!mask)
1660                 mask = &nic_mask;
1661         ret = mlx5_flow_item_acceptable
1662                 (item, (const uint8_t *)mask,
1663                  (const uint8_t *)&nic_mask,
1664                  sizeof(struct rte_flow_item_icmp), error);
1665         if (ret < 0)
1666                 return ret;
1667         return 0;
1668 }
1669
1670 /**
1671  * Validate Ethernet item.
1672  *
1673  * @param[in] item
1674  *   Item specification.
1675  * @param[in] item_flags
1676  *   Bit-fields that holds the items detected until now.
1677  * @param[out] error
1678  *   Pointer to error structure.
1679  *
1680  * @return
1681  *   0 on success, a negative errno value otherwise and rte_errno is set.
1682  */
1683 int
1684 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1685                             uint64_t item_flags,
1686                             struct rte_flow_error *error)
1687 {
1688         const struct rte_flow_item_eth *mask = item->mask;
1689         const struct rte_flow_item_eth nic_mask = {
1690                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1691                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1692                 .type = RTE_BE16(0xffff),
1693         };
1694         int ret;
1695         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1696         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1697                                        MLX5_FLOW_LAYER_OUTER_L2;
1698
1699         if (item_flags & ethm)
1700                 return rte_flow_error_set(error, ENOTSUP,
1701                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1702                                           "multiple L2 layers not supported");
1703         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1704             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1705                 return rte_flow_error_set(error, EINVAL,
1706                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1707                                           "L2 layer should not follow "
1708                                           "L3 layers");
1709         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1710             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1711                 return rte_flow_error_set(error, EINVAL,
1712                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1713                                           "L2 layer should not follow VLAN");
1714         if (!mask)
1715                 mask = &rte_flow_item_eth_mask;
1716         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1717                                         (const uint8_t *)&nic_mask,
1718                                         sizeof(struct rte_flow_item_eth),
1719                                         error);
1720         return ret;
1721 }
1722
1723 /**
1724  * Validate VLAN item.
1725  *
1726  * @param[in] item
1727  *   Item specification.
1728  * @param[in] item_flags
1729  *   Bit-fields that holds the items detected until now.
1730  * @param[in] dev
1731  *   Ethernet device flow is being created on.
1732  * @param[out] error
1733  *   Pointer to error structure.
1734  *
1735  * @return
1736  *   0 on success, a negative errno value otherwise and rte_errno is set.
1737  */
1738 int
1739 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1740                              uint64_t item_flags,
1741                              struct rte_eth_dev *dev,
1742                              struct rte_flow_error *error)
1743 {
1744         const struct rte_flow_item_vlan *spec = item->spec;
1745         const struct rte_flow_item_vlan *mask = item->mask;
1746         const struct rte_flow_item_vlan nic_mask = {
1747                 .tci = RTE_BE16(UINT16_MAX),
1748                 .inner_type = RTE_BE16(UINT16_MAX),
1749         };
1750         uint16_t vlan_tag = 0;
1751         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1752         int ret;
1753         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1754                                         MLX5_FLOW_LAYER_INNER_L4) :
1755                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1756                                         MLX5_FLOW_LAYER_OUTER_L4);
1757         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1758                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1759
1760         if (item_flags & vlanm)
1761                 return rte_flow_error_set(error, EINVAL,
1762                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1763                                           "multiple VLAN layers not supported");
1764         else if ((item_flags & l34m) != 0)
1765                 return rte_flow_error_set(error, EINVAL,
1766                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1767                                           "VLAN cannot follow L3/L4 layer");
1768         if (!mask)
1769                 mask = &rte_flow_item_vlan_mask;
1770         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1771                                         (const uint8_t *)&nic_mask,
1772                                         sizeof(struct rte_flow_item_vlan),
1773                                         error);
1774         if (ret)
1775                 return ret;
1776         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1777                 struct mlx5_priv *priv = dev->data->dev_private;
1778
1779                 if (priv->vmwa_context) {
1780                         /*
1781                          * Non-NULL context means we have a virtual machine
1782                          * and SR-IOV enabled, we have to create VLAN interface
1783                          * to make hypervisor to setup E-Switch vport
1784                          * context correctly. We avoid creating the multiple
1785                          * VLAN interfaces, so we cannot support VLAN tag mask.
1786                          */
1787                         return rte_flow_error_set(error, EINVAL,
1788                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1789                                                   item,
1790                                                   "VLAN tag mask is not"
1791                                                   " supported in virtual"
1792                                                   " environment");
1793                 }
1794         }
1795         if (spec) {
1796                 vlan_tag = spec->tci;
1797                 vlan_tag &= mask->tci;
1798         }
1799         /*
1800          * From verbs perspective an empty VLAN is equivalent
1801          * to a packet without VLAN layer.
1802          */
1803         if (!vlan_tag)
1804                 return rte_flow_error_set(error, EINVAL,
1805                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1806                                           item->spec,
1807                                           "VLAN cannot be empty");
1808         return 0;
1809 }
1810
1811 /**
1812  * Validate IPV4 item.
1813  *
1814  * @param[in] item
1815  *   Item specification.
1816  * @param[in] item_flags
1817  *   Bit-fields that holds the items detected until now.
1818  * @param[in] last_item
1819  *   Previous validated item in the pattern items.
1820  * @param[in] ether_type
1821  *   Type in the ethernet layer header (including dot1q).
1822  * @param[in] acc_mask
1823  *   Acceptable mask, if NULL default internal default mask
1824  *   will be used to check whether item fields are supported.
1825  * @param[out] error
1826  *   Pointer to error structure.
1827  *
1828  * @return
1829  *   0 on success, a negative errno value otherwise and rte_errno is set.
1830  */
1831 int
1832 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1833                              uint64_t item_flags,
1834                              uint64_t last_item,
1835                              uint16_t ether_type,
1836                              const struct rte_flow_item_ipv4 *acc_mask,
1837                              struct rte_flow_error *error)
1838 {
1839         const struct rte_flow_item_ipv4 *mask = item->mask;
1840         const struct rte_flow_item_ipv4 *spec = item->spec;
1841         const struct rte_flow_item_ipv4 nic_mask = {
1842                 .hdr = {
1843                         .src_addr = RTE_BE32(0xffffffff),
1844                         .dst_addr = RTE_BE32(0xffffffff),
1845                         .type_of_service = 0xff,
1846                         .next_proto_id = 0xff,
1847                 },
1848         };
1849         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1850         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1851                                       MLX5_FLOW_LAYER_OUTER_L3;
1852         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1853                                       MLX5_FLOW_LAYER_OUTER_L4;
1854         int ret;
1855         uint8_t next_proto = 0xFF;
1856         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1857                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1858                                   MLX5_FLOW_LAYER_INNER_VLAN);
1859
1860         if ((last_item & l2_vlan) && ether_type &&
1861             ether_type != RTE_ETHER_TYPE_IPV4)
1862                 return rte_flow_error_set(error, EINVAL,
1863                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1864                                           "IPv4 cannot follow L2/VLAN layer "
1865                                           "which ether type is not IPv4");
1866         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1867                 if (mask && spec)
1868                         next_proto = mask->hdr.next_proto_id &
1869                                      spec->hdr.next_proto_id;
1870                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1871                         return rte_flow_error_set(error, EINVAL,
1872                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1873                                                   item,
1874                                                   "multiple tunnel "
1875                                                   "not supported");
1876         }
1877         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1878                 return rte_flow_error_set(error, EINVAL,
1879                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1880                                           "wrong tunnel type - IPv6 specified "
1881                                           "but IPv4 item provided");
1882         if (item_flags & l3m)
1883                 return rte_flow_error_set(error, ENOTSUP,
1884                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1885                                           "multiple L3 layers not supported");
1886         else if (item_flags & l4m)
1887                 return rte_flow_error_set(error, EINVAL,
1888                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1889                                           "L3 cannot follow an L4 layer.");
1890         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1891                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1892                 return rte_flow_error_set(error, EINVAL,
1893                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1894                                           "L3 cannot follow an NVGRE layer.");
1895         if (!mask)
1896                 mask = &rte_flow_item_ipv4_mask;
1897         else if (mask->hdr.next_proto_id != 0 &&
1898                  mask->hdr.next_proto_id != 0xff)
1899                 return rte_flow_error_set(error, EINVAL,
1900                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1901                                           "partial mask is not supported"
1902                                           " for protocol");
1903         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1904                                         acc_mask ? (const uint8_t *)acc_mask
1905                                                  : (const uint8_t *)&nic_mask,
1906                                         sizeof(struct rte_flow_item_ipv4),
1907                                         error);
1908         if (ret < 0)
1909                 return ret;
1910         return 0;
1911 }
1912
1913 /**
1914  * Validate IPV6 item.
1915  *
1916  * @param[in] item
1917  *   Item specification.
1918  * @param[in] item_flags
1919  *   Bit-fields that holds the items detected until now.
1920  * @param[in] last_item
1921  *   Previous validated item in the pattern items.
1922  * @param[in] ether_type
1923  *   Type in the ethernet layer header (including dot1q).
1924  * @param[in] acc_mask
1925  *   Acceptable mask, if NULL default internal default mask
1926  *   will be used to check whether item fields are supported.
1927  * @param[out] error
1928  *   Pointer to error structure.
1929  *
1930  * @return
1931  *   0 on success, a negative errno value otherwise and rte_errno is set.
1932  */
1933 int
1934 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1935                              uint64_t item_flags,
1936                              uint64_t last_item,
1937                              uint16_t ether_type,
1938                              const struct rte_flow_item_ipv6 *acc_mask,
1939                              struct rte_flow_error *error)
1940 {
1941         const struct rte_flow_item_ipv6 *mask = item->mask;
1942         const struct rte_flow_item_ipv6 *spec = item->spec;
1943         const struct rte_flow_item_ipv6 nic_mask = {
1944                 .hdr = {
1945                         .src_addr =
1946                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1947                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1948                         .dst_addr =
1949                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1950                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1951                         .vtc_flow = RTE_BE32(0xffffffff),
1952                         .proto = 0xff,
1953                 },
1954         };
1955         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1956         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1957                                       MLX5_FLOW_LAYER_OUTER_L3;
1958         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1959                                       MLX5_FLOW_LAYER_OUTER_L4;
1960         int ret;
1961         uint8_t next_proto = 0xFF;
1962         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1963                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1964                                   MLX5_FLOW_LAYER_INNER_VLAN);
1965
1966         if ((last_item & l2_vlan) && ether_type &&
1967             ether_type != RTE_ETHER_TYPE_IPV6)
1968                 return rte_flow_error_set(error, EINVAL,
1969                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1970                                           "IPv6 cannot follow L2/VLAN layer "
1971                                           "which ether type is not IPv6");
1972         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1973                 if (mask && spec)
1974                         next_proto = mask->hdr.proto & spec->hdr.proto;
1975                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1976                         return rte_flow_error_set(error, EINVAL,
1977                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1978                                                   item,
1979                                                   "multiple tunnel "
1980                                                   "not supported");
1981         }
1982         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1983                 return rte_flow_error_set(error, EINVAL,
1984                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1985                                           "wrong tunnel type - IPv4 specified "
1986                                           "but IPv6 item provided");
1987         if (item_flags & l3m)
1988                 return rte_flow_error_set(error, ENOTSUP,
1989                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1990                                           "multiple L3 layers not supported");
1991         else if (item_flags & l4m)
1992                 return rte_flow_error_set(error, EINVAL,
1993                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1994                                           "L3 cannot follow an L4 layer.");
1995         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1996                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1997                 return rte_flow_error_set(error, EINVAL,
1998                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1999                                           "L3 cannot follow an NVGRE layer.");
2000         if (!mask)
2001                 mask = &rte_flow_item_ipv6_mask;
2002         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2003                                         acc_mask ? (const uint8_t *)acc_mask
2004                                                  : (const uint8_t *)&nic_mask,
2005                                         sizeof(struct rte_flow_item_ipv6),
2006                                         error);
2007         if (ret < 0)
2008                 return ret;
2009         return 0;
2010 }
2011
2012 /**
2013  * Validate UDP item.
2014  *
2015  * @param[in] item
2016  *   Item specification.
2017  * @param[in] item_flags
2018  *   Bit-fields that holds the items detected until now.
2019  * @param[in] target_protocol
2020  *   The next protocol in the previous item.
2021  * @param[in] flow_mask
2022  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2023  * @param[out] error
2024  *   Pointer to error structure.
2025  *
2026  * @return
2027  *   0 on success, a negative errno value otherwise and rte_errno is set.
2028  */
2029 int
2030 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2031                             uint64_t item_flags,
2032                             uint8_t target_protocol,
2033                             struct rte_flow_error *error)
2034 {
2035         const struct rte_flow_item_udp *mask = item->mask;
2036         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2037         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2038                                       MLX5_FLOW_LAYER_OUTER_L3;
2039         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2040                                       MLX5_FLOW_LAYER_OUTER_L4;
2041         int ret;
2042
2043         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2044                 return rte_flow_error_set(error, EINVAL,
2045                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2046                                           "protocol filtering not compatible"
2047                                           " with UDP layer");
2048         if (!(item_flags & l3m))
2049                 return rte_flow_error_set(error, EINVAL,
2050                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2051                                           "L3 is mandatory to filter on L4");
2052         if (item_flags & l4m)
2053                 return rte_flow_error_set(error, EINVAL,
2054                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2055                                           "multiple L4 layers not supported");
2056         if (!mask)
2057                 mask = &rte_flow_item_udp_mask;
2058         ret = mlx5_flow_item_acceptable
2059                 (item, (const uint8_t *)mask,
2060                  (const uint8_t *)&rte_flow_item_udp_mask,
2061                  sizeof(struct rte_flow_item_udp), error);
2062         if (ret < 0)
2063                 return ret;
2064         return 0;
2065 }
2066
2067 /**
2068  * Validate TCP item.
2069  *
2070  * @param[in] item
2071  *   Item specification.
2072  * @param[in] item_flags
2073  *   Bit-fields that holds the items detected until now.
2074  * @param[in] target_protocol
2075  *   The next protocol in the previous item.
2076  * @param[out] error
2077  *   Pointer to error structure.
2078  *
2079  * @return
2080  *   0 on success, a negative errno value otherwise and rte_errno is set.
2081  */
2082 int
2083 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2084                             uint64_t item_flags,
2085                             uint8_t target_protocol,
2086                             const struct rte_flow_item_tcp *flow_mask,
2087                             struct rte_flow_error *error)
2088 {
2089         const struct rte_flow_item_tcp *mask = item->mask;
2090         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2091         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2092                                       MLX5_FLOW_LAYER_OUTER_L3;
2093         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2094                                       MLX5_FLOW_LAYER_OUTER_L4;
2095         int ret;
2096
2097         MLX5_ASSERT(flow_mask);
2098         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2099                 return rte_flow_error_set(error, EINVAL,
2100                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2101                                           "protocol filtering not compatible"
2102                                           " with TCP layer");
2103         if (!(item_flags & l3m))
2104                 return rte_flow_error_set(error, EINVAL,
2105                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2106                                           "L3 is mandatory to filter on L4");
2107         if (item_flags & l4m)
2108                 return rte_flow_error_set(error, EINVAL,
2109                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2110                                           "multiple L4 layers not supported");
2111         if (!mask)
2112                 mask = &rte_flow_item_tcp_mask;
2113         ret = mlx5_flow_item_acceptable
2114                 (item, (const uint8_t *)mask,
2115                  (const uint8_t *)flow_mask,
2116                  sizeof(struct rte_flow_item_tcp), error);
2117         if (ret < 0)
2118                 return ret;
2119         return 0;
2120 }
2121
2122 /**
2123  * Validate VXLAN item.
2124  *
2125  * @param[in] item
2126  *   Item specification.
2127  * @param[in] item_flags
2128  *   Bit-fields that holds the items detected until now.
2129  * @param[in] target_protocol
2130  *   The next protocol in the previous item.
2131  * @param[out] error
2132  *   Pointer to error structure.
2133  *
2134  * @return
2135  *   0 on success, a negative errno value otherwise and rte_errno is set.
2136  */
2137 int
2138 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2139                               uint64_t item_flags,
2140                               struct rte_flow_error *error)
2141 {
2142         const struct rte_flow_item_vxlan *spec = item->spec;
2143         const struct rte_flow_item_vxlan *mask = item->mask;
2144         int ret;
2145         union vni {
2146                 uint32_t vlan_id;
2147                 uint8_t vni[4];
2148         } id = { .vlan_id = 0, };
2149
2150
2151         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2152                 return rte_flow_error_set(error, ENOTSUP,
2153                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2154                                           "multiple tunnel layers not"
2155                                           " supported");
2156         /*
2157          * Verify only UDPv4 is present as defined in
2158          * https://tools.ietf.org/html/rfc7348
2159          */
2160         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2161                 return rte_flow_error_set(error, EINVAL,
2162                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2163                                           "no outer UDP layer found");
2164         if (!mask)
2165                 mask = &rte_flow_item_vxlan_mask;
2166         ret = mlx5_flow_item_acceptable
2167                 (item, (const uint8_t *)mask,
2168                  (const uint8_t *)&rte_flow_item_vxlan_mask,
2169                  sizeof(struct rte_flow_item_vxlan),
2170                  error);
2171         if (ret < 0)
2172                 return ret;
2173         if (spec) {
2174                 memcpy(&id.vni[1], spec->vni, 3);
2175                 memcpy(&id.vni[1], mask->vni, 3);
2176         }
2177         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2178                 return rte_flow_error_set(error, ENOTSUP,
2179                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2180                                           "VXLAN tunnel must be fully defined");
2181         return 0;
2182 }
2183
2184 /**
2185  * Validate VXLAN_GPE item.
2186  *
2187  * @param[in] item
2188  *   Item specification.
2189  * @param[in] item_flags
2190  *   Bit-fields that holds the items detected until now.
2191  * @param[in] priv
2192  *   Pointer to the private data structure.
2193  * @param[in] target_protocol
2194  *   The next protocol in the previous item.
2195  * @param[out] error
2196  *   Pointer to error structure.
2197  *
2198  * @return
2199  *   0 on success, a negative errno value otherwise and rte_errno is set.
2200  */
2201 int
2202 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2203                                   uint64_t item_flags,
2204                                   struct rte_eth_dev *dev,
2205                                   struct rte_flow_error *error)
2206 {
2207         struct mlx5_priv *priv = dev->data->dev_private;
2208         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2209         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2210         int ret;
2211         union vni {
2212                 uint32_t vlan_id;
2213                 uint8_t vni[4];
2214         } id = { .vlan_id = 0, };
2215
2216         if (!priv->config.l3_vxlan_en)
2217                 return rte_flow_error_set(error, ENOTSUP,
2218                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2219                                           "L3 VXLAN is not enabled by device"
2220                                           " parameter and/or not configured in"
2221                                           " firmware");
2222         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2223                 return rte_flow_error_set(error, ENOTSUP,
2224                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2225                                           "multiple tunnel layers not"
2226                                           " supported");
2227         /*
2228          * Verify only UDPv4 is present as defined in
2229          * https://tools.ietf.org/html/rfc7348
2230          */
2231         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2232                 return rte_flow_error_set(error, EINVAL,
2233                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2234                                           "no outer UDP layer found");
2235         if (!mask)
2236                 mask = &rte_flow_item_vxlan_gpe_mask;
2237         ret = mlx5_flow_item_acceptable
2238                 (item, (const uint8_t *)mask,
2239                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2240                  sizeof(struct rte_flow_item_vxlan_gpe),
2241                  error);
2242         if (ret < 0)
2243                 return ret;
2244         if (spec) {
2245                 if (spec->protocol)
2246                         return rte_flow_error_set(error, ENOTSUP,
2247                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2248                                                   item,
2249                                                   "VxLAN-GPE protocol"
2250                                                   " not supported");
2251                 memcpy(&id.vni[1], spec->vni, 3);
2252                 memcpy(&id.vni[1], mask->vni, 3);
2253         }
2254         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2255                 return rte_flow_error_set(error, ENOTSUP,
2256                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2257                                           "VXLAN-GPE tunnel must be fully"
2258                                           " defined");
2259         return 0;
2260 }
2261 /**
2262  * Validate GRE Key item.
2263  *
2264  * @param[in] item
2265  *   Item specification.
2266  * @param[in] item_flags
2267  *   Bit flags to mark detected items.
2268  * @param[in] gre_item
2269  *   Pointer to gre_item
2270  * @param[out] error
2271  *   Pointer to error structure.
2272  *
2273  * @return
2274  *   0 on success, a negative errno value otherwise and rte_errno is set.
2275  */
2276 int
2277 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2278                                 uint64_t item_flags,
2279                                 const struct rte_flow_item *gre_item,
2280                                 struct rte_flow_error *error)
2281 {
2282         const rte_be32_t *mask = item->mask;
2283         int ret = 0;
2284         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2285         const struct rte_flow_item_gre *gre_spec;
2286         const struct rte_flow_item_gre *gre_mask;
2287
2288         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2289                 return rte_flow_error_set(error, ENOTSUP,
2290                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2291                                           "Multiple GRE key not support");
2292         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2293                 return rte_flow_error_set(error, ENOTSUP,
2294                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2295                                           "No preceding GRE header");
2296         if (item_flags & MLX5_FLOW_LAYER_INNER)
2297                 return rte_flow_error_set(error, ENOTSUP,
2298                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2299                                           "GRE key following a wrong item");
2300         gre_mask = gre_item->mask;
2301         if (!gre_mask)
2302                 gre_mask = &rte_flow_item_gre_mask;
2303         gre_spec = gre_item->spec;
2304         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2305                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2306                 return rte_flow_error_set(error, EINVAL,
2307                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2308                                           "Key bit must be on");
2309
2310         if (!mask)
2311                 mask = &gre_key_default_mask;
2312         ret = mlx5_flow_item_acceptable
2313                 (item, (const uint8_t *)mask,
2314                  (const uint8_t *)&gre_key_default_mask,
2315                  sizeof(rte_be32_t), error);
2316         return ret;
2317 }
2318
2319 /**
2320  * Validate GRE item.
2321  *
2322  * @param[in] item
2323  *   Item specification.
2324  * @param[in] item_flags
2325  *   Bit flags to mark detected items.
2326  * @param[in] target_protocol
2327  *   The next protocol in the previous item.
2328  * @param[out] error
2329  *   Pointer to error structure.
2330  *
2331  * @return
2332  *   0 on success, a negative errno value otherwise and rte_errno is set.
2333  */
2334 int
2335 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2336                             uint64_t item_flags,
2337                             uint8_t target_protocol,
2338                             struct rte_flow_error *error)
2339 {
2340         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2341         const struct rte_flow_item_gre *mask = item->mask;
2342         int ret;
2343         const struct rte_flow_item_gre nic_mask = {
2344                 .c_rsvd0_ver = RTE_BE16(0xB000),
2345                 .protocol = RTE_BE16(UINT16_MAX),
2346         };
2347
2348         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2349                 return rte_flow_error_set(error, EINVAL,
2350                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2351                                           "protocol filtering not compatible"
2352                                           " with this GRE layer");
2353         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2354                 return rte_flow_error_set(error, ENOTSUP,
2355                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2356                                           "multiple tunnel layers not"
2357                                           " supported");
2358         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2359                 return rte_flow_error_set(error, ENOTSUP,
2360                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2361                                           "L3 Layer is missing");
2362         if (!mask)
2363                 mask = &rte_flow_item_gre_mask;
2364         ret = mlx5_flow_item_acceptable
2365                 (item, (const uint8_t *)mask,
2366                  (const uint8_t *)&nic_mask,
2367                  sizeof(struct rte_flow_item_gre), error);
2368         if (ret < 0)
2369                 return ret;
2370 #ifndef HAVE_MLX5DV_DR
2371 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2372         if (spec && (spec->protocol & mask->protocol))
2373                 return rte_flow_error_set(error, ENOTSUP,
2374                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2375                                           "without MPLS support the"
2376                                           " specification cannot be used for"
2377                                           " filtering");
2378 #endif
2379 #endif
2380         return 0;
2381 }
2382
2383 /**
2384  * Validate Geneve item.
2385  *
2386  * @param[in] item
2387  *   Item specification.
2388  * @param[in] itemFlags
2389  *   Bit-fields that holds the items detected until now.
2390  * @param[in] enPriv
2391  *   Pointer to the private data structure.
2392  * @param[out] error
2393  *   Pointer to error structure.
2394  *
2395  * @return
2396  *   0 on success, a negative errno value otherwise and rte_errno is set.
2397  */
2398
2399 int
2400 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2401                                uint64_t item_flags,
2402                                struct rte_eth_dev *dev,
2403                                struct rte_flow_error *error)
2404 {
2405         struct mlx5_priv *priv = dev->data->dev_private;
2406         const struct rte_flow_item_geneve *spec = item->spec;
2407         const struct rte_flow_item_geneve *mask = item->mask;
2408         int ret;
2409         uint16_t gbhdr;
2410         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2411                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2412         const struct rte_flow_item_geneve nic_mask = {
2413                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2414                 .vni = "\xff\xff\xff",
2415                 .protocol = RTE_BE16(UINT16_MAX),
2416         };
2417
2418         if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2419                 return rte_flow_error_set(error, ENOTSUP,
2420                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2421                                           "L3 Geneve is not enabled by device"
2422                                           " parameter and/or not configured in"
2423                                           " firmware");
2424         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2425                 return rte_flow_error_set(error, ENOTSUP,
2426                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2427                                           "multiple tunnel layers not"
2428                                           " supported");
2429         /*
2430          * Verify only UDPv4 is present as defined in
2431          * https://tools.ietf.org/html/rfc7348
2432          */
2433         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2434                 return rte_flow_error_set(error, EINVAL,
2435                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2436                                           "no outer UDP layer found");
2437         if (!mask)
2438                 mask = &rte_flow_item_geneve_mask;
2439         ret = mlx5_flow_item_acceptable
2440                                   (item, (const uint8_t *)mask,
2441                                    (const uint8_t *)&nic_mask,
2442                                    sizeof(struct rte_flow_item_geneve), error);
2443         if (ret)
2444                 return ret;
2445         if (spec) {
2446                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2447                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2448                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2449                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2450                         return rte_flow_error_set(error, ENOTSUP,
2451                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2452                                                   item,
2453                                                   "Geneve protocol unsupported"
2454                                                   " fields are being used");
2455                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2456                         return rte_flow_error_set
2457                                         (error, ENOTSUP,
2458                                          RTE_FLOW_ERROR_TYPE_ITEM,
2459                                          item,
2460                                          "Unsupported Geneve options length");
2461         }
2462         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2463                 return rte_flow_error_set
2464                                     (error, ENOTSUP,
2465                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2466                                      "Geneve tunnel must be fully defined");
2467         return 0;
2468 }
2469
2470 /**
2471  * Validate MPLS item.
2472  *
2473  * @param[in] dev
2474  *   Pointer to the rte_eth_dev structure.
2475  * @param[in] item
2476  *   Item specification.
2477  * @param[in] item_flags
2478  *   Bit-fields that holds the items detected until now.
2479  * @param[in] prev_layer
2480  *   The protocol layer indicated in previous item.
2481  * @param[out] error
2482  *   Pointer to error structure.
2483  *
2484  * @return
2485  *   0 on success, a negative errno value otherwise and rte_errno is set.
2486  */
2487 int
2488 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2489                              const struct rte_flow_item *item __rte_unused,
2490                              uint64_t item_flags __rte_unused,
2491                              uint64_t prev_layer __rte_unused,
2492                              struct rte_flow_error *error)
2493 {
2494 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2495         const struct rte_flow_item_mpls *mask = item->mask;
2496         struct mlx5_priv *priv = dev->data->dev_private;
2497         int ret;
2498
2499         if (!priv->config.mpls_en)
2500                 return rte_flow_error_set(error, ENOTSUP,
2501                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2502                                           "MPLS not supported or"
2503                                           " disabled in firmware"
2504                                           " configuration.");
2505         /* MPLS over IP, UDP, GRE is allowed */
2506         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2507                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2508                             MLX5_FLOW_LAYER_GRE)))
2509                 return rte_flow_error_set(error, EINVAL,
2510                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2511                                           "protocol filtering not compatible"
2512                                           " with MPLS layer");
2513         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2514         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2515             !(item_flags & MLX5_FLOW_LAYER_GRE))
2516                 return rte_flow_error_set(error, ENOTSUP,
2517                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2518                                           "multiple tunnel layers not"
2519                                           " supported");
2520         if (!mask)
2521                 mask = &rte_flow_item_mpls_mask;
2522         ret = mlx5_flow_item_acceptable
2523                 (item, (const uint8_t *)mask,
2524                  (const uint8_t *)&rte_flow_item_mpls_mask,
2525                  sizeof(struct rte_flow_item_mpls), error);
2526         if (ret < 0)
2527                 return ret;
2528         return 0;
2529 #else
2530         return rte_flow_error_set(error, ENOTSUP,
2531                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2532                                   "MPLS is not supported by Verbs, please"
2533                                   " update.");
2534 #endif
2535 }
2536
2537 /**
2538  * Validate NVGRE item.
2539  *
2540  * @param[in] item
2541  *   Item specification.
2542  * @param[in] item_flags
2543  *   Bit flags to mark detected items.
2544  * @param[in] target_protocol
2545  *   The next protocol in the previous item.
2546  * @param[out] error
2547  *   Pointer to error structure.
2548  *
2549  * @return
2550  *   0 on success, a negative errno value otherwise and rte_errno is set.
2551  */
2552 int
2553 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2554                               uint64_t item_flags,
2555                               uint8_t target_protocol,
2556                               struct rte_flow_error *error)
2557 {
2558         const struct rte_flow_item_nvgre *mask = item->mask;
2559         int ret;
2560
2561         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2562                 return rte_flow_error_set(error, EINVAL,
2563                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2564                                           "protocol filtering not compatible"
2565                                           " with this GRE layer");
2566         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2567                 return rte_flow_error_set(error, ENOTSUP,
2568                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2569                                           "multiple tunnel layers not"
2570                                           " supported");
2571         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2572                 return rte_flow_error_set(error, ENOTSUP,
2573                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2574                                           "L3 Layer is missing");
2575         if (!mask)
2576                 mask = &rte_flow_item_nvgre_mask;
2577         ret = mlx5_flow_item_acceptable
2578                 (item, (const uint8_t *)mask,
2579                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2580                  sizeof(struct rte_flow_item_nvgre), error);
2581         if (ret < 0)
2582                 return ret;
2583         return 0;
2584 }
2585
2586 /**
2587  * Validate eCPRI item.
2588  *
2589  * @param[in] item
2590  *   Item specification.
2591  * @param[in] item_flags
2592  *   Bit-fields that holds the items detected until now.
2593  * @param[in] last_item
2594  *   Previous validated item in the pattern items.
2595  * @param[in] ether_type
2596  *   Type in the ethernet layer header (including dot1q).
2597  * @param[in] acc_mask
2598  *   Acceptable mask, if NULL default internal default mask
2599  *   will be used to check whether item fields are supported.
2600  * @param[out] error
2601  *   Pointer to error structure.
2602  *
2603  * @return
2604  *   0 on success, a negative errno value otherwise and rte_errno is set.
2605  */
2606 int
2607 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2608                               uint64_t item_flags,
2609                               uint64_t last_item,
2610                               uint16_t ether_type,
2611                               const struct rte_flow_item_ecpri *acc_mask,
2612                               struct rte_flow_error *error)
2613 {
2614         const struct rte_flow_item_ecpri *mask = item->mask;
2615         const struct rte_flow_item_ecpri nic_mask = {
2616                 .hdr = {
2617                         .common = {
2618                                 .u32 =
2619                                 RTE_BE32(((const struct rte_ecpri_common_hdr) {
2620                                         .type = 0xFF,
2621                                         }).u32),
2622                         },
2623                         .dummy[0] = 0xFFFFFFFF,
2624                 },
2625         };
2626         const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2627                                         MLX5_FLOW_LAYER_OUTER_VLAN);
2628         struct rte_flow_item_ecpri mask_lo;
2629
2630         if ((last_item & outer_l2_vlan) && ether_type &&
2631             ether_type != RTE_ETHER_TYPE_ECPRI)
2632                 return rte_flow_error_set(error, EINVAL,
2633                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2634                                           "eCPRI cannot follow L2/VLAN layer "
2635                                           "which ether type is not 0xAEFE.");
2636         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2637                 return rte_flow_error_set(error, EINVAL,
2638                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2639                                           "eCPRI with tunnel is not supported "
2640                                           "right now.");
2641         if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2642                 return rte_flow_error_set(error, ENOTSUP,
2643                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2644                                           "multiple L3 layers not supported");
2645         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2646                 return rte_flow_error_set(error, EINVAL,
2647                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2648                                           "eCPRI cannot follow a TCP layer.");
2649         /* In specification, eCPRI could be over UDP layer. */
2650         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2651                 return rte_flow_error_set(error, EINVAL,
2652                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2653                                           "eCPRI over UDP layer is not yet "
2654                                           "supported right now.");
2655         /* Mask for type field in common header could be zero. */
2656         if (!mask)
2657                 mask = &rte_flow_item_ecpri_mask;
2658         mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2659         /* Input mask is in big-endian format. */
2660         if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2661                 return rte_flow_error_set(error, EINVAL,
2662                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2663                                           "partial mask is not supported "
2664                                           "for protocol");
2665         else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2666                 return rte_flow_error_set(error, EINVAL,
2667                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2668                                           "message header mask must be after "
2669                                           "a type mask");
2670         return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2671                                          acc_mask ? (const uint8_t *)acc_mask
2672                                                   : (const uint8_t *)&nic_mask,
2673                                          sizeof(struct rte_flow_item_ecpri),
2674                                          error);
2675 }
2676
2677 /* Allocate unique ID for the split Q/RSS subflows. */
2678 static uint32_t
2679 flow_qrss_get_id(struct rte_eth_dev *dev)
2680 {
2681         struct mlx5_priv *priv = dev->data->dev_private;
2682         uint32_t qrss_id, ret;
2683
2684         ret = mlx5_flow_id_get(priv->qrss_id_pool, &qrss_id);
2685         if (ret)
2686                 return 0;
2687         MLX5_ASSERT(qrss_id);
2688         return qrss_id;
2689 }
2690
2691 /* Free unique ID for the split Q/RSS subflows. */
2692 static void
2693 flow_qrss_free_id(struct rte_eth_dev *dev,  uint32_t qrss_id)
2694 {
2695         struct mlx5_priv *priv = dev->data->dev_private;
2696
2697         if (qrss_id)
2698                 mlx5_flow_id_release(priv->qrss_id_pool, qrss_id);
2699 }
2700
2701 /**
2702  * Release resource related QUEUE/RSS action split.
2703  *
2704  * @param dev
2705  *   Pointer to Ethernet device.
2706  * @param flow
2707  *   Flow to release id's from.
2708  */
2709 static void
2710 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2711                              struct rte_flow *flow)
2712 {
2713         struct mlx5_priv *priv = dev->data->dev_private;
2714         uint32_t handle_idx;
2715         struct mlx5_flow_handle *dev_handle;
2716
2717         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2718                        handle_idx, dev_handle, next)
2719                 if (dev_handle->split_flow_id)
2720                         flow_qrss_free_id(dev, dev_handle->split_flow_id);
2721 }
2722
2723 static int
2724 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2725                    const struct rte_flow_attr *attr __rte_unused,
2726                    const struct rte_flow_item items[] __rte_unused,
2727                    const struct rte_flow_action actions[] __rte_unused,
2728                    bool external __rte_unused,
2729                    int hairpin __rte_unused,
2730                    struct rte_flow_error *error)
2731 {
2732         return rte_flow_error_set(error, ENOTSUP,
2733                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2734 }
2735
2736 static struct mlx5_flow *
2737 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2738                   const struct rte_flow_attr *attr __rte_unused,
2739                   const struct rte_flow_item items[] __rte_unused,
2740                   const struct rte_flow_action actions[] __rte_unused,
2741                   struct rte_flow_error *error)
2742 {
2743         rte_flow_error_set(error, ENOTSUP,
2744                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2745         return NULL;
2746 }
2747
2748 static int
2749 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2750                     struct mlx5_flow *dev_flow __rte_unused,
2751                     const struct rte_flow_attr *attr __rte_unused,
2752                     const struct rte_flow_item items[] __rte_unused,
2753                     const struct rte_flow_action actions[] __rte_unused,
2754                     struct rte_flow_error *error)
2755 {
2756         return rte_flow_error_set(error, ENOTSUP,
2757                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2758 }
2759
2760 static int
2761 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2762                 struct rte_flow *flow __rte_unused,
2763                 struct rte_flow_error *error)
2764 {
2765         return rte_flow_error_set(error, ENOTSUP,
2766                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2767 }
2768
2769 static void
2770 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2771                  struct rte_flow *flow __rte_unused)
2772 {
2773 }
2774
2775 static void
2776 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2777                   struct rte_flow *flow __rte_unused)
2778 {
2779 }
2780
2781 static int
2782 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2783                 struct rte_flow *flow __rte_unused,
2784                 const struct rte_flow_action *actions __rte_unused,
2785                 void *data __rte_unused,
2786                 struct rte_flow_error *error)
2787 {
2788         return rte_flow_error_set(error, ENOTSUP,
2789                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2790 }
2791
2792 /* Void driver to protect from null pointer reference. */
2793 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2794         .validate = flow_null_validate,
2795         .prepare = flow_null_prepare,
2796         .translate = flow_null_translate,
2797         .apply = flow_null_apply,
2798         .remove = flow_null_remove,
2799         .destroy = flow_null_destroy,
2800         .query = flow_null_query,
2801 };
2802
2803 /**
2804  * Select flow driver type according to flow attributes and device
2805  * configuration.
2806  *
2807  * @param[in] dev
2808  *   Pointer to the dev structure.
2809  * @param[in] attr
2810  *   Pointer to the flow attributes.
2811  *
2812  * @return
2813  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2814  */
2815 static enum mlx5_flow_drv_type
2816 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2817 {
2818         struct mlx5_priv *priv = dev->data->dev_private;
2819         /* The OS can determine first a specific flow type (DV, VERBS) */
2820         enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2821
2822         if (type != MLX5_FLOW_TYPE_MAX)
2823                 return type;
2824         /* If no OS specific type - continue with DV/VERBS selection */
2825         if (attr->transfer && priv->config.dv_esw_en)
2826                 type = MLX5_FLOW_TYPE_DV;
2827         if (!attr->transfer)
2828                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2829                                                  MLX5_FLOW_TYPE_VERBS;
2830         return type;
2831 }
2832
2833 #define flow_get_drv_ops(type) flow_drv_ops[type]
2834
2835 /**
2836  * Flow driver validation API. This abstracts calling driver specific functions.
2837  * The type of flow driver is determined according to flow attributes.
2838  *
2839  * @param[in] dev
2840  *   Pointer to the dev structure.
2841  * @param[in] attr
2842  *   Pointer to the flow attributes.
2843  * @param[in] items
2844  *   Pointer to the list of items.
2845  * @param[in] actions
2846  *   Pointer to the list of actions.
2847  * @param[in] external
2848  *   This flow rule is created by request external to PMD.
2849  * @param[in] hairpin
2850  *   Number of hairpin TX actions, 0 means classic flow.
2851  * @param[out] error
2852  *   Pointer to the error structure.
2853  *
2854  * @return
2855  *   0 on success, a negative errno value otherwise and rte_errno is set.
2856  */
2857 static inline int
2858 flow_drv_validate(struct rte_eth_dev *dev,
2859                   const struct rte_flow_attr *attr,
2860                   const struct rte_flow_item items[],
2861                   const struct rte_flow_action actions[],
2862                   bool external, int hairpin, struct rte_flow_error *error)
2863 {
2864         const struct mlx5_flow_driver_ops *fops;
2865         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2866
2867         fops = flow_get_drv_ops(type);
2868         return fops->validate(dev, attr, items, actions, external,
2869                               hairpin, error);
2870 }
2871
2872 /**
2873  * Flow driver preparation API. This abstracts calling driver specific
2874  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2875  * calculates the size of memory required for device flow, allocates the memory,
2876  * initializes the device flow and returns the pointer.
2877  *
2878  * @note
2879  *   This function initializes device flow structure such as dv or verbs in
2880  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2881  *   rest. For example, adding returning device flow to flow->dev_flow list and
2882  *   setting backward reference to the flow should be done out of this function.
2883  *   layers field is not filled either.
2884  *
2885  * @param[in] dev
2886  *   Pointer to the dev structure.
2887  * @param[in] attr
2888  *   Pointer to the flow attributes.
2889  * @param[in] items
2890  *   Pointer to the list of items.
2891  * @param[in] actions
2892  *   Pointer to the list of actions.
2893  * @param[in] flow_idx
2894  *   This memory pool index to the flow.
2895  * @param[out] error
2896  *   Pointer to the error structure.
2897  *
2898  * @return
2899  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2900  */
2901 static inline struct mlx5_flow *
2902 flow_drv_prepare(struct rte_eth_dev *dev,
2903                  const struct rte_flow *flow,
2904                  const struct rte_flow_attr *attr,
2905                  const struct rte_flow_item items[],
2906                  const struct rte_flow_action actions[],
2907                  uint32_t flow_idx,
2908                  struct rte_flow_error *error)
2909 {
2910         const struct mlx5_flow_driver_ops *fops;
2911         enum mlx5_flow_drv_type type = flow->drv_type;
2912         struct mlx5_flow *mlx5_flow = NULL;
2913
2914         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2915         fops = flow_get_drv_ops(type);
2916         mlx5_flow = fops->prepare(dev, attr, items, actions, error);
2917         if (mlx5_flow)
2918                 mlx5_flow->flow_idx = flow_idx;
2919         return mlx5_flow;
2920 }
2921
2922 /**
2923  * Flow driver translation API. This abstracts calling driver specific
2924  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2925  * translates a generic flow into a driver flow. flow_drv_prepare() must
2926  * precede.
2927  *
2928  * @note
2929  *   dev_flow->layers could be filled as a result of parsing during translation
2930  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2931  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2932  *   flow->actions could be overwritten even though all the expanded dev_flows
2933  *   have the same actions.
2934  *
2935  * @param[in] dev
2936  *   Pointer to the rte dev structure.
2937  * @param[in, out] dev_flow
2938  *   Pointer to the mlx5 flow.
2939  * @param[in] attr
2940  *   Pointer to the flow attributes.
2941  * @param[in] items
2942  *   Pointer to the list of items.
2943  * @param[in] actions
2944  *   Pointer to the list of actions.
2945  * @param[out] error
2946  *   Pointer to the error structure.
2947  *
2948  * @return
2949  *   0 on success, a negative errno value otherwise and rte_errno is set.
2950  */
2951 static inline int
2952 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2953                    const struct rte_flow_attr *attr,
2954                    const struct rte_flow_item items[],
2955                    const struct rte_flow_action actions[],
2956                    struct rte_flow_error *error)
2957 {
2958         const struct mlx5_flow_driver_ops *fops;
2959         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2960
2961         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2962         fops = flow_get_drv_ops(type);
2963         return fops->translate(dev, dev_flow, attr, items, actions, error);
2964 }
2965
2966 /**
2967  * Flow driver apply API. This abstracts calling driver specific functions.
2968  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2969  * translated driver flows on to device. flow_drv_translate() must precede.
2970  *
2971  * @param[in] dev
2972  *   Pointer to Ethernet device structure.
2973  * @param[in, out] flow
2974  *   Pointer to flow structure.
2975  * @param[out] error
2976  *   Pointer to error structure.
2977  *
2978  * @return
2979  *   0 on success, a negative errno value otherwise and rte_errno is set.
2980  */
2981 static inline int
2982 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2983                struct rte_flow_error *error)
2984 {
2985         const struct mlx5_flow_driver_ops *fops;
2986         enum mlx5_flow_drv_type type = flow->drv_type;
2987
2988         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2989         fops = flow_get_drv_ops(type);
2990         return fops->apply(dev, flow, error);
2991 }
2992
2993 /**
2994  * Flow driver remove API. This abstracts calling driver specific functions.
2995  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2996  * on device. All the resources of the flow should be freed by calling
2997  * flow_drv_destroy().
2998  *
2999  * @param[in] dev
3000  *   Pointer to Ethernet device.
3001  * @param[in, out] flow
3002  *   Pointer to flow structure.
3003  */
3004 static inline void
3005 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
3006 {
3007         const struct mlx5_flow_driver_ops *fops;
3008         enum mlx5_flow_drv_type type = flow->drv_type;
3009
3010         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3011         fops = flow_get_drv_ops(type);
3012         fops->remove(dev, flow);
3013 }
3014
3015 /**
3016  * Flow driver destroy API. This abstracts calling driver specific functions.
3017  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3018  * on device and releases resources of the flow.
3019  *
3020  * @param[in] dev
3021  *   Pointer to Ethernet device.
3022  * @param[in, out] flow
3023  *   Pointer to flow structure.
3024  */
3025 static inline void
3026 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3027 {
3028         const struct mlx5_flow_driver_ops *fops;
3029         enum mlx5_flow_drv_type type = flow->drv_type;
3030
3031         flow_mreg_split_qrss_release(dev, flow);
3032         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3033         fops = flow_get_drv_ops(type);
3034         fops->destroy(dev, flow);
3035 }
3036
3037 /**
3038  * Get RSS action from the action list.
3039  *
3040  * @param[in] actions
3041  *   Pointer to the list of actions.
3042  *
3043  * @return
3044  *   Pointer to the RSS action if exist, else return NULL.
3045  */
3046 static const struct rte_flow_action_rss*
3047 flow_get_rss_action(const struct rte_flow_action actions[])
3048 {
3049         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3050                 switch (actions->type) {
3051                 case RTE_FLOW_ACTION_TYPE_RSS:
3052                         return (const struct rte_flow_action_rss *)
3053                                actions->conf;
3054                 default:
3055                         break;
3056                 }
3057         }
3058         return NULL;
3059 }
3060
3061 static unsigned int
3062 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3063 {
3064         const struct rte_flow_item *item;
3065         unsigned int has_vlan = 0;
3066
3067         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3068                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3069                         has_vlan = 1;
3070                         break;
3071                 }
3072         }
3073         if (has_vlan)
3074                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3075                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3076         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3077                                MLX5_EXPANSION_ROOT_OUTER;
3078 }
3079
3080 /**
3081  *  Get layer flags from the prefix flow.
3082  *
3083  *  Some flows may be split to several subflows, the prefix subflow gets the
3084  *  match items and the suffix sub flow gets the actions.
3085  *  Some actions need the user defined match item flags to get the detail for
3086  *  the action.
3087  *  This function helps the suffix flow to get the item layer flags from prefix
3088  *  subflow.
3089  *
3090  * @param[in] dev_flow
3091  *   Pointer the created preifx subflow.
3092  *
3093  * @return
3094  *   The layers get from prefix subflow.
3095  */
3096 static inline uint64_t
3097 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3098 {
3099         uint64_t layers = 0;
3100
3101         /*
3102          * Layers bits could be localization, but usually the compiler will
3103          * help to do the optimization work for source code.
3104          * If no decap actions, use the layers directly.
3105          */
3106         if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3107                 return dev_flow->handle->layers;
3108         /* Convert L3 layers with decap action. */
3109         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3110                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3111         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3112                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3113         /* Convert L4 layers with decap action.  */
3114         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3115                 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3116         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3117                 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3118         return layers;
3119 }
3120
3121 /**
3122  * Get metadata split action information.
3123  *
3124  * @param[in] actions
3125  *   Pointer to the list of actions.
3126  * @param[out] qrss
3127  *   Pointer to the return pointer.
3128  * @param[out] qrss_type
3129  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3130  *   if no QUEUE/RSS is found.
3131  * @param[out] encap_idx
3132  *   Pointer to the index of the encap action if exists, otherwise the last
3133  *   action index.
3134  *
3135  * @return
3136  *   Total number of actions.
3137  */
3138 static int
3139 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3140                                        const struct rte_flow_action **qrss,
3141                                        int *encap_idx)
3142 {
3143         const struct rte_flow_action_raw_encap *raw_encap;
3144         int actions_n = 0;
3145         int raw_decap_idx = -1;
3146
3147         *encap_idx = -1;
3148         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3149                 switch (actions->type) {
3150                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3151                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3152                         *encap_idx = actions_n;
3153                         break;
3154                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3155                         raw_decap_idx = actions_n;
3156                         break;
3157                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3158                         raw_encap = actions->conf;
3159                         if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3160                                 *encap_idx = raw_decap_idx != -1 ?
3161                                                       raw_decap_idx : actions_n;
3162                         break;
3163                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3164                 case RTE_FLOW_ACTION_TYPE_RSS:
3165                         *qrss = actions;
3166                         break;
3167                 default:
3168                         break;
3169                 }
3170                 actions_n++;
3171         }
3172         if (*encap_idx == -1)
3173                 *encap_idx = actions_n;
3174         /* Count RTE_FLOW_ACTION_TYPE_END. */
3175         return actions_n + 1;
3176 }
3177
3178 /**
3179  * Check meter action from the action list.
3180  *
3181  * @param[in] actions
3182  *   Pointer to the list of actions.
3183  * @param[out] mtr
3184  *   Pointer to the meter exist flag.
3185  *
3186  * @return
3187  *   Total number of actions.
3188  */
3189 static int
3190 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3191 {
3192         int actions_n = 0;
3193
3194         MLX5_ASSERT(mtr);
3195         *mtr = 0;
3196         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3197                 switch (actions->type) {
3198                 case RTE_FLOW_ACTION_TYPE_METER:
3199                         *mtr = 1;
3200                         break;
3201                 default:
3202                         break;
3203                 }
3204                 actions_n++;
3205         }
3206         /* Count RTE_FLOW_ACTION_TYPE_END. */
3207         return actions_n + 1;
3208 }
3209
3210 /**
3211  * Check if the flow should be split due to hairpin.
3212  * The reason for the split is that in current HW we can't
3213  * support encap and push-vlan on Rx, so if a flow contains
3214  * these actions we move it to Tx.
3215  *
3216  * @param dev
3217  *   Pointer to Ethernet device.
3218  * @param[in] attr
3219  *   Flow rule attributes.
3220  * @param[in] actions
3221  *   Associated actions (list terminated by the END action).
3222  *
3223  * @return
3224  *   > 0 the number of actions and the flow should be split,
3225  *   0 when no split required.
3226  */
3227 static int
3228 flow_check_hairpin_split(struct rte_eth_dev *dev,
3229                          const struct rte_flow_attr *attr,
3230                          const struct rte_flow_action actions[])
3231 {
3232         int queue_action = 0;
3233         int action_n = 0;
3234         int split = 0;
3235         const struct rte_flow_action_queue *queue;
3236         const struct rte_flow_action_rss *rss;
3237         const struct rte_flow_action_raw_encap *raw_encap;
3238
3239         if (!attr->ingress)
3240                 return 0;
3241         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3242                 switch (actions->type) {
3243                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3244                         queue = actions->conf;
3245                         if (queue == NULL)
3246                                 return 0;
3247                         if (mlx5_rxq_get_type(dev, queue->index) !=
3248                             MLX5_RXQ_TYPE_HAIRPIN)
3249                                 return 0;
3250                         queue_action = 1;
3251                         action_n++;
3252                         break;
3253                 case RTE_FLOW_ACTION_TYPE_RSS:
3254                         rss = actions->conf;
3255                         if (rss == NULL || rss->queue_num == 0)
3256                                 return 0;
3257                         if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
3258                             MLX5_RXQ_TYPE_HAIRPIN)
3259                                 return 0;
3260                         queue_action = 1;
3261                         action_n++;
3262                         break;
3263                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3264                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3265                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3266                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3267                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3268                         split++;
3269                         action_n++;
3270                         break;
3271                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3272                         raw_encap = actions->conf;
3273                         if (raw_encap->size >
3274                             (sizeof(struct rte_flow_item_eth) +
3275                              sizeof(struct rte_flow_item_ipv4)))
3276                                 split++;
3277                         action_n++;
3278                         break;
3279                 default:
3280                         action_n++;
3281                         break;
3282                 }
3283         }
3284         if (split && queue_action)
3285                 return action_n;
3286         return 0;
3287 }
3288
3289 /* Declare flow create/destroy prototype in advance. */
3290 static uint32_t
3291 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3292                  const struct rte_flow_attr *attr,
3293                  const struct rte_flow_item items[],
3294                  const struct rte_flow_action actions[],
3295                  bool external, struct rte_flow_error *error);
3296
3297 static void
3298 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3299                   uint32_t flow_idx);
3300
3301 /**
3302  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3303  *
3304  * As mark_id is unique, if there's already a registered flow for the mark_id,
3305  * return by increasing the reference counter of the resource. Otherwise, create
3306  * the resource (mcp_res) and flow.
3307  *
3308  * Flow looks like,
3309  *   - If ingress port is ANY and reg_c[1] is mark_id,
3310  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3311  *
3312  * For default flow (zero mark_id), flow is like,
3313  *   - If ingress port is ANY,
3314  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3315  *
3316  * @param dev
3317  *   Pointer to Ethernet device.
3318  * @param mark_id
3319  *   ID of MARK action, zero means default flow for META.
3320  * @param[out] error
3321  *   Perform verbose error reporting if not NULL.
3322  *
3323  * @return
3324  *   Associated resource on success, NULL otherwise and rte_errno is set.
3325  */
3326 static struct mlx5_flow_mreg_copy_resource *
3327 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3328                           struct rte_flow_error *error)
3329 {
3330         struct mlx5_priv *priv = dev->data->dev_private;
3331         struct rte_flow_attr attr = {
3332                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3333                 .ingress = 1,
3334         };
3335         struct mlx5_rte_flow_item_tag tag_spec = {
3336                 .data = mark_id,
3337         };
3338         struct rte_flow_item items[] = {
3339                 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3340         };
3341         struct rte_flow_action_mark ftag = {
3342                 .id = mark_id,
3343         };
3344         struct mlx5_flow_action_copy_mreg cp_mreg = {
3345                 .dst = REG_B,
3346                 .src = REG_NON,
3347         };
3348         struct rte_flow_action_jump jump = {
3349                 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3350         };
3351         struct rte_flow_action actions[] = {
3352                 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3353         };
3354         struct mlx5_flow_mreg_copy_resource *mcp_res;
3355         uint32_t idx = 0;
3356         int ret;
3357
3358         /* Fill the register fileds in the flow. */
3359         ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3360         if (ret < 0)
3361                 return NULL;
3362         tag_spec.id = ret;
3363         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3364         if (ret < 0)
3365                 return NULL;
3366         cp_mreg.src = ret;
3367         /* Check if already registered. */
3368         MLX5_ASSERT(priv->mreg_cp_tbl);
3369         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id);
3370         if (mcp_res) {
3371                 /* For non-default rule. */
3372                 if (mark_id != MLX5_DEFAULT_COPY_ID)
3373                         mcp_res->refcnt++;
3374                 MLX5_ASSERT(mark_id != MLX5_DEFAULT_COPY_ID ||
3375                             mcp_res->refcnt == 1);
3376                 return mcp_res;
3377         }
3378         /* Provide the full width of FLAG specific value. */
3379         if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3380                 tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3381         /* Build a new flow. */
3382         if (mark_id != MLX5_DEFAULT_COPY_ID) {
3383                 items[0] = (struct rte_flow_item){
3384                         .type = (enum rte_flow_item_type)
3385                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3386                         .spec = &tag_spec,
3387                 };
3388                 items[1] = (struct rte_flow_item){
3389                         .type = RTE_FLOW_ITEM_TYPE_END,
3390                 };
3391                 actions[0] = (struct rte_flow_action){
3392                         .type = (enum rte_flow_action_type)
3393                                 MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3394                         .conf = &ftag,
3395                 };
3396                 actions[1] = (struct rte_flow_action){
3397                         .type = (enum rte_flow_action_type)
3398                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3399                         .conf = &cp_mreg,
3400                 };
3401                 actions[2] = (struct rte_flow_action){
3402                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3403                         .conf = &jump,
3404                 };
3405                 actions[3] = (struct rte_flow_action){
3406                         .type = RTE_FLOW_ACTION_TYPE_END,
3407                 };
3408         } else {
3409                 /* Default rule, wildcard match. */
3410                 attr.priority = MLX5_FLOW_PRIO_RSVD;
3411                 items[0] = (struct rte_flow_item){
3412                         .type = RTE_FLOW_ITEM_TYPE_END,
3413                 };
3414                 actions[0] = (struct rte_flow_action){
3415                         .type = (enum rte_flow_action_type)
3416                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3417                         .conf = &cp_mreg,
3418                 };
3419                 actions[1] = (struct rte_flow_action){
3420                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3421                         .conf = &jump,
3422                 };
3423                 actions[2] = (struct rte_flow_action){
3424                         .type = RTE_FLOW_ACTION_TYPE_END,
3425                 };
3426         }
3427         /* Build a new entry. */
3428         mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3429         if (!mcp_res) {
3430                 rte_errno = ENOMEM;
3431                 return NULL;
3432         }
3433         mcp_res->idx = idx;
3434         /*
3435          * The copy Flows are not included in any list. There
3436          * ones are referenced from other Flows and can not
3437          * be applied, removed, deleted in ardbitrary order
3438          * by list traversing.
3439          */
3440         mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3441                                          actions, false, error);
3442         if (!mcp_res->rix_flow)
3443                 goto error;
3444         mcp_res->refcnt++;
3445         mcp_res->hlist_ent.key = mark_id;
3446         ret = mlx5_hlist_insert(priv->mreg_cp_tbl,
3447                                 &mcp_res->hlist_ent);
3448         MLX5_ASSERT(!ret);
3449         if (ret)
3450                 goto error;
3451         return mcp_res;
3452 error:
3453         if (mcp_res->rix_flow)
3454                 flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3455         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3456         return NULL;
3457 }
3458
3459 /**
3460  * Release flow in RX_CP_TBL.
3461  *
3462  * @param dev
3463  *   Pointer to Ethernet device.
3464  * @flow
3465  *   Parent flow for wich copying is provided.
3466  */
3467 static void
3468 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3469                           struct rte_flow *flow)
3470 {
3471         struct mlx5_flow_mreg_copy_resource *mcp_res;
3472         struct mlx5_priv *priv = dev->data->dev_private;
3473
3474         if (!flow->rix_mreg_copy)
3475                 return;
3476         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3477                                  flow->rix_mreg_copy);
3478         if (!mcp_res || !priv->mreg_cp_tbl)
3479                 return;
3480         if (flow->copy_applied) {
3481                 MLX5_ASSERT(mcp_res->appcnt);
3482                 flow->copy_applied = 0;
3483                 --mcp_res->appcnt;
3484                 if (!mcp_res->appcnt) {
3485                         struct rte_flow *mcp_flow = mlx5_ipool_get
3486                                         (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3487                                         mcp_res->rix_flow);
3488
3489                         if (mcp_flow)
3490                                 flow_drv_remove(dev, mcp_flow);
3491                 }
3492         }
3493         /*
3494          * We do not check availability of metadata registers here,
3495          * because copy resources are not allocated in this case.
3496          */
3497         if (--mcp_res->refcnt)
3498                 return;
3499         MLX5_ASSERT(mcp_res->rix_flow);
3500         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3501         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3502         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3503         flow->rix_mreg_copy = 0;
3504 }
3505
3506 /**
3507  * Start flow in RX_CP_TBL.
3508  *
3509  * @param dev
3510  *   Pointer to Ethernet device.
3511  * @flow
3512  *   Parent flow for wich copying is provided.
3513  *
3514  * @return
3515  *   0 on success, a negative errno value otherwise and rte_errno is set.
3516  */
3517 static int
3518 flow_mreg_start_copy_action(struct rte_eth_dev *dev,
3519                             struct rte_flow *flow)
3520 {
3521         struct mlx5_flow_mreg_copy_resource *mcp_res;
3522         struct mlx5_priv *priv = dev->data->dev_private;
3523         int ret;
3524
3525         if (!flow->rix_mreg_copy || flow->copy_applied)
3526                 return 0;
3527         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3528                                  flow->rix_mreg_copy);
3529         if (!mcp_res)
3530                 return 0;
3531         if (!mcp_res->appcnt) {
3532                 struct rte_flow *mcp_flow = mlx5_ipool_get
3533                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3534                                 mcp_res->rix_flow);
3535
3536                 if (mcp_flow) {
3537                         ret = flow_drv_apply(dev, mcp_flow, NULL);
3538                         if (ret)
3539                                 return ret;
3540                 }
3541         }
3542         ++mcp_res->appcnt;
3543         flow->copy_applied = 1;
3544         return 0;
3545 }
3546
3547 /**
3548  * Stop flow in RX_CP_TBL.
3549  *
3550  * @param dev
3551  *   Pointer to Ethernet device.
3552  * @flow
3553  *   Parent flow for wich copying is provided.
3554  */
3555 static void
3556 flow_mreg_stop_copy_action(struct rte_eth_dev *dev,
3557                            struct rte_flow *flow)
3558 {
3559         struct mlx5_flow_mreg_copy_resource *mcp_res;
3560         struct mlx5_priv *priv = dev->data->dev_private;
3561
3562         if (!flow->rix_mreg_copy || !flow->copy_applied)
3563                 return;
3564         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3565                                  flow->rix_mreg_copy);
3566         if (!mcp_res)
3567                 return;
3568         MLX5_ASSERT(mcp_res->appcnt);
3569         --mcp_res->appcnt;
3570         flow->copy_applied = 0;
3571         if (!mcp_res->appcnt) {
3572                 struct rte_flow *mcp_flow = mlx5_ipool_get
3573                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3574                                 mcp_res->rix_flow);
3575
3576                 if (mcp_flow)
3577                         flow_drv_remove(dev, mcp_flow);
3578         }
3579 }
3580
3581 /**
3582  * Remove the default copy action from RX_CP_TBL.
3583  *
3584  * @param dev
3585  *   Pointer to Ethernet device.
3586  */
3587 static void
3588 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3589 {
3590         struct mlx5_flow_mreg_copy_resource *mcp_res;
3591         struct mlx5_priv *priv = dev->data->dev_private;
3592
3593         /* Check if default flow is registered. */
3594         if (!priv->mreg_cp_tbl)
3595                 return;
3596         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl,
3597                                             MLX5_DEFAULT_COPY_ID);
3598         if (!mcp_res)
3599                 return;
3600         MLX5_ASSERT(mcp_res->rix_flow);
3601         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3602         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3603         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3604 }
3605
3606 /**
3607  * Add the default copy action in in RX_CP_TBL.
3608  *
3609  * @param dev
3610  *   Pointer to Ethernet device.
3611  * @param[out] error
3612  *   Perform verbose error reporting if not NULL.
3613  *
3614  * @return
3615  *   0 for success, negative value otherwise and rte_errno is set.
3616  */
3617 static int
3618 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3619                                   struct rte_flow_error *error)
3620 {
3621         struct mlx5_priv *priv = dev->data->dev_private;
3622         struct mlx5_flow_mreg_copy_resource *mcp_res;
3623
3624         /* Check whether extensive metadata feature is engaged. */
3625         if (!priv->config.dv_flow_en ||
3626             priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3627             !mlx5_flow_ext_mreg_supported(dev) ||
3628             !priv->sh->dv_regc0_mask)
3629                 return 0;
3630         mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3631         if (!mcp_res)
3632                 return -rte_errno;
3633         return 0;
3634 }
3635
3636 /**
3637  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3638  *
3639  * All the flow having Q/RSS action should be split by
3640  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3641  * performs the following,
3642  *   - CQE->flow_tag := reg_c[1] (MARK)
3643  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3644  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3645  * but there should be a flow per each MARK ID set by MARK action.
3646  *
3647  * For the aforementioned reason, if there's a MARK action in flow's action
3648  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3649  * the MARK ID to CQE's flow_tag like,
3650  *   - If reg_c[1] is mark_id,
3651  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3652  *
3653  * For SET_META action which stores value in reg_c[0], as the destination is
3654  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3655  * MARK ID means the default flow. The default flow looks like,
3656  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3657  *
3658  * @param dev
3659  *   Pointer to Ethernet device.
3660  * @param flow
3661  *   Pointer to flow structure.
3662  * @param[in] actions
3663  *   Pointer to the list of actions.
3664  * @param[out] error
3665  *   Perform verbose error reporting if not NULL.
3666  *
3667  * @return
3668  *   0 on success, negative value otherwise and rte_errno is set.
3669  */
3670 static int
3671 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3672                             struct rte_flow *flow,
3673                             const struct rte_flow_action *actions,
3674                             struct rte_flow_error *error)
3675 {
3676         struct mlx5_priv *priv = dev->data->dev_private;
3677         struct mlx5_dev_config *config = &priv->config;
3678         struct mlx5_flow_mreg_copy_resource *mcp_res;
3679         const struct rte_flow_action_mark *mark;
3680
3681         /* Check whether extensive metadata feature is engaged. */
3682         if (!config->dv_flow_en ||
3683             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3684             !mlx5_flow_ext_mreg_supported(dev) ||
3685             !priv->sh->dv_regc0_mask)
3686                 return 0;
3687         /* Find MARK action. */
3688         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3689                 switch (actions->type) {
3690                 case RTE_FLOW_ACTION_TYPE_FLAG:
3691                         mcp_res = flow_mreg_add_copy_action
3692                                 (dev, MLX5_FLOW_MARK_DEFAULT, error);
3693                         if (!mcp_res)
3694                                 return -rte_errno;
3695                         flow->rix_mreg_copy = mcp_res->idx;
3696                         if (dev->data->dev_started) {
3697                                 mcp_res->appcnt++;
3698                                 flow->copy_applied = 1;
3699                         }
3700                         return 0;
3701                 case RTE_FLOW_ACTION_TYPE_MARK:
3702                         mark = (const struct rte_flow_action_mark *)
3703                                 actions->conf;
3704                         mcp_res =
3705                                 flow_mreg_add_copy_action(dev, mark->id, error);
3706                         if (!mcp_res)
3707                                 return -rte_errno;
3708                         flow->rix_mreg_copy = mcp_res->idx;
3709                         if (dev->data->dev_started) {
3710                                 mcp_res->appcnt++;
3711                                 flow->copy_applied = 1;
3712                         }
3713                         return 0;
3714                 default:
3715                         break;
3716                 }
3717         }
3718         return 0;
3719 }
3720
3721 #define MLX5_MAX_SPLIT_ACTIONS 24
3722 #define MLX5_MAX_SPLIT_ITEMS 24
3723
3724 /**
3725  * Split the hairpin flow.
3726  * Since HW can't support encap and push-vlan on Rx, we move these
3727  * actions to Tx.
3728  * If the count action is after the encap then we also
3729  * move the count action. in this case the count will also measure
3730  * the outer bytes.
3731  *
3732  * @param dev
3733  *   Pointer to Ethernet device.
3734  * @param[in] actions
3735  *   Associated actions (list terminated by the END action).
3736  * @param[out] actions_rx
3737  *   Rx flow actions.
3738  * @param[out] actions_tx
3739  *   Tx flow actions..
3740  * @param[out] pattern_tx
3741  *   The pattern items for the Tx flow.
3742  * @param[out] flow_id
3743  *   The flow ID connected to this flow.
3744  *
3745  * @return
3746  *   0 on success.
3747  */
3748 static int
3749 flow_hairpin_split(struct rte_eth_dev *dev,
3750                    const struct rte_flow_action actions[],
3751                    struct rte_flow_action actions_rx[],
3752                    struct rte_flow_action actions_tx[],
3753                    struct rte_flow_item pattern_tx[],
3754                    uint32_t *flow_id)
3755 {
3756         struct mlx5_priv *priv = dev->data->dev_private;
3757         const struct rte_flow_action_raw_encap *raw_encap;
3758         const struct rte_flow_action_raw_decap *raw_decap;
3759         struct mlx5_rte_flow_action_set_tag *set_tag;
3760         struct rte_flow_action *tag_action;
3761         struct mlx5_rte_flow_item_tag *tag_item;
3762         struct rte_flow_item *item;
3763         char *addr;
3764         int encap = 0;
3765
3766         mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
3767         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3768                 switch (actions->type) {
3769                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3770                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3771                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3772                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3773                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3774                         rte_memcpy(actions_tx, actions,
3775                                sizeof(struct rte_flow_action));
3776                         actions_tx++;
3777                         break;
3778                 case RTE_FLOW_ACTION_TYPE_COUNT:
3779                         if (encap) {
3780                                 rte_memcpy(actions_tx, actions,
3781                                            sizeof(struct rte_flow_action));
3782                                 actions_tx++;
3783                         } else {
3784                                 rte_memcpy(actions_rx, actions,
3785                                            sizeof(struct rte_flow_action));
3786                                 actions_rx++;
3787                         }
3788                         break;
3789                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3790                         raw_encap = actions->conf;
3791                         if (raw_encap->size >
3792                             (sizeof(struct rte_flow_item_eth) +
3793                              sizeof(struct rte_flow_item_ipv4))) {
3794                                 memcpy(actions_tx, actions,
3795                                        sizeof(struct rte_flow_action));
3796                                 actions_tx++;
3797                                 encap = 1;
3798                         } else {
3799                                 rte_memcpy(actions_rx, actions,
3800                                            sizeof(struct rte_flow_action));
3801                                 actions_rx++;
3802                         }
3803                         break;
3804                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3805                         raw_decap = actions->conf;
3806                         if (raw_decap->size <
3807                             (sizeof(struct rte_flow_item_eth) +
3808                              sizeof(struct rte_flow_item_ipv4))) {
3809                                 memcpy(actions_tx, actions,
3810                                        sizeof(struct rte_flow_action));
3811                                 actions_tx++;
3812                         } else {
3813                                 rte_memcpy(actions_rx, actions,
3814                                            sizeof(struct rte_flow_action));
3815                                 actions_rx++;
3816                         }
3817                         break;
3818                 default:
3819                         rte_memcpy(actions_rx, actions,
3820                                    sizeof(struct rte_flow_action));
3821                         actions_rx++;
3822                         break;
3823                 }
3824         }
3825         /* Add set meta action and end action for the Rx flow. */
3826         tag_action = actions_rx;
3827         tag_action->type = (enum rte_flow_action_type)
3828                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
3829         actions_rx++;
3830         rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
3831         actions_rx++;
3832         set_tag = (void *)actions_rx;
3833         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
3834         MLX5_ASSERT(set_tag->id > REG_NON);
3835         set_tag->data = *flow_id;
3836         tag_action->conf = set_tag;
3837         /* Create Tx item list. */
3838         rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
3839         addr = (void *)&pattern_tx[2];
3840         item = pattern_tx;
3841         item->type = (enum rte_flow_item_type)
3842                      MLX5_RTE_FLOW_ITEM_TYPE_TAG;
3843         tag_item = (void *)addr;
3844         tag_item->data = *flow_id;
3845         tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
3846         MLX5_ASSERT(set_tag->id > REG_NON);
3847         item->spec = tag_item;
3848         addr += sizeof(struct mlx5_rte_flow_item_tag);
3849         tag_item = (void *)addr;
3850         tag_item->data = UINT32_MAX;
3851         tag_item->id = UINT16_MAX;
3852         item->mask = tag_item;
3853         item->last = NULL;
3854         item++;
3855         item->type = RTE_FLOW_ITEM_TYPE_END;
3856         return 0;
3857 }
3858
3859 /**
3860  * The last stage of splitting chain, just creates the subflow
3861  * without any modification.
3862  *
3863  * @param[in] dev
3864  *   Pointer to Ethernet device.
3865  * @param[in] flow
3866  *   Parent flow structure pointer.
3867  * @param[in, out] sub_flow
3868  *   Pointer to return the created subflow, may be NULL.
3869  * @param[in] prefix_layers
3870  *   Prefix subflow layers, may be 0.
3871  * @param[in] prefix_mark
3872  *   Prefix subflow mark flag, may be 0.
3873  * @param[in] attr
3874  *   Flow rule attributes.
3875  * @param[in] items
3876  *   Pattern specification (list terminated by the END pattern item).
3877  * @param[in] actions
3878  *   Associated actions (list terminated by the END action).
3879  * @param[in] external
3880  *   This flow rule is created by request external to PMD.
3881  * @param[in] flow_idx
3882  *   This memory pool index to the flow.
3883  * @param[out] error
3884  *   Perform verbose error reporting if not NULL.
3885  * @return
3886  *   0 on success, negative value otherwise
3887  */
3888 static int
3889 flow_create_split_inner(struct rte_eth_dev *dev,
3890                         struct rte_flow *flow,
3891                         struct mlx5_flow **sub_flow,
3892                         uint64_t prefix_layers,
3893                         uint32_t prefix_mark,
3894                         const struct rte_flow_attr *attr,
3895                         const struct rte_flow_item items[],
3896                         const struct rte_flow_action actions[],
3897                         bool external, uint32_t flow_idx,
3898                         struct rte_flow_error *error)
3899 {
3900         struct mlx5_flow *dev_flow;
3901
3902         dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
3903                 flow_idx, error);
3904         if (!dev_flow)
3905                 return -rte_errno;
3906         dev_flow->flow = flow;
3907         dev_flow->external = external;
3908         /* Subflow object was created, we must include one in the list. */
3909         SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
3910                       dev_flow->handle, next);
3911         /*
3912          * If dev_flow is as one of the suffix flow, some actions in suffix
3913          * flow may need some user defined item layer flags, and pass the
3914          * Metadate rxq mark flag to suffix flow as well.
3915          */
3916         if (prefix_layers)
3917                 dev_flow->handle->layers = prefix_layers;
3918         if (prefix_mark)
3919                 dev_flow->handle->mark = 1;
3920         if (sub_flow)
3921                 *sub_flow = dev_flow;
3922         return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
3923 }
3924
3925 /**
3926  * Split the meter flow.
3927  *
3928  * As meter flow will split to three sub flow, other than meter
3929  * action, the other actions make sense to only meter accepts
3930  * the packet. If it need to be dropped, no other additional
3931  * actions should be take.
3932  *
3933  * One kind of special action which decapsulates the L3 tunnel
3934  * header will be in the prefix sub flow, as not to take the
3935  * L3 tunnel header into account.
3936  *
3937  * @param dev
3938  *   Pointer to Ethernet device.
3939  * @param[in] items
3940  *   Pattern specification (list terminated by the END pattern item).
3941  * @param[out] sfx_items
3942  *   Suffix flow match items (list terminated by the END pattern item).
3943  * @param[in] actions
3944  *   Associated actions (list terminated by the END action).
3945  * @param[out] actions_sfx
3946  *   Suffix flow actions.
3947  * @param[out] actions_pre
3948  *   Prefix flow actions.
3949  * @param[out] pattern_sfx
3950  *   The pattern items for the suffix flow.
3951  * @param[out] tag_sfx
3952  *   Pointer to suffix flow tag.
3953  *
3954  * @return
3955  *   0 on success.
3956  */
3957 static int
3958 flow_meter_split_prep(struct rte_eth_dev *dev,
3959                  const struct rte_flow_item items[],
3960                  struct rte_flow_item sfx_items[],
3961                  const struct rte_flow_action actions[],
3962                  struct rte_flow_action actions_sfx[],
3963                  struct rte_flow_action actions_pre[])
3964 {
3965         struct rte_flow_action *tag_action = NULL;
3966         struct rte_flow_item *tag_item;
3967         struct mlx5_rte_flow_action_set_tag *set_tag;
3968         struct rte_flow_error error;
3969         const struct rte_flow_action_raw_encap *raw_encap;
3970         const struct rte_flow_action_raw_decap *raw_decap;
3971         struct mlx5_rte_flow_item_tag *tag_spec;
3972         struct mlx5_rte_flow_item_tag *tag_mask;
3973         uint32_t tag_id;
3974         bool copy_vlan = false;
3975
3976         /* Prepare the actions for prefix and suffix flow. */
3977         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3978                 struct rte_flow_action **action_cur = NULL;
3979
3980                 switch (actions->type) {
3981                 case RTE_FLOW_ACTION_TYPE_METER:
3982                         /* Add the extra tag action first. */
3983                         tag_action = actions_pre;
3984                         tag_action->type = (enum rte_flow_action_type)
3985                                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
3986                         actions_pre++;
3987                         action_cur = &actions_pre;
3988                         break;
3989                 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3990                 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
3991                         action_cur = &actions_pre;
3992                         break;
3993                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3994                         raw_encap = actions->conf;
3995                         if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
3996                                 action_cur = &actions_pre;
3997                         break;
3998                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3999                         raw_decap = actions->conf;
4000                         if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4001                                 action_cur = &actions_pre;
4002                         break;
4003                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4004                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4005                         copy_vlan = true;
4006                         break;
4007                 default:
4008                         break;
4009                 }
4010                 if (!action_cur)
4011                         action_cur = &actions_sfx;
4012                 memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4013                 (*action_cur)++;
4014         }
4015         /* Add end action to the actions. */
4016         actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4017         actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4018         actions_pre++;
4019         /* Set the tag. */
4020         set_tag = (void *)actions_pre;
4021         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4022         /*
4023          * Get the id from the qrss_pool to make qrss share the id with meter.
4024          */
4025         tag_id = flow_qrss_get_id(dev);
4026         set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4027         assert(tag_action);
4028         tag_action->conf = set_tag;
4029         /* Prepare the suffix subflow items. */
4030         tag_item = sfx_items++;
4031         for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4032                 int item_type = items->type;
4033
4034                 switch (item_type) {
4035                 case RTE_FLOW_ITEM_TYPE_PORT_ID:
4036                         memcpy(sfx_items, items, sizeof(*sfx_items));
4037                         sfx_items++;
4038                         break;
4039                 case RTE_FLOW_ITEM_TYPE_VLAN:
4040                         if (copy_vlan) {
4041                                 memcpy(sfx_items, items, sizeof(*sfx_items));
4042                                 /*
4043                                  * Convert to internal match item, it is used
4044                                  * for vlan push and set vid.
4045                                  */
4046                                 sfx_items->type = (enum rte_flow_item_type)
4047                                                   MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4048                                 sfx_items++;
4049                         }
4050                         break;
4051                 default:
4052                         break;
4053                 }
4054         }
4055         sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4056         sfx_items++;
4057         tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4058         tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4059         tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4060         tag_mask = tag_spec + 1;
4061         tag_mask->data = 0xffffff00;
4062         tag_item->type = (enum rte_flow_item_type)
4063                          MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4064         tag_item->spec = tag_spec;
4065         tag_item->last = NULL;
4066         tag_item->mask = tag_mask;
4067         return tag_id;
4068 }
4069
4070 /**
4071  * Split action list having QUEUE/RSS for metadata register copy.
4072  *
4073  * Once Q/RSS action is detected in user's action list, the flow action
4074  * should be split in order to copy metadata registers, which will happen in
4075  * RX_CP_TBL like,
4076  *   - CQE->flow_tag := reg_c[1] (MARK)
4077  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4078  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4079  * This is because the last action of each flow must be a terminal action
4080  * (QUEUE, RSS or DROP).
4081  *
4082  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4083  * stored and kept in the mlx5_flow structure per each sub_flow.
4084  *
4085  * The Q/RSS action is replaced with,
4086  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4087  * And the following JUMP action is added at the end,
4088  *   - JUMP, to RX_CP_TBL.
4089  *
4090  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4091  * flow_create_split_metadata() routine. The flow will look like,
4092  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4093  *
4094  * @param dev
4095  *   Pointer to Ethernet device.
4096  * @param[out] split_actions
4097  *   Pointer to store split actions to jump to CP_TBL.
4098  * @param[in] actions
4099  *   Pointer to the list of original flow actions.
4100  * @param[in] qrss
4101  *   Pointer to the Q/RSS action.
4102  * @param[in] actions_n
4103  *   Number of original actions.
4104  * @param[out] error
4105  *   Perform verbose error reporting if not NULL.
4106  *
4107  * @return
4108  *   non-zero unique flow_id on success, otherwise 0 and
4109  *   error/rte_error are set.
4110  */
4111 static uint32_t
4112 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4113                           struct rte_flow_action *split_actions,
4114                           const struct rte_flow_action *actions,
4115                           const struct rte_flow_action *qrss,
4116                           int actions_n, struct rte_flow_error *error)
4117 {
4118         struct mlx5_rte_flow_action_set_tag *set_tag;
4119         struct rte_flow_action_jump *jump;
4120         const int qrss_idx = qrss - actions;
4121         uint32_t flow_id = 0;
4122         int ret = 0;
4123
4124         /*
4125          * Given actions will be split
4126          * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4127          * - Add jump to mreg CP_TBL.
4128          * As a result, there will be one more action.
4129          */
4130         ++actions_n;
4131         memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4132         set_tag = (void *)(split_actions + actions_n);
4133         /*
4134          * If tag action is not set to void(it means we are not the meter
4135          * suffix flow), add the tag action. Since meter suffix flow already
4136          * has the tag added.
4137          */
4138         if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4139                 /*
4140                  * Allocate the new subflow ID. This one is unique within
4141                  * device and not shared with representors. Otherwise,
4142                  * we would have to resolve multi-thread access synch
4143                  * issue. Each flow on the shared device is appended
4144                  * with source vport identifier, so the resulting
4145                  * flows will be unique in the shared (by master and
4146                  * representors) domain even if they have coinciding
4147                  * IDs.
4148                  */
4149                 flow_id = flow_qrss_get_id(dev);
4150                 if (!flow_id)
4151                         return rte_flow_error_set(error, ENOMEM,
4152                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4153                                                   NULL, "can't allocate id "
4154                                                   "for split Q/RSS subflow");
4155                 /* Internal SET_TAG action to set flow ID. */
4156                 *set_tag = (struct mlx5_rte_flow_action_set_tag){
4157                         .data = flow_id,
4158                 };
4159                 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4160                 if (ret < 0)
4161                         return ret;
4162                 set_tag->id = ret;
4163                 /* Construct new actions array. */
4164                 /* Replace QUEUE/RSS action. */
4165                 split_actions[qrss_idx] = (struct rte_flow_action){
4166                         .type = (enum rte_flow_action_type)
4167                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4168                         .conf = set_tag,
4169                 };
4170         }
4171         /* JUMP action to jump to mreg copy table (CP_TBL). */
4172         jump = (void *)(set_tag + 1);
4173         *jump = (struct rte_flow_action_jump){
4174                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4175         };
4176         split_actions[actions_n - 2] = (struct rte_flow_action){
4177                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
4178                 .conf = jump,
4179         };
4180         split_actions[actions_n - 1] = (struct rte_flow_action){
4181                 .type = RTE_FLOW_ACTION_TYPE_END,
4182         };
4183         return flow_id;
4184 }
4185
4186 /**
4187  * Extend the given action list for Tx metadata copy.
4188  *
4189  * Copy the given action list to the ext_actions and add flow metadata register
4190  * copy action in order to copy reg_a set by WQE to reg_c[0].
4191  *
4192  * @param[out] ext_actions
4193  *   Pointer to the extended action list.
4194  * @param[in] actions
4195  *   Pointer to the list of actions.
4196  * @param[in] actions_n
4197  *   Number of actions in the list.
4198  * @param[out] error
4199  *   Perform verbose error reporting if not NULL.
4200  * @param[in] encap_idx
4201  *   The encap action inndex.
4202  *
4203  * @return
4204  *   0 on success, negative value otherwise
4205  */
4206 static int
4207 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4208                        struct rte_flow_action *ext_actions,
4209                        const struct rte_flow_action *actions,
4210                        int actions_n, struct rte_flow_error *error,
4211                        int encap_idx)
4212 {
4213         struct mlx5_flow_action_copy_mreg *cp_mreg =
4214                 (struct mlx5_flow_action_copy_mreg *)
4215                         (ext_actions + actions_n + 1);
4216         int ret;
4217
4218         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4219         if (ret < 0)
4220                 return ret;
4221         cp_mreg->dst = ret;
4222         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4223         if (ret < 0)
4224                 return ret;
4225         cp_mreg->src = ret;
4226         if (encap_idx != 0)
4227                 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4228         if (encap_idx == actions_n - 1) {
4229                 ext_actions[actions_n - 1] = (struct rte_flow_action){
4230                         .type = (enum rte_flow_action_type)
4231                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4232                         .conf = cp_mreg,
4233                 };
4234                 ext_actions[actions_n] = (struct rte_flow_action){
4235                         .type = RTE_FLOW_ACTION_TYPE_END,
4236                 };
4237         } else {
4238                 ext_actions[encap_idx] = (struct rte_flow_action){
4239                         .type = (enum rte_flow_action_type)
4240                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4241                         .conf = cp_mreg,
4242                 };
4243                 memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4244                                 sizeof(*ext_actions) * (actions_n - encap_idx));
4245         }
4246         return 0;
4247 }
4248
4249 /**
4250  * Check the match action from the action list.
4251  *
4252  * @param[in] actions
4253  *   Pointer to the list of actions.
4254  * @param[in] attr
4255  *   Flow rule attributes.
4256  * @param[in] action
4257  *   The action to be check if exist.
4258  * @param[out] match_action_pos
4259  *   Pointer to the position of the matched action if exists, otherwise is -1.
4260  * @param[out] qrss_action_pos
4261  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
4262  *
4263  * @return
4264  *   > 0 the total number of actions.
4265  *   0 if not found match action in action list.
4266  */
4267 static int
4268 flow_check_match_action(const struct rte_flow_action actions[],
4269                         const struct rte_flow_attr *attr,
4270                         enum rte_flow_action_type action,
4271                         int *match_action_pos, int *qrss_action_pos)
4272 {
4273         const struct rte_flow_action_sample *sample;
4274         int actions_n = 0;
4275         int jump_flag = 0;
4276         uint32_t ratio = 0;
4277         int sub_type = 0;
4278         int flag = 0;
4279
4280         *match_action_pos = -1;
4281         *qrss_action_pos = -1;
4282         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4283                 if (actions->type == action) {
4284                         flag = 1;
4285                         *match_action_pos = actions_n;
4286                 }
4287                 if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE ||
4288                     actions->type == RTE_FLOW_ACTION_TYPE_RSS)
4289                         *qrss_action_pos = actions_n;
4290                 if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP)
4291                         jump_flag = 1;
4292                 if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) {
4293                         sample = actions->conf;
4294                         ratio = sample->ratio;
4295                         sub_type = ((const struct rte_flow_action *)
4296                                         (sample->actions))->type;
4297                 }
4298                 actions_n++;
4299         }
4300         if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) {
4301                 if (ratio == 1) {
4302                         /* JUMP Action not support for Mirroring;
4303                          * Mirroring support multi-destination;
4304                          */
4305                         if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END)
4306                                 flag = 0;
4307                 }
4308         }
4309         /* Count RTE_FLOW_ACTION_TYPE_END. */
4310         return flag ? actions_n + 1 : 0;
4311 }
4312
4313 #define SAMPLE_SUFFIX_ITEM 2
4314
4315 /**
4316  * Split the sample flow.
4317  *
4318  * As sample flow will split to two sub flow, sample flow with
4319  * sample action, the other actions will move to new suffix flow.
4320  *
4321  * Also add unique tag id with tag action in the sample flow,
4322  * the same tag id will be as match in the suffix flow.
4323  *
4324  * @param dev
4325  *   Pointer to Ethernet device.
4326  * @param[in] fdb_tx
4327  *   FDB egress flow flag.
4328  * @param[out] sfx_items
4329  *   Suffix flow match items (list terminated by the END pattern item).
4330  * @param[in] actions
4331  *   Associated actions (list terminated by the END action).
4332  * @param[out] actions_sfx
4333  *   Suffix flow actions.
4334  * @param[out] actions_pre
4335  *   Prefix flow actions.
4336  * @param[in] actions_n
4337  *  The total number of actions.
4338  * @param[in] sample_action_pos
4339  *   The sample action position.
4340  * @param[in] qrss_action_pos
4341  *   The Queue/RSS action position.
4342  * @param[out] error
4343  *   Perform verbose error reporting if not NULL.
4344  *
4345  * @return
4346  *   0 on success, or unique flow_id, a negative errno value
4347  *   otherwise and rte_errno is set.
4348  */
4349 static int
4350 flow_sample_split_prep(struct rte_eth_dev *dev,
4351                        uint32_t fdb_tx,
4352                        struct rte_flow_item sfx_items[],
4353                        const struct rte_flow_action actions[],
4354                        struct rte_flow_action actions_sfx[],
4355                        struct rte_flow_action actions_pre[],
4356                        int actions_n,
4357                        int sample_action_pos,
4358                        int qrss_action_pos,
4359                        struct rte_flow_error *error)
4360 {
4361         struct mlx5_rte_flow_action_set_tag *set_tag;
4362         struct mlx5_rte_flow_item_tag *tag_spec;
4363         struct mlx5_rte_flow_item_tag *tag_mask;
4364         uint32_t tag_id = 0;
4365         int index;
4366         int ret;
4367
4368         if (sample_action_pos < 0)
4369                 return rte_flow_error_set(error, EINVAL,
4370                                           RTE_FLOW_ERROR_TYPE_ACTION,
4371                                           NULL, "invalid position of sample "
4372                                           "action in list");
4373         if (!fdb_tx) {
4374                 /* Prepare the prefix tag action. */
4375                 set_tag = (void *)(actions_pre + actions_n + 1);
4376                 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
4377                 if (ret < 0)
4378                         return ret;
4379                 set_tag->id = ret;
4380                 tag_id = flow_qrss_get_id(dev);
4381                 set_tag->data = tag_id;
4382                 /* Prepare the suffix subflow items. */
4383                 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
4384                 tag_spec->data = tag_id;
4385                 tag_spec->id = set_tag->id;
4386                 tag_mask = tag_spec + 1;
4387                 tag_mask->data = UINT32_MAX;
4388                 sfx_items[0] = (struct rte_flow_item){
4389                         .type = (enum rte_flow_item_type)
4390                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4391                         .spec = tag_spec,
4392                         .last = NULL,
4393                         .mask = tag_mask,
4394                 };
4395                 sfx_items[1] = (struct rte_flow_item){
4396                         .type = (enum rte_flow_item_type)
4397                                 RTE_FLOW_ITEM_TYPE_END,
4398                 };
4399         }
4400         /* Prepare the actions for prefix and suffix flow. */
4401         if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
4402                 index = qrss_action_pos;
4403                 /* Put the preceding the Queue/RSS action into prefix flow. */
4404                 if (index != 0)
4405                         memcpy(actions_pre, actions,
4406                                sizeof(struct rte_flow_action) * index);
4407                 /* Put others preceding the sample action into prefix flow. */
4408                 if (sample_action_pos > index + 1)
4409                         memcpy(actions_pre + index, actions + index + 1,
4410                                sizeof(struct rte_flow_action) *
4411                                (sample_action_pos - index - 1));
4412                 index = sample_action_pos - 1;
4413                 /* Put Queue/RSS action into Suffix flow. */
4414                 memcpy(actions_sfx, actions + qrss_action_pos,
4415                        sizeof(struct rte_flow_action));
4416                 actions_sfx++;
4417         } else {
4418                 index = sample_action_pos;
4419                 if (index != 0)
4420                         memcpy(actions_pre, actions,
4421                                sizeof(struct rte_flow_action) * index);
4422         }
4423         /* Add the extra tag action for NIC-RX and E-Switch ingress. */
4424         if (!fdb_tx) {
4425                 actions_pre[index++] =
4426                         (struct rte_flow_action){
4427                         .type = (enum rte_flow_action_type)
4428                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4429                         .conf = set_tag,
4430                 };
4431         }
4432         memcpy(actions_pre + index, actions + sample_action_pos,
4433                sizeof(struct rte_flow_action));
4434         index += 1;
4435         actions_pre[index] = (struct rte_flow_action){
4436                 .type = (enum rte_flow_action_type)
4437                         RTE_FLOW_ACTION_TYPE_END,
4438         };
4439         /* Put the actions after sample into Suffix flow. */
4440         memcpy(actions_sfx, actions + sample_action_pos + 1,
4441                sizeof(struct rte_flow_action) *
4442                (actions_n - sample_action_pos - 1));
4443         return tag_id;
4444 }
4445
4446 /**
4447  * The splitting for metadata feature.
4448  *
4449  * - Q/RSS action on NIC Rx should be split in order to pass by
4450  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4451  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4452  *
4453  * - All the actions on NIC Tx should have a mreg copy action to
4454  *   copy reg_a from WQE to reg_c[0].
4455  *
4456  * @param dev
4457  *   Pointer to Ethernet device.
4458  * @param[in] flow
4459  *   Parent flow structure pointer.
4460  * @param[in] prefix_layers
4461  *   Prefix flow layer flags.
4462  * @param[in] prefix_mark
4463  *   Prefix subflow mark flag, may be 0.
4464  * @param[in] attr
4465  *   Flow rule attributes.
4466  * @param[in] items
4467  *   Pattern specification (list terminated by the END pattern item).
4468  * @param[in] actions
4469  *   Associated actions (list terminated by the END action).
4470  * @param[in] external
4471  *   This flow rule is created by request external to PMD.
4472  * @param[in] flow_idx
4473  *   This memory pool index to the flow.
4474  * @param[out] error
4475  *   Perform verbose error reporting if not NULL.
4476  * @return
4477  *   0 on success, negative value otherwise
4478  */
4479 static int
4480 flow_create_split_metadata(struct rte_eth_dev *dev,
4481                            struct rte_flow *flow,
4482                            uint64_t prefix_layers,
4483                            uint32_t prefix_mark,
4484                            const struct rte_flow_attr *attr,
4485                            const struct rte_flow_item items[],
4486                            const struct rte_flow_action actions[],
4487                            bool external, uint32_t flow_idx,
4488                            struct rte_flow_error *error)
4489 {
4490         struct mlx5_priv *priv = dev->data->dev_private;
4491         struct mlx5_dev_config *config = &priv->config;
4492         const struct rte_flow_action *qrss = NULL;
4493         struct rte_flow_action *ext_actions = NULL;
4494         struct mlx5_flow *dev_flow = NULL;
4495         uint32_t qrss_id = 0;
4496         int mtr_sfx = 0;
4497         size_t act_size;
4498         int actions_n;
4499         int encap_idx;
4500         int ret;
4501
4502         /* Check whether extensive metadata feature is engaged. */
4503         if (!config->dv_flow_en ||
4504             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4505             !mlx5_flow_ext_mreg_supported(dev))
4506                 return flow_create_split_inner(dev, flow, NULL, prefix_layers,
4507                                                prefix_mark, attr, items,
4508                                                actions, external, flow_idx,
4509                                                error);
4510         actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4511                                                            &encap_idx);
4512         if (qrss) {
4513                 /* Exclude hairpin flows from splitting. */
4514                 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4515                         const struct rte_flow_action_queue *queue;
4516
4517                         queue = qrss->conf;
4518                         if (mlx5_rxq_get_type(dev, queue->index) ==
4519                             MLX5_RXQ_TYPE_HAIRPIN)
4520                                 qrss = NULL;
4521                 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4522                         const struct rte_flow_action_rss *rss;
4523
4524                         rss = qrss->conf;
4525                         if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4526                             MLX5_RXQ_TYPE_HAIRPIN)
4527                                 qrss = NULL;
4528                 }
4529         }
4530         if (qrss) {
4531                 /* Check if it is in meter suffix table. */
4532                 mtr_sfx = attr->group == (attr->transfer ?
4533                           (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4534                           MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4535                 /*
4536                  * Q/RSS action on NIC Rx should be split in order to pass by
4537                  * the mreg copy table (RX_CP_TBL) and then it jumps to the
4538                  * action table (RX_ACT_TBL) which has the split Q/RSS action.
4539                  */
4540                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4541                            sizeof(struct rte_flow_action_set_tag) +
4542                            sizeof(struct rte_flow_action_jump);
4543                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4544                                           SOCKET_ID_ANY);
4545                 if (!ext_actions)
4546                         return rte_flow_error_set(error, ENOMEM,
4547                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4548                                                   NULL, "no memory to split "
4549                                                   "metadata flow");
4550                 /*
4551                  * If we are the suffix flow of meter, tag already exist.
4552                  * Set the tag action to void.
4553                  */
4554                 if (mtr_sfx)
4555                         ext_actions[qrss - actions].type =
4556                                                 RTE_FLOW_ACTION_TYPE_VOID;
4557                 else
4558                         ext_actions[qrss - actions].type =
4559                                                 (enum rte_flow_action_type)
4560                                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4561                 /*
4562                  * Create the new actions list with removed Q/RSS action
4563                  * and appended set tag and jump to register copy table
4564                  * (RX_CP_TBL). We should preallocate unique tag ID here
4565                  * in advance, because it is needed for set tag action.
4566                  */
4567                 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4568                                                     qrss, actions_n, error);
4569                 if (!mtr_sfx && !qrss_id) {
4570                         ret = -rte_errno;
4571                         goto exit;
4572                 }
4573         } else if (attr->egress && !attr->transfer) {
4574                 /*
4575                  * All the actions on NIC Tx should have a metadata register
4576                  * copy action to copy reg_a from WQE to reg_c[meta]
4577                  */
4578                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4579                            sizeof(struct mlx5_flow_action_copy_mreg);
4580                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4581                                           SOCKET_ID_ANY);
4582                 if (!ext_actions)
4583                         return rte_flow_error_set(error, ENOMEM,
4584                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4585                                                   NULL, "no memory to split "
4586                                                   "metadata flow");
4587                 /* Create the action list appended with copy register. */
4588                 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4589                                              actions_n, error, encap_idx);
4590                 if (ret < 0)
4591                         goto exit;
4592         }
4593         /* Add the unmodified original or prefix subflow. */
4594         ret = flow_create_split_inner(dev, flow, &dev_flow, prefix_layers,
4595                                       prefix_mark, attr,
4596                                       items, ext_actions ? ext_actions :
4597                                       actions, external, flow_idx, error);
4598         if (ret < 0)
4599                 goto exit;
4600         MLX5_ASSERT(dev_flow);
4601         if (qrss) {
4602                 const struct rte_flow_attr q_attr = {
4603                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4604                         .ingress = 1,
4605                 };
4606                 /* Internal PMD action to set register. */
4607                 struct mlx5_rte_flow_item_tag q_tag_spec = {
4608                         .data = qrss_id,
4609                         .id = REG_NON,
4610                 };
4611                 struct rte_flow_item q_items[] = {
4612                         {
4613                                 .type = (enum rte_flow_item_type)
4614                                         MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4615                                 .spec = &q_tag_spec,
4616                                 .last = NULL,
4617                                 .mask = NULL,
4618                         },
4619                         {
4620                                 .type = RTE_FLOW_ITEM_TYPE_END,
4621                         },
4622                 };
4623                 struct rte_flow_action q_actions[] = {
4624                         {
4625                                 .type = qrss->type,
4626                                 .conf = qrss->conf,
4627                         },
4628                         {
4629                                 .type = RTE_FLOW_ACTION_TYPE_END,
4630                         },
4631                 };
4632                 uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4633
4634                 /*
4635                  * Configure the tag item only if there is no meter subflow.
4636                  * Since tag is already marked in the meter suffix subflow
4637                  * we can just use the meter suffix items as is.
4638                  */
4639                 if (qrss_id) {
4640                         /* Not meter subflow. */
4641                         MLX5_ASSERT(!mtr_sfx);
4642                         /*
4643                          * Put unique id in prefix flow due to it is destroyed
4644                          * after suffix flow and id will be freed after there
4645                          * is no actual flows with this id and identifier
4646                          * reallocation becomes possible (for example, for
4647                          * other flows in other threads).
4648                          */
4649                         dev_flow->handle->split_flow_id = qrss_id;
4650                         ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4651                                                    error);
4652                         if (ret < 0)
4653                                 goto exit;
4654                         q_tag_spec.id = ret;
4655                 }
4656                 dev_flow = NULL;
4657                 /* Add suffix subflow to execute Q/RSS. */
4658                 ret = flow_create_split_inner(dev, flow, &dev_flow, layers, 0,
4659                                               &q_attr, mtr_sfx ? items :
4660                                               q_items, q_actions,
4661                                               external, flow_idx, error);
4662                 if (ret < 0)
4663                         goto exit;
4664                 /* qrss ID should be freed if failed. */
4665                 qrss_id = 0;
4666                 MLX5_ASSERT(dev_flow);
4667         }
4668
4669 exit:
4670         /*
4671          * We do not destroy the partially created sub_flows in case of error.
4672          * These ones are included into parent flow list and will be destroyed
4673          * by flow_drv_destroy.
4674          */
4675         flow_qrss_free_id(dev, qrss_id);
4676         mlx5_free(ext_actions);
4677         return ret;
4678 }
4679
4680 /**
4681  * The splitting for meter feature.
4682  *
4683  * - The meter flow will be split to two flows as prefix and
4684  *   suffix flow. The packets make sense only it pass the prefix
4685  *   meter action.
4686  *
4687  * - Reg_C_5 is used for the packet to match betweend prefix and
4688  *   suffix flow.
4689  *
4690  * @param dev
4691  *   Pointer to Ethernet device.
4692  * @param[in] flow
4693  *   Parent flow structure pointer.
4694  * @param[in] prefix_layers
4695  *   Prefix subflow layers, may be 0.
4696  * @param[in] prefix_mark
4697  *   Prefix subflow mark flag, may be 0.
4698  * @param[in] attr
4699  *   Flow rule attributes.
4700  * @param[in] items
4701  *   Pattern specification (list terminated by the END pattern item).
4702  * @param[in] actions
4703  *   Associated actions (list terminated by the END action).
4704  * @param[in] external
4705  *   This flow rule is created by request external to PMD.
4706  * @param[in] flow_idx
4707  *   This memory pool index to the flow.
4708  * @param[out] error
4709  *   Perform verbose error reporting if not NULL.
4710  * @return
4711  *   0 on success, negative value otherwise
4712  */
4713 static int
4714 flow_create_split_meter(struct rte_eth_dev *dev,
4715                         struct rte_flow *flow,
4716                         uint64_t prefix_layers,
4717                         uint32_t prefix_mark,
4718                         const struct rte_flow_attr *attr,
4719                         const struct rte_flow_item items[],
4720                         const struct rte_flow_action actions[],
4721                         bool external, uint32_t flow_idx,
4722                         struct rte_flow_error *error)
4723 {
4724         struct mlx5_priv *priv = dev->data->dev_private;
4725         struct rte_flow_action *sfx_actions = NULL;
4726         struct rte_flow_action *pre_actions = NULL;
4727         struct rte_flow_item *sfx_items = NULL;
4728         struct mlx5_flow *dev_flow = NULL;
4729         struct rte_flow_attr sfx_attr = *attr;
4730         uint32_t mtr = 0;
4731         uint32_t mtr_tag_id = 0;
4732         size_t act_size;
4733         size_t item_size;
4734         int actions_n = 0;
4735         int ret;
4736
4737         if (priv->mtr_en)
4738                 actions_n = flow_check_meter_action(actions, &mtr);
4739         if (mtr) {
4740                 /* The five prefix actions: meter, decap, encap, tag, end. */
4741                 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4742                            sizeof(struct mlx5_rte_flow_action_set_tag);
4743                 /* tag, vlan, port id, end. */
4744 #define METER_SUFFIX_ITEM 4
4745                 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4746                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
4747                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4748                                           0, SOCKET_ID_ANY);
4749                 if (!sfx_actions)
4750                         return rte_flow_error_set(error, ENOMEM,
4751                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4752                                                   NULL, "no memory to split "
4753                                                   "meter flow");
4754                 sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4755                              act_size);
4756                 pre_actions = sfx_actions + actions_n;
4757                 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4758                                                    actions, sfx_actions,
4759                                                    pre_actions);
4760                 if (!mtr_tag_id) {
4761                         ret = -rte_errno;
4762                         goto exit;
4763                 }
4764                 /* Add the prefix subflow. */
4765                 ret = flow_create_split_inner(dev, flow, &dev_flow,
4766                                               prefix_layers, 0,
4767                                               attr, items,
4768                                               pre_actions, external,
4769                                               flow_idx, error);
4770                 if (ret) {
4771                         ret = -rte_errno;
4772                         goto exit;
4773                 }
4774                 dev_flow->handle->split_flow_id = mtr_tag_id;
4775                 /* Setting the sfx group atrr. */
4776                 sfx_attr.group = sfx_attr.transfer ?
4777                                 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4778                                  MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4779         }
4780         /* Add the prefix subflow. */
4781         ret = flow_create_split_metadata(dev, flow, dev_flow ?
4782                                          flow_get_prefix_layer_flags(dev_flow) :
4783                                          prefix_layers, dev_flow ?
4784                                          dev_flow->handle->mark : prefix_mark,
4785                                          &sfx_attr, sfx_items ?
4786                                          sfx_items : items,
4787                                          sfx_actions ? sfx_actions : actions,
4788                                          external, flow_idx, error);
4789 exit:
4790         if (sfx_actions)
4791                 mlx5_free(sfx_actions);
4792         return ret;
4793 }
4794
4795 /**
4796  * The splitting for sample feature.
4797  *
4798  * Once Sample action is detected in the action list, the flow actions should
4799  * be split into prefix sub flow and suffix sub flow.
4800  *
4801  * The original items remain in the prefix sub flow, all actions preceding the
4802  * sample action and the sample action itself will be copied to the prefix
4803  * sub flow, the actions following the sample action will be copied to the
4804  * suffix sub flow, Queue action always be located in the suffix sub flow.
4805  *
4806  * In order to make the packet from prefix sub flow matches with suffix sub
4807  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
4808  * flow uses tag item with the unique flow id.
4809  *
4810  * @param dev
4811  *   Pointer to Ethernet device.
4812  * @param[in] flow
4813  *   Parent flow structure pointer.
4814  * @param[in] attr
4815  *   Flow rule attributes.
4816  * @param[in] items
4817  *   Pattern specification (list terminated by the END pattern item).
4818  * @param[in] actions
4819  *   Associated actions (list terminated by the END action).
4820  * @param[in] external
4821  *   This flow rule is created by request external to PMD.
4822  * @param[in] flow_idx
4823  *   This memory pool index to the flow.
4824  * @param[out] error
4825  *   Perform verbose error reporting if not NULL.
4826  * @return
4827  *   0 on success, negative value otherwise
4828  */
4829 static int
4830 flow_create_split_sample(struct rte_eth_dev *dev,
4831                          struct rte_flow *flow,
4832                          const struct rte_flow_attr *attr,
4833                          const struct rte_flow_item items[],
4834                          const struct rte_flow_action actions[],
4835                          bool external, uint32_t flow_idx,
4836                          struct rte_flow_error *error)
4837 {
4838         struct mlx5_priv *priv = dev->data->dev_private;
4839         struct rte_flow_action *sfx_actions = NULL;
4840         struct rte_flow_action *pre_actions = NULL;
4841         struct rte_flow_item *sfx_items = NULL;
4842         struct mlx5_flow *dev_flow = NULL;
4843         struct rte_flow_attr sfx_attr = *attr;
4844 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4845         struct mlx5_flow_dv_sample_resource *sample_res;
4846         struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
4847         struct mlx5_flow_tbl_resource *sfx_tbl;
4848         union mlx5_flow_tbl_key sfx_table_key;
4849 #endif
4850         size_t act_size;
4851         size_t item_size;
4852         uint32_t fdb_tx = 0;
4853         int32_t tag_id = 0;
4854         int actions_n = 0;
4855         int sample_action_pos;
4856         int qrss_action_pos;
4857         int ret = 0;
4858
4859         if (priv->sampler_en)
4860                 actions_n = flow_check_match_action(actions, attr,
4861                                         RTE_FLOW_ACTION_TYPE_SAMPLE,
4862                                         &sample_action_pos, &qrss_action_pos);
4863         if (actions_n) {
4864                 /* The prefix actions must includes sample, tag, end. */
4865                 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
4866                            + sizeof(struct mlx5_rte_flow_action_set_tag);
4867                 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
4868                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
4869                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
4870                                           item_size), 0, SOCKET_ID_ANY);
4871                 if (!sfx_actions)
4872                         return rte_flow_error_set(error, ENOMEM,
4873                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4874                                                   NULL, "no memory to split "
4875                                                   "sample flow");
4876                 /* The representor_id is -1 for uplink. */
4877                 fdb_tx = (attr->transfer && priv->representor_id != -1);
4878                 if (!fdb_tx)
4879                         sfx_items = (struct rte_flow_item *)((char *)sfx_actions
4880                                         + act_size);
4881                 pre_actions = sfx_actions + actions_n;
4882                 tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items,
4883                                                 actions, sfx_actions,
4884                                                 pre_actions, actions_n,
4885                                                 sample_action_pos,
4886                                                 qrss_action_pos, error);
4887                 if (tag_id < 0 || (!fdb_tx && !tag_id)) {
4888                         ret = -rte_errno;
4889                         goto exit;
4890                 }
4891                 /* Add the prefix subflow. */
4892                 ret = flow_create_split_inner(dev, flow, &dev_flow, 0, 0, attr,
4893                                               items, pre_actions, external,
4894                                               flow_idx, error);
4895                 if (ret) {
4896                         ret = -rte_errno;
4897                         goto exit;
4898                 }
4899                 dev_flow->handle->split_flow_id = tag_id;
4900 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4901                 /* Set the sfx group attr. */
4902                 sample_res = (struct mlx5_flow_dv_sample_resource *)
4903                                         dev_flow->dv.sample_res;
4904                 sfx_tbl = (struct mlx5_flow_tbl_resource *)
4905                                         sample_res->normal_path_tbl;
4906                 sfx_tbl_data = container_of(sfx_tbl,
4907                                         struct mlx5_flow_tbl_data_entry, tbl);
4908                 sfx_table_key.v64 = sfx_tbl_data->entry.key;
4909                 sfx_attr.group = sfx_attr.transfer ?
4910                                         (sfx_table_key.table_id - 1) :
4911                                          sfx_table_key.table_id;
4912 #endif
4913         }
4914         /* Add the suffix subflow. */
4915         ret = flow_create_split_meter(dev, flow, dev_flow ?
4916                                  flow_get_prefix_layer_flags(dev_flow) : 0,
4917                                  dev_flow ? dev_flow->handle->mark : 0,
4918                                  &sfx_attr, sfx_items ? sfx_items : items,
4919                                  sfx_actions ? sfx_actions : actions,
4920                                  external, flow_idx, error);
4921 exit:
4922         if (sfx_actions)
4923                 mlx5_free(sfx_actions);
4924         return ret;
4925 }
4926
4927 /**
4928  * Split the flow to subflow set. The splitters might be linked
4929  * in the chain, like this:
4930  * flow_create_split_outer() calls:
4931  *   flow_create_split_meter() calls:
4932  *     flow_create_split_metadata(meter_subflow_0) calls:
4933  *       flow_create_split_inner(metadata_subflow_0)
4934  *       flow_create_split_inner(metadata_subflow_1)
4935  *       flow_create_split_inner(metadata_subflow_2)
4936  *     flow_create_split_metadata(meter_subflow_1) calls:
4937  *       flow_create_split_inner(metadata_subflow_0)
4938  *       flow_create_split_inner(metadata_subflow_1)
4939  *       flow_create_split_inner(metadata_subflow_2)
4940  *
4941  * This provide flexible way to add new levels of flow splitting.
4942  * The all of successfully created subflows are included to the
4943  * parent flow dev_flow list.
4944  *
4945  * @param dev
4946  *   Pointer to Ethernet device.
4947  * @param[in] flow
4948  *   Parent flow structure pointer.
4949  * @param[in] attr
4950  *   Flow rule attributes.
4951  * @param[in] items
4952  *   Pattern specification (list terminated by the END pattern item).
4953  * @param[in] actions
4954  *   Associated actions (list terminated by the END action).
4955  * @param[in] external
4956  *   This flow rule is created by request external to PMD.
4957  * @param[in] flow_idx
4958  *   This memory pool index to the flow.
4959  * @param[out] error
4960  *   Perform verbose error reporting if not NULL.
4961  * @return
4962  *   0 on success, negative value otherwise
4963  */
4964 static int
4965 flow_create_split_outer(struct rte_eth_dev *dev,
4966                         struct rte_flow *flow,
4967                         const struct rte_flow_attr *attr,
4968                         const struct rte_flow_item items[],
4969                         const struct rte_flow_action actions[],
4970                         bool external, uint32_t flow_idx,
4971                         struct rte_flow_error *error)
4972 {
4973         int ret;
4974
4975         ret = flow_create_split_sample(dev, flow, attr, items,
4976                                        actions, external, flow_idx, error);
4977         MLX5_ASSERT(ret <= 0);
4978         return ret;
4979 }
4980
4981 /**
4982  * Create a flow and add it to @p list.
4983  *
4984  * @param dev
4985  *   Pointer to Ethernet device.
4986  * @param list
4987  *   Pointer to a TAILQ flow list. If this parameter NULL,
4988  *   no list insertion occurred, flow is just created,
4989  *   this is caller's responsibility to track the
4990  *   created flow.
4991  * @param[in] attr
4992  *   Flow rule attributes.
4993  * @param[in] items
4994  *   Pattern specification (list terminated by the END pattern item).
4995  * @param[in] actions
4996  *   Associated actions (list terminated by the END action).
4997  * @param[in] external
4998  *   This flow rule is created by request external to PMD.
4999  * @param[out] error
5000  *   Perform verbose error reporting if not NULL.
5001  *
5002  * @return
5003  *   A flow index on success, 0 otherwise and rte_errno is set.
5004  */
5005 static uint32_t
5006 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
5007                  const struct rte_flow_attr *attr,
5008                  const struct rte_flow_item items[],
5009                  const struct rte_flow_action actions[],
5010                  bool external, struct rte_flow_error *error)
5011 {
5012         struct mlx5_priv *priv = dev->data->dev_private;
5013         struct rte_flow *flow = NULL;
5014         struct mlx5_flow *dev_flow;
5015         const struct rte_flow_action_rss *rss;
5016         union {
5017                 struct mlx5_flow_expand_rss buf;
5018                 uint8_t buffer[2048];
5019         } expand_buffer;
5020         union {
5021                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5022                 uint8_t buffer[2048];
5023         } actions_rx;
5024         union {
5025                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5026                 uint8_t buffer[2048];
5027         } actions_hairpin_tx;
5028         union {
5029                 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
5030                 uint8_t buffer[2048];
5031         } items_tx;
5032         struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
5033         struct mlx5_flow_rss_desc *rss_desc = &((struct mlx5_flow_rss_desc *)
5034                                               priv->rss_desc)[!!priv->flow_idx];
5035         const struct rte_flow_action *p_actions_rx = actions;
5036         uint32_t i;
5037         uint32_t idx = 0;
5038         int hairpin_flow;
5039         uint32_t hairpin_id = 0;
5040         struct rte_flow_attr attr_tx = { .priority = 0 };
5041         struct rte_flow_attr attr_factor = {0};
5042         int ret;
5043
5044         memcpy((void *)&attr_factor, (const void *)attr, sizeof(*attr));
5045         if (external)
5046                 attr_factor.group *= MLX5_FLOW_TABLE_FACTOR;
5047         hairpin_flow = flow_check_hairpin_split(dev, &attr_factor, actions);
5048         ret = flow_drv_validate(dev, &attr_factor, items, p_actions_rx,
5049                                 external, hairpin_flow, error);
5050         if (ret < 0)
5051                 return 0;
5052         if (hairpin_flow > 0) {
5053                 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
5054                         rte_errno = EINVAL;
5055                         return 0;
5056                 }
5057                 flow_hairpin_split(dev, actions, actions_rx.actions,
5058                                    actions_hairpin_tx.actions, items_tx.items,
5059                                    &hairpin_id);
5060                 p_actions_rx = actions_rx.actions;
5061         }
5062         flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
5063         if (!flow) {
5064                 rte_errno = ENOMEM;
5065                 goto error_before_flow;
5066         }
5067         flow->drv_type = flow_get_drv_type(dev, &attr_factor);
5068         if (hairpin_id != 0)
5069                 flow->hairpin_flow_id = hairpin_id;
5070         MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
5071                     flow->drv_type < MLX5_FLOW_TYPE_MAX);
5072         memset(rss_desc, 0, sizeof(*rss_desc));
5073         rss = flow_get_rss_action(p_actions_rx);
5074         if (rss) {
5075                 /*
5076                  * The following information is required by
5077                  * mlx5_flow_hashfields_adjust() in advance.
5078                  */
5079                 rss_desc->level = rss->level;
5080                 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
5081                 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
5082         }
5083         flow->dev_handles = 0;
5084         if (rss && rss->types) {
5085                 unsigned int graph_root;
5086
5087                 graph_root = find_graph_root(items, rss->level);
5088                 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
5089                                            items, rss->types,
5090                                            mlx5_support_expansion, graph_root);
5091                 MLX5_ASSERT(ret > 0 &&
5092                        (unsigned int)ret < sizeof(expand_buffer.buffer));
5093         } else {
5094                 buf->entries = 1;
5095                 buf->entry[0].pattern = (void *)(uintptr_t)items;
5096         }
5097         /*
5098          * Record the start index when there is a nested call. All sub-flows
5099          * need to be translated before another calling.
5100          * No need to use ping-pong buffer to save memory here.
5101          */
5102         if (priv->flow_idx) {
5103                 MLX5_ASSERT(!priv->flow_nested_idx);
5104                 priv->flow_nested_idx = priv->flow_idx;
5105         }
5106         for (i = 0; i < buf->entries; ++i) {
5107                 /*
5108                  * The splitter may create multiple dev_flows,
5109                  * depending on configuration. In the simplest
5110                  * case it just creates unmodified original flow.
5111                  */
5112                 ret = flow_create_split_outer(dev, flow, &attr_factor,
5113                                               buf->entry[i].pattern,
5114                                               p_actions_rx, external, idx,
5115                                               error);
5116                 if (ret < 0)
5117                         goto error;
5118         }
5119         /* Create the tx flow. */
5120         if (hairpin_flow) {
5121                 attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
5122                 attr_tx.ingress = 0;
5123                 attr_tx.egress = 1;
5124                 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
5125                                          actions_hairpin_tx.actions,
5126                                          idx, error);
5127                 if (!dev_flow)
5128                         goto error;
5129                 dev_flow->flow = flow;
5130                 dev_flow->external = 0;
5131                 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5132                               dev_flow->handle, next);
5133                 ret = flow_drv_translate(dev, dev_flow, &attr_tx,
5134                                          items_tx.items,
5135                                          actions_hairpin_tx.actions, error);
5136                 if (ret < 0)
5137                         goto error;
5138         }
5139         /*
5140          * Update the metadata register copy table. If extensive
5141          * metadata feature is enabled and registers are supported
5142          * we might create the extra rte_flow for each unique
5143          * MARK/FLAG action ID.
5144          *
5145          * The table is updated for ingress Flows only, because
5146          * the egress Flows belong to the different device and
5147          * copy table should be updated in peer NIC Rx domain.
5148          */
5149         if (attr_factor.ingress &&
5150             (external || attr_factor.group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
5151                 ret = flow_mreg_update_copy_table(dev, flow, actions, error);
5152                 if (ret)
5153                         goto error;
5154         }
5155         /*
5156          * If the flow is external (from application) OR device is started, then
5157          * the flow will be applied immediately.
5158          */
5159         if (external || dev->data->dev_started) {
5160                 ret = flow_drv_apply(dev, flow, error);
5161                 if (ret < 0)
5162                         goto error;
5163         }
5164         if (list)
5165                 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
5166                              flow, next);
5167         flow_rxq_flags_set(dev, flow);
5168         /* Nested flow creation index recovery. */
5169         priv->flow_idx = priv->flow_nested_idx;
5170         if (priv->flow_nested_idx)
5171                 priv->flow_nested_idx = 0;
5172         return idx;
5173 error:
5174         MLX5_ASSERT(flow);
5175         ret = rte_errno; /* Save rte_errno before cleanup. */
5176         flow_mreg_del_copy_action(dev, flow);
5177         flow_drv_destroy(dev, flow);
5178         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
5179         rte_errno = ret; /* Restore rte_errno. */
5180 error_before_flow:
5181         ret = rte_errno;
5182         if (hairpin_id)
5183                 mlx5_flow_id_release(priv->sh->flow_id_pool,
5184                                      hairpin_id);
5185         rte_errno = ret;
5186         priv->flow_idx = priv->flow_nested_idx;
5187         if (priv->flow_nested_idx)
5188                 priv->flow_nested_idx = 0;
5189         return 0;
5190 }
5191
5192 /**
5193  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
5194  * incoming packets to table 1.
5195  *
5196  * Other flow rules, requested for group n, will be created in
5197  * e-switch table n+1.
5198  * Jump action to e-switch group n will be created to group n+1.
5199  *
5200  * Used when working in switchdev mode, to utilise advantages of table 1
5201  * and above.
5202  *
5203  * @param dev
5204  *   Pointer to Ethernet device.
5205  *
5206  * @return
5207  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
5208  */
5209 struct rte_flow *
5210 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
5211 {
5212         const struct rte_flow_attr attr = {
5213                 .group = 0,
5214                 .priority = 0,
5215                 .ingress = 1,
5216                 .egress = 0,
5217                 .transfer = 1,
5218         };
5219         const struct rte_flow_item pattern = {
5220                 .type = RTE_FLOW_ITEM_TYPE_END,
5221         };
5222         struct rte_flow_action_jump jump = {
5223                 .group = 1,
5224         };
5225         const struct rte_flow_action actions[] = {
5226                 {
5227                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
5228                         .conf = &jump,
5229                 },
5230                 {
5231                         .type = RTE_FLOW_ACTION_TYPE_END,
5232                 },
5233         };
5234         struct mlx5_priv *priv = dev->data->dev_private;
5235         struct rte_flow_error error;
5236
5237         return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
5238                                                    &attr, &pattern,
5239                                                    actions, false, &error);
5240 }
5241
5242 /**
5243  * Validate a flow supported by the NIC.
5244  *
5245  * @see rte_flow_validate()
5246  * @see rte_flow_ops
5247  */
5248 int
5249 mlx5_flow_validate(struct rte_eth_dev *dev,
5250                    const struct rte_flow_attr *attr,
5251                    const struct rte_flow_item items[],
5252                    const struct rte_flow_action actions[],
5253                    struct rte_flow_error *error)
5254 {
5255         int hairpin_flow;
5256
5257         hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5258         return flow_drv_validate(dev, attr, items, actions,
5259                                 true, hairpin_flow, error);
5260 }
5261
5262 /**
5263  * Create a flow.
5264  *
5265  * @see rte_flow_create()
5266  * @see rte_flow_ops
5267  */
5268 struct rte_flow *
5269 mlx5_flow_create(struct rte_eth_dev *dev,
5270                  const struct rte_flow_attr *attr,
5271                  const struct rte_flow_item items[],
5272                  const struct rte_flow_action actions[],
5273                  struct rte_flow_error *error)
5274 {
5275         struct mlx5_priv *priv = dev->data->dev_private;
5276
5277         /*
5278          * If the device is not started yet, it is not allowed to created a
5279          * flow from application. PMD default flows and traffic control flows
5280          * are not affected.
5281          */
5282         if (unlikely(!dev->data->dev_started)) {
5283                 DRV_LOG(DEBUG, "port %u is not started when "
5284                         "inserting a flow", dev->data->port_id);
5285                 rte_flow_error_set(error, ENODEV,
5286                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5287                                    NULL,
5288                                    "port not started");
5289                 return NULL;
5290         }
5291         return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
5292                                   attr, items, actions, true, error);
5293 }
5294
5295 /**
5296  * Destroy a flow in a list.
5297  *
5298  * @param dev
5299  *   Pointer to Ethernet device.
5300  * @param list
5301  *   Pointer to the Indexed flow list. If this parameter NULL,
5302  *   there is no flow removal from the list. Be noted that as
5303  *   flow is add to the indexed list, memory of the indexed
5304  *   list points to maybe changed as flow destroyed.
5305  * @param[in] flow_idx
5306  *   Index of flow to destroy.
5307  */
5308 static void
5309 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
5310                   uint32_t flow_idx)
5311 {
5312         struct mlx5_priv *priv = dev->data->dev_private;
5313         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5314         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5315                                                [MLX5_IPOOL_RTE_FLOW], flow_idx);
5316
5317         if (!flow)
5318                 return;
5319         /*
5320          * Update RX queue flags only if port is started, otherwise it is
5321          * already clean.
5322          */
5323         if (dev->data->dev_started)
5324                 flow_rxq_flags_trim(dev, flow);
5325         if (flow->hairpin_flow_id)
5326                 mlx5_flow_id_release(priv->sh->flow_id_pool,
5327                                      flow->hairpin_flow_id);
5328         flow_drv_destroy(dev, flow);
5329         if (list)
5330                 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
5331                              flow_idx, flow, next);
5332         flow_mreg_del_copy_action(dev, flow);
5333         if (flow->fdir) {
5334                 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
5335                         if (priv_fdir_flow->rix_flow == flow_idx)
5336                                 break;
5337                 }
5338                 if (priv_fdir_flow) {
5339                         LIST_REMOVE(priv_fdir_flow, next);
5340                         mlx5_free(priv_fdir_flow->fdir);
5341                         mlx5_free(priv_fdir_flow);
5342                 }
5343         }
5344         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5345 }
5346
5347 /**
5348  * Destroy all flows.
5349  *
5350  * @param dev
5351  *   Pointer to Ethernet device.
5352  * @param list
5353  *   Pointer to the Indexed flow list.
5354  * @param active
5355  *   If flushing is called avtively.
5356  */
5357 void
5358 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5359 {
5360         uint32_t num_flushed = 0;
5361
5362         while (*list) {
5363                 flow_list_destroy(dev, list, *list);
5364                 num_flushed++;
5365         }
5366         if (active) {
5367                 DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5368                         dev->data->port_id, num_flushed);
5369         }
5370 }
5371
5372 /**
5373  * Remove all flows.
5374  *
5375  * @param dev
5376  *   Pointer to Ethernet device.
5377  * @param list
5378  *   Pointer to the Indexed flow list.
5379  */
5380 void
5381 mlx5_flow_stop(struct rte_eth_dev *dev, uint32_t *list)
5382 {
5383         struct mlx5_priv *priv = dev->data->dev_private;
5384         struct rte_flow *flow = NULL;
5385         uint32_t idx;
5386
5387         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5388                       flow, next) {
5389                 flow_drv_remove(dev, flow);
5390                 flow_mreg_stop_copy_action(dev, flow);
5391         }
5392         flow_mreg_del_default_copy_action(dev);
5393         flow_rxq_flags_clear(dev);
5394 }
5395
5396 /**
5397  * Add all flows.
5398  *
5399  * @param dev
5400  *   Pointer to Ethernet device.
5401  * @param list
5402  *   Pointer to the Indexed flow list.
5403  *
5404  * @return
5405  *   0 on success, a negative errno value otherwise and rte_errno is set.
5406  */
5407 int
5408 mlx5_flow_start(struct rte_eth_dev *dev, uint32_t *list)
5409 {
5410         struct mlx5_priv *priv = dev->data->dev_private;
5411         struct rte_flow *flow = NULL;
5412         struct rte_flow_error error;
5413         uint32_t idx;
5414         int ret = 0;
5415
5416         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5417         ret = flow_mreg_add_default_copy_action(dev, &error);
5418         if (ret < 0)
5419                 return -rte_errno;
5420         /* Apply Flows created by application. */
5421         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5422                       flow, next) {
5423                 ret = flow_mreg_start_copy_action(dev, flow);
5424                 if (ret < 0)
5425                         goto error;
5426                 ret = flow_drv_apply(dev, flow, &error);
5427                 if (ret < 0)
5428                         goto error;
5429                 flow_rxq_flags_set(dev, flow);
5430         }
5431         return 0;
5432 error:
5433         ret = rte_errno; /* Save rte_errno before cleanup. */
5434         mlx5_flow_stop(dev, list);
5435         rte_errno = ret; /* Restore rte_errno. */
5436         return -rte_errno;
5437 }
5438
5439 /**
5440  * Stop all default actions for flows.
5441  *
5442  * @param dev
5443  *   Pointer to Ethernet device.
5444  */
5445 void
5446 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5447 {
5448         flow_mreg_del_default_copy_action(dev);
5449         flow_rxq_flags_clear(dev);
5450 }
5451
5452 /**
5453  * Start all default actions for flows.
5454  *
5455  * @param dev
5456  *   Pointer to Ethernet device.
5457  * @return
5458  *   0 on success, a negative errno value otherwise and rte_errno is set.
5459  */
5460 int
5461 mlx5_flow_start_default(struct rte_eth_dev *dev)
5462 {
5463         struct rte_flow_error error;
5464
5465         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5466         return flow_mreg_add_default_copy_action(dev, &error);
5467 }
5468
5469 /**
5470  * Allocate intermediate resources for flow creation.
5471  *
5472  * @param dev
5473  *   Pointer to Ethernet device.
5474  */
5475 void
5476 mlx5_flow_alloc_intermediate(struct rte_eth_dev *dev)
5477 {
5478         struct mlx5_priv *priv = dev->data->dev_private;
5479
5480         if (!priv->inter_flows) {
5481                 priv->inter_flows = mlx5_malloc(MLX5_MEM_ZERO,
5482                                     MLX5_NUM_MAX_DEV_FLOWS *
5483                                     sizeof(struct mlx5_flow) +
5484                                     (sizeof(struct mlx5_flow_rss_desc) +
5485                                     sizeof(uint16_t) * UINT16_MAX) * 2, 0,
5486                                     SOCKET_ID_ANY);
5487                 if (!priv->inter_flows) {
5488                         DRV_LOG(ERR, "can't allocate intermediate memory.");
5489                         return;
5490                 }
5491         }
5492         priv->rss_desc = &((struct mlx5_flow *)priv->inter_flows)
5493                          [MLX5_NUM_MAX_DEV_FLOWS];
5494         /* Reset the index. */
5495         priv->flow_idx = 0;
5496         priv->flow_nested_idx = 0;
5497 }
5498
5499 /**
5500  * Free intermediate resources for flows.
5501  *
5502  * @param dev
5503  *   Pointer to Ethernet device.
5504  */
5505 void
5506 mlx5_flow_free_intermediate(struct rte_eth_dev *dev)
5507 {
5508         struct mlx5_priv *priv = dev->data->dev_private;
5509
5510         mlx5_free(priv->inter_flows);
5511         priv->inter_flows = NULL;
5512 }
5513
5514 /**
5515  * Verify the flow list is empty
5516  *
5517  * @param dev
5518  *  Pointer to Ethernet device.
5519  *
5520  * @return the number of flows not released.
5521  */
5522 int
5523 mlx5_flow_verify(struct rte_eth_dev *dev)
5524 {
5525         struct mlx5_priv *priv = dev->data->dev_private;
5526         struct rte_flow *flow;
5527         uint32_t idx;
5528         int ret = 0;
5529
5530         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5531                       flow, next) {
5532                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
5533                         dev->data->port_id, (void *)flow);
5534                 ++ret;
5535         }
5536         return ret;
5537 }
5538
5539 /**
5540  * Enable default hairpin egress flow.
5541  *
5542  * @param dev
5543  *   Pointer to Ethernet device.
5544  * @param queue
5545  *   The queue index.
5546  *
5547  * @return
5548  *   0 on success, a negative errno value otherwise and rte_errno is set.
5549  */
5550 int
5551 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5552                             uint32_t queue)
5553 {
5554         struct mlx5_priv *priv = dev->data->dev_private;
5555         const struct rte_flow_attr attr = {
5556                 .egress = 1,
5557                 .priority = 0,
5558         };
5559         struct mlx5_rte_flow_item_tx_queue queue_spec = {
5560                 .queue = queue,
5561         };
5562         struct mlx5_rte_flow_item_tx_queue queue_mask = {
5563                 .queue = UINT32_MAX,
5564         };
5565         struct rte_flow_item items[] = {
5566                 {
5567                         .type = (enum rte_flow_item_type)
5568                                 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5569                         .spec = &queue_spec,
5570                         .last = NULL,
5571                         .mask = &queue_mask,
5572                 },
5573                 {
5574                         .type = RTE_FLOW_ITEM_TYPE_END,
5575                 },
5576         };
5577         struct rte_flow_action_jump jump = {
5578                 .group = MLX5_HAIRPIN_TX_TABLE,
5579         };
5580         struct rte_flow_action actions[2];
5581         uint32_t flow_idx;
5582         struct rte_flow_error error;
5583
5584         actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5585         actions[0].conf = &jump;
5586         actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5587         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5588                                 &attr, items, actions, false, &error);
5589         if (!flow_idx) {
5590                 DRV_LOG(DEBUG,
5591                         "Failed to create ctrl flow: rte_errno(%d),"
5592                         " type(%d), message(%s)",
5593                         rte_errno, error.type,
5594                         error.message ? error.message : " (no stated reason)");
5595                 return -rte_errno;
5596         }
5597         return 0;
5598 }
5599
5600 /**
5601  * Enable a control flow configured from the control plane.
5602  *
5603  * @param dev
5604  *   Pointer to Ethernet device.
5605  * @param eth_spec
5606  *   An Ethernet flow spec to apply.
5607  * @param eth_mask
5608  *   An Ethernet flow mask to apply.
5609  * @param vlan_spec
5610  *   A VLAN flow spec to apply.
5611  * @param vlan_mask
5612  *   A VLAN flow mask to apply.
5613  *
5614  * @return
5615  *   0 on success, a negative errno value otherwise and rte_errno is set.
5616  */
5617 int
5618 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5619                     struct rte_flow_item_eth *eth_spec,
5620                     struct rte_flow_item_eth *eth_mask,
5621                     struct rte_flow_item_vlan *vlan_spec,
5622                     struct rte_flow_item_vlan *vlan_mask)
5623 {
5624         struct mlx5_priv *priv = dev->data->dev_private;
5625         const struct rte_flow_attr attr = {
5626                 .ingress = 1,
5627                 .priority = MLX5_FLOW_PRIO_RSVD,
5628         };
5629         struct rte_flow_item items[] = {
5630                 {
5631                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5632                         .spec = eth_spec,
5633                         .last = NULL,
5634                         .mask = eth_mask,
5635                 },
5636                 {
5637                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5638                                               RTE_FLOW_ITEM_TYPE_END,
5639                         .spec = vlan_spec,
5640                         .last = NULL,
5641                         .mask = vlan_mask,
5642                 },
5643                 {
5644                         .type = RTE_FLOW_ITEM_TYPE_END,
5645                 },
5646         };
5647         uint16_t queue[priv->reta_idx_n];
5648         struct rte_flow_action_rss action_rss = {
5649                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5650                 .level = 0,
5651                 .types = priv->rss_conf.rss_hf,
5652                 .key_len = priv->rss_conf.rss_key_len,
5653                 .queue_num = priv->reta_idx_n,
5654                 .key = priv->rss_conf.rss_key,
5655                 .queue = queue,
5656         };
5657         struct rte_flow_action actions[] = {
5658                 {
5659                         .type = RTE_FLOW_ACTION_TYPE_RSS,
5660                         .conf = &action_rss,
5661                 },
5662                 {
5663                         .type = RTE_FLOW_ACTION_TYPE_END,
5664                 },
5665         };
5666         uint32_t flow_idx;
5667         struct rte_flow_error error;
5668         unsigned int i;
5669
5670         if (!priv->reta_idx_n || !priv->rxqs_n) {
5671                 return 0;
5672         }
5673         if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
5674                 action_rss.types = 0;
5675         for (i = 0; i != priv->reta_idx_n; ++i)
5676                 queue[i] = (*priv->reta_idx)[i];
5677         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5678                                 &attr, items, actions, false, &error);
5679         if (!flow_idx)
5680                 return -rte_errno;
5681         return 0;
5682 }
5683
5684 /**
5685  * Enable a flow control configured from the control plane.
5686  *
5687  * @param dev
5688  *   Pointer to Ethernet device.
5689  * @param eth_spec
5690  *   An Ethernet flow spec to apply.
5691  * @param eth_mask
5692  *   An Ethernet flow mask to apply.
5693  *
5694  * @return
5695  *   0 on success, a negative errno value otherwise and rte_errno is set.
5696  */
5697 int
5698 mlx5_ctrl_flow(struct rte_eth_dev *dev,
5699                struct rte_flow_item_eth *eth_spec,
5700                struct rte_flow_item_eth *eth_mask)
5701 {
5702         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
5703 }
5704
5705 /**
5706  * Create default miss flow rule matching lacp traffic
5707  *
5708  * @param dev
5709  *   Pointer to Ethernet device.
5710  * @param eth_spec
5711  *   An Ethernet flow spec to apply.
5712  *
5713  * @return
5714  *   0 on success, a negative errno value otherwise and rte_errno is set.
5715  */
5716 int
5717 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
5718 {
5719         struct mlx5_priv *priv = dev->data->dev_private;
5720         /*
5721          * The LACP matching is done by only using ether type since using
5722          * a multicast dst mac causes kernel to give low priority to this flow.
5723          */
5724         static const struct rte_flow_item_eth lacp_spec = {
5725                 .type = RTE_BE16(0x8809),
5726         };
5727         static const struct rte_flow_item_eth lacp_mask = {
5728                 .type = 0xffff,
5729         };
5730         const struct rte_flow_attr attr = {
5731                 .ingress = 1,
5732         };
5733         struct rte_flow_item items[] = {
5734                 {
5735                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5736                         .spec = &lacp_spec,
5737                         .mask = &lacp_mask,
5738                 },
5739                 {
5740                         .type = RTE_FLOW_ITEM_TYPE_END,
5741                 },
5742         };
5743         struct rte_flow_action actions[] = {
5744                 {
5745                         .type = (enum rte_flow_action_type)
5746                                 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
5747                 },
5748                 {
5749                         .type = RTE_FLOW_ACTION_TYPE_END,
5750                 },
5751         };
5752         struct rte_flow_error error;
5753         uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5754                                 &attr, items, actions, false, &error);
5755
5756         if (!flow_idx)
5757                 return -rte_errno;
5758         return 0;
5759 }
5760
5761 /**
5762  * Destroy a flow.
5763  *
5764  * @see rte_flow_destroy()
5765  * @see rte_flow_ops
5766  */
5767 int
5768 mlx5_flow_destroy(struct rte_eth_dev *dev,
5769                   struct rte_flow *flow,
5770                   struct rte_flow_error *error __rte_unused)
5771 {
5772         struct mlx5_priv *priv = dev->data->dev_private;
5773
5774         flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
5775         return 0;
5776 }
5777
5778 /**
5779  * Destroy all flows.
5780  *
5781  * @see rte_flow_flush()
5782  * @see rte_flow_ops
5783  */
5784 int
5785 mlx5_flow_flush(struct rte_eth_dev *dev,
5786                 struct rte_flow_error *error __rte_unused)
5787 {
5788         struct mlx5_priv *priv = dev->data->dev_private;
5789
5790         mlx5_flow_list_flush(dev, &priv->flows, false);
5791         return 0;
5792 }
5793
5794 /**
5795  * Isolated mode.
5796  *
5797  * @see rte_flow_isolate()
5798  * @see rte_flow_ops
5799  */
5800 int
5801 mlx5_flow_isolate(struct rte_eth_dev *dev,
5802                   int enable,
5803                   struct rte_flow_error *error)
5804 {
5805         struct mlx5_priv *priv = dev->data->dev_private;
5806
5807         if (dev->data->dev_started) {
5808                 rte_flow_error_set(error, EBUSY,
5809                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5810                                    NULL,
5811                                    "port must be stopped first");
5812                 return -rte_errno;
5813         }
5814         priv->isolated = !!enable;
5815         if (enable)
5816                 dev->dev_ops = &mlx5_os_dev_ops_isolate;
5817         else
5818                 dev->dev_ops = &mlx5_os_dev_ops;
5819
5820         dev->rx_descriptor_status = mlx5_rx_descriptor_status;
5821         dev->tx_descriptor_status = mlx5_tx_descriptor_status;
5822
5823         return 0;
5824 }
5825
5826 /**
5827  * Query a flow.
5828  *
5829  * @see rte_flow_query()
5830  * @see rte_flow_ops
5831  */
5832 static int
5833 flow_drv_query(struct rte_eth_dev *dev,
5834                uint32_t flow_idx,
5835                const struct rte_flow_action *actions,
5836                void *data,
5837                struct rte_flow_error *error)
5838 {
5839         struct mlx5_priv *priv = dev->data->dev_private;
5840         const struct mlx5_flow_driver_ops *fops;
5841         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5842                                                [MLX5_IPOOL_RTE_FLOW],
5843                                                flow_idx);
5844         enum mlx5_flow_drv_type ftype;
5845
5846         if (!flow) {
5847                 return rte_flow_error_set(error, ENOENT,
5848                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5849                           NULL,
5850                           "invalid flow handle");
5851         }
5852         ftype = flow->drv_type;
5853         MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
5854         fops = flow_get_drv_ops(ftype);
5855
5856         return fops->query(dev, flow, actions, data, error);
5857 }
5858
5859 /**
5860  * Query a flow.
5861  *
5862  * @see rte_flow_query()
5863  * @see rte_flow_ops
5864  */
5865 int
5866 mlx5_flow_query(struct rte_eth_dev *dev,
5867                 struct rte_flow *flow,
5868                 const struct rte_flow_action *actions,
5869                 void *data,
5870                 struct rte_flow_error *error)
5871 {
5872         int ret;
5873
5874         ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
5875                              error);
5876         if (ret < 0)
5877                 return ret;
5878         return 0;
5879 }
5880
5881 /**
5882  * Convert a flow director filter to a generic flow.
5883  *
5884  * @param dev
5885  *   Pointer to Ethernet device.
5886  * @param fdir_filter
5887  *   Flow director filter to add.
5888  * @param attributes
5889  *   Generic flow parameters structure.
5890  *
5891  * @return
5892  *   0 on success, a negative errno value otherwise and rte_errno is set.
5893  */
5894 static int
5895 flow_fdir_filter_convert(struct rte_eth_dev *dev,
5896                          const struct rte_eth_fdir_filter *fdir_filter,
5897                          struct mlx5_fdir *attributes)
5898 {
5899         struct mlx5_priv *priv = dev->data->dev_private;
5900         const struct rte_eth_fdir_input *input = &fdir_filter->input;
5901         const struct rte_eth_fdir_masks *mask =
5902                 &dev->data->dev_conf.fdir_conf.mask;
5903
5904         /* Validate queue number. */
5905         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
5906                 DRV_LOG(ERR, "port %u invalid queue number %d",
5907                         dev->data->port_id, fdir_filter->action.rx_queue);
5908                 rte_errno = EINVAL;
5909                 return -rte_errno;
5910         }
5911         attributes->attr.ingress = 1;
5912         attributes->items[0] = (struct rte_flow_item) {
5913                 .type = RTE_FLOW_ITEM_TYPE_ETH,
5914                 .spec = &attributes->l2,
5915                 .mask = &attributes->l2_mask,
5916         };
5917         switch (fdir_filter->action.behavior) {
5918         case RTE_ETH_FDIR_ACCEPT:
5919                 attributes->actions[0] = (struct rte_flow_action){
5920                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
5921                         .conf = &attributes->queue,
5922                 };
5923                 break;
5924         case RTE_ETH_FDIR_REJECT:
5925                 attributes->actions[0] = (struct rte_flow_action){
5926                         .type = RTE_FLOW_ACTION_TYPE_DROP,
5927                 };
5928                 break;
5929         default:
5930                 DRV_LOG(ERR, "port %u invalid behavior %d",
5931                         dev->data->port_id,
5932                         fdir_filter->action.behavior);
5933                 rte_errno = ENOTSUP;
5934                 return -rte_errno;
5935         }
5936         attributes->queue.index = fdir_filter->action.rx_queue;
5937         /* Handle L3. */
5938         switch (fdir_filter->input.flow_type) {
5939         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
5940         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
5941         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
5942                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
5943                         .src_addr = input->flow.ip4_flow.src_ip,
5944                         .dst_addr = input->flow.ip4_flow.dst_ip,
5945                         .time_to_live = input->flow.ip4_flow.ttl,
5946                         .type_of_service = input->flow.ip4_flow.tos,
5947                 };
5948                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
5949                         .src_addr = mask->ipv4_mask.src_ip,
5950                         .dst_addr = mask->ipv4_mask.dst_ip,
5951                         .time_to_live = mask->ipv4_mask.ttl,
5952                         .type_of_service = mask->ipv4_mask.tos,
5953                         .next_proto_id = mask->ipv4_mask.proto,
5954                 };
5955                 attributes->items[1] = (struct rte_flow_item){
5956                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
5957                         .spec = &attributes->l3,
5958                         .mask = &attributes->l3_mask,
5959                 };
5960                 break;
5961         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
5962         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
5963         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
5964                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
5965                         .hop_limits = input->flow.ipv6_flow.hop_limits,
5966                         .proto = input->flow.ipv6_flow.proto,
5967                 };
5968
5969                 memcpy(attributes->l3.ipv6.hdr.src_addr,
5970                        input->flow.ipv6_flow.src_ip,
5971                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
5972                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
5973                        input->flow.ipv6_flow.dst_ip,
5974                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
5975                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
5976                        mask->ipv6_mask.src_ip,
5977                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
5978                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
5979                        mask->ipv6_mask.dst_ip,
5980                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
5981                 attributes->items[1] = (struct rte_flow_item){
5982                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
5983                         .spec = &attributes->l3,
5984                         .mask = &attributes->l3_mask,
5985                 };
5986                 break;
5987         default:
5988                 DRV_LOG(ERR, "port %u invalid flow type%d",
5989                         dev->data->port_id, fdir_filter->input.flow_type);
5990                 rte_errno = ENOTSUP;
5991                 return -rte_errno;
5992         }
5993         /* Handle L4. */
5994         switch (fdir_filter->input.flow_type) {
5995         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
5996                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
5997                         .src_port = input->flow.udp4_flow.src_port,
5998                         .dst_port = input->flow.udp4_flow.dst_port,
5999                 };
6000                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
6001                         .src_port = mask->src_port_mask,
6002                         .dst_port = mask->dst_port_mask,
6003                 };
6004                 attributes->items[2] = (struct rte_flow_item){
6005                         .type = RTE_FLOW_ITEM_TYPE_UDP,
6006                         .spec = &attributes->l4,
6007                         .mask = &attributes->l4_mask,
6008                 };
6009                 break;
6010         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
6011                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
6012                         .src_port = input->flow.tcp4_flow.src_port,
6013                         .dst_port = input->flow.tcp4_flow.dst_port,
6014                 };
6015                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
6016                         .src_port = mask->src_port_mask,
6017                         .dst_port = mask->dst_port_mask,
6018                 };
6019                 attributes->items[2] = (struct rte_flow_item){
6020                         .type = RTE_FLOW_ITEM_TYPE_TCP,
6021                         .spec = &attributes->l4,
6022                         .mask = &attributes->l4_mask,
6023                 };
6024                 break;
6025         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
6026                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
6027                         .src_port = input->flow.udp6_flow.src_port,
6028                         .dst_port = input->flow.udp6_flow.dst_port,
6029                 };
6030                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
6031                         .src_port = mask->src_port_mask,
6032                         .dst_port = mask->dst_port_mask,
6033                 };
6034                 attributes->items[2] = (struct rte_flow_item){
6035                         .type = RTE_FLOW_ITEM_TYPE_UDP,
6036                         .spec = &attributes->l4,
6037                         .mask = &attributes->l4_mask,
6038                 };
6039                 break;
6040         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
6041                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
6042                         .src_port = input->flow.tcp6_flow.src_port,
6043                         .dst_port = input->flow.tcp6_flow.dst_port,
6044                 };
6045                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
6046                         .src_port = mask->src_port_mask,
6047                         .dst_port = mask->dst_port_mask,
6048                 };
6049                 attributes->items[2] = (struct rte_flow_item){
6050                         .type = RTE_FLOW_ITEM_TYPE_TCP,
6051                         .spec = &attributes->l4,
6052                         .mask = &attributes->l4_mask,
6053                 };
6054                 break;
6055         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
6056         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
6057                 break;
6058         default:
6059                 DRV_LOG(ERR, "port %u invalid flow type%d",
6060                         dev->data->port_id, fdir_filter->input.flow_type);
6061                 rte_errno = ENOTSUP;
6062                 return -rte_errno;
6063         }
6064         return 0;
6065 }
6066
6067 #define FLOW_FDIR_CMP(f1, f2, fld) \
6068         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
6069
6070 /**
6071  * Compare two FDIR flows. If items and actions are identical, the two flows are
6072  * regarded as same.
6073  *
6074  * @param dev
6075  *   Pointer to Ethernet device.
6076  * @param f1
6077  *   FDIR flow to compare.
6078  * @param f2
6079  *   FDIR flow to compare.
6080  *
6081  * @return
6082  *   Zero on match, 1 otherwise.
6083  */
6084 static int
6085 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
6086 {
6087         if (FLOW_FDIR_CMP(f1, f2, attr) ||
6088             FLOW_FDIR_CMP(f1, f2, l2) ||
6089             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
6090             FLOW_FDIR_CMP(f1, f2, l3) ||
6091             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
6092             FLOW_FDIR_CMP(f1, f2, l4) ||
6093             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
6094             FLOW_FDIR_CMP(f1, f2, actions[0].type))
6095                 return 1;
6096         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
6097             FLOW_FDIR_CMP(f1, f2, queue))
6098                 return 1;
6099         return 0;
6100 }
6101
6102 /**
6103  * Search device flow list to find out a matched FDIR flow.
6104  *
6105  * @param dev
6106  *   Pointer to Ethernet device.
6107  * @param fdir_flow
6108  *   FDIR flow to lookup.
6109  *
6110  * @return
6111  *   Index of flow if found, 0 otherwise.
6112  */
6113 static uint32_t
6114 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
6115 {
6116         struct mlx5_priv *priv = dev->data->dev_private;
6117         uint32_t flow_idx = 0;
6118         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6119
6120         MLX5_ASSERT(fdir_flow);
6121         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
6122                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, fdir_flow)) {
6123                         DRV_LOG(DEBUG, "port %u found FDIR flow %u",
6124                                 dev->data->port_id, flow_idx);
6125                         flow_idx = priv_fdir_flow->rix_flow;
6126                         break;
6127                 }
6128         }
6129         return flow_idx;
6130 }
6131
6132 /**
6133  * Add new flow director filter and store it in list.
6134  *
6135  * @param dev
6136  *   Pointer to Ethernet device.
6137  * @param fdir_filter
6138  *   Flow director filter to add.
6139  *
6140  * @return
6141  *   0 on success, a negative errno value otherwise and rte_errno is set.
6142  */
6143 static int
6144 flow_fdir_filter_add(struct rte_eth_dev *dev,
6145                      const struct rte_eth_fdir_filter *fdir_filter)
6146 {
6147         struct mlx5_priv *priv = dev->data->dev_private;
6148         struct mlx5_fdir *fdir_flow;
6149         struct rte_flow *flow;
6150         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6151         uint32_t flow_idx;
6152         int ret;
6153
6154         fdir_flow = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*fdir_flow), 0,
6155                                 SOCKET_ID_ANY);
6156         if (!fdir_flow) {
6157                 rte_errno = ENOMEM;
6158                 return -rte_errno;
6159         }
6160         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
6161         if (ret)
6162                 goto error;
6163         flow_idx = flow_fdir_filter_lookup(dev, fdir_flow);
6164         if (flow_idx) {
6165                 rte_errno = EEXIST;
6166                 goto error;
6167         }
6168         priv_fdir_flow = mlx5_malloc(MLX5_MEM_ZERO,
6169                                      sizeof(struct mlx5_fdir_flow),
6170                                      0, SOCKET_ID_ANY);
6171         if (!priv_fdir_flow) {
6172                 rte_errno = ENOMEM;
6173                 goto error;
6174         }
6175         flow_idx = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
6176                                     fdir_flow->items, fdir_flow->actions, true,
6177                                     NULL);
6178         flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
6179         if (!flow)
6180                 goto error;
6181         flow->fdir = 1;
6182         priv_fdir_flow->fdir = fdir_flow;
6183         priv_fdir_flow->rix_flow = flow_idx;
6184         LIST_INSERT_HEAD(&priv->fdir_flows, priv_fdir_flow, next);
6185         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
6186                 dev->data->port_id, (void *)flow);
6187         return 0;
6188 error:
6189         mlx5_free(priv_fdir_flow);
6190         mlx5_free(fdir_flow);
6191         return -rte_errno;
6192 }
6193
6194 /**
6195  * Delete specific filter.
6196  *
6197  * @param dev
6198  *   Pointer to Ethernet device.
6199  * @param fdir_filter
6200  *   Filter to be deleted.
6201  *
6202  * @return
6203  *   0 on success, a negative errno value otherwise and rte_errno is set.
6204  */
6205 static int
6206 flow_fdir_filter_delete(struct rte_eth_dev *dev,
6207                         const struct rte_eth_fdir_filter *fdir_filter)
6208 {
6209         struct mlx5_priv *priv = dev->data->dev_private;
6210         uint32_t flow_idx;
6211         struct mlx5_fdir fdir_flow = {
6212                 .attr.group = 0,
6213         };
6214         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6215         int ret;
6216
6217         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
6218         if (ret)
6219                 return -rte_errno;
6220         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
6221                 /* Find the fdir in priv list */
6222                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, &fdir_flow))
6223                         break;
6224         }
6225         if (!priv_fdir_flow)
6226                 return 0;
6227         LIST_REMOVE(priv_fdir_flow, next);
6228         flow_idx = priv_fdir_flow->rix_flow;
6229         flow_list_destroy(dev, &priv->flows, flow_idx);
6230         mlx5_free(priv_fdir_flow->fdir);
6231         mlx5_free(priv_fdir_flow);
6232         DRV_LOG(DEBUG, "port %u deleted FDIR flow %u",
6233                 dev->data->port_id, flow_idx);
6234         return 0;
6235 }
6236
6237 /**
6238  * Update queue for specific filter.
6239  *
6240  * @param dev
6241  *   Pointer to Ethernet device.
6242  * @param fdir_filter
6243  *   Filter to be updated.
6244  *
6245  * @return
6246  *   0 on success, a negative errno value otherwise and rte_errno is set.
6247  */
6248 static int
6249 flow_fdir_filter_update(struct rte_eth_dev *dev,
6250                         const struct rte_eth_fdir_filter *fdir_filter)
6251 {
6252         int ret;
6253
6254         ret = flow_fdir_filter_delete(dev, fdir_filter);
6255         if (ret)
6256                 return ret;
6257         return flow_fdir_filter_add(dev, fdir_filter);
6258 }
6259
6260 /**
6261  * Flush all filters.
6262  *
6263  * @param dev
6264  *   Pointer to Ethernet device.
6265  */
6266 static void
6267 flow_fdir_filter_flush(struct rte_eth_dev *dev)
6268 {
6269         struct mlx5_priv *priv = dev->data->dev_private;
6270         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6271
6272         while (!LIST_EMPTY(&priv->fdir_flows)) {
6273                 priv_fdir_flow = LIST_FIRST(&priv->fdir_flows);
6274                 LIST_REMOVE(priv_fdir_flow, next);
6275                 flow_list_destroy(dev, &priv->flows, priv_fdir_flow->rix_flow);
6276                 mlx5_free(priv_fdir_flow->fdir);
6277                 mlx5_free(priv_fdir_flow);
6278         }
6279 }
6280
6281 /**
6282  * Get flow director information.
6283  *
6284  * @param dev
6285  *   Pointer to Ethernet device.
6286  * @param[out] fdir_info
6287  *   Resulting flow director information.
6288  */
6289 static void
6290 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
6291 {
6292         struct rte_eth_fdir_masks *mask =
6293                 &dev->data->dev_conf.fdir_conf.mask;
6294
6295         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
6296         fdir_info->guarant_spc = 0;
6297         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
6298         fdir_info->max_flexpayload = 0;
6299         fdir_info->flow_types_mask[0] = 0;
6300         fdir_info->flex_payload_unit = 0;
6301         fdir_info->max_flex_payload_segment_num = 0;
6302         fdir_info->flex_payload_limit = 0;
6303         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
6304 }
6305
6306 /**
6307  * Deal with flow director operations.
6308  *
6309  * @param dev
6310  *   Pointer to Ethernet device.
6311  * @param filter_op
6312  *   Operation to perform.
6313  * @param arg
6314  *   Pointer to operation-specific structure.
6315  *
6316  * @return
6317  *   0 on success, a negative errno value otherwise and rte_errno is set.
6318  */
6319 static int
6320 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
6321                     void *arg)
6322 {
6323         enum rte_fdir_mode fdir_mode =
6324                 dev->data->dev_conf.fdir_conf.mode;
6325
6326         if (filter_op == RTE_ETH_FILTER_NOP)
6327                 return 0;
6328         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
6329             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
6330                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
6331                         dev->data->port_id, fdir_mode);
6332                 rte_errno = EINVAL;
6333                 return -rte_errno;
6334         }
6335         switch (filter_op) {
6336         case RTE_ETH_FILTER_ADD:
6337                 return flow_fdir_filter_add(dev, arg);
6338         case RTE_ETH_FILTER_UPDATE:
6339                 return flow_fdir_filter_update(dev, arg);
6340         case RTE_ETH_FILTER_DELETE:
6341                 return flow_fdir_filter_delete(dev, arg);
6342         case RTE_ETH_FILTER_FLUSH:
6343                 flow_fdir_filter_flush(dev);
6344                 break;
6345         case RTE_ETH_FILTER_INFO:
6346                 flow_fdir_info_get(dev, arg);
6347                 break;
6348         default:
6349                 DRV_LOG(DEBUG, "port %u unknown operation %u",
6350                         dev->data->port_id, filter_op);
6351                 rte_errno = EINVAL;
6352                 return -rte_errno;
6353         }
6354         return 0;
6355 }
6356
6357 /**
6358  * Manage filter operations.
6359  *
6360  * @param dev
6361  *   Pointer to Ethernet device structure.
6362  * @param filter_type
6363  *   Filter type.
6364  * @param filter_op
6365  *   Operation to perform.
6366  * @param arg
6367  *   Pointer to operation-specific structure.
6368  *
6369  * @return
6370  *   0 on success, a negative errno value otherwise and rte_errno is set.
6371  */
6372 int
6373 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6374                      enum rte_filter_type filter_type,
6375                      enum rte_filter_op filter_op,
6376                      void *arg)
6377 {
6378         switch (filter_type) {
6379         case RTE_ETH_FILTER_GENERIC:
6380                 if (filter_op != RTE_ETH_FILTER_GET) {
6381                         rte_errno = EINVAL;
6382                         return -rte_errno;
6383                 }
6384                 *(const void **)arg = &mlx5_flow_ops;
6385                 return 0;
6386         case RTE_ETH_FILTER_FDIR:
6387                 return flow_fdir_ctrl_func(dev, filter_op, arg);
6388         default:
6389                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
6390                         dev->data->port_id, filter_type);
6391                 rte_errno = ENOTSUP;
6392                 return -rte_errno;
6393         }
6394         return 0;
6395 }
6396
6397 /**
6398  * Create the needed meter and suffix tables.
6399  *
6400  * @param[in] dev
6401  *   Pointer to Ethernet device.
6402  * @param[in] fm
6403  *   Pointer to the flow meter.
6404  *
6405  * @return
6406  *   Pointer to table set on success, NULL otherwise.
6407  */
6408 struct mlx5_meter_domains_infos *
6409 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6410                           const struct mlx5_flow_meter *fm)
6411 {
6412         const struct mlx5_flow_driver_ops *fops;
6413
6414         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6415         return fops->create_mtr_tbls(dev, fm);
6416 }
6417
6418 /**
6419  * Destroy the meter table set.
6420  *
6421  * @param[in] dev
6422  *   Pointer to Ethernet device.
6423  * @param[in] tbl
6424  *   Pointer to the meter table set.
6425  *
6426  * @return
6427  *   0 on success.
6428  */
6429 int
6430 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6431                            struct mlx5_meter_domains_infos *tbls)
6432 {
6433         const struct mlx5_flow_driver_ops *fops;
6434
6435         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6436         return fops->destroy_mtr_tbls(dev, tbls);
6437 }
6438
6439 /**
6440  * Create policer rules.
6441  *
6442  * @param[in] dev
6443  *   Pointer to Ethernet device.
6444  * @param[in] fm
6445  *   Pointer to flow meter structure.
6446  * @param[in] attr
6447  *   Pointer to flow attributes.
6448  *
6449  * @return
6450  *   0 on success, -1 otherwise.
6451  */
6452 int
6453 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6454                                struct mlx5_flow_meter *fm,
6455                                const struct rte_flow_attr *attr)
6456 {
6457         const struct mlx5_flow_driver_ops *fops;
6458
6459         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6460         return fops->create_policer_rules(dev, fm, attr);
6461 }
6462
6463 /**
6464  * Destroy policer rules.
6465  *
6466  * @param[in] fm
6467  *   Pointer to flow meter structure.
6468  * @param[in] attr
6469  *   Pointer to flow attributes.
6470  *
6471  * @return
6472  *   0 on success, -1 otherwise.
6473  */
6474 int
6475 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6476                                 struct mlx5_flow_meter *fm,
6477                                 const struct rte_flow_attr *attr)
6478 {
6479         const struct mlx5_flow_driver_ops *fops;
6480
6481         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6482         return fops->destroy_policer_rules(dev, fm, attr);
6483 }
6484
6485 /**
6486  * Allocate a counter.
6487  *
6488  * @param[in] dev
6489  *   Pointer to Ethernet device structure.
6490  *
6491  * @return
6492  *   Index to allocated counter  on success, 0 otherwise.
6493  */
6494 uint32_t
6495 mlx5_counter_alloc(struct rte_eth_dev *dev)
6496 {
6497         const struct mlx5_flow_driver_ops *fops;
6498         struct rte_flow_attr attr = { .transfer = 0 };
6499
6500         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6501                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6502                 return fops->counter_alloc(dev);
6503         }
6504         DRV_LOG(ERR,
6505                 "port %u counter allocate is not supported.",
6506                  dev->data->port_id);
6507         return 0;
6508 }
6509
6510 /**
6511  * Free a counter.
6512  *
6513  * @param[in] dev
6514  *   Pointer to Ethernet device structure.
6515  * @param[in] cnt
6516  *   Index to counter to be free.
6517  */
6518 void
6519 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6520 {
6521         const struct mlx5_flow_driver_ops *fops;
6522         struct rte_flow_attr attr = { .transfer = 0 };
6523
6524         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6525                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6526                 fops->counter_free(dev, cnt);
6527                 return;
6528         }
6529         DRV_LOG(ERR,
6530                 "port %u counter free is not supported.",
6531                  dev->data->port_id);
6532 }
6533
6534 /**
6535  * Query counter statistics.
6536  *
6537  * @param[in] dev
6538  *   Pointer to Ethernet device structure.
6539  * @param[in] cnt
6540  *   Index to counter to query.
6541  * @param[in] clear
6542  *   Set to clear counter statistics.
6543  * @param[out] pkts
6544  *   The counter hits packets number to save.
6545  * @param[out] bytes
6546  *   The counter hits bytes number to save.
6547  *
6548  * @return
6549  *   0 on success, a negative errno value otherwise.
6550  */
6551 int
6552 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6553                    bool clear, uint64_t *pkts, uint64_t *bytes)
6554 {
6555         const struct mlx5_flow_driver_ops *fops;
6556         struct rte_flow_attr attr = { .transfer = 0 };
6557
6558         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6559                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6560                 return fops->counter_query(dev, cnt, clear, pkts, bytes);
6561         }
6562         DRV_LOG(ERR,
6563                 "port %u counter query is not supported.",
6564                  dev->data->port_id);
6565         return -ENOTSUP;
6566 }
6567
6568 #define MLX5_POOL_QUERY_FREQ_US 1000000
6569
6570 /**
6571  * Get number of all validate pools.
6572  *
6573  * @param[in] sh
6574  *   Pointer to mlx5_dev_ctx_shared object.
6575  *
6576  * @return
6577  *   The number of all validate pools.
6578  */
6579 static uint32_t
6580 mlx5_get_all_valid_pool_count(struct mlx5_dev_ctx_shared *sh)
6581 {
6582         int i;
6583         uint32_t pools_n = 0;
6584
6585         for (i = 0; i < MLX5_CCONT_TYPE_MAX; ++i)
6586                 pools_n += rte_atomic16_read(&sh->cmng.ccont[i].n_valid);
6587         return pools_n;
6588 }
6589
6590 /**
6591  * Set the periodic procedure for triggering asynchronous batch queries for all
6592  * the counter pools.
6593  *
6594  * @param[in] sh
6595  *   Pointer to mlx5_dev_ctx_shared object.
6596  */
6597 void
6598 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6599 {
6600         uint32_t pools_n, us;
6601
6602         pools_n = mlx5_get_all_valid_pool_count(sh);
6603         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6604         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6605         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6606                 sh->cmng.query_thread_on = 0;
6607                 DRV_LOG(ERR, "Cannot reinitialize query alarm");
6608         } else {
6609                 sh->cmng.query_thread_on = 1;
6610         }
6611 }
6612
6613 /**
6614  * The periodic procedure for triggering asynchronous batch queries for all the
6615  * counter pools. This function is probably called by the host thread.
6616  *
6617  * @param[in] arg
6618  *   The parameter for the alarm process.
6619  */
6620 void
6621 mlx5_flow_query_alarm(void *arg)
6622 {
6623         struct mlx5_dev_ctx_shared *sh = arg;
6624         struct mlx5_devx_obj *dcs;
6625         uint16_t offset;
6626         int ret;
6627         uint8_t batch = sh->cmng.batch;
6628         uint8_t age = sh->cmng.age;
6629         uint16_t pool_index = sh->cmng.pool_index;
6630         struct mlx5_pools_container *cont;
6631         struct mlx5_flow_counter_pool *pool;
6632         int cont_loop = MLX5_CCONT_TYPE_MAX;
6633
6634         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6635                 goto set_alarm;
6636 next_container:
6637         cont = MLX5_CNT_CONTAINER(sh, batch, age);
6638         rte_spinlock_lock(&cont->resize_sl);
6639         if (!cont->pools) {
6640                 rte_spinlock_unlock(&cont->resize_sl);
6641                 /* Check if all the containers are empty. */
6642                 if (unlikely(--cont_loop == 0))
6643                         goto set_alarm;
6644                 batch ^= 0x1;
6645                 pool_index = 0;
6646                 if (batch == 0 && pool_index == 0) {
6647                         age ^= 0x1;
6648                         sh->cmng.batch = batch;
6649                         sh->cmng.age = age;
6650                 }
6651                 goto next_container;
6652         }
6653         pool = cont->pools[pool_index];
6654         rte_spinlock_unlock(&cont->resize_sl);
6655         if (pool->raw_hw)
6656                 /* There is a pool query in progress. */
6657                 goto set_alarm;
6658         pool->raw_hw =
6659                 LIST_FIRST(&sh->cmng.free_stat_raws);
6660         if (!pool->raw_hw)
6661                 /* No free counter statistics raw memory. */
6662                 goto set_alarm;
6663         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
6664                                                               (&pool->a64_dcs);
6665         if (dcs->id & (MLX5_CNT_BATCH_QUERY_ID_ALIGNMENT - 1)) {
6666                 /* Pool without valid counter. */
6667                 pool->raw_hw = NULL;
6668                 goto next_pool;
6669         }
6670         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
6671         /*
6672          * Identify the counters released between query trigger and query
6673          * handle more effiecntly. The counter released in this gap period
6674          * should wait for a new round of query as the new arrived packets
6675          * will not be taken into account.
6676          */
6677         pool->query_gen++;
6678         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
6679                                                offset, NULL, NULL,
6680                                                pool->raw_hw->mem_mng->dm->id,
6681                                                (void *)(uintptr_t)
6682                                                (pool->raw_hw->data + offset),
6683                                                sh->devx_comp,
6684                                                (uint64_t)(uintptr_t)pool);
6685         if (ret) {
6686                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6687                         " %d", pool->min_dcs->id);
6688                 pool->raw_hw = NULL;
6689                 goto set_alarm;
6690         }
6691         pool->raw_hw->min_dcs_id = dcs->id;
6692         LIST_REMOVE(pool->raw_hw, next);
6693         sh->cmng.pending_queries++;
6694 next_pool:
6695         pool_index++;
6696         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
6697                 batch ^= 0x1;
6698                 pool_index = 0;
6699                 if (batch == 0 && pool_index == 0)
6700                         age ^= 0x1;
6701         }
6702 set_alarm:
6703         sh->cmng.batch = batch;
6704         sh->cmng.pool_index = pool_index;
6705         sh->cmng.age = age;
6706         mlx5_set_query_alarm(sh);
6707 }
6708
6709 /**
6710  * Check and callback event for new aged flow in the counter pool
6711  *
6712  * @param[in] sh
6713  *   Pointer to mlx5_dev_ctx_shared object.
6714  * @param[in] pool
6715  *   Pointer to Current counter pool.
6716  */
6717 static void
6718 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
6719                    struct mlx5_flow_counter_pool *pool)
6720 {
6721         struct mlx5_priv *priv;
6722         struct mlx5_flow_counter *cnt;
6723         struct mlx5_age_info *age_info;
6724         struct mlx5_age_param *age_param;
6725         struct mlx5_counter_stats_raw *cur = pool->raw_hw;
6726         struct mlx5_counter_stats_raw *prev = pool->raw;
6727         uint16_t curr = rte_rdtsc() / (rte_get_tsc_hz() / 10);
6728         uint32_t i;
6729
6730         for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
6731                 cnt = MLX5_POOL_GET_CNT(pool, i);
6732                 age_param = MLX5_CNT_TO_AGE(cnt);
6733                 if (rte_atomic16_read(&age_param->state) != AGE_CANDIDATE)
6734                         continue;
6735                 if (cur->data[i].hits != prev->data[i].hits) {
6736                         age_param->expire = curr + age_param->timeout;
6737                         continue;
6738                 }
6739                 if ((uint16_t)(curr - age_param->expire) >= (UINT16_MAX / 2))
6740                         continue;
6741                 /**
6742                  * Hold the lock first, or if between the
6743                  * state AGE_TMOUT and tailq operation the
6744                  * release happened, the release procedure
6745                  * may delete a non-existent tailq node.
6746                  */
6747                 priv = rte_eth_devices[age_param->port_id].data->dev_private;
6748                 age_info = GET_PORT_AGE_INFO(priv);
6749                 rte_spinlock_lock(&age_info->aged_sl);
6750                 /* If the cpmset fails, release happens. */
6751                 if (rte_atomic16_cmpset((volatile uint16_t *)
6752                                         &age_param->state,
6753                                         AGE_CANDIDATE,
6754                                         AGE_TMOUT) ==
6755                                         AGE_CANDIDATE) {
6756                         TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
6757                         MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
6758                 }
6759                 rte_spinlock_unlock(&age_info->aged_sl);
6760         }
6761         for (i = 0; i < sh->max_port; i++) {
6762                 age_info = &sh->port[i].age_info;
6763                 if (!MLX5_AGE_GET(age_info, MLX5_AGE_EVENT_NEW))
6764                         continue;
6765                 if (MLX5_AGE_GET(age_info, MLX5_AGE_TRIGGER))
6766                         rte_eth_dev_callback_process
6767                                 (&rte_eth_devices[sh->port[i].devx_ih_port_id],
6768                                 RTE_ETH_EVENT_FLOW_AGED, NULL);
6769                 age_info->flags = 0;
6770         }
6771 }
6772
6773 /**
6774  * Handler for the HW respond about ready values from an asynchronous batch
6775  * query. This function is probably called by the host thread.
6776  *
6777  * @param[in] sh
6778  *   The pointer to the shared device context.
6779  * @param[in] async_id
6780  *   The Devx async ID.
6781  * @param[in] status
6782  *   The status of the completion.
6783  */
6784 void
6785 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
6786                                   uint64_t async_id, int status)
6787 {
6788         struct mlx5_flow_counter_pool *pool =
6789                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
6790         struct mlx5_counter_stats_raw *raw_to_free;
6791         uint8_t age = !!IS_AGE_POOL(pool);
6792         uint8_t query_gen = pool->query_gen ^ 1;
6793         struct mlx5_pools_container *cont =
6794                 MLX5_CNT_CONTAINER(sh, !IS_EXT_POOL(pool), age);
6795
6796         if (unlikely(status)) {
6797                 raw_to_free = pool->raw_hw;
6798         } else {
6799                 raw_to_free = pool->raw;
6800                 if (IS_AGE_POOL(pool))
6801                         mlx5_flow_aging_check(sh, pool);
6802                 rte_spinlock_lock(&pool->sl);
6803                 pool->raw = pool->raw_hw;
6804                 rte_spinlock_unlock(&pool->sl);
6805                 /* Be sure the new raw counters data is updated in memory. */
6806                 rte_io_wmb();
6807                 if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
6808                         rte_spinlock_lock(&cont->csl);
6809                         TAILQ_CONCAT(&cont->counters,
6810                                      &pool->counters[query_gen], next);
6811                         rte_spinlock_unlock(&cont->csl);
6812                 }
6813         }
6814         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
6815         pool->raw_hw = NULL;
6816         sh->cmng.pending_queries--;
6817 }
6818
6819 /**
6820  * Translate the rte_flow group index to HW table value.
6821  *
6822  * @param[in] attributes
6823  *   Pointer to flow attributes
6824  * @param[in] external
6825  *   Value is part of flow rule created by request external to PMD.
6826  * @param[in] group
6827  *   rte_flow group index value.
6828  * @param[out] fdb_def_rule
6829  *   Whether fdb jump to table 1 is configured.
6830  * @param[out] table
6831  *   HW table value.
6832  * @param[out] error
6833  *   Pointer to error structure.
6834  *
6835  * @return
6836  *   0 on success, a negative errno value otherwise and rte_errno is set.
6837  */
6838 int
6839 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
6840                          uint32_t group, bool fdb_def_rule, uint32_t *table,
6841                          struct rte_flow_error *error)
6842 {
6843         if (attributes->transfer && external && fdb_def_rule) {
6844                 if (group == UINT32_MAX)
6845                         return rte_flow_error_set
6846                                                 (error, EINVAL,
6847                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
6848                                                  NULL,
6849                                                  "group index not supported");
6850                 *table = group + 1;
6851         } else {
6852                 *table = group;
6853         }
6854         return 0;
6855 }
6856
6857 /**
6858  * Discover availability of metadata reg_c's.
6859  *
6860  * Iteratively use test flows to check availability.
6861  *
6862  * @param[in] dev
6863  *   Pointer to the Ethernet device structure.
6864  *
6865  * @return
6866  *   0 on success, a negative errno value otherwise and rte_errno is set.
6867  */
6868 int
6869 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
6870 {
6871         struct mlx5_priv *priv = dev->data->dev_private;
6872         struct mlx5_dev_config *config = &priv->config;
6873         enum modify_reg idx;
6874         int n = 0;
6875
6876         /* reg_c[0] and reg_c[1] are reserved. */
6877         config->flow_mreg_c[n++] = REG_C_0;
6878         config->flow_mreg_c[n++] = REG_C_1;
6879         /* Discover availability of other reg_c's. */
6880         for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
6881                 struct rte_flow_attr attr = {
6882                         .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
6883                         .priority = MLX5_FLOW_PRIO_RSVD,
6884                         .ingress = 1,
6885                 };
6886                 struct rte_flow_item items[] = {
6887                         [0] = {
6888                                 .type = RTE_FLOW_ITEM_TYPE_END,
6889                         },
6890                 };
6891                 struct rte_flow_action actions[] = {
6892                         [0] = {
6893                                 .type = (enum rte_flow_action_type)
6894                                         MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
6895                                 .conf = &(struct mlx5_flow_action_copy_mreg){
6896                                         .src = REG_C_1,
6897                                         .dst = idx,
6898                                 },
6899                         },
6900                         [1] = {
6901                                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
6902                                 .conf = &(struct rte_flow_action_jump){
6903                                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6904                                 },
6905                         },
6906                         [2] = {
6907                                 .type = RTE_FLOW_ACTION_TYPE_END,
6908                         },
6909                 };
6910                 uint32_t flow_idx;
6911                 struct rte_flow *flow;
6912                 struct rte_flow_error error;
6913
6914                 if (!config->dv_flow_en)
6915                         break;
6916                 /* Create internal flow, validation skips copy action. */
6917                 flow_idx = flow_list_create(dev, NULL, &attr, items,
6918                                             actions, false, &error);
6919                 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
6920                                       flow_idx);
6921                 if (!flow)
6922                         continue;
6923                 if (dev->data->dev_started || !flow_drv_apply(dev, flow, NULL))
6924                         config->flow_mreg_c[n++] = idx;
6925                 flow_list_destroy(dev, NULL, flow_idx);
6926         }
6927         for (; n < MLX5_MREG_C_NUM; ++n)
6928                 config->flow_mreg_c[n] = REG_NON;
6929         return 0;
6930 }
6931
6932 /**
6933  * Dump flow raw hw data to file
6934  *
6935  * @param[in] dev
6936  *    The pointer to Ethernet device.
6937  * @param[in] file
6938  *   A pointer to a file for output.
6939  * @param[out] error
6940  *   Perform verbose error reporting if not NULL. PMDs initialize this
6941  *   structure in case of error only.
6942  * @return
6943  *   0 on success, a nagative value otherwise.
6944  */
6945 int
6946 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
6947                    FILE *file,
6948                    struct rte_flow_error *error __rte_unused)
6949 {
6950         struct mlx5_priv *priv = dev->data->dev_private;
6951         struct mlx5_dev_ctx_shared *sh = priv->sh;
6952
6953         if (!priv->config.dv_flow_en) {
6954                 if (fputs("device dv flow disabled\n", file) <= 0)
6955                         return -errno;
6956                 return -ENOTSUP;
6957         }
6958         return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
6959                                        sh->tx_domain, file);
6960 }
6961
6962 /**
6963  * Get aged-out flows.
6964  *
6965  * @param[in] dev
6966  *   Pointer to the Ethernet device structure.
6967  * @param[in] context
6968  *   The address of an array of pointers to the aged-out flows contexts.
6969  * @param[in] nb_countexts
6970  *   The length of context array pointers.
6971  * @param[out] error
6972  *   Perform verbose error reporting if not NULL. Initialized in case of
6973  *   error only.
6974  *
6975  * @return
6976  *   how many contexts get in success, otherwise negative errno value.
6977  *   if nb_contexts is 0, return the amount of all aged contexts.
6978  *   if nb_contexts is not 0 , return the amount of aged flows reported
6979  *   in the context array.
6980  */
6981 int
6982 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
6983                         uint32_t nb_contexts, struct rte_flow_error *error)
6984 {
6985         const struct mlx5_flow_driver_ops *fops;
6986         struct rte_flow_attr attr = { .transfer = 0 };
6987
6988         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6989                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6990                 return fops->get_aged_flows(dev, contexts, nb_contexts,
6991                                                     error);
6992         }
6993         DRV_LOG(ERR,
6994                 "port %u get aged flows is not supported.",
6995                  dev->data->port_id);
6996         return -ENOTSUP;
6997 }