bus/pci: change IOVA as VA flag name
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE),
131                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
132                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133                         ETH_RSS_NONFRAG_IPV4_OTHER,
134         },
135         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137                                                  MLX5_EXPANSION_VXLAN_GPE),
138                 .type = RTE_FLOW_ITEM_TYPE_UDP,
139                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140         },
141         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142                 .type = RTE_FLOW_ITEM_TYPE_TCP,
143                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144         },
145         [MLX5_EXPANSION_OUTER_IPV6] = {
146                 .next = RTE_FLOW_EXPAND_RSS_NEXT
147                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
148                          MLX5_EXPANSION_OUTER_IPV6_TCP),
149                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
150                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151                         ETH_RSS_NONFRAG_IPV6_OTHER,
152         },
153         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155                                                  MLX5_EXPANSION_VXLAN_GPE),
156                 .type = RTE_FLOW_ITEM_TYPE_UDP,
157                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158         },
159         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160                 .type = RTE_FLOW_ITEM_TYPE_TCP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162         },
163         [MLX5_EXPANSION_VXLAN] = {
164                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
166         },
167         [MLX5_EXPANSION_VXLAN_GPE] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169                                                  MLX5_EXPANSION_IPV4,
170                                                  MLX5_EXPANSION_IPV6),
171                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172         },
173         [MLX5_EXPANSION_GRE] = {
174                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175                 .type = RTE_FLOW_ITEM_TYPE_GRE,
176         },
177         [MLX5_EXPANSION_MPLS] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179                                                  MLX5_EXPANSION_IPV6),
180                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
181         },
182         [MLX5_EXPANSION_ETH] = {
183                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184                                                  MLX5_EXPANSION_IPV6),
185                 .type = RTE_FLOW_ITEM_TYPE_ETH,
186         },
187         [MLX5_EXPANSION_ETH_VLAN] = {
188                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193                                                  MLX5_EXPANSION_IPV6),
194                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
195         },
196         [MLX5_EXPANSION_IPV4] = {
197                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198                                                  MLX5_EXPANSION_IPV4_TCP),
199                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
200                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201                         ETH_RSS_NONFRAG_IPV4_OTHER,
202         },
203         [MLX5_EXPANSION_IPV4_UDP] = {
204                 .type = RTE_FLOW_ITEM_TYPE_UDP,
205                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206         },
207         [MLX5_EXPANSION_IPV4_TCP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_TCP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210         },
211         [MLX5_EXPANSION_IPV6] = {
212                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213                                                  MLX5_EXPANSION_IPV6_TCP),
214                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
215                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216                         ETH_RSS_NONFRAG_IPV6_OTHER,
217         },
218         [MLX5_EXPANSION_IPV6_UDP] = {
219                 .type = RTE_FLOW_ITEM_TYPE_UDP,
220                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221         },
222         [MLX5_EXPANSION_IPV6_TCP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_TCP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225         },
226 };
227
228 static const struct rte_flow_ops mlx5_flow_ops = {
229         .validate = mlx5_flow_validate,
230         .create = mlx5_flow_create,
231         .destroy = mlx5_flow_destroy,
232         .flush = mlx5_flow_flush,
233         .isolate = mlx5_flow_isolate,
234         .query = mlx5_flow_query,
235 };
236
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239         struct rte_flow_attr attr;
240         struct rte_flow_item items[4];
241         struct rte_flow_item_eth l2;
242         struct rte_flow_item_eth l2_mask;
243         union {
244                 struct rte_flow_item_ipv4 ipv4;
245                 struct rte_flow_item_ipv6 ipv6;
246         } l3;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3_mask;
251         union {
252                 struct rte_flow_item_udp udp;
253                 struct rte_flow_item_tcp tcp;
254         } l4;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4_mask;
259         struct rte_flow_action actions[2];
260         struct rte_flow_action_queue queue;
261 };
262
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271         { 9, 10, 11 }, { 12, 13, 14 },
272 };
273
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281         {
282                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
283                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284         },
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_GRE,
291                 .ptype = RTE_PTYPE_TUNNEL_GRE,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300         },
301 };
302
303 /**
304  * Discover the maximum number of priority available.
305  *
306  * @param[in] dev
307  *   Pointer to the Ethernet device structure.
308  *
309  * @return
310  *   number of supported flow priority on success, a negative errno
311  *   value otherwise and rte_errno is set.
312  */
313 int
314 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
315 {
316         struct mlx5_priv *priv = dev->data->dev_private;
317         struct {
318                 struct ibv_flow_attr attr;
319                 struct ibv_flow_spec_eth eth;
320                 struct ibv_flow_spec_action_drop drop;
321         } flow_attr = {
322                 .attr = {
323                         .num_of_specs = 2,
324                         .port = (uint8_t)priv->ibv_port,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         mlx5_hrxq_drop_release(dev);
354         switch (priority) {
355         case 8:
356                 priority = RTE_DIM(priority_map_3);
357                 break;
358         case 16:
359                 priority = RTE_DIM(priority_map_5);
360                 break;
361         default:
362                 rte_errno = ENOTSUP;
363                 DRV_LOG(ERR,
364                         "port %u verbs maximum priority: %d expected 8/16",
365                         dev->data->port_id, priority);
366                 return -rte_errno;
367         }
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct mlx5_priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint64_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539         struct mlx5_priv *priv = dev->data->dev_private;
540         struct rte_flow *flow = dev_flow->flow;
541         const int mark = !!(flow->actions &
542                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544         unsigned int i;
545
546         for (i = 0; i != flow->rss.queue_num; ++i) {
547                 int idx = (*flow->queue)[i];
548                 struct mlx5_rxq_ctrl *rxq_ctrl =
549                         container_of((*priv->rxqs)[idx],
550                                      struct mlx5_rxq_ctrl, rxq);
551
552                 if (mark) {
553                         rxq_ctrl->rxq.mark = 1;
554                         rxq_ctrl->flow_mark_n++;
555                 }
556                 if (tunnel) {
557                         unsigned int j;
558
559                         /* Increase the counter matching the flow. */
560                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561                                 if ((tunnels_info[j].tunnel &
562                                      dev_flow->layers) ==
563                                     tunnels_info[j].tunnel) {
564                                         rxq_ctrl->flow_tunnels_n[j]++;
565                                         break;
566                                 }
567                         }
568                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
569                 }
570         }
571 }
572
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584         struct mlx5_flow *dev_flow;
585
586         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587                 flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602         struct mlx5_priv *priv = dev->data->dev_private;
603         struct rte_flow *flow = dev_flow->flow;
604         const int mark = !!(flow->actions &
605                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607         unsigned int i;
608
609         assert(dev->data->dev_started);
610         for (i = 0; i != flow->rss.queue_num; ++i) {
611                 int idx = (*flow->queue)[i];
612                 struct mlx5_rxq_ctrl *rxq_ctrl =
613                         container_of((*priv->rxqs)[idx],
614                                      struct mlx5_rxq_ctrl, rxq);
615
616                 if (mark) {
617                         rxq_ctrl->flow_mark_n--;
618                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619                 }
620                 if (tunnel) {
621                         unsigned int j;
622
623                         /* Decrease the counter matching the flow. */
624                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625                                 if ((tunnels_info[j].tunnel &
626                                      dev_flow->layers) ==
627                                     tunnels_info[j].tunnel) {
628                                         rxq_ctrl->flow_tunnels_n[j]--;
629                                         break;
630                                 }
631                         }
632                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
633                 }
634         }
635 }
636
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649         struct mlx5_flow *dev_flow;
650
651         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652                 flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664         struct mlx5_priv *priv = dev->data->dev_private;
665         unsigned int i;
666
667         for (i = 0; i != priv->rxqs_n; ++i) {
668                 struct mlx5_rxq_ctrl *rxq_ctrl;
669                 unsigned int j;
670
671                 if (!(*priv->rxqs)[i])
672                         continue;
673                 rxq_ctrl = container_of((*priv->rxqs)[i],
674                                         struct mlx5_rxq_ctrl, rxq);
675                 rxq_ctrl->flow_mark_n = 0;
676                 rxq_ctrl->rxq.mark = 0;
677                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678                         rxq_ctrl->flow_tunnels_n[j] = 0;
679                 rxq_ctrl->rxq.tunnel = 0;
680         }
681 }
682
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698                                const struct rte_flow_attr *attr,
699                                struct rte_flow_error *error)
700 {
701
702         if (action_flags & MLX5_FLOW_ACTION_DROP)
703                 return rte_flow_error_set(error, EINVAL,
704                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705                                           "can't drop and flag in same flow");
706         if (action_flags & MLX5_FLOW_ACTION_MARK)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't mark and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_FLAG)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't have 2 flag"
714                                           " actions in same flow");
715         if (attr->egress)
716                 return rte_flow_error_set(error, ENOTSUP,
717                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718                                           "flag action not supported for "
719                                           "egress");
720         return 0;
721 }
722
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740                                uint64_t action_flags,
741                                const struct rte_flow_attr *attr,
742                                struct rte_flow_error *error)
743 {
744         const struct rte_flow_action_mark *mark = action->conf;
745
746         if (!mark)
747                 return rte_flow_error_set(error, EINVAL,
748                                           RTE_FLOW_ERROR_TYPE_ACTION,
749                                           action,
750                                           "configuration cannot be null");
751         if (mark->id >= MLX5_FLOW_MARK_MAX)
752                 return rte_flow_error_set(error, EINVAL,
753                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754                                           &mark->id,
755                                           "mark id must in 0 <= id < "
756                                           RTE_STR(MLX5_FLOW_MARK_MAX));
757         if (action_flags & MLX5_FLOW_ACTION_DROP)
758                 return rte_flow_error_set(error, EINVAL,
759                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760                                           "can't drop and mark in same flow");
761         if (action_flags & MLX5_FLOW_ACTION_FLAG)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't flag and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_MARK)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't have 2 mark actions in same"
769                                           " flow");
770         if (attr->egress)
771                 return rte_flow_error_set(error, ENOTSUP,
772                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773                                           "mark action not supported for "
774                                           "egress");
775         return 0;
776 }
777
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_errno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793                                const struct rte_flow_attr *attr,
794                                struct rte_flow_error *error)
795 {
796         if (action_flags & MLX5_FLOW_ACTION_FLAG)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and flag in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_MARK)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and mark in same flow");
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "drop action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_errno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836                                 uint64_t action_flags,
837                                 struct rte_eth_dev *dev,
838                                 const struct rte_flow_attr *attr,
839                                 struct rte_flow_error *error)
840 {
841         struct mlx5_priv *priv = dev->data->dev_private;
842         const struct rte_flow_action_queue *queue = action->conf;
843
844         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (!priv->rxqs_n)
850                 return rte_flow_error_set(error, EINVAL,
851                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852                                           NULL, "No Rx queues configured");
853         if (queue->index >= priv->rxqs_n)
854                 return rte_flow_error_set(error, EINVAL,
855                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856                                           &queue->index,
857                                           "queue index out of range");
858         if (!(*priv->rxqs)[queue->index])
859                 return rte_flow_error_set(error, EINVAL,
860                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861                                           &queue->index,
862                                           "queue is not configured");
863         if (attr->egress)
864                 return rte_flow_error_set(error, ENOTSUP,
865                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866                                           "queue action not supported for "
867                                           "egress");
868         return 0;
869 }
870
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[in] item_flags
883  *   Items that were detected.
884  * @param[out] error
885  *   Pointer to error structure.
886  *
887  * @return
888  *   0 on success, a negative errno value otherwise and rte_errno is set.
889  */
890 int
891 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
892                               uint64_t action_flags,
893                               struct rte_eth_dev *dev,
894                               const struct rte_flow_attr *attr,
895                               uint64_t item_flags,
896                               struct rte_flow_error *error)
897 {
898         struct mlx5_priv *priv = dev->data->dev_private;
899         const struct rte_flow_action_rss *rss = action->conf;
900         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
901         unsigned int i;
902
903         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
904                 return rte_flow_error_set(error, EINVAL,
905                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
906                                           "can't have 2 fate actions"
907                                           " in same flow");
908         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
909             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
910                 return rte_flow_error_set(error, ENOTSUP,
911                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
912                                           &rss->func,
913                                           "RSS hash function not supported");
914 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
915         if (rss->level > 2)
916 #else
917         if (rss->level > 1)
918 #endif
919                 return rte_flow_error_set(error, ENOTSUP,
920                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
921                                           &rss->level,
922                                           "tunnel RSS is not supported");
923         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
924         if (rss->key_len == 0 && rss->key != NULL)
925                 return rte_flow_error_set(error, ENOTSUP,
926                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
927                                           &rss->key_len,
928                                           "RSS hash key length 0");
929         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
930                 return rte_flow_error_set(error, ENOTSUP,
931                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
932                                           &rss->key_len,
933                                           "RSS hash key too small");
934         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
935                 return rte_flow_error_set(error, ENOTSUP,
936                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
937                                           &rss->key_len,
938                                           "RSS hash key too large");
939         if (rss->queue_num > priv->config.ind_table_max_size)
940                 return rte_flow_error_set(error, ENOTSUP,
941                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
942                                           &rss->queue_num,
943                                           "number of queues too large");
944         if (rss->types & MLX5_RSS_HF_MASK)
945                 return rte_flow_error_set(error, ENOTSUP,
946                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
947                                           &rss->types,
948                                           "some RSS protocols are not"
949                                           " supported");
950         if (!priv->rxqs_n)
951                 return rte_flow_error_set(error, EINVAL,
952                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953                                           NULL, "No Rx queues configured");
954         if (!rss->queue_num)
955                 return rte_flow_error_set(error, EINVAL,
956                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957                                           NULL, "No queues configured");
958         for (i = 0; i != rss->queue_num; ++i) {
959                 if (!(*priv->rxqs)[rss->queue[i]])
960                         return rte_flow_error_set
961                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
962                                  &rss->queue[i], "queue is not configured");
963         }
964         if (attr->egress)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
967                                           "rss action not supported for "
968                                           "egress");
969         if (rss->level > 1 &&  !tunnel)
970                 return rte_flow_error_set(error, EINVAL,
971                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
972                                           "inner RSS is not supported for "
973                                           "non-tunnel flows");
974         return 0;
975 }
976
977 /*
978  * Validate the count action.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attr
983  *   Attributes of flow that includes this action.
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
992                                 const struct rte_flow_attr *attr,
993                                 struct rte_flow_error *error)
994 {
995         if (attr->egress)
996                 return rte_flow_error_set(error, ENOTSUP,
997                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
998                                           "count action not supported for "
999                                           "egress");
1000         return 0;
1001 }
1002
1003 /**
1004  * Verify the @p attributes will be correctly understood by the NIC and store
1005  * them in the @p flow if everything is correct.
1006  *
1007  * @param[in] dev
1008  *   Pointer to the Ethernet device structure.
1009  * @param[in] attributes
1010  *   Pointer to flow attributes
1011  * @param[out] error
1012  *   Pointer to error structure.
1013  *
1014  * @return
1015  *   0 on success, a negative errno value otherwise and rte_errno is set.
1016  */
1017 int
1018 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1019                               const struct rte_flow_attr *attributes,
1020                               struct rte_flow_error *error)
1021 {
1022         struct mlx5_priv *priv = dev->data->dev_private;
1023         uint32_t priority_max = priv->config.flow_prio - 1;
1024
1025         if (attributes->group)
1026                 return rte_flow_error_set(error, ENOTSUP,
1027                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1028                                           NULL, "groups is not supported");
1029         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1030             attributes->priority >= priority_max)
1031                 return rte_flow_error_set(error, ENOTSUP,
1032                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1033                                           NULL, "priority out of range");
1034         if (attributes->egress)
1035                 return rte_flow_error_set(error, ENOTSUP,
1036                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1037                                           "egress is not supported");
1038         if (attributes->transfer && !priv->config.dv_esw_en)
1039                 return rte_flow_error_set(error, ENOTSUP,
1040                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1041                                           NULL, "transfer is not supported");
1042         if (!attributes->ingress)
1043                 return rte_flow_error_set(error, EINVAL,
1044                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1045                                           NULL,
1046                                           "ingress attribute is mandatory");
1047         return 0;
1048 }
1049
1050 /**
1051  * Validate ICMP6 item.
1052  *
1053  * @param[in] item
1054  *   Item specification.
1055  * @param[in] item_flags
1056  *   Bit-fields that holds the items detected until now.
1057  * @param[out] error
1058  *   Pointer to error structure.
1059  *
1060  * @return
1061  *   0 on success, a negative errno value otherwise and rte_errno is set.
1062  */
1063 int
1064 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1065                                uint64_t item_flags,
1066                                uint8_t target_protocol,
1067                                struct rte_flow_error *error)
1068 {
1069         const struct rte_flow_item_icmp6 *mask = item->mask;
1070         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1071         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1072                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1073         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1074                                       MLX5_FLOW_LAYER_OUTER_L4;
1075         int ret;
1076
1077         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1078                 return rte_flow_error_set(error, EINVAL,
1079                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1080                                           "protocol filtering not compatible"
1081                                           " with ICMP6 layer");
1082         if (!(item_flags & l3m))
1083                 return rte_flow_error_set(error, EINVAL,
1084                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1085                                           "IPv6 is mandatory to filter on"
1086                                           " ICMP6");
1087         if (item_flags & l4m)
1088                 return rte_flow_error_set(error, EINVAL,
1089                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1090                                           "multiple L4 layers not supported");
1091         if (!mask)
1092                 mask = &rte_flow_item_icmp6_mask;
1093         ret = mlx5_flow_item_acceptable
1094                 (item, (const uint8_t *)mask,
1095                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1096                  sizeof(struct rte_flow_item_icmp6), error);
1097         if (ret < 0)
1098                 return ret;
1099         return 0;
1100 }
1101
1102 /**
1103  * Validate ICMP item.
1104  *
1105  * @param[in] item
1106  *   Item specification.
1107  * @param[in] item_flags
1108  *   Bit-fields that holds the items detected until now.
1109  * @param[out] error
1110  *   Pointer to error structure.
1111  *
1112  * @return
1113  *   0 on success, a negative errno value otherwise and rte_errno is set.
1114  */
1115 int
1116 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1117                              uint64_t item_flags,
1118                              uint8_t target_protocol,
1119                              struct rte_flow_error *error)
1120 {
1121         const struct rte_flow_item_icmp *mask = item->mask;
1122         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1123         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1124                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1125         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1126                                       MLX5_FLOW_LAYER_OUTER_L4;
1127         int ret;
1128
1129         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1130                 return rte_flow_error_set(error, EINVAL,
1131                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1132                                           "protocol filtering not compatible"
1133                                           " with ICMP layer");
1134         if (!(item_flags & l3m))
1135                 return rte_flow_error_set(error, EINVAL,
1136                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1137                                           "IPv4 is mandatory to filter"
1138                                           " on ICMP");
1139         if (item_flags & l4m)
1140                 return rte_flow_error_set(error, EINVAL,
1141                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1142                                           "multiple L4 layers not supported");
1143         if (!mask)
1144                 mask = &rte_flow_item_icmp_mask;
1145         ret = mlx5_flow_item_acceptable
1146                 (item, (const uint8_t *)mask,
1147                  (const uint8_t *)&rte_flow_item_icmp_mask,
1148                  sizeof(struct rte_flow_item_icmp), error);
1149         if (ret < 0)
1150                 return ret;
1151         return 0;
1152 }
1153
1154 /**
1155  * Validate Ethernet item.
1156  *
1157  * @param[in] item
1158  *   Item specification.
1159  * @param[in] item_flags
1160  *   Bit-fields that holds the items detected until now.
1161  * @param[out] error
1162  *   Pointer to error structure.
1163  *
1164  * @return
1165  *   0 on success, a negative errno value otherwise and rte_errno is set.
1166  */
1167 int
1168 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1169                             uint64_t item_flags,
1170                             struct rte_flow_error *error)
1171 {
1172         const struct rte_flow_item_eth *mask = item->mask;
1173         const struct rte_flow_item_eth nic_mask = {
1174                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1175                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1176                 .type = RTE_BE16(0xffff),
1177         };
1178         int ret;
1179         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1180         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1181                                        MLX5_FLOW_LAYER_OUTER_L2;
1182
1183         if (item_flags & ethm)
1184                 return rte_flow_error_set(error, ENOTSUP,
1185                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1186                                           "multiple L2 layers not supported");
1187         if (!mask)
1188                 mask = &rte_flow_item_eth_mask;
1189         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1190                                         (const uint8_t *)&nic_mask,
1191                                         sizeof(struct rte_flow_item_eth),
1192                                         error);
1193         return ret;
1194 }
1195
1196 /**
1197  * Validate VLAN item.
1198  *
1199  * @param[in] item
1200  *   Item specification.
1201  * @param[in] item_flags
1202  *   Bit-fields that holds the items detected until now.
1203  * @param[out] error
1204  *   Pointer to error structure.
1205  *
1206  * @return
1207  *   0 on success, a negative errno value otherwise and rte_errno is set.
1208  */
1209 int
1210 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1211                              uint64_t item_flags,
1212                              struct rte_flow_error *error)
1213 {
1214         const struct rte_flow_item_vlan *spec = item->spec;
1215         const struct rte_flow_item_vlan *mask = item->mask;
1216         const struct rte_flow_item_vlan nic_mask = {
1217                 .tci = RTE_BE16(0x0fff),
1218                 .inner_type = RTE_BE16(0xffff),
1219         };
1220         uint16_t vlan_tag = 0;
1221         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1222         int ret;
1223         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1224                                         MLX5_FLOW_LAYER_INNER_L4) :
1225                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1226                                         MLX5_FLOW_LAYER_OUTER_L4);
1227         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1228                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1229
1230         if (item_flags & vlanm)
1231                 return rte_flow_error_set(error, EINVAL,
1232                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1233                                           "multiple VLAN layers not supported");
1234         else if ((item_flags & l34m) != 0)
1235                 return rte_flow_error_set(error, EINVAL,
1236                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1237                                           "L2 layer cannot follow L3/L4 layer");
1238         if (!mask)
1239                 mask = &rte_flow_item_vlan_mask;
1240         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1241                                         (const uint8_t *)&nic_mask,
1242                                         sizeof(struct rte_flow_item_vlan),
1243                                         error);
1244         if (ret)
1245                 return ret;
1246         if (spec) {
1247                 vlan_tag = spec->tci;
1248                 vlan_tag &= mask->tci;
1249         }
1250         /*
1251          * From verbs perspective an empty VLAN is equivalent
1252          * to a packet without VLAN layer.
1253          */
1254         if (!vlan_tag)
1255                 return rte_flow_error_set(error, EINVAL,
1256                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1257                                           item->spec,
1258                                           "VLAN cannot be empty");
1259         return 0;
1260 }
1261
1262 /**
1263  * Validate IPV4 item.
1264  *
1265  * @param[in] item
1266  *   Item specification.
1267  * @param[in] item_flags
1268  *   Bit-fields that holds the items detected until now.
1269  * @param[in] acc_mask
1270  *   Acceptable mask, if NULL default internal default mask
1271  *   will be used to check whether item fields are supported.
1272  * @param[out] error
1273  *   Pointer to error structure.
1274  *
1275  * @return
1276  *   0 on success, a negative errno value otherwise and rte_errno is set.
1277  */
1278 int
1279 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1280                              uint64_t item_flags,
1281                              const struct rte_flow_item_ipv4 *acc_mask,
1282                              struct rte_flow_error *error)
1283 {
1284         const struct rte_flow_item_ipv4 *mask = item->mask;
1285         const struct rte_flow_item_ipv4 nic_mask = {
1286                 .hdr = {
1287                         .src_addr = RTE_BE32(0xffffffff),
1288                         .dst_addr = RTE_BE32(0xffffffff),
1289                         .type_of_service = 0xff,
1290                         .next_proto_id = 0xff,
1291                 },
1292         };
1293         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1294         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1295                                       MLX5_FLOW_LAYER_OUTER_L3;
1296         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1297                                       MLX5_FLOW_LAYER_OUTER_L4;
1298         int ret;
1299
1300         if (item_flags & l3m)
1301                 return rte_flow_error_set(error, ENOTSUP,
1302                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1303                                           "multiple L3 layers not supported");
1304         else if (item_flags & l4m)
1305                 return rte_flow_error_set(error, EINVAL,
1306                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1307                                           "L3 cannot follow an L4 layer.");
1308         if (!mask)
1309                 mask = &rte_flow_item_ipv4_mask;
1310         else if (mask->hdr.next_proto_id != 0 &&
1311                  mask->hdr.next_proto_id != 0xff)
1312                 return rte_flow_error_set(error, EINVAL,
1313                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1314                                           "partial mask is not supported"
1315                                           " for protocol");
1316         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1317                                         acc_mask ? (const uint8_t *)acc_mask
1318                                                  : (const uint8_t *)&nic_mask,
1319                                         sizeof(struct rte_flow_item_ipv4),
1320                                         error);
1321         if (ret < 0)
1322                 return ret;
1323         return 0;
1324 }
1325
1326 /**
1327  * Validate IPV6 item.
1328  *
1329  * @param[in] item
1330  *   Item specification.
1331  * @param[in] item_flags
1332  *   Bit-fields that holds the items detected until now.
1333  * @param[in] acc_mask
1334  *   Acceptable mask, if NULL default internal default mask
1335  *   will be used to check whether item fields are supported.
1336  * @param[out] error
1337  *   Pointer to error structure.
1338  *
1339  * @return
1340  *   0 on success, a negative errno value otherwise and rte_errno is set.
1341  */
1342 int
1343 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1344                              uint64_t item_flags,
1345                              const struct rte_flow_item_ipv6 *acc_mask,
1346                              struct rte_flow_error *error)
1347 {
1348         const struct rte_flow_item_ipv6 *mask = item->mask;
1349         const struct rte_flow_item_ipv6 nic_mask = {
1350                 .hdr = {
1351                         .src_addr =
1352                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1353                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1354                         .dst_addr =
1355                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1356                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1357                         .vtc_flow = RTE_BE32(0xffffffff),
1358                         .proto = 0xff,
1359                         .hop_limits = 0xff,
1360                 },
1361         };
1362         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1363         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1364                                       MLX5_FLOW_LAYER_OUTER_L3;
1365         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1366                                       MLX5_FLOW_LAYER_OUTER_L4;
1367         int ret;
1368
1369         if (item_flags & l3m)
1370                 return rte_flow_error_set(error, ENOTSUP,
1371                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1372                                           "multiple L3 layers not supported");
1373         else if (item_flags & l4m)
1374                 return rte_flow_error_set(error, EINVAL,
1375                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1376                                           "L3 cannot follow an L4 layer.");
1377         if (!mask)
1378                 mask = &rte_flow_item_ipv6_mask;
1379         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1380                                         acc_mask ? (const uint8_t *)acc_mask
1381                                                  : (const uint8_t *)&nic_mask,
1382                                         sizeof(struct rte_flow_item_ipv6),
1383                                         error);
1384         if (ret < 0)
1385                 return ret;
1386         return 0;
1387 }
1388
1389 /**
1390  * Validate UDP item.
1391  *
1392  * @param[in] item
1393  *   Item specification.
1394  * @param[in] item_flags
1395  *   Bit-fields that holds the items detected until now.
1396  * @param[in] target_protocol
1397  *   The next protocol in the previous item.
1398  * @param[in] flow_mask
1399  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1400  * @param[out] error
1401  *   Pointer to error structure.
1402  *
1403  * @return
1404  *   0 on success, a negative errno value otherwise and rte_errno is set.
1405  */
1406 int
1407 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1408                             uint64_t item_flags,
1409                             uint8_t target_protocol,
1410                             struct rte_flow_error *error)
1411 {
1412         const struct rte_flow_item_udp *mask = item->mask;
1413         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1414         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1415                                       MLX5_FLOW_LAYER_OUTER_L3;
1416         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1417                                       MLX5_FLOW_LAYER_OUTER_L4;
1418         int ret;
1419
1420         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1421                 return rte_flow_error_set(error, EINVAL,
1422                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1423                                           "protocol filtering not compatible"
1424                                           " with UDP layer");
1425         if (!(item_flags & l3m))
1426                 return rte_flow_error_set(error, EINVAL,
1427                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1428                                           "L3 is mandatory to filter on L4");
1429         if (item_flags & l4m)
1430                 return rte_flow_error_set(error, EINVAL,
1431                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1432                                           "multiple L4 layers not supported");
1433         if (!mask)
1434                 mask = &rte_flow_item_udp_mask;
1435         ret = mlx5_flow_item_acceptable
1436                 (item, (const uint8_t *)mask,
1437                  (const uint8_t *)&rte_flow_item_udp_mask,
1438                  sizeof(struct rte_flow_item_udp), error);
1439         if (ret < 0)
1440                 return ret;
1441         return 0;
1442 }
1443
1444 /**
1445  * Validate TCP item.
1446  *
1447  * @param[in] item
1448  *   Item specification.
1449  * @param[in] item_flags
1450  *   Bit-fields that holds the items detected until now.
1451  * @param[in] target_protocol
1452  *   The next protocol in the previous item.
1453  * @param[out] error
1454  *   Pointer to error structure.
1455  *
1456  * @return
1457  *   0 on success, a negative errno value otherwise and rte_errno is set.
1458  */
1459 int
1460 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1461                             uint64_t item_flags,
1462                             uint8_t target_protocol,
1463                             const struct rte_flow_item_tcp *flow_mask,
1464                             struct rte_flow_error *error)
1465 {
1466         const struct rte_flow_item_tcp *mask = item->mask;
1467         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1468         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1469                                       MLX5_FLOW_LAYER_OUTER_L3;
1470         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1471                                       MLX5_FLOW_LAYER_OUTER_L4;
1472         int ret;
1473
1474         assert(flow_mask);
1475         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1476                 return rte_flow_error_set(error, EINVAL,
1477                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1478                                           "protocol filtering not compatible"
1479                                           " with TCP layer");
1480         if (!(item_flags & l3m))
1481                 return rte_flow_error_set(error, EINVAL,
1482                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1483                                           "L3 is mandatory to filter on L4");
1484         if (item_flags & l4m)
1485                 return rte_flow_error_set(error, EINVAL,
1486                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1487                                           "multiple L4 layers not supported");
1488         if (!mask)
1489                 mask = &rte_flow_item_tcp_mask;
1490         ret = mlx5_flow_item_acceptable
1491                 (item, (const uint8_t *)mask,
1492                  (const uint8_t *)flow_mask,
1493                  sizeof(struct rte_flow_item_tcp), error);
1494         if (ret < 0)
1495                 return ret;
1496         return 0;
1497 }
1498
1499 /**
1500  * Validate VXLAN item.
1501  *
1502  * @param[in] item
1503  *   Item specification.
1504  * @param[in] item_flags
1505  *   Bit-fields that holds the items detected until now.
1506  * @param[in] target_protocol
1507  *   The next protocol in the previous item.
1508  * @param[out] error
1509  *   Pointer to error structure.
1510  *
1511  * @return
1512  *   0 on success, a negative errno value otherwise and rte_errno is set.
1513  */
1514 int
1515 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1516                               uint64_t item_flags,
1517                               struct rte_flow_error *error)
1518 {
1519         const struct rte_flow_item_vxlan *spec = item->spec;
1520         const struct rte_flow_item_vxlan *mask = item->mask;
1521         int ret;
1522         union vni {
1523                 uint32_t vlan_id;
1524                 uint8_t vni[4];
1525         } id = { .vlan_id = 0, };
1526         uint32_t vlan_id = 0;
1527
1528
1529         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1530                 return rte_flow_error_set(error, ENOTSUP,
1531                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1532                                           "multiple tunnel layers not"
1533                                           " supported");
1534         /*
1535          * Verify only UDPv4 is present as defined in
1536          * https://tools.ietf.org/html/rfc7348
1537          */
1538         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1539                 return rte_flow_error_set(error, EINVAL,
1540                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1541                                           "no outer UDP layer found");
1542         if (!mask)
1543                 mask = &rte_flow_item_vxlan_mask;
1544         ret = mlx5_flow_item_acceptable
1545                 (item, (const uint8_t *)mask,
1546                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1547                  sizeof(struct rte_flow_item_vxlan),
1548                  error);
1549         if (ret < 0)
1550                 return ret;
1551         if (spec) {
1552                 memcpy(&id.vni[1], spec->vni, 3);
1553                 vlan_id = id.vlan_id;
1554                 memcpy(&id.vni[1], mask->vni, 3);
1555                 vlan_id &= id.vlan_id;
1556         }
1557         /*
1558          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1559          * only this layer is defined in the Verbs specification it is
1560          * interpreted as wildcard and all packets will match this
1561          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1562          * udp), all packets matching the layers before will also
1563          * match this rule.  To avoid such situation, VNI 0 is
1564          * currently refused.
1565          */
1566         if (!vlan_id)
1567                 return rte_flow_error_set(error, ENOTSUP,
1568                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1569                                           "VXLAN vni cannot be 0");
1570         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1571                 return rte_flow_error_set(error, ENOTSUP,
1572                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1573                                           "VXLAN tunnel must be fully defined");
1574         return 0;
1575 }
1576
1577 /**
1578  * Validate VXLAN_GPE item.
1579  *
1580  * @param[in] item
1581  *   Item specification.
1582  * @param[in] item_flags
1583  *   Bit-fields that holds the items detected until now.
1584  * @param[in] priv
1585  *   Pointer to the private data structure.
1586  * @param[in] target_protocol
1587  *   The next protocol in the previous item.
1588  * @param[out] error
1589  *   Pointer to error structure.
1590  *
1591  * @return
1592  *   0 on success, a negative errno value otherwise and rte_errno is set.
1593  */
1594 int
1595 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1596                                   uint64_t item_flags,
1597                                   struct rte_eth_dev *dev,
1598                                   struct rte_flow_error *error)
1599 {
1600         struct mlx5_priv *priv = dev->data->dev_private;
1601         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1602         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1603         int ret;
1604         union vni {
1605                 uint32_t vlan_id;
1606                 uint8_t vni[4];
1607         } id = { .vlan_id = 0, };
1608         uint32_t vlan_id = 0;
1609
1610         if (!priv->config.l3_vxlan_en)
1611                 return rte_flow_error_set(error, ENOTSUP,
1612                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1613                                           "L3 VXLAN is not enabled by device"
1614                                           " parameter and/or not configured in"
1615                                           " firmware");
1616         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1617                 return rte_flow_error_set(error, ENOTSUP,
1618                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1619                                           "multiple tunnel layers not"
1620                                           " supported");
1621         /*
1622          * Verify only UDPv4 is present as defined in
1623          * https://tools.ietf.org/html/rfc7348
1624          */
1625         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1626                 return rte_flow_error_set(error, EINVAL,
1627                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1628                                           "no outer UDP layer found");
1629         if (!mask)
1630                 mask = &rte_flow_item_vxlan_gpe_mask;
1631         ret = mlx5_flow_item_acceptable
1632                 (item, (const uint8_t *)mask,
1633                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1634                  sizeof(struct rte_flow_item_vxlan_gpe),
1635                  error);
1636         if (ret < 0)
1637                 return ret;
1638         if (spec) {
1639                 if (spec->protocol)
1640                         return rte_flow_error_set(error, ENOTSUP,
1641                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1642                                                   item,
1643                                                   "VxLAN-GPE protocol"
1644                                                   " not supported");
1645                 memcpy(&id.vni[1], spec->vni, 3);
1646                 vlan_id = id.vlan_id;
1647                 memcpy(&id.vni[1], mask->vni, 3);
1648                 vlan_id &= id.vlan_id;
1649         }
1650         /*
1651          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1652          * layer is defined in the Verbs specification it is interpreted as
1653          * wildcard and all packets will match this rule, if it follows a full
1654          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1655          * before will also match this rule.  To avoid such situation, VNI 0
1656          * is currently refused.
1657          */
1658         if (!vlan_id)
1659                 return rte_flow_error_set(error, ENOTSUP,
1660                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1661                                           "VXLAN-GPE vni cannot be 0");
1662         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1663                 return rte_flow_error_set(error, ENOTSUP,
1664                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1665                                           "VXLAN-GPE tunnel must be fully"
1666                                           " defined");
1667         return 0;
1668 }
1669
1670 /**
1671  * Validate GRE item.
1672  *
1673  * @param[in] item
1674  *   Item specification.
1675  * @param[in] item_flags
1676  *   Bit flags to mark detected items.
1677  * @param[in] target_protocol
1678  *   The next protocol in the previous item.
1679  * @param[out] error
1680  *   Pointer to error structure.
1681  *
1682  * @return
1683  *   0 on success, a negative errno value otherwise and rte_errno is set.
1684  */
1685 int
1686 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1687                             uint64_t item_flags,
1688                             uint8_t target_protocol,
1689                             struct rte_flow_error *error)
1690 {
1691         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1692         const struct rte_flow_item_gre *mask = item->mask;
1693         int ret;
1694
1695         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1696                 return rte_flow_error_set(error, EINVAL,
1697                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1698                                           "protocol filtering not compatible"
1699                                           " with this GRE layer");
1700         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1701                 return rte_flow_error_set(error, ENOTSUP,
1702                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1703                                           "multiple tunnel layers not"
1704                                           " supported");
1705         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1706                 return rte_flow_error_set(error, ENOTSUP,
1707                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1708                                           "L3 Layer is missing");
1709         if (!mask)
1710                 mask = &rte_flow_item_gre_mask;
1711         ret = mlx5_flow_item_acceptable
1712                 (item, (const uint8_t *)mask,
1713                  (const uint8_t *)&rte_flow_item_gre_mask,
1714                  sizeof(struct rte_flow_item_gre), error);
1715         if (ret < 0)
1716                 return ret;
1717 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1718         if (spec && (spec->protocol & mask->protocol))
1719                 return rte_flow_error_set(error, ENOTSUP,
1720                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1721                                           "without MPLS support the"
1722                                           " specification cannot be used for"
1723                                           " filtering");
1724 #endif
1725         return 0;
1726 }
1727
1728 /**
1729  * Validate MPLS item.
1730  *
1731  * @param[in] dev
1732  *   Pointer to the rte_eth_dev structure.
1733  * @param[in] item
1734  *   Item specification.
1735  * @param[in] item_flags
1736  *   Bit-fields that holds the items detected until now.
1737  * @param[in] prev_layer
1738  *   The protocol layer indicated in previous item.
1739  * @param[out] error
1740  *   Pointer to error structure.
1741  *
1742  * @return
1743  *   0 on success, a negative errno value otherwise and rte_errno is set.
1744  */
1745 int
1746 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1747                              const struct rte_flow_item *item __rte_unused,
1748                              uint64_t item_flags __rte_unused,
1749                              uint64_t prev_layer __rte_unused,
1750                              struct rte_flow_error *error)
1751 {
1752 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1753         const struct rte_flow_item_mpls *mask = item->mask;
1754         struct mlx5_priv *priv = dev->data->dev_private;
1755         int ret;
1756
1757         if (!priv->config.mpls_en)
1758                 return rte_flow_error_set(error, ENOTSUP,
1759                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1760                                           "MPLS not supported or"
1761                                           " disabled in firmware"
1762                                           " configuration.");
1763         /* MPLS over IP, UDP, GRE is allowed */
1764         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1765                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1766                             MLX5_FLOW_LAYER_GRE)))
1767                 return rte_flow_error_set(error, EINVAL,
1768                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1769                                           "protocol filtering not compatible"
1770                                           " with MPLS layer");
1771         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1772         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1773             !(item_flags & MLX5_FLOW_LAYER_GRE))
1774                 return rte_flow_error_set(error, ENOTSUP,
1775                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1776                                           "multiple tunnel layers not"
1777                                           " supported");
1778         if (!mask)
1779                 mask = &rte_flow_item_mpls_mask;
1780         ret = mlx5_flow_item_acceptable
1781                 (item, (const uint8_t *)mask,
1782                  (const uint8_t *)&rte_flow_item_mpls_mask,
1783                  sizeof(struct rte_flow_item_mpls), error);
1784         if (ret < 0)
1785                 return ret;
1786         return 0;
1787 #endif
1788         return rte_flow_error_set(error, ENOTSUP,
1789                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1790                                   "MPLS is not supported by Verbs, please"
1791                                   " update.");
1792 }
1793
1794 static int
1795 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1796                    const struct rte_flow_attr *attr __rte_unused,
1797                    const struct rte_flow_item items[] __rte_unused,
1798                    const struct rte_flow_action actions[] __rte_unused,
1799                    struct rte_flow_error *error)
1800 {
1801         return rte_flow_error_set(error, ENOTSUP,
1802                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1803 }
1804
1805 static struct mlx5_flow *
1806 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1807                   const struct rte_flow_item items[] __rte_unused,
1808                   const struct rte_flow_action actions[] __rte_unused,
1809                   struct rte_flow_error *error)
1810 {
1811         rte_flow_error_set(error, ENOTSUP,
1812                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1813         return NULL;
1814 }
1815
1816 static int
1817 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1818                     struct mlx5_flow *dev_flow __rte_unused,
1819                     const struct rte_flow_attr *attr __rte_unused,
1820                     const struct rte_flow_item items[] __rte_unused,
1821                     const struct rte_flow_action actions[] __rte_unused,
1822                     struct rte_flow_error *error)
1823 {
1824         return rte_flow_error_set(error, ENOTSUP,
1825                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1826 }
1827
1828 static int
1829 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1830                 struct rte_flow *flow __rte_unused,
1831                 struct rte_flow_error *error)
1832 {
1833         return rte_flow_error_set(error, ENOTSUP,
1834                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1835 }
1836
1837 static void
1838 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1839                  struct rte_flow *flow __rte_unused)
1840 {
1841 }
1842
1843 static void
1844 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1845                   struct rte_flow *flow __rte_unused)
1846 {
1847 }
1848
1849 static int
1850 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1851                 struct rte_flow *flow __rte_unused,
1852                 const struct rte_flow_action *actions __rte_unused,
1853                 void *data __rte_unused,
1854                 struct rte_flow_error *error)
1855 {
1856         return rte_flow_error_set(error, ENOTSUP,
1857                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1858 }
1859
1860 /* Void driver to protect from null pointer reference. */
1861 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1862         .validate = flow_null_validate,
1863         .prepare = flow_null_prepare,
1864         .translate = flow_null_translate,
1865         .apply = flow_null_apply,
1866         .remove = flow_null_remove,
1867         .destroy = flow_null_destroy,
1868         .query = flow_null_query,
1869 };
1870
1871 /**
1872  * Select flow driver type according to flow attributes and device
1873  * configuration.
1874  *
1875  * @param[in] dev
1876  *   Pointer to the dev structure.
1877  * @param[in] attr
1878  *   Pointer to the flow attributes.
1879  *
1880  * @return
1881  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1882  */
1883 static enum mlx5_flow_drv_type
1884 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1885 {
1886         struct mlx5_priv *priv = dev->data->dev_private;
1887         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1888
1889         if (attr->transfer && priv->config.dv_esw_en)
1890                 type = MLX5_FLOW_TYPE_DV;
1891         if (!attr->transfer)
1892                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1893                                                  MLX5_FLOW_TYPE_VERBS;
1894         return type;
1895 }
1896
1897 #define flow_get_drv_ops(type) flow_drv_ops[type]
1898
1899 /**
1900  * Flow driver validation API. This abstracts calling driver specific functions.
1901  * The type of flow driver is determined according to flow attributes.
1902  *
1903  * @param[in] dev
1904  *   Pointer to the dev structure.
1905  * @param[in] attr
1906  *   Pointer to the flow attributes.
1907  * @param[in] items
1908  *   Pointer to the list of items.
1909  * @param[in] actions
1910  *   Pointer to the list of actions.
1911  * @param[out] error
1912  *   Pointer to the error structure.
1913  *
1914  * @return
1915  *   0 on success, a negative errno value otherwise and rte_errno is set.
1916  */
1917 static inline int
1918 flow_drv_validate(struct rte_eth_dev *dev,
1919                   const struct rte_flow_attr *attr,
1920                   const struct rte_flow_item items[],
1921                   const struct rte_flow_action actions[],
1922                   struct rte_flow_error *error)
1923 {
1924         const struct mlx5_flow_driver_ops *fops;
1925         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1926
1927         fops = flow_get_drv_ops(type);
1928         return fops->validate(dev, attr, items, actions, error);
1929 }
1930
1931 /**
1932  * Flow driver preparation API. This abstracts calling driver specific
1933  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1934  * calculates the size of memory required for device flow, allocates the memory,
1935  * initializes the device flow and returns the pointer.
1936  *
1937  * @note
1938  *   This function initializes device flow structure such as dv or verbs in
1939  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1940  *   rest. For example, adding returning device flow to flow->dev_flow list and
1941  *   setting backward reference to the flow should be done out of this function.
1942  *   layers field is not filled either.
1943  *
1944  * @param[in] attr
1945  *   Pointer to the flow attributes.
1946  * @param[in] items
1947  *   Pointer to the list of items.
1948  * @param[in] actions
1949  *   Pointer to the list of actions.
1950  * @param[out] error
1951  *   Pointer to the error structure.
1952  *
1953  * @return
1954  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1955  */
1956 static inline struct mlx5_flow *
1957 flow_drv_prepare(const struct rte_flow *flow,
1958                  const struct rte_flow_attr *attr,
1959                  const struct rte_flow_item items[],
1960                  const struct rte_flow_action actions[],
1961                  struct rte_flow_error *error)
1962 {
1963         const struct mlx5_flow_driver_ops *fops;
1964         enum mlx5_flow_drv_type type = flow->drv_type;
1965
1966         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1967         fops = flow_get_drv_ops(type);
1968         return fops->prepare(attr, items, actions, error);
1969 }
1970
1971 /**
1972  * Flow driver translation API. This abstracts calling driver specific
1973  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1974  * translates a generic flow into a driver flow. flow_drv_prepare() must
1975  * precede.
1976  *
1977  * @note
1978  *   dev_flow->layers could be filled as a result of parsing during translation
1979  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1980  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1981  *   flow->actions could be overwritten even though all the expanded dev_flows
1982  *   have the same actions.
1983  *
1984  * @param[in] dev
1985  *   Pointer to the rte dev structure.
1986  * @param[in, out] dev_flow
1987  *   Pointer to the mlx5 flow.
1988  * @param[in] attr
1989  *   Pointer to the flow attributes.
1990  * @param[in] items
1991  *   Pointer to the list of items.
1992  * @param[in] actions
1993  *   Pointer to the list of actions.
1994  * @param[out] error
1995  *   Pointer to the error structure.
1996  *
1997  * @return
1998  *   0 on success, a negative errno value otherwise and rte_errno is set.
1999  */
2000 static inline int
2001 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2002                    const struct rte_flow_attr *attr,
2003                    const struct rte_flow_item items[],
2004                    const struct rte_flow_action actions[],
2005                    struct rte_flow_error *error)
2006 {
2007         const struct mlx5_flow_driver_ops *fops;
2008         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2009
2010         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2011         fops = flow_get_drv_ops(type);
2012         return fops->translate(dev, dev_flow, attr, items, actions, error);
2013 }
2014
2015 /**
2016  * Flow driver apply API. This abstracts calling driver specific functions.
2017  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2018  * translated driver flows on to device. flow_drv_translate() must precede.
2019  *
2020  * @param[in] dev
2021  *   Pointer to Ethernet device structure.
2022  * @param[in, out] flow
2023  *   Pointer to flow structure.
2024  * @param[out] error
2025  *   Pointer to error structure.
2026  *
2027  * @return
2028  *   0 on success, a negative errno value otherwise and rte_errno is set.
2029  */
2030 static inline int
2031 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2032                struct rte_flow_error *error)
2033 {
2034         const struct mlx5_flow_driver_ops *fops;
2035         enum mlx5_flow_drv_type type = flow->drv_type;
2036
2037         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2038         fops = flow_get_drv_ops(type);
2039         return fops->apply(dev, flow, error);
2040 }
2041
2042 /**
2043  * Flow driver remove API. This abstracts calling driver specific functions.
2044  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2045  * on device. All the resources of the flow should be freed by calling
2046  * flow_drv_destroy().
2047  *
2048  * @param[in] dev
2049  *   Pointer to Ethernet device.
2050  * @param[in, out] flow
2051  *   Pointer to flow structure.
2052  */
2053 static inline void
2054 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2055 {
2056         const struct mlx5_flow_driver_ops *fops;
2057         enum mlx5_flow_drv_type type = flow->drv_type;
2058
2059         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2060         fops = flow_get_drv_ops(type);
2061         fops->remove(dev, flow);
2062 }
2063
2064 /**
2065  * Flow driver destroy API. This abstracts calling driver specific functions.
2066  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2067  * on device and releases resources of the flow.
2068  *
2069  * @param[in] dev
2070  *   Pointer to Ethernet device.
2071  * @param[in, out] flow
2072  *   Pointer to flow structure.
2073  */
2074 static inline void
2075 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2076 {
2077         const struct mlx5_flow_driver_ops *fops;
2078         enum mlx5_flow_drv_type type = flow->drv_type;
2079
2080         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2081         fops = flow_get_drv_ops(type);
2082         fops->destroy(dev, flow);
2083 }
2084
2085 /**
2086  * Validate a flow supported by the NIC.
2087  *
2088  * @see rte_flow_validate()
2089  * @see rte_flow_ops
2090  */
2091 int
2092 mlx5_flow_validate(struct rte_eth_dev *dev,
2093                    const struct rte_flow_attr *attr,
2094                    const struct rte_flow_item items[],
2095                    const struct rte_flow_action actions[],
2096                    struct rte_flow_error *error)
2097 {
2098         int ret;
2099
2100         ret = flow_drv_validate(dev, attr, items, actions, error);
2101         if (ret < 0)
2102                 return ret;
2103         return 0;
2104 }
2105
2106 /**
2107  * Get RSS action from the action list.
2108  *
2109  * @param[in] actions
2110  *   Pointer to the list of actions.
2111  *
2112  * @return
2113  *   Pointer to the RSS action if exist, else return NULL.
2114  */
2115 static const struct rte_flow_action_rss*
2116 flow_get_rss_action(const struct rte_flow_action actions[])
2117 {
2118         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2119                 switch (actions->type) {
2120                 case RTE_FLOW_ACTION_TYPE_RSS:
2121                         return (const struct rte_flow_action_rss *)
2122                                actions->conf;
2123                 default:
2124                         break;
2125                 }
2126         }
2127         return NULL;
2128 }
2129
2130 static unsigned int
2131 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2132 {
2133         const struct rte_flow_item *item;
2134         unsigned int has_vlan = 0;
2135
2136         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2137                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2138                         has_vlan = 1;
2139                         break;
2140                 }
2141         }
2142         if (has_vlan)
2143                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2144                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2145         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2146                                MLX5_EXPANSION_ROOT_OUTER;
2147 }
2148
2149 /**
2150  * Create a flow and add it to @p list.
2151  *
2152  * @param dev
2153  *   Pointer to Ethernet device.
2154  * @param list
2155  *   Pointer to a TAILQ flow list.
2156  * @param[in] attr
2157  *   Flow rule attributes.
2158  * @param[in] items
2159  *   Pattern specification (list terminated by the END pattern item).
2160  * @param[in] actions
2161  *   Associated actions (list terminated by the END action).
2162  * @param[out] error
2163  *   Perform verbose error reporting if not NULL.
2164  *
2165  * @return
2166  *   A flow on success, NULL otherwise and rte_errno is set.
2167  */
2168 static struct rte_flow *
2169 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2170                  const struct rte_flow_attr *attr,
2171                  const struct rte_flow_item items[],
2172                  const struct rte_flow_action actions[],
2173                  struct rte_flow_error *error)
2174 {
2175         struct rte_flow *flow = NULL;
2176         struct mlx5_flow *dev_flow;
2177         const struct rte_flow_action_rss *rss;
2178         union {
2179                 struct rte_flow_expand_rss buf;
2180                 uint8_t buffer[2048];
2181         } expand_buffer;
2182         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2183         int ret;
2184         uint32_t i;
2185         uint32_t flow_size;
2186
2187         ret = flow_drv_validate(dev, attr, items, actions, error);
2188         if (ret < 0)
2189                 return NULL;
2190         flow_size = sizeof(struct rte_flow);
2191         rss = flow_get_rss_action(actions);
2192         if (rss)
2193                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2194                                             sizeof(void *));
2195         else
2196                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2197         flow = rte_calloc(__func__, 1, flow_size, 0);
2198         if (!flow) {
2199                 rte_errno = ENOMEM;
2200                 return NULL;
2201         }
2202         flow->drv_type = flow_get_drv_type(dev, attr);
2203         flow->ingress = attr->ingress;
2204         flow->transfer = attr->transfer;
2205         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2206                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2207         flow->queue = (void *)(flow + 1);
2208         LIST_INIT(&flow->dev_flows);
2209         if (rss && rss->types) {
2210                 unsigned int graph_root;
2211
2212                 graph_root = find_graph_root(items, rss->level);
2213                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2214                                           items, rss->types,
2215                                           mlx5_support_expansion,
2216                                           graph_root);
2217                 assert(ret > 0 &&
2218                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2219         } else {
2220                 buf->entries = 1;
2221                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2222         }
2223         for (i = 0; i < buf->entries; ++i) {
2224                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2225                                             actions, error);
2226                 if (!dev_flow)
2227                         goto error;
2228                 dev_flow->flow = flow;
2229                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2230                 ret = flow_drv_translate(dev, dev_flow, attr,
2231                                          buf->entry[i].pattern,
2232                                          actions, error);
2233                 if (ret < 0)
2234                         goto error;
2235         }
2236         if (dev->data->dev_started) {
2237                 ret = flow_drv_apply(dev, flow, error);
2238                 if (ret < 0)
2239                         goto error;
2240         }
2241         TAILQ_INSERT_TAIL(list, flow, next);
2242         flow_rxq_flags_set(dev, flow);
2243         return flow;
2244 error:
2245         ret = rte_errno; /* Save rte_errno before cleanup. */
2246         assert(flow);
2247         flow_drv_destroy(dev, flow);
2248         rte_free(flow);
2249         rte_errno = ret; /* Restore rte_errno. */
2250         return NULL;
2251 }
2252
2253 /**
2254  * Create a flow.
2255  *
2256  * @see rte_flow_create()
2257  * @see rte_flow_ops
2258  */
2259 struct rte_flow *
2260 mlx5_flow_create(struct rte_eth_dev *dev,
2261                  const struct rte_flow_attr *attr,
2262                  const struct rte_flow_item items[],
2263                  const struct rte_flow_action actions[],
2264                  struct rte_flow_error *error)
2265 {
2266         struct mlx5_priv *priv = dev->data->dev_private;
2267
2268         return flow_list_create(dev, &priv->flows,
2269                                 attr, items, actions, error);
2270 }
2271
2272 /**
2273  * Destroy a flow in a list.
2274  *
2275  * @param dev
2276  *   Pointer to Ethernet device.
2277  * @param list
2278  *   Pointer to a TAILQ flow list.
2279  * @param[in] flow
2280  *   Flow to destroy.
2281  */
2282 static void
2283 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2284                   struct rte_flow *flow)
2285 {
2286         /*
2287          * Update RX queue flags only if port is started, otherwise it is
2288          * already clean.
2289          */
2290         if (dev->data->dev_started)
2291                 flow_rxq_flags_trim(dev, flow);
2292         flow_drv_destroy(dev, flow);
2293         TAILQ_REMOVE(list, flow, next);
2294         rte_free(flow->fdir);
2295         rte_free(flow);
2296 }
2297
2298 /**
2299  * Destroy all flows.
2300  *
2301  * @param dev
2302  *   Pointer to Ethernet device.
2303  * @param list
2304  *   Pointer to a TAILQ flow list.
2305  */
2306 void
2307 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2308 {
2309         while (!TAILQ_EMPTY(list)) {
2310                 struct rte_flow *flow;
2311
2312                 flow = TAILQ_FIRST(list);
2313                 flow_list_destroy(dev, list, flow);
2314         }
2315 }
2316
2317 /**
2318  * Remove all flows.
2319  *
2320  * @param dev
2321  *   Pointer to Ethernet device.
2322  * @param list
2323  *   Pointer to a TAILQ flow list.
2324  */
2325 void
2326 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2327 {
2328         struct rte_flow *flow;
2329
2330         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2331                 flow_drv_remove(dev, flow);
2332         flow_rxq_flags_clear(dev);
2333 }
2334
2335 /**
2336  * Add all flows.
2337  *
2338  * @param dev
2339  *   Pointer to Ethernet device.
2340  * @param list
2341  *   Pointer to a TAILQ flow list.
2342  *
2343  * @return
2344  *   0 on success, a negative errno value otherwise and rte_errno is set.
2345  */
2346 int
2347 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2348 {
2349         struct rte_flow *flow;
2350         struct rte_flow_error error;
2351         int ret = 0;
2352
2353         TAILQ_FOREACH(flow, list, next) {
2354                 ret = flow_drv_apply(dev, flow, &error);
2355                 if (ret < 0)
2356                         goto error;
2357                 flow_rxq_flags_set(dev, flow);
2358         }
2359         return 0;
2360 error:
2361         ret = rte_errno; /* Save rte_errno before cleanup. */
2362         mlx5_flow_stop(dev, list);
2363         rte_errno = ret; /* Restore rte_errno. */
2364         return -rte_errno;
2365 }
2366
2367 /**
2368  * Verify the flow list is empty
2369  *
2370  * @param dev
2371  *  Pointer to Ethernet device.
2372  *
2373  * @return the number of flows not released.
2374  */
2375 int
2376 mlx5_flow_verify(struct rte_eth_dev *dev)
2377 {
2378         struct mlx5_priv *priv = dev->data->dev_private;
2379         struct rte_flow *flow;
2380         int ret = 0;
2381
2382         TAILQ_FOREACH(flow, &priv->flows, next) {
2383                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2384                         dev->data->port_id, (void *)flow);
2385                 ++ret;
2386         }
2387         return ret;
2388 }
2389
2390 /**
2391  * Enable a control flow configured from the control plane.
2392  *
2393  * @param dev
2394  *   Pointer to Ethernet device.
2395  * @param eth_spec
2396  *   An Ethernet flow spec to apply.
2397  * @param eth_mask
2398  *   An Ethernet flow mask to apply.
2399  * @param vlan_spec
2400  *   A VLAN flow spec to apply.
2401  * @param vlan_mask
2402  *   A VLAN flow mask to apply.
2403  *
2404  * @return
2405  *   0 on success, a negative errno value otherwise and rte_errno is set.
2406  */
2407 int
2408 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2409                     struct rte_flow_item_eth *eth_spec,
2410                     struct rte_flow_item_eth *eth_mask,
2411                     struct rte_flow_item_vlan *vlan_spec,
2412                     struct rte_flow_item_vlan *vlan_mask)
2413 {
2414         struct mlx5_priv *priv = dev->data->dev_private;
2415         const struct rte_flow_attr attr = {
2416                 .ingress = 1,
2417                 .priority = MLX5_FLOW_PRIO_RSVD,
2418         };
2419         struct rte_flow_item items[] = {
2420                 {
2421                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2422                         .spec = eth_spec,
2423                         .last = NULL,
2424                         .mask = eth_mask,
2425                 },
2426                 {
2427                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2428                                               RTE_FLOW_ITEM_TYPE_END,
2429                         .spec = vlan_spec,
2430                         .last = NULL,
2431                         .mask = vlan_mask,
2432                 },
2433                 {
2434                         .type = RTE_FLOW_ITEM_TYPE_END,
2435                 },
2436         };
2437         uint16_t queue[priv->reta_idx_n];
2438         struct rte_flow_action_rss action_rss = {
2439                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2440                 .level = 0,
2441                 .types = priv->rss_conf.rss_hf,
2442                 .key_len = priv->rss_conf.rss_key_len,
2443                 .queue_num = priv->reta_idx_n,
2444                 .key = priv->rss_conf.rss_key,
2445                 .queue = queue,
2446         };
2447         struct rte_flow_action actions[] = {
2448                 {
2449                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2450                         .conf = &action_rss,
2451                 },
2452                 {
2453                         .type = RTE_FLOW_ACTION_TYPE_END,
2454                 },
2455         };
2456         struct rte_flow *flow;
2457         struct rte_flow_error error;
2458         unsigned int i;
2459
2460         if (!priv->reta_idx_n || !priv->rxqs_n) {
2461                 return 0;
2462         }
2463         for (i = 0; i != priv->reta_idx_n; ++i)
2464                 queue[i] = (*priv->reta_idx)[i];
2465         flow = flow_list_create(dev, &priv->ctrl_flows,
2466                                 &attr, items, actions, &error);
2467         if (!flow)
2468                 return -rte_errno;
2469         return 0;
2470 }
2471
2472 /**
2473  * Enable a flow control configured from the control plane.
2474  *
2475  * @param dev
2476  *   Pointer to Ethernet device.
2477  * @param eth_spec
2478  *   An Ethernet flow spec to apply.
2479  * @param eth_mask
2480  *   An Ethernet flow mask to apply.
2481  *
2482  * @return
2483  *   0 on success, a negative errno value otherwise and rte_errno is set.
2484  */
2485 int
2486 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2487                struct rte_flow_item_eth *eth_spec,
2488                struct rte_flow_item_eth *eth_mask)
2489 {
2490         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2491 }
2492
2493 /**
2494  * Destroy a flow.
2495  *
2496  * @see rte_flow_destroy()
2497  * @see rte_flow_ops
2498  */
2499 int
2500 mlx5_flow_destroy(struct rte_eth_dev *dev,
2501                   struct rte_flow *flow,
2502                   struct rte_flow_error *error __rte_unused)
2503 {
2504         struct mlx5_priv *priv = dev->data->dev_private;
2505
2506         flow_list_destroy(dev, &priv->flows, flow);
2507         return 0;
2508 }
2509
2510 /**
2511  * Destroy all flows.
2512  *
2513  * @see rte_flow_flush()
2514  * @see rte_flow_ops
2515  */
2516 int
2517 mlx5_flow_flush(struct rte_eth_dev *dev,
2518                 struct rte_flow_error *error __rte_unused)
2519 {
2520         struct mlx5_priv *priv = dev->data->dev_private;
2521
2522         mlx5_flow_list_flush(dev, &priv->flows);
2523         return 0;
2524 }
2525
2526 /**
2527  * Isolated mode.
2528  *
2529  * @see rte_flow_isolate()
2530  * @see rte_flow_ops
2531  */
2532 int
2533 mlx5_flow_isolate(struct rte_eth_dev *dev,
2534                   int enable,
2535                   struct rte_flow_error *error)
2536 {
2537         struct mlx5_priv *priv = dev->data->dev_private;
2538
2539         if (dev->data->dev_started) {
2540                 rte_flow_error_set(error, EBUSY,
2541                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2542                                    NULL,
2543                                    "port must be stopped first");
2544                 return -rte_errno;
2545         }
2546         priv->isolated = !!enable;
2547         if (enable)
2548                 dev->dev_ops = &mlx5_dev_ops_isolate;
2549         else
2550                 dev->dev_ops = &mlx5_dev_ops;
2551         return 0;
2552 }
2553
2554 /**
2555  * Query a flow.
2556  *
2557  * @see rte_flow_query()
2558  * @see rte_flow_ops
2559  */
2560 static int
2561 flow_drv_query(struct rte_eth_dev *dev,
2562                struct rte_flow *flow,
2563                const struct rte_flow_action *actions,
2564                void *data,
2565                struct rte_flow_error *error)
2566 {
2567         const struct mlx5_flow_driver_ops *fops;
2568         enum mlx5_flow_drv_type ftype = flow->drv_type;
2569
2570         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2571         fops = flow_get_drv_ops(ftype);
2572
2573         return fops->query(dev, flow, actions, data, error);
2574 }
2575
2576 /**
2577  * Query a flow.
2578  *
2579  * @see rte_flow_query()
2580  * @see rte_flow_ops
2581  */
2582 int
2583 mlx5_flow_query(struct rte_eth_dev *dev,
2584                 struct rte_flow *flow,
2585                 const struct rte_flow_action *actions,
2586                 void *data,
2587                 struct rte_flow_error *error)
2588 {
2589         int ret;
2590
2591         ret = flow_drv_query(dev, flow, actions, data, error);
2592         if (ret < 0)
2593                 return ret;
2594         return 0;
2595 }
2596
2597 /**
2598  * Convert a flow director filter to a generic flow.
2599  *
2600  * @param dev
2601  *   Pointer to Ethernet device.
2602  * @param fdir_filter
2603  *   Flow director filter to add.
2604  * @param attributes
2605  *   Generic flow parameters structure.
2606  *
2607  * @return
2608  *   0 on success, a negative errno value otherwise and rte_errno is set.
2609  */
2610 static int
2611 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2612                          const struct rte_eth_fdir_filter *fdir_filter,
2613                          struct mlx5_fdir *attributes)
2614 {
2615         struct mlx5_priv *priv = dev->data->dev_private;
2616         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2617         const struct rte_eth_fdir_masks *mask =
2618                 &dev->data->dev_conf.fdir_conf.mask;
2619
2620         /* Validate queue number. */
2621         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2622                 DRV_LOG(ERR, "port %u invalid queue number %d",
2623                         dev->data->port_id, fdir_filter->action.rx_queue);
2624                 rte_errno = EINVAL;
2625                 return -rte_errno;
2626         }
2627         attributes->attr.ingress = 1;
2628         attributes->items[0] = (struct rte_flow_item) {
2629                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2630                 .spec = &attributes->l2,
2631                 .mask = &attributes->l2_mask,
2632         };
2633         switch (fdir_filter->action.behavior) {
2634         case RTE_ETH_FDIR_ACCEPT:
2635                 attributes->actions[0] = (struct rte_flow_action){
2636                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2637                         .conf = &attributes->queue,
2638                 };
2639                 break;
2640         case RTE_ETH_FDIR_REJECT:
2641                 attributes->actions[0] = (struct rte_flow_action){
2642                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2643                 };
2644                 break;
2645         default:
2646                 DRV_LOG(ERR, "port %u invalid behavior %d",
2647                         dev->data->port_id,
2648                         fdir_filter->action.behavior);
2649                 rte_errno = ENOTSUP;
2650                 return -rte_errno;
2651         }
2652         attributes->queue.index = fdir_filter->action.rx_queue;
2653         /* Handle L3. */
2654         switch (fdir_filter->input.flow_type) {
2655         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2656         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2657         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2658                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2659                         .src_addr = input->flow.ip4_flow.src_ip,
2660                         .dst_addr = input->flow.ip4_flow.dst_ip,
2661                         .time_to_live = input->flow.ip4_flow.ttl,
2662                         .type_of_service = input->flow.ip4_flow.tos,
2663                 };
2664                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2665                         .src_addr = mask->ipv4_mask.src_ip,
2666                         .dst_addr = mask->ipv4_mask.dst_ip,
2667                         .time_to_live = mask->ipv4_mask.ttl,
2668                         .type_of_service = mask->ipv4_mask.tos,
2669                         .next_proto_id = mask->ipv4_mask.proto,
2670                 };
2671                 attributes->items[1] = (struct rte_flow_item){
2672                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2673                         .spec = &attributes->l3,
2674                         .mask = &attributes->l3_mask,
2675                 };
2676                 break;
2677         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2678         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2679         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2680                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2681                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2682                         .proto = input->flow.ipv6_flow.proto,
2683                 };
2684
2685                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2686                        input->flow.ipv6_flow.src_ip,
2687                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2688                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2689                        input->flow.ipv6_flow.dst_ip,
2690                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2691                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2692                        mask->ipv6_mask.src_ip,
2693                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2694                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2695                        mask->ipv6_mask.dst_ip,
2696                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2697                 attributes->items[1] = (struct rte_flow_item){
2698                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2699                         .spec = &attributes->l3,
2700                         .mask = &attributes->l3_mask,
2701                 };
2702                 break;
2703         default:
2704                 DRV_LOG(ERR, "port %u invalid flow type%d",
2705                         dev->data->port_id, fdir_filter->input.flow_type);
2706                 rte_errno = ENOTSUP;
2707                 return -rte_errno;
2708         }
2709         /* Handle L4. */
2710         switch (fdir_filter->input.flow_type) {
2711         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2712                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2713                         .src_port = input->flow.udp4_flow.src_port,
2714                         .dst_port = input->flow.udp4_flow.dst_port,
2715                 };
2716                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2717                         .src_port = mask->src_port_mask,
2718                         .dst_port = mask->dst_port_mask,
2719                 };
2720                 attributes->items[2] = (struct rte_flow_item){
2721                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2722                         .spec = &attributes->l4,
2723                         .mask = &attributes->l4_mask,
2724                 };
2725                 break;
2726         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2727                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2728                         .src_port = input->flow.tcp4_flow.src_port,
2729                         .dst_port = input->flow.tcp4_flow.dst_port,
2730                 };
2731                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2732                         .src_port = mask->src_port_mask,
2733                         .dst_port = mask->dst_port_mask,
2734                 };
2735                 attributes->items[2] = (struct rte_flow_item){
2736                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2737                         .spec = &attributes->l4,
2738                         .mask = &attributes->l4_mask,
2739                 };
2740                 break;
2741         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2742                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2743                         .src_port = input->flow.udp6_flow.src_port,
2744                         .dst_port = input->flow.udp6_flow.dst_port,
2745                 };
2746                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2747                         .src_port = mask->src_port_mask,
2748                         .dst_port = mask->dst_port_mask,
2749                 };
2750                 attributes->items[2] = (struct rte_flow_item){
2751                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2752                         .spec = &attributes->l4,
2753                         .mask = &attributes->l4_mask,
2754                 };
2755                 break;
2756         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2757                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2758                         .src_port = input->flow.tcp6_flow.src_port,
2759                         .dst_port = input->flow.tcp6_flow.dst_port,
2760                 };
2761                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2762                         .src_port = mask->src_port_mask,
2763                         .dst_port = mask->dst_port_mask,
2764                 };
2765                 attributes->items[2] = (struct rte_flow_item){
2766                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2767                         .spec = &attributes->l4,
2768                         .mask = &attributes->l4_mask,
2769                 };
2770                 break;
2771         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2772         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2773                 break;
2774         default:
2775                 DRV_LOG(ERR, "port %u invalid flow type%d",
2776                         dev->data->port_id, fdir_filter->input.flow_type);
2777                 rte_errno = ENOTSUP;
2778                 return -rte_errno;
2779         }
2780         return 0;
2781 }
2782
2783 #define FLOW_FDIR_CMP(f1, f2, fld) \
2784         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2785
2786 /**
2787  * Compare two FDIR flows. If items and actions are identical, the two flows are
2788  * regarded as same.
2789  *
2790  * @param dev
2791  *   Pointer to Ethernet device.
2792  * @param f1
2793  *   FDIR flow to compare.
2794  * @param f2
2795  *   FDIR flow to compare.
2796  *
2797  * @return
2798  *   Zero on match, 1 otherwise.
2799  */
2800 static int
2801 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2802 {
2803         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2804             FLOW_FDIR_CMP(f1, f2, l2) ||
2805             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2806             FLOW_FDIR_CMP(f1, f2, l3) ||
2807             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2808             FLOW_FDIR_CMP(f1, f2, l4) ||
2809             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2810             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2811                 return 1;
2812         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2813             FLOW_FDIR_CMP(f1, f2, queue))
2814                 return 1;
2815         return 0;
2816 }
2817
2818 /**
2819  * Search device flow list to find out a matched FDIR flow.
2820  *
2821  * @param dev
2822  *   Pointer to Ethernet device.
2823  * @param fdir_flow
2824  *   FDIR flow to lookup.
2825  *
2826  * @return
2827  *   Pointer of flow if found, NULL otherwise.
2828  */
2829 static struct rte_flow *
2830 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2831 {
2832         struct mlx5_priv *priv = dev->data->dev_private;
2833         struct rte_flow *flow = NULL;
2834
2835         assert(fdir_flow);
2836         TAILQ_FOREACH(flow, &priv->flows, next) {
2837                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2838                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2839                                 dev->data->port_id, (void *)flow);
2840                         break;
2841                 }
2842         }
2843         return flow;
2844 }
2845
2846 /**
2847  * Add new flow director filter and store it in list.
2848  *
2849  * @param dev
2850  *   Pointer to Ethernet device.
2851  * @param fdir_filter
2852  *   Flow director filter to add.
2853  *
2854  * @return
2855  *   0 on success, a negative errno value otherwise and rte_errno is set.
2856  */
2857 static int
2858 flow_fdir_filter_add(struct rte_eth_dev *dev,
2859                      const struct rte_eth_fdir_filter *fdir_filter)
2860 {
2861         struct mlx5_priv *priv = dev->data->dev_private;
2862         struct mlx5_fdir *fdir_flow;
2863         struct rte_flow *flow;
2864         int ret;
2865
2866         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2867         if (!fdir_flow) {
2868                 rte_errno = ENOMEM;
2869                 return -rte_errno;
2870         }
2871         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2872         if (ret)
2873                 goto error;
2874         flow = flow_fdir_filter_lookup(dev, fdir_flow);
2875         if (flow) {
2876                 rte_errno = EEXIST;
2877                 goto error;
2878         }
2879         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2880                                 fdir_flow->items, fdir_flow->actions, NULL);
2881         if (!flow)
2882                 goto error;
2883         assert(!flow->fdir);
2884         flow->fdir = fdir_flow;
2885         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2886                 dev->data->port_id, (void *)flow);
2887         return 0;
2888 error:
2889         rte_free(fdir_flow);
2890         return -rte_errno;
2891 }
2892
2893 /**
2894  * Delete specific filter.
2895  *
2896  * @param dev
2897  *   Pointer to Ethernet device.
2898  * @param fdir_filter
2899  *   Filter to be deleted.
2900  *
2901  * @return
2902  *   0 on success, a negative errno value otherwise and rte_errno is set.
2903  */
2904 static int
2905 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2906                         const struct rte_eth_fdir_filter *fdir_filter)
2907 {
2908         struct mlx5_priv *priv = dev->data->dev_private;
2909         struct rte_flow *flow;
2910         struct mlx5_fdir fdir_flow = {
2911                 .attr.group = 0,
2912         };
2913         int ret;
2914
2915         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2916         if (ret)
2917                 return -rte_errno;
2918         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2919         if (!flow) {
2920                 rte_errno = ENOENT;
2921                 return -rte_errno;
2922         }
2923         flow_list_destroy(dev, &priv->flows, flow);
2924         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2925                 dev->data->port_id, (void *)flow);
2926         return 0;
2927 }
2928
2929 /**
2930  * Update queue for specific filter.
2931  *
2932  * @param dev
2933  *   Pointer to Ethernet device.
2934  * @param fdir_filter
2935  *   Filter to be updated.
2936  *
2937  * @return
2938  *   0 on success, a negative errno value otherwise and rte_errno is set.
2939  */
2940 static int
2941 flow_fdir_filter_update(struct rte_eth_dev *dev,
2942                         const struct rte_eth_fdir_filter *fdir_filter)
2943 {
2944         int ret;
2945
2946         ret = flow_fdir_filter_delete(dev, fdir_filter);
2947         if (ret)
2948                 return ret;
2949         return flow_fdir_filter_add(dev, fdir_filter);
2950 }
2951
2952 /**
2953  * Flush all filters.
2954  *
2955  * @param dev
2956  *   Pointer to Ethernet device.
2957  */
2958 static void
2959 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2960 {
2961         struct mlx5_priv *priv = dev->data->dev_private;
2962
2963         mlx5_flow_list_flush(dev, &priv->flows);
2964 }
2965
2966 /**
2967  * Get flow director information.
2968  *
2969  * @param dev
2970  *   Pointer to Ethernet device.
2971  * @param[out] fdir_info
2972  *   Resulting flow director information.
2973  */
2974 static void
2975 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2976 {
2977         struct rte_eth_fdir_masks *mask =
2978                 &dev->data->dev_conf.fdir_conf.mask;
2979
2980         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2981         fdir_info->guarant_spc = 0;
2982         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2983         fdir_info->max_flexpayload = 0;
2984         fdir_info->flow_types_mask[0] = 0;
2985         fdir_info->flex_payload_unit = 0;
2986         fdir_info->max_flex_payload_segment_num = 0;
2987         fdir_info->flex_payload_limit = 0;
2988         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2989 }
2990
2991 /**
2992  * Deal with flow director operations.
2993  *
2994  * @param dev
2995  *   Pointer to Ethernet device.
2996  * @param filter_op
2997  *   Operation to perform.
2998  * @param arg
2999  *   Pointer to operation-specific structure.
3000  *
3001  * @return
3002  *   0 on success, a negative errno value otherwise and rte_errno is set.
3003  */
3004 static int
3005 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3006                     void *arg)
3007 {
3008         enum rte_fdir_mode fdir_mode =
3009                 dev->data->dev_conf.fdir_conf.mode;
3010
3011         if (filter_op == RTE_ETH_FILTER_NOP)
3012                 return 0;
3013         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3014             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3015                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3016                         dev->data->port_id, fdir_mode);
3017                 rte_errno = EINVAL;
3018                 return -rte_errno;
3019         }
3020         switch (filter_op) {
3021         case RTE_ETH_FILTER_ADD:
3022                 return flow_fdir_filter_add(dev, arg);
3023         case RTE_ETH_FILTER_UPDATE:
3024                 return flow_fdir_filter_update(dev, arg);
3025         case RTE_ETH_FILTER_DELETE:
3026                 return flow_fdir_filter_delete(dev, arg);
3027         case RTE_ETH_FILTER_FLUSH:
3028                 flow_fdir_filter_flush(dev);
3029                 break;
3030         case RTE_ETH_FILTER_INFO:
3031                 flow_fdir_info_get(dev, arg);
3032                 break;
3033         default:
3034                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3035                         dev->data->port_id, filter_op);
3036                 rte_errno = EINVAL;
3037                 return -rte_errno;
3038         }
3039         return 0;
3040 }
3041
3042 /**
3043  * Manage filter operations.
3044  *
3045  * @param dev
3046  *   Pointer to Ethernet device structure.
3047  * @param filter_type
3048  *   Filter type.
3049  * @param filter_op
3050  *   Operation to perform.
3051  * @param arg
3052  *   Pointer to operation-specific structure.
3053  *
3054  * @return
3055  *   0 on success, a negative errno value otherwise and rte_errno is set.
3056  */
3057 int
3058 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3059                      enum rte_filter_type filter_type,
3060                      enum rte_filter_op filter_op,
3061                      void *arg)
3062 {
3063         switch (filter_type) {
3064         case RTE_ETH_FILTER_GENERIC:
3065                 if (filter_op != RTE_ETH_FILTER_GET) {
3066                         rte_errno = EINVAL;
3067                         return -rte_errno;
3068                 }
3069                 *(const void **)arg = &mlx5_flow_ops;
3070                 return 0;
3071         case RTE_ETH_FILTER_FDIR:
3072                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3073         default:
3074                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3075                         dev->data->port_id, filter_type);
3076                 rte_errno = ENOTSUP;
3077                 return -rte_errno;
3078         }
3079         return 0;
3080 }