6077685430b2de87c46f3e166d127926f280b091
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_eal_paging.h>
17 #include <rte_flow.h>
18 #include <rte_cycles.h>
19 #include <rte_flow_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_ip.h>
22
23 #include <mlx5_glue.h>
24 #include <mlx5_devx_cmds.h>
25 #include <mlx5_prm.h>
26 #include <mlx5_malloc.h>
27
28 #include "mlx5_defs.h"
29 #include "mlx5.h"
30 #include "mlx5_flow.h"
31 #include "mlx5_flow_os.h"
32 #include "mlx5_rxtx.h"
33 #include "mlx5_common_os.h"
34
35 /** Device flow drivers. */
36 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
37
38 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
39
40 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
41         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
44 #endif
45         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
46         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
47 };
48
49 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
50 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
51         (const int []){ \
52                 __VA_ARGS__, 0, \
53         }
54
55 /** Node object of input graph for mlx5_flow_expand_rss(). */
56 struct mlx5_flow_expand_node {
57         const int *const next;
58         /**<
59          * List of next node indexes. Index 0 is interpreted as a terminator.
60          */
61         const enum rte_flow_item_type type;
62         /**< Pattern item type of current node. */
63         uint64_t rss_types;
64         /**<
65          * RSS types bit-field associated with this node
66          * (see ETH_RSS_* definitions).
67          */
68 };
69
70 /** Object returned by mlx5_flow_expand_rss(). */
71 struct mlx5_flow_expand_rss {
72         uint32_t entries;
73         /**< Number of entries @p patterns and @p priorities. */
74         struct {
75                 struct rte_flow_item *pattern; /**< Expanded pattern array. */
76                 uint32_t priority; /**< Priority offset for each expansion. */
77         } entry[];
78 };
79
80 static enum rte_flow_item_type
81 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
82 {
83         enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
84         uint16_t ether_type = 0;
85         uint16_t ether_type_m;
86         uint8_t ip_next_proto = 0;
87         uint8_t ip_next_proto_m;
88
89         if (item == NULL || item->spec == NULL)
90                 return ret;
91         switch (item->type) {
92         case RTE_FLOW_ITEM_TYPE_ETH:
93                 if (item->mask)
94                         ether_type_m = ((const struct rte_flow_item_eth *)
95                                                 (item->mask))->type;
96                 else
97                         ether_type_m = rte_flow_item_eth_mask.type;
98                 if (ether_type_m != RTE_BE16(0xFFFF))
99                         break;
100                 ether_type = ((const struct rte_flow_item_eth *)
101                                 (item->spec))->type;
102                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
103                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
104                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
105                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
106                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
107                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
108                 else
109                         ret = RTE_FLOW_ITEM_TYPE_END;
110                 break;
111         case RTE_FLOW_ITEM_TYPE_VLAN:
112                 if (item->mask)
113                         ether_type_m = ((const struct rte_flow_item_vlan *)
114                                                 (item->mask))->inner_type;
115                 else
116                         ether_type_m = rte_flow_item_vlan_mask.inner_type;
117                 if (ether_type_m != RTE_BE16(0xFFFF))
118                         break;
119                 ether_type = ((const struct rte_flow_item_vlan *)
120                                 (item->spec))->inner_type;
121                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
122                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
123                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
124                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
125                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
126                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
127                 else
128                         ret = RTE_FLOW_ITEM_TYPE_END;
129                 break;
130         case RTE_FLOW_ITEM_TYPE_IPV4:
131                 if (item->mask)
132                         ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
133                                         (item->mask))->hdr.next_proto_id;
134                 else
135                         ip_next_proto_m =
136                                 rte_flow_item_ipv4_mask.hdr.next_proto_id;
137                 if (ip_next_proto_m != 0xFF)
138                         break;
139                 ip_next_proto = ((const struct rte_flow_item_ipv4 *)
140                                 (item->spec))->hdr.next_proto_id;
141                 if (ip_next_proto == IPPROTO_UDP)
142                         ret = RTE_FLOW_ITEM_TYPE_UDP;
143                 else if (ip_next_proto == IPPROTO_TCP)
144                         ret = RTE_FLOW_ITEM_TYPE_TCP;
145                 else if (ip_next_proto == IPPROTO_IP)
146                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
147                 else if (ip_next_proto == IPPROTO_IPV6)
148                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
149                 else
150                         ret = RTE_FLOW_ITEM_TYPE_END;
151                 break;
152         case RTE_FLOW_ITEM_TYPE_IPV6:
153                 if (item->mask)
154                         ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
155                                                 (item->mask))->hdr.proto;
156                 else
157                         ip_next_proto_m =
158                                 rte_flow_item_ipv6_mask.hdr.proto;
159                 if (ip_next_proto_m != 0xFF)
160                         break;
161                 ip_next_proto = ((const struct rte_flow_item_ipv6 *)
162                                 (item->spec))->hdr.proto;
163                 if (ip_next_proto == IPPROTO_UDP)
164                         ret = RTE_FLOW_ITEM_TYPE_UDP;
165                 else if (ip_next_proto == IPPROTO_TCP)
166                         ret = RTE_FLOW_ITEM_TYPE_TCP;
167                 else if (ip_next_proto == IPPROTO_IP)
168                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
169                 else if (ip_next_proto == IPPROTO_IPV6)
170                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
171                 else
172                         ret = RTE_FLOW_ITEM_TYPE_END;
173                 break;
174         default:
175                 ret = RTE_FLOW_ITEM_TYPE_VOID;
176                 break;
177         }
178         return ret;
179 }
180
181 /**
182  * Expand RSS flows into several possible flows according to the RSS hash
183  * fields requested and the driver capabilities.
184  *
185  * @param[out] buf
186  *   Buffer to store the result expansion.
187  * @param[in] size
188  *   Buffer size in bytes. If 0, @p buf can be NULL.
189  * @param[in] pattern
190  *   User flow pattern.
191  * @param[in] types
192  *   RSS types to expand (see ETH_RSS_* definitions).
193  * @param[in] graph
194  *   Input graph to expand @p pattern according to @p types.
195  * @param[in] graph_root_index
196  *   Index of root node in @p graph, typically 0.
197  *
198  * @return
199  *   A positive value representing the size of @p buf in bytes regardless of
200  *   @p size on success, a negative errno value otherwise and rte_errno is
201  *   set, the following errors are defined:
202  *
203  *   -E2BIG: graph-depth @p graph is too deep.
204  */
205 static int
206 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
207                      const struct rte_flow_item *pattern, uint64_t types,
208                      const struct mlx5_flow_expand_node graph[],
209                      int graph_root_index)
210 {
211         const int elt_n = 8;
212         const struct rte_flow_item *item;
213         const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
214         const int *next_node;
215         const int *stack[elt_n];
216         int stack_pos = 0;
217         struct rte_flow_item flow_items[elt_n];
218         unsigned int i;
219         size_t lsize;
220         size_t user_pattern_size = 0;
221         void *addr = NULL;
222         const struct mlx5_flow_expand_node *next = NULL;
223         struct rte_flow_item missed_item;
224         int missed = 0;
225         int elt = 0;
226         const struct rte_flow_item *last_item = NULL;
227
228         memset(&missed_item, 0, sizeof(missed_item));
229         lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
230                 elt_n * sizeof(buf->entry[0]);
231         if (lsize <= size) {
232                 buf->entry[0].priority = 0;
233                 buf->entry[0].pattern = (void *)&buf->entry[elt_n];
234                 buf->entries = 0;
235                 addr = buf->entry[0].pattern;
236         }
237         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
238                 if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
239                         last_item = item;
240                 for (i = 0; node->next && node->next[i]; ++i) {
241                         next = &graph[node->next[i]];
242                         if (next->type == item->type)
243                                 break;
244                 }
245                 if (next)
246                         node = next;
247                 user_pattern_size += sizeof(*item);
248         }
249         user_pattern_size += sizeof(*item); /* Handle END item. */
250         lsize += user_pattern_size;
251         /* Copy the user pattern in the first entry of the buffer. */
252         if (lsize <= size) {
253                 rte_memcpy(addr, pattern, user_pattern_size);
254                 addr = (void *)(((uintptr_t)addr) + user_pattern_size);
255                 buf->entries = 1;
256         }
257         /* Start expanding. */
258         memset(flow_items, 0, sizeof(flow_items));
259         user_pattern_size -= sizeof(*item);
260         /*
261          * Check if the last valid item has spec set, need complete pattern,
262          * and the pattern can be used for expansion.
263          */
264         missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
265         if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
266                 /* Item type END indicates expansion is not required. */
267                 return lsize;
268         }
269         if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
270                 next = NULL;
271                 missed = 1;
272                 for (i = 0; node->next && node->next[i]; ++i) {
273                         next = &graph[node->next[i]];
274                         if (next->type == missed_item.type) {
275                                 flow_items[0].type = missed_item.type;
276                                 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
277                                 break;
278                         }
279                         next = NULL;
280                 }
281         }
282         if (next && missed) {
283                 elt = 2; /* missed item + item end. */
284                 node = next;
285                 lsize += elt * sizeof(*item) + user_pattern_size;
286                 if ((node->rss_types & types) && lsize <= size) {
287                         buf->entry[buf->entries].priority = 1;
288                         buf->entry[buf->entries].pattern = addr;
289                         buf->entries++;
290                         rte_memcpy(addr, buf->entry[0].pattern,
291                                    user_pattern_size);
292                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
293                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
294                         addr = (void *)(((uintptr_t)addr) +
295                                         elt * sizeof(*item));
296                 }
297         }
298         memset(flow_items, 0, sizeof(flow_items));
299         next_node = node->next;
300         stack[stack_pos] = next_node;
301         node = next_node ? &graph[*next_node] : NULL;
302         while (node) {
303                 flow_items[stack_pos].type = node->type;
304                 if (node->rss_types & types) {
305                         /*
306                          * compute the number of items to copy from the
307                          * expansion and copy it.
308                          * When the stack_pos is 0, there are 1 element in it,
309                          * plus the addition END item.
310                          */
311                         elt = stack_pos + 2;
312                         flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
313                         lsize += elt * sizeof(*item) + user_pattern_size;
314                         if (lsize <= size) {
315                                 size_t n = elt * sizeof(*item);
316
317                                 buf->entry[buf->entries].priority =
318                                         stack_pos + 1 + missed;
319                                 buf->entry[buf->entries].pattern = addr;
320                                 buf->entries++;
321                                 rte_memcpy(addr, buf->entry[0].pattern,
322                                            user_pattern_size);
323                                 addr = (void *)(((uintptr_t)addr) +
324                                                 user_pattern_size);
325                                 rte_memcpy(addr, &missed_item,
326                                            missed * sizeof(*item));
327                                 addr = (void *)(((uintptr_t)addr) +
328                                         missed * sizeof(*item));
329                                 rte_memcpy(addr, flow_items, n);
330                                 addr = (void *)(((uintptr_t)addr) + n);
331                         }
332                 }
333                 /* Go deeper. */
334                 if (node->next) {
335                         next_node = node->next;
336                         if (stack_pos++ == elt_n) {
337                                 rte_errno = E2BIG;
338                                 return -rte_errno;
339                         }
340                         stack[stack_pos] = next_node;
341                 } else if (*(next_node + 1)) {
342                         /* Follow up with the next possibility. */
343                         ++next_node;
344                 } else {
345                         /* Move to the next path. */
346                         if (stack_pos)
347                                 next_node = stack[--stack_pos];
348                         next_node++;
349                         stack[stack_pos] = next_node;
350                 }
351                 node = *next_node ? &graph[*next_node] : NULL;
352         };
353         /* no expanded flows but we have missed item, create one rule for it */
354         if (buf->entries == 1 && missed != 0) {
355                 elt = 2;
356                 lsize += elt * sizeof(*item) + user_pattern_size;
357                 if (lsize <= size) {
358                         buf->entry[buf->entries].priority = 1;
359                         buf->entry[buf->entries].pattern = addr;
360                         buf->entries++;
361                         flow_items[0].type = missed_item.type;
362                         flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
363                         rte_memcpy(addr, buf->entry[0].pattern,
364                                    user_pattern_size);
365                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
366                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
367                         addr = (void *)(((uintptr_t)addr) +
368                                         elt * sizeof(*item));
369                 }
370         }
371         return lsize;
372 }
373
374 enum mlx5_expansion {
375         MLX5_EXPANSION_ROOT,
376         MLX5_EXPANSION_ROOT_OUTER,
377         MLX5_EXPANSION_ROOT_ETH_VLAN,
378         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
379         MLX5_EXPANSION_OUTER_ETH,
380         MLX5_EXPANSION_OUTER_ETH_VLAN,
381         MLX5_EXPANSION_OUTER_VLAN,
382         MLX5_EXPANSION_OUTER_IPV4,
383         MLX5_EXPANSION_OUTER_IPV4_UDP,
384         MLX5_EXPANSION_OUTER_IPV4_TCP,
385         MLX5_EXPANSION_OUTER_IPV6,
386         MLX5_EXPANSION_OUTER_IPV6_UDP,
387         MLX5_EXPANSION_OUTER_IPV6_TCP,
388         MLX5_EXPANSION_VXLAN,
389         MLX5_EXPANSION_VXLAN_GPE,
390         MLX5_EXPANSION_GRE,
391         MLX5_EXPANSION_MPLS,
392         MLX5_EXPANSION_ETH,
393         MLX5_EXPANSION_ETH_VLAN,
394         MLX5_EXPANSION_VLAN,
395         MLX5_EXPANSION_IPV4,
396         MLX5_EXPANSION_IPV4_UDP,
397         MLX5_EXPANSION_IPV4_TCP,
398         MLX5_EXPANSION_IPV6,
399         MLX5_EXPANSION_IPV6_UDP,
400         MLX5_EXPANSION_IPV6_TCP,
401 };
402
403 /** Supported expansion of items. */
404 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
405         [MLX5_EXPANSION_ROOT] = {
406                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
407                                                   MLX5_EXPANSION_IPV4,
408                                                   MLX5_EXPANSION_IPV6),
409                 .type = RTE_FLOW_ITEM_TYPE_END,
410         },
411         [MLX5_EXPANSION_ROOT_OUTER] = {
412                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
413                                                   MLX5_EXPANSION_OUTER_IPV4,
414                                                   MLX5_EXPANSION_OUTER_IPV6),
415                 .type = RTE_FLOW_ITEM_TYPE_END,
416         },
417         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
418                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
419                 .type = RTE_FLOW_ITEM_TYPE_END,
420         },
421         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
422                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
423                                                 (MLX5_EXPANSION_OUTER_ETH_VLAN),
424                 .type = RTE_FLOW_ITEM_TYPE_END,
425         },
426         [MLX5_EXPANSION_OUTER_ETH] = {
427                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
428                                                   MLX5_EXPANSION_OUTER_IPV6,
429                                                   MLX5_EXPANSION_MPLS),
430                 .type = RTE_FLOW_ITEM_TYPE_ETH,
431                 .rss_types = 0,
432         },
433         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
434                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
435                 .type = RTE_FLOW_ITEM_TYPE_ETH,
436                 .rss_types = 0,
437         },
438         [MLX5_EXPANSION_OUTER_VLAN] = {
439                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
440                                                   MLX5_EXPANSION_OUTER_IPV6),
441                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
442         },
443         [MLX5_EXPANSION_OUTER_IPV4] = {
444                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
445                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
446                          MLX5_EXPANSION_OUTER_IPV4_TCP,
447                          MLX5_EXPANSION_GRE,
448                          MLX5_EXPANSION_IPV4,
449                          MLX5_EXPANSION_IPV6),
450                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
451                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
452                         ETH_RSS_NONFRAG_IPV4_OTHER,
453         },
454         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
455                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
456                                                   MLX5_EXPANSION_VXLAN_GPE),
457                 .type = RTE_FLOW_ITEM_TYPE_UDP,
458                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
459         },
460         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
461                 .type = RTE_FLOW_ITEM_TYPE_TCP,
462                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
463         },
464         [MLX5_EXPANSION_OUTER_IPV6] = {
465                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
466                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
467                          MLX5_EXPANSION_OUTER_IPV6_TCP,
468                          MLX5_EXPANSION_IPV4,
469                          MLX5_EXPANSION_IPV6),
470                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
471                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
472                         ETH_RSS_NONFRAG_IPV6_OTHER,
473         },
474         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
475                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
476                                                   MLX5_EXPANSION_VXLAN_GPE),
477                 .type = RTE_FLOW_ITEM_TYPE_UDP,
478                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
479         },
480         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
481                 .type = RTE_FLOW_ITEM_TYPE_TCP,
482                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
483         },
484         [MLX5_EXPANSION_VXLAN] = {
485                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
486                                                   MLX5_EXPANSION_IPV4,
487                                                   MLX5_EXPANSION_IPV6),
488                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
489         },
490         [MLX5_EXPANSION_VXLAN_GPE] = {
491                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
492                                                   MLX5_EXPANSION_IPV4,
493                                                   MLX5_EXPANSION_IPV6),
494                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
495         },
496         [MLX5_EXPANSION_GRE] = {
497                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
498                 .type = RTE_FLOW_ITEM_TYPE_GRE,
499         },
500         [MLX5_EXPANSION_MPLS] = {
501                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
502                                                   MLX5_EXPANSION_IPV6),
503                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
504         },
505         [MLX5_EXPANSION_ETH] = {
506                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
507                                                   MLX5_EXPANSION_IPV6),
508                 .type = RTE_FLOW_ITEM_TYPE_ETH,
509         },
510         [MLX5_EXPANSION_ETH_VLAN] = {
511                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
512                 .type = RTE_FLOW_ITEM_TYPE_ETH,
513         },
514         [MLX5_EXPANSION_VLAN] = {
515                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
516                                                   MLX5_EXPANSION_IPV6),
517                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
518         },
519         [MLX5_EXPANSION_IPV4] = {
520                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
521                                                   MLX5_EXPANSION_IPV4_TCP),
522                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
523                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
524                         ETH_RSS_NONFRAG_IPV4_OTHER,
525         },
526         [MLX5_EXPANSION_IPV4_UDP] = {
527                 .type = RTE_FLOW_ITEM_TYPE_UDP,
528                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
529         },
530         [MLX5_EXPANSION_IPV4_TCP] = {
531                 .type = RTE_FLOW_ITEM_TYPE_TCP,
532                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
533         },
534         [MLX5_EXPANSION_IPV6] = {
535                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
536                                                   MLX5_EXPANSION_IPV6_TCP),
537                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
538                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
539                         ETH_RSS_NONFRAG_IPV6_OTHER,
540         },
541         [MLX5_EXPANSION_IPV6_UDP] = {
542                 .type = RTE_FLOW_ITEM_TYPE_UDP,
543                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
544         },
545         [MLX5_EXPANSION_IPV6_TCP] = {
546                 .type = RTE_FLOW_ITEM_TYPE_TCP,
547                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
548         },
549 };
550
551 static struct rte_flow_shared_action *
552 mlx5_shared_action_create(struct rte_eth_dev *dev,
553                           const struct rte_flow_shared_action_conf *conf,
554                           const struct rte_flow_action *action,
555                           struct rte_flow_error *error);
556 static int mlx5_shared_action_destroy
557                                 (struct rte_eth_dev *dev,
558                                  struct rte_flow_shared_action *shared_action,
559                                  struct rte_flow_error *error);
560 static int mlx5_shared_action_update
561                                 (struct rte_eth_dev *dev,
562                                  struct rte_flow_shared_action *shared_action,
563                                  const struct rte_flow_action *action,
564                                  struct rte_flow_error *error);
565 static int mlx5_shared_action_query
566                                 (struct rte_eth_dev *dev,
567                                  const struct rte_flow_shared_action *action,
568                                  void *data,
569                                  struct rte_flow_error *error);
570
571 static const struct rte_flow_ops mlx5_flow_ops = {
572         .validate = mlx5_flow_validate,
573         .create = mlx5_flow_create,
574         .destroy = mlx5_flow_destroy,
575         .flush = mlx5_flow_flush,
576         .isolate = mlx5_flow_isolate,
577         .query = mlx5_flow_query,
578         .dev_dump = mlx5_flow_dev_dump,
579         .get_aged_flows = mlx5_flow_get_aged_flows,
580         .shared_action_create = mlx5_shared_action_create,
581         .shared_action_destroy = mlx5_shared_action_destroy,
582         .shared_action_update = mlx5_shared_action_update,
583         .shared_action_query = mlx5_shared_action_query,
584 };
585
586 /* Convert FDIR request to Generic flow. */
587 struct mlx5_fdir {
588         struct rte_flow_attr attr;
589         struct rte_flow_item items[4];
590         struct rte_flow_item_eth l2;
591         struct rte_flow_item_eth l2_mask;
592         union {
593                 struct rte_flow_item_ipv4 ipv4;
594                 struct rte_flow_item_ipv6 ipv6;
595         } l3;
596         union {
597                 struct rte_flow_item_ipv4 ipv4;
598                 struct rte_flow_item_ipv6 ipv6;
599         } l3_mask;
600         union {
601                 struct rte_flow_item_udp udp;
602                 struct rte_flow_item_tcp tcp;
603         } l4;
604         union {
605                 struct rte_flow_item_udp udp;
606                 struct rte_flow_item_tcp tcp;
607         } l4_mask;
608         struct rte_flow_action actions[2];
609         struct rte_flow_action_queue queue;
610 };
611
612 /* Tunnel information. */
613 struct mlx5_flow_tunnel_info {
614         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
615         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
616 };
617
618 static struct mlx5_flow_tunnel_info tunnels_info[] = {
619         {
620                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
621                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
622         },
623         {
624                 .tunnel = MLX5_FLOW_LAYER_GENEVE,
625                 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
626         },
627         {
628                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
629                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
630         },
631         {
632                 .tunnel = MLX5_FLOW_LAYER_GRE,
633                 .ptype = RTE_PTYPE_TUNNEL_GRE,
634         },
635         {
636                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
637                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
638         },
639         {
640                 .tunnel = MLX5_FLOW_LAYER_MPLS,
641                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
642         },
643         {
644                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
645                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
646         },
647         {
648                 .tunnel = MLX5_FLOW_LAYER_IPIP,
649                 .ptype = RTE_PTYPE_TUNNEL_IP,
650         },
651         {
652                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
653                 .ptype = RTE_PTYPE_TUNNEL_IP,
654         },
655         {
656                 .tunnel = MLX5_FLOW_LAYER_GTP,
657                 .ptype = RTE_PTYPE_TUNNEL_GTPU,
658         },
659 };
660
661 /**
662  * Translate tag ID to register.
663  *
664  * @param[in] dev
665  *   Pointer to the Ethernet device structure.
666  * @param[in] feature
667  *   The feature that request the register.
668  * @param[in] id
669  *   The request register ID.
670  * @param[out] error
671  *   Error description in case of any.
672  *
673  * @return
674  *   The request register on success, a negative errno
675  *   value otherwise and rte_errno is set.
676  */
677 int
678 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
679                      enum mlx5_feature_name feature,
680                      uint32_t id,
681                      struct rte_flow_error *error)
682 {
683         struct mlx5_priv *priv = dev->data->dev_private;
684         struct mlx5_dev_config *config = &priv->config;
685         enum modify_reg start_reg;
686         bool skip_mtr_reg = false;
687
688         switch (feature) {
689         case MLX5_HAIRPIN_RX:
690                 return REG_B;
691         case MLX5_HAIRPIN_TX:
692                 return REG_A;
693         case MLX5_METADATA_RX:
694                 switch (config->dv_xmeta_en) {
695                 case MLX5_XMETA_MODE_LEGACY:
696                         return REG_B;
697                 case MLX5_XMETA_MODE_META16:
698                         return REG_C_0;
699                 case MLX5_XMETA_MODE_META32:
700                         return REG_C_1;
701                 }
702                 break;
703         case MLX5_METADATA_TX:
704                 return REG_A;
705         case MLX5_METADATA_FDB:
706                 switch (config->dv_xmeta_en) {
707                 case MLX5_XMETA_MODE_LEGACY:
708                         return REG_NON;
709                 case MLX5_XMETA_MODE_META16:
710                         return REG_C_0;
711                 case MLX5_XMETA_MODE_META32:
712                         return REG_C_1;
713                 }
714                 break;
715         case MLX5_FLOW_MARK:
716                 switch (config->dv_xmeta_en) {
717                 case MLX5_XMETA_MODE_LEGACY:
718                         return REG_NON;
719                 case MLX5_XMETA_MODE_META16:
720                         return REG_C_1;
721                 case MLX5_XMETA_MODE_META32:
722                         return REG_C_0;
723                 }
724                 break;
725         case MLX5_MTR_SFX:
726                 /*
727                  * If meter color and flow match share one register, flow match
728                  * should use the meter color register for match.
729                  */
730                 if (priv->mtr_reg_share)
731                         return priv->mtr_color_reg;
732                 else
733                         return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
734                                REG_C_3;
735         case MLX5_MTR_COLOR:
736                 MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
737                 return priv->mtr_color_reg;
738         case MLX5_COPY_MARK:
739                 /*
740                  * Metadata COPY_MARK register using is in meter suffix sub
741                  * flow while with meter. It's safe to share the same register.
742                  */
743                 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
744         case MLX5_APP_TAG:
745                 /*
746                  * If meter is enable, it will engage the register for color
747                  * match and flow match. If meter color match is not using the
748                  * REG_C_2, need to skip the REG_C_x be used by meter color
749                  * match.
750                  * If meter is disable, free to use all available registers.
751                  */
752                 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
753                             (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
754                 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
755                 if (id > (REG_C_7 - start_reg))
756                         return rte_flow_error_set(error, EINVAL,
757                                                   RTE_FLOW_ERROR_TYPE_ITEM,
758                                                   NULL, "invalid tag id");
759                 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
760                         return rte_flow_error_set(error, ENOTSUP,
761                                                   RTE_FLOW_ERROR_TYPE_ITEM,
762                                                   NULL, "unsupported tag id");
763                 /*
764                  * This case means meter is using the REG_C_x great than 2.
765                  * Take care not to conflict with meter color REG_C_x.
766                  * If the available index REG_C_y >= REG_C_x, skip the
767                  * color register.
768                  */
769                 if (skip_mtr_reg && config->flow_mreg_c
770                     [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
771                         if (id >= (REG_C_7 - start_reg))
772                                 return rte_flow_error_set(error, EINVAL,
773                                                        RTE_FLOW_ERROR_TYPE_ITEM,
774                                                         NULL, "invalid tag id");
775                         if (config->flow_mreg_c
776                             [id + 1 + start_reg - REG_C_0] != REG_NON)
777                                 return config->flow_mreg_c
778                                                [id + 1 + start_reg - REG_C_0];
779                         return rte_flow_error_set(error, ENOTSUP,
780                                                   RTE_FLOW_ERROR_TYPE_ITEM,
781                                                   NULL, "unsupported tag id");
782                 }
783                 return config->flow_mreg_c[id + start_reg - REG_C_0];
784         }
785         MLX5_ASSERT(false);
786         return rte_flow_error_set(error, EINVAL,
787                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
788                                   NULL, "invalid feature name");
789 }
790
791 /**
792  * Check extensive flow metadata register support.
793  *
794  * @param dev
795  *   Pointer to rte_eth_dev structure.
796  *
797  * @return
798  *   True if device supports extensive flow metadata register, otherwise false.
799  */
800 bool
801 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
802 {
803         struct mlx5_priv *priv = dev->data->dev_private;
804         struct mlx5_dev_config *config = &priv->config;
805
806         /*
807          * Having available reg_c can be regarded inclusively as supporting
808          * extensive flow metadata register, which could mean,
809          * - metadata register copy action by modify header.
810          * - 16 modify header actions is supported.
811          * - reg_c's are preserved across different domain (FDB and NIC) on
812          *   packet loopback by flow lookup miss.
813          */
814         return config->flow_mreg_c[2] != REG_NON;
815 }
816
817 /**
818  * Verify the @p item specifications (spec, last, mask) are compatible with the
819  * NIC capabilities.
820  *
821  * @param[in] item
822  *   Item specification.
823  * @param[in] mask
824  *   @p item->mask or flow default bit-masks.
825  * @param[in] nic_mask
826  *   Bit-masks covering supported fields by the NIC to compare with user mask.
827  * @param[in] size
828  *   Bit-masks size in bytes.
829  * @param[in] range_accepted
830  *   True if range of values is accepted for specific fields, false otherwise.
831  * @param[out] error
832  *   Pointer to error structure.
833  *
834  * @return
835  *   0 on success, a negative errno value otherwise and rte_errno is set.
836  */
837 int
838 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
839                           const uint8_t *mask,
840                           const uint8_t *nic_mask,
841                           unsigned int size,
842                           bool range_accepted,
843                           struct rte_flow_error *error)
844 {
845         unsigned int i;
846
847         MLX5_ASSERT(nic_mask);
848         for (i = 0; i < size; ++i)
849                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
850                         return rte_flow_error_set(error, ENOTSUP,
851                                                   RTE_FLOW_ERROR_TYPE_ITEM,
852                                                   item,
853                                                   "mask enables non supported"
854                                                   " bits");
855         if (!item->spec && (item->mask || item->last))
856                 return rte_flow_error_set(error, EINVAL,
857                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
858                                           "mask/last without a spec is not"
859                                           " supported");
860         if (item->spec && item->last && !range_accepted) {
861                 uint8_t spec[size];
862                 uint8_t last[size];
863                 unsigned int i;
864                 int ret;
865
866                 for (i = 0; i < size; ++i) {
867                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
868                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
869                 }
870                 ret = memcmp(spec, last, size);
871                 if (ret != 0)
872                         return rte_flow_error_set(error, EINVAL,
873                                                   RTE_FLOW_ERROR_TYPE_ITEM,
874                                                   item,
875                                                   "range is not valid");
876         }
877         return 0;
878 }
879
880 /**
881  * Adjust the hash fields according to the @p flow information.
882  *
883  * @param[in] dev_flow.
884  *   Pointer to the mlx5_flow.
885  * @param[in] tunnel
886  *   1 when the hash field is for a tunnel item.
887  * @param[in] layer_types
888  *   ETH_RSS_* types.
889  * @param[in] hash_fields
890  *   Item hash fields.
891  *
892  * @return
893  *   The hash fields that should be used.
894  */
895 uint64_t
896 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
897                             int tunnel __rte_unused, uint64_t layer_types,
898                             uint64_t hash_fields)
899 {
900 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
901         int rss_request_inner = rss_desc->level >= 2;
902
903         /* Check RSS hash level for tunnel. */
904         if (tunnel && rss_request_inner)
905                 hash_fields |= IBV_RX_HASH_INNER;
906         else if (tunnel || rss_request_inner)
907                 return 0;
908 #endif
909         /* Check if requested layer matches RSS hash fields. */
910         if (!(rss_desc->types & layer_types))
911                 return 0;
912         return hash_fields;
913 }
914
915 /**
916  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
917  * if several tunnel rules are used on this queue, the tunnel ptype will be
918  * cleared.
919  *
920  * @param rxq_ctrl
921  *   Rx queue to update.
922  */
923 static void
924 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
925 {
926         unsigned int i;
927         uint32_t tunnel_ptype = 0;
928
929         /* Look up for the ptype to use. */
930         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
931                 if (!rxq_ctrl->flow_tunnels_n[i])
932                         continue;
933                 if (!tunnel_ptype) {
934                         tunnel_ptype = tunnels_info[i].ptype;
935                 } else {
936                         tunnel_ptype = 0;
937                         break;
938                 }
939         }
940         rxq_ctrl->rxq.tunnel = tunnel_ptype;
941 }
942
943 /**
944  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
945  * flow.
946  *
947  * @param[in] dev
948  *   Pointer to the Ethernet device structure.
949  * @param[in] dev_handle
950  *   Pointer to device flow handle structure.
951  */
952 static void
953 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
954                        struct mlx5_flow_handle *dev_handle)
955 {
956         struct mlx5_priv *priv = dev->data->dev_private;
957         const int mark = dev_handle->mark;
958         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
959         struct mlx5_hrxq *hrxq;
960         unsigned int i;
961
962         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
963                 return;
964         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
965                               dev_handle->rix_hrxq);
966         if (!hrxq)
967                 return;
968         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
969                 int idx = hrxq->ind_table->queues[i];
970                 struct mlx5_rxq_ctrl *rxq_ctrl =
971                         container_of((*priv->rxqs)[idx],
972                                      struct mlx5_rxq_ctrl, rxq);
973
974                 /*
975                  * To support metadata register copy on Tx loopback,
976                  * this must be always enabled (metadata may arive
977                  * from other port - not from local flows only.
978                  */
979                 if (priv->config.dv_flow_en &&
980                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
981                     mlx5_flow_ext_mreg_supported(dev)) {
982                         rxq_ctrl->rxq.mark = 1;
983                         rxq_ctrl->flow_mark_n = 1;
984                 } else if (mark) {
985                         rxq_ctrl->rxq.mark = 1;
986                         rxq_ctrl->flow_mark_n++;
987                 }
988                 if (tunnel) {
989                         unsigned int j;
990
991                         /* Increase the counter matching the flow. */
992                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
993                                 if ((tunnels_info[j].tunnel &
994                                      dev_handle->layers) ==
995                                     tunnels_info[j].tunnel) {
996                                         rxq_ctrl->flow_tunnels_n[j]++;
997                                         break;
998                                 }
999                         }
1000                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
1001                 }
1002         }
1003 }
1004
1005 /**
1006  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1007  *
1008  * @param[in] dev
1009  *   Pointer to the Ethernet device structure.
1010  * @param[in] flow
1011  *   Pointer to flow structure.
1012  */
1013 static void
1014 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1015 {
1016         struct mlx5_priv *priv = dev->data->dev_private;
1017         uint32_t handle_idx;
1018         struct mlx5_flow_handle *dev_handle;
1019
1020         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1021                        handle_idx, dev_handle, next)
1022                 flow_drv_rxq_flags_set(dev, dev_handle);
1023 }
1024
1025 /**
1026  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1027  * device flow if no other flow uses it with the same kind of request.
1028  *
1029  * @param dev
1030  *   Pointer to Ethernet device.
1031  * @param[in] dev_handle
1032  *   Pointer to the device flow handle structure.
1033  */
1034 static void
1035 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1036                         struct mlx5_flow_handle *dev_handle)
1037 {
1038         struct mlx5_priv *priv = dev->data->dev_private;
1039         const int mark = dev_handle->mark;
1040         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1041         struct mlx5_hrxq *hrxq;
1042         unsigned int i;
1043
1044         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1045                 return;
1046         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1047                               dev_handle->rix_hrxq);
1048         if (!hrxq)
1049                 return;
1050         MLX5_ASSERT(dev->data->dev_started);
1051         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1052                 int idx = hrxq->ind_table->queues[i];
1053                 struct mlx5_rxq_ctrl *rxq_ctrl =
1054                         container_of((*priv->rxqs)[idx],
1055                                      struct mlx5_rxq_ctrl, rxq);
1056
1057                 if (priv->config.dv_flow_en &&
1058                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1059                     mlx5_flow_ext_mreg_supported(dev)) {
1060                         rxq_ctrl->rxq.mark = 1;
1061                         rxq_ctrl->flow_mark_n = 1;
1062                 } else if (mark) {
1063                         rxq_ctrl->flow_mark_n--;
1064                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1065                 }
1066                 if (tunnel) {
1067                         unsigned int j;
1068
1069                         /* Decrease the counter matching the flow. */
1070                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1071                                 if ((tunnels_info[j].tunnel &
1072                                      dev_handle->layers) ==
1073                                     tunnels_info[j].tunnel) {
1074                                         rxq_ctrl->flow_tunnels_n[j]--;
1075                                         break;
1076                                 }
1077                         }
1078                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
1079                 }
1080         }
1081 }
1082
1083 /**
1084  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1085  * @p flow if no other flow uses it with the same kind of request.
1086  *
1087  * @param dev
1088  *   Pointer to Ethernet device.
1089  * @param[in] flow
1090  *   Pointer to the flow.
1091  */
1092 static void
1093 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1094 {
1095         struct mlx5_priv *priv = dev->data->dev_private;
1096         uint32_t handle_idx;
1097         struct mlx5_flow_handle *dev_handle;
1098
1099         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1100                        handle_idx, dev_handle, next)
1101                 flow_drv_rxq_flags_trim(dev, dev_handle);
1102 }
1103
1104 /**
1105  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1106  *
1107  * @param dev
1108  *   Pointer to Ethernet device.
1109  */
1110 static void
1111 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1112 {
1113         struct mlx5_priv *priv = dev->data->dev_private;
1114         unsigned int i;
1115
1116         for (i = 0; i != priv->rxqs_n; ++i) {
1117                 struct mlx5_rxq_ctrl *rxq_ctrl;
1118                 unsigned int j;
1119
1120                 if (!(*priv->rxqs)[i])
1121                         continue;
1122                 rxq_ctrl = container_of((*priv->rxqs)[i],
1123                                         struct mlx5_rxq_ctrl, rxq);
1124                 rxq_ctrl->flow_mark_n = 0;
1125                 rxq_ctrl->rxq.mark = 0;
1126                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1127                         rxq_ctrl->flow_tunnels_n[j] = 0;
1128                 rxq_ctrl->rxq.tunnel = 0;
1129         }
1130 }
1131
1132 /**
1133  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1134  *
1135  * @param[in] dev
1136  *   Pointer to the Ethernet device structure.
1137  */
1138 void
1139 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1140 {
1141         struct mlx5_priv *priv = dev->data->dev_private;
1142         struct mlx5_rxq_data *data;
1143         unsigned int i;
1144
1145         for (i = 0; i != priv->rxqs_n; ++i) {
1146                 if (!(*priv->rxqs)[i])
1147                         continue;
1148                 data = (*priv->rxqs)[i];
1149                 if (!rte_flow_dynf_metadata_avail()) {
1150                         data->dynf_meta = 0;
1151                         data->flow_meta_mask = 0;
1152                         data->flow_meta_offset = -1;
1153                 } else {
1154                         data->dynf_meta = 1;
1155                         data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1156                         data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1157                 }
1158         }
1159 }
1160
1161 /*
1162  * return a pointer to the desired action in the list of actions.
1163  *
1164  * @param[in] actions
1165  *   The list of actions to search the action in.
1166  * @param[in] action
1167  *   The action to find.
1168  *
1169  * @return
1170  *   Pointer to the action in the list, if found. NULL otherwise.
1171  */
1172 const struct rte_flow_action *
1173 mlx5_flow_find_action(const struct rte_flow_action *actions,
1174                       enum rte_flow_action_type action)
1175 {
1176         if (actions == NULL)
1177                 return NULL;
1178         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1179                 if (actions->type == action)
1180                         return actions;
1181         return NULL;
1182 }
1183
1184 /*
1185  * Validate the flag action.
1186  *
1187  * @param[in] action_flags
1188  *   Bit-fields that holds the actions detected until now.
1189  * @param[in] attr
1190  *   Attributes of flow that includes this action.
1191  * @param[out] error
1192  *   Pointer to error structure.
1193  *
1194  * @return
1195  *   0 on success, a negative errno value otherwise and rte_errno is set.
1196  */
1197 int
1198 mlx5_flow_validate_action_flag(uint64_t action_flags,
1199                                const struct rte_flow_attr *attr,
1200                                struct rte_flow_error *error)
1201 {
1202         if (action_flags & MLX5_FLOW_ACTION_MARK)
1203                 return rte_flow_error_set(error, EINVAL,
1204                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1205                                           "can't mark and flag in same flow");
1206         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1207                 return rte_flow_error_set(error, EINVAL,
1208                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1209                                           "can't have 2 flag"
1210                                           " actions in same flow");
1211         if (attr->egress)
1212                 return rte_flow_error_set(error, ENOTSUP,
1213                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1214                                           "flag action not supported for "
1215                                           "egress");
1216         return 0;
1217 }
1218
1219 /*
1220  * Validate the mark action.
1221  *
1222  * @param[in] action
1223  *   Pointer to the queue action.
1224  * @param[in] action_flags
1225  *   Bit-fields that holds the actions detected until now.
1226  * @param[in] attr
1227  *   Attributes of flow that includes this action.
1228  * @param[out] error
1229  *   Pointer to error structure.
1230  *
1231  * @return
1232  *   0 on success, a negative errno value otherwise and rte_errno is set.
1233  */
1234 int
1235 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1236                                uint64_t action_flags,
1237                                const struct rte_flow_attr *attr,
1238                                struct rte_flow_error *error)
1239 {
1240         const struct rte_flow_action_mark *mark = action->conf;
1241
1242         if (!mark)
1243                 return rte_flow_error_set(error, EINVAL,
1244                                           RTE_FLOW_ERROR_TYPE_ACTION,
1245                                           action,
1246                                           "configuration cannot be null");
1247         if (mark->id >= MLX5_FLOW_MARK_MAX)
1248                 return rte_flow_error_set(error, EINVAL,
1249                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1250                                           &mark->id,
1251                                           "mark id must in 0 <= id < "
1252                                           RTE_STR(MLX5_FLOW_MARK_MAX));
1253         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1254                 return rte_flow_error_set(error, EINVAL,
1255                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1256                                           "can't flag and mark in same flow");
1257         if (action_flags & MLX5_FLOW_ACTION_MARK)
1258                 return rte_flow_error_set(error, EINVAL,
1259                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1260                                           "can't have 2 mark actions in same"
1261                                           " flow");
1262         if (attr->egress)
1263                 return rte_flow_error_set(error, ENOTSUP,
1264                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1265                                           "mark action not supported for "
1266                                           "egress");
1267         return 0;
1268 }
1269
1270 /*
1271  * Validate the drop action.
1272  *
1273  * @param[in] action_flags
1274  *   Bit-fields that holds the actions detected until now.
1275  * @param[in] attr
1276  *   Attributes of flow that includes this action.
1277  * @param[out] error
1278  *   Pointer to error structure.
1279  *
1280  * @return
1281  *   0 on success, a negative errno value otherwise and rte_errno is set.
1282  */
1283 int
1284 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1285                                const struct rte_flow_attr *attr,
1286                                struct rte_flow_error *error)
1287 {
1288         if (attr->egress)
1289                 return rte_flow_error_set(error, ENOTSUP,
1290                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1291                                           "drop action not supported for "
1292                                           "egress");
1293         return 0;
1294 }
1295
1296 /*
1297  * Validate the queue action.
1298  *
1299  * @param[in] action
1300  *   Pointer to the queue action.
1301  * @param[in] action_flags
1302  *   Bit-fields that holds the actions detected until now.
1303  * @param[in] dev
1304  *   Pointer to the Ethernet device structure.
1305  * @param[in] attr
1306  *   Attributes of flow that includes this action.
1307  * @param[out] error
1308  *   Pointer to error structure.
1309  *
1310  * @return
1311  *   0 on success, a negative errno value otherwise and rte_errno is set.
1312  */
1313 int
1314 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1315                                 uint64_t action_flags,
1316                                 struct rte_eth_dev *dev,
1317                                 const struct rte_flow_attr *attr,
1318                                 struct rte_flow_error *error)
1319 {
1320         struct mlx5_priv *priv = dev->data->dev_private;
1321         const struct rte_flow_action_queue *queue = action->conf;
1322
1323         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1324                 return rte_flow_error_set(error, EINVAL,
1325                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1326                                           "can't have 2 fate actions in"
1327                                           " same flow");
1328         if (!priv->rxqs_n)
1329                 return rte_flow_error_set(error, EINVAL,
1330                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1331                                           NULL, "No Rx queues configured");
1332         if (queue->index >= priv->rxqs_n)
1333                 return rte_flow_error_set(error, EINVAL,
1334                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1335                                           &queue->index,
1336                                           "queue index out of range");
1337         if (!(*priv->rxqs)[queue->index])
1338                 return rte_flow_error_set(error, EINVAL,
1339                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1340                                           &queue->index,
1341                                           "queue is not configured");
1342         if (attr->egress)
1343                 return rte_flow_error_set(error, ENOTSUP,
1344                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1345                                           "queue action not supported for "
1346                                           "egress");
1347         return 0;
1348 }
1349
1350 /*
1351  * Validate the rss action.
1352  *
1353  * @param[in] dev
1354  *   Pointer to the Ethernet device structure.
1355  * @param[in] action
1356  *   Pointer to the queue action.
1357  * @param[out] error
1358  *   Pointer to error structure.
1359  *
1360  * @return
1361  *   0 on success, a negative errno value otherwise and rte_errno is set.
1362  */
1363 int
1364 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1365                          const struct rte_flow_action *action,
1366                          struct rte_flow_error *error)
1367 {
1368         struct mlx5_priv *priv = dev->data->dev_private;
1369         const struct rte_flow_action_rss *rss = action->conf;
1370         unsigned int i;
1371
1372         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1373             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1374                 return rte_flow_error_set(error, ENOTSUP,
1375                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1376                                           &rss->func,
1377                                           "RSS hash function not supported");
1378 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1379         if (rss->level > 2)
1380 #else
1381         if (rss->level > 1)
1382 #endif
1383                 return rte_flow_error_set(error, ENOTSUP,
1384                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1385                                           &rss->level,
1386                                           "tunnel RSS is not supported");
1387         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
1388         if (rss->key_len == 0 && rss->key != NULL)
1389                 return rte_flow_error_set(error, ENOTSUP,
1390                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1391                                           &rss->key_len,
1392                                           "RSS hash key length 0");
1393         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1394                 return rte_flow_error_set(error, ENOTSUP,
1395                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1396                                           &rss->key_len,
1397                                           "RSS hash key too small");
1398         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1399                 return rte_flow_error_set(error, ENOTSUP,
1400                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1401                                           &rss->key_len,
1402                                           "RSS hash key too large");
1403         if (rss->queue_num > priv->config.ind_table_max_size)
1404                 return rte_flow_error_set(error, ENOTSUP,
1405                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1406                                           &rss->queue_num,
1407                                           "number of queues too large");
1408         if (rss->types & MLX5_RSS_HF_MASK)
1409                 return rte_flow_error_set(error, ENOTSUP,
1410                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1411                                           &rss->types,
1412                                           "some RSS protocols are not"
1413                                           " supported");
1414         if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1415             !(rss->types & ETH_RSS_IP))
1416                 return rte_flow_error_set(error, EINVAL,
1417                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1418                                           "L3 partial RSS requested but L3 RSS"
1419                                           " type not specified");
1420         if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1421             !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1422                 return rte_flow_error_set(error, EINVAL,
1423                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1424                                           "L4 partial RSS requested but L4 RSS"
1425                                           " type not specified");
1426         if (!priv->rxqs_n)
1427                 return rte_flow_error_set(error, EINVAL,
1428                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1429                                           NULL, "No Rx queues configured");
1430         if (!rss->queue_num)
1431                 return rte_flow_error_set(error, EINVAL,
1432                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1433                                           NULL, "No queues configured");
1434         for (i = 0; i != rss->queue_num; ++i) {
1435                 if (rss->queue[i] >= priv->rxqs_n)
1436                         return rte_flow_error_set
1437                                 (error, EINVAL,
1438                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1439                                  &rss->queue[i], "queue index out of range");
1440                 if (!(*priv->rxqs)[rss->queue[i]])
1441                         return rte_flow_error_set
1442                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1443                                  &rss->queue[i], "queue is not configured");
1444         }
1445         return 0;
1446 }
1447
1448 /*
1449  * Validate the rss action.
1450  *
1451  * @param[in] action
1452  *   Pointer to the queue action.
1453  * @param[in] action_flags
1454  *   Bit-fields that holds the actions detected until now.
1455  * @param[in] dev
1456  *   Pointer to the Ethernet device structure.
1457  * @param[in] attr
1458  *   Attributes of flow that includes this action.
1459  * @param[in] item_flags
1460  *   Items that were detected.
1461  * @param[out] error
1462  *   Pointer to error structure.
1463  *
1464  * @return
1465  *   0 on success, a negative errno value otherwise and rte_errno is set.
1466  */
1467 int
1468 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1469                               uint64_t action_flags,
1470                               struct rte_eth_dev *dev,
1471                               const struct rte_flow_attr *attr,
1472                               uint64_t item_flags,
1473                               struct rte_flow_error *error)
1474 {
1475         const struct rte_flow_action_rss *rss = action->conf;
1476         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1477         int ret;
1478
1479         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1480                 return rte_flow_error_set(error, EINVAL,
1481                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1482                                           "can't have 2 fate actions"
1483                                           " in same flow");
1484         ret = mlx5_validate_action_rss(dev, action, error);
1485         if (ret)
1486                 return ret;
1487         if (attr->egress)
1488                 return rte_flow_error_set(error, ENOTSUP,
1489                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1490                                           "rss action not supported for "
1491                                           "egress");
1492         if (rss->level > 1 && !tunnel)
1493                 return rte_flow_error_set(error, EINVAL,
1494                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1495                                           "inner RSS is not supported for "
1496                                           "non-tunnel flows");
1497         if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1498             !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1499                 return rte_flow_error_set(error, EINVAL,
1500                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1501                                           "RSS on eCPRI is not supported now");
1502         }
1503         return 0;
1504 }
1505
1506 /*
1507  * Validate the default miss action.
1508  *
1509  * @param[in] action_flags
1510  *   Bit-fields that holds the actions detected until now.
1511  * @param[out] error
1512  *   Pointer to error structure.
1513  *
1514  * @return
1515  *   0 on success, a negative errno value otherwise and rte_errno is set.
1516  */
1517 int
1518 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1519                                 const struct rte_flow_attr *attr,
1520                                 struct rte_flow_error *error)
1521 {
1522         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1523                 return rte_flow_error_set(error, EINVAL,
1524                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1525                                           "can't have 2 fate actions in"
1526                                           " same flow");
1527         if (attr->egress)
1528                 return rte_flow_error_set(error, ENOTSUP,
1529                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1530                                           "default miss action not supported "
1531                                           "for egress");
1532         if (attr->group)
1533                 return rte_flow_error_set(error, ENOTSUP,
1534                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1535                                           "only group 0 is supported");
1536         if (attr->transfer)
1537                 return rte_flow_error_set(error, ENOTSUP,
1538                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1539                                           NULL, "transfer is not supported");
1540         return 0;
1541 }
1542
1543 /*
1544  * Validate the count action.
1545  *
1546  * @param[in] dev
1547  *   Pointer to the Ethernet device structure.
1548  * @param[in] attr
1549  *   Attributes of flow that includes this action.
1550  * @param[out] error
1551  *   Pointer to error structure.
1552  *
1553  * @return
1554  *   0 on success, a negative errno value otherwise and rte_errno is set.
1555  */
1556 int
1557 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1558                                 const struct rte_flow_attr *attr,
1559                                 struct rte_flow_error *error)
1560 {
1561         if (attr->egress)
1562                 return rte_flow_error_set(error, ENOTSUP,
1563                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1564                                           "count action not supported for "
1565                                           "egress");
1566         return 0;
1567 }
1568
1569 /**
1570  * Verify the @p attributes will be correctly understood by the NIC and store
1571  * them in the @p flow if everything is correct.
1572  *
1573  * @param[in] dev
1574  *   Pointer to the Ethernet device structure.
1575  * @param[in] attributes
1576  *   Pointer to flow attributes
1577  * @param[out] error
1578  *   Pointer to error structure.
1579  *
1580  * @return
1581  *   0 on success, a negative errno value otherwise and rte_errno is set.
1582  */
1583 int
1584 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1585                               const struct rte_flow_attr *attributes,
1586                               struct rte_flow_error *error)
1587 {
1588         struct mlx5_priv *priv = dev->data->dev_private;
1589         uint32_t priority_max = priv->config.flow_prio - 1;
1590
1591         if (attributes->group)
1592                 return rte_flow_error_set(error, ENOTSUP,
1593                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1594                                           NULL, "groups is not supported");
1595         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1596             attributes->priority >= priority_max)
1597                 return rte_flow_error_set(error, ENOTSUP,
1598                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1599                                           NULL, "priority out of range");
1600         if (attributes->egress)
1601                 return rte_flow_error_set(error, ENOTSUP,
1602                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1603                                           "egress is not supported");
1604         if (attributes->transfer && !priv->config.dv_esw_en)
1605                 return rte_flow_error_set(error, ENOTSUP,
1606                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1607                                           NULL, "transfer is not supported");
1608         if (!attributes->ingress)
1609                 return rte_flow_error_set(error, EINVAL,
1610                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1611                                           NULL,
1612                                           "ingress attribute is mandatory");
1613         return 0;
1614 }
1615
1616 /**
1617  * Validate ICMP6 item.
1618  *
1619  * @param[in] item
1620  *   Item specification.
1621  * @param[in] item_flags
1622  *   Bit-fields that holds the items detected until now.
1623  * @param[out] error
1624  *   Pointer to error structure.
1625  *
1626  * @return
1627  *   0 on success, a negative errno value otherwise and rte_errno is set.
1628  */
1629 int
1630 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1631                                uint64_t item_flags,
1632                                uint8_t target_protocol,
1633                                struct rte_flow_error *error)
1634 {
1635         const struct rte_flow_item_icmp6 *mask = item->mask;
1636         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1637         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1638                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1639         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1640                                       MLX5_FLOW_LAYER_OUTER_L4;
1641         int ret;
1642
1643         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1644                 return rte_flow_error_set(error, EINVAL,
1645                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1646                                           "protocol filtering not compatible"
1647                                           " with ICMP6 layer");
1648         if (!(item_flags & l3m))
1649                 return rte_flow_error_set(error, EINVAL,
1650                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1651                                           "IPv6 is mandatory to filter on"
1652                                           " ICMP6");
1653         if (item_flags & l4m)
1654                 return rte_flow_error_set(error, EINVAL,
1655                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1656                                           "multiple L4 layers not supported");
1657         if (!mask)
1658                 mask = &rte_flow_item_icmp6_mask;
1659         ret = mlx5_flow_item_acceptable
1660                 (item, (const uint8_t *)mask,
1661                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1662                  sizeof(struct rte_flow_item_icmp6),
1663                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1664         if (ret < 0)
1665                 return ret;
1666         return 0;
1667 }
1668
1669 /**
1670  * Validate ICMP item.
1671  *
1672  * @param[in] item
1673  *   Item specification.
1674  * @param[in] item_flags
1675  *   Bit-fields that holds the items detected until now.
1676  * @param[out] error
1677  *   Pointer to error structure.
1678  *
1679  * @return
1680  *   0 on success, a negative errno value otherwise and rte_errno is set.
1681  */
1682 int
1683 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1684                              uint64_t item_flags,
1685                              uint8_t target_protocol,
1686                              struct rte_flow_error *error)
1687 {
1688         const struct rte_flow_item_icmp *mask = item->mask;
1689         const struct rte_flow_item_icmp nic_mask = {
1690                 .hdr.icmp_type = 0xff,
1691                 .hdr.icmp_code = 0xff,
1692                 .hdr.icmp_ident = RTE_BE16(0xffff),
1693                 .hdr.icmp_seq_nb = RTE_BE16(0xffff),
1694         };
1695         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1696         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1697                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1698         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1699                                       MLX5_FLOW_LAYER_OUTER_L4;
1700         int ret;
1701
1702         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1703                 return rte_flow_error_set(error, EINVAL,
1704                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1705                                           "protocol filtering not compatible"
1706                                           " with ICMP layer");
1707         if (!(item_flags & l3m))
1708                 return rte_flow_error_set(error, EINVAL,
1709                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1710                                           "IPv4 is mandatory to filter"
1711                                           " on ICMP");
1712         if (item_flags & l4m)
1713                 return rte_flow_error_set(error, EINVAL,
1714                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1715                                           "multiple L4 layers not supported");
1716         if (!mask)
1717                 mask = &nic_mask;
1718         ret = mlx5_flow_item_acceptable
1719                 (item, (const uint8_t *)mask,
1720                  (const uint8_t *)&nic_mask,
1721                  sizeof(struct rte_flow_item_icmp),
1722                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1723         if (ret < 0)
1724                 return ret;
1725         return 0;
1726 }
1727
1728 /**
1729  * Validate Ethernet item.
1730  *
1731  * @param[in] item
1732  *   Item specification.
1733  * @param[in] item_flags
1734  *   Bit-fields that holds the items detected until now.
1735  * @param[out] error
1736  *   Pointer to error structure.
1737  *
1738  * @return
1739  *   0 on success, a negative errno value otherwise and rte_errno is set.
1740  */
1741 int
1742 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1743                             uint64_t item_flags,
1744                             struct rte_flow_error *error)
1745 {
1746         const struct rte_flow_item_eth *mask = item->mask;
1747         const struct rte_flow_item_eth nic_mask = {
1748                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1749                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1750                 .type = RTE_BE16(0xffff),
1751         };
1752         int ret;
1753         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1754         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1755                                        MLX5_FLOW_LAYER_OUTER_L2;
1756
1757         if (item_flags & ethm)
1758                 return rte_flow_error_set(error, ENOTSUP,
1759                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1760                                           "multiple L2 layers not supported");
1761         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1762             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1763                 return rte_flow_error_set(error, EINVAL,
1764                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1765                                           "L2 layer should not follow "
1766                                           "L3 layers");
1767         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1768             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1769                 return rte_flow_error_set(error, EINVAL,
1770                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1771                                           "L2 layer should not follow VLAN");
1772         if (!mask)
1773                 mask = &rte_flow_item_eth_mask;
1774         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1775                                         (const uint8_t *)&nic_mask,
1776                                         sizeof(struct rte_flow_item_eth),
1777                                         MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1778         return ret;
1779 }
1780
1781 /**
1782  * Validate VLAN item.
1783  *
1784  * @param[in] item
1785  *   Item specification.
1786  * @param[in] item_flags
1787  *   Bit-fields that holds the items detected until now.
1788  * @param[in] dev
1789  *   Ethernet device flow is being created on.
1790  * @param[out] error
1791  *   Pointer to error structure.
1792  *
1793  * @return
1794  *   0 on success, a negative errno value otherwise and rte_errno is set.
1795  */
1796 int
1797 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1798                              uint64_t item_flags,
1799                              struct rte_eth_dev *dev,
1800                              struct rte_flow_error *error)
1801 {
1802         const struct rte_flow_item_vlan *spec = item->spec;
1803         const struct rte_flow_item_vlan *mask = item->mask;
1804         const struct rte_flow_item_vlan nic_mask = {
1805                 .tci = RTE_BE16(UINT16_MAX),
1806                 .inner_type = RTE_BE16(UINT16_MAX),
1807         };
1808         uint16_t vlan_tag = 0;
1809         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1810         int ret;
1811         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1812                                         MLX5_FLOW_LAYER_INNER_L4) :
1813                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1814                                         MLX5_FLOW_LAYER_OUTER_L4);
1815         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1816                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1817
1818         if (item_flags & vlanm)
1819                 return rte_flow_error_set(error, EINVAL,
1820                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1821                                           "multiple VLAN layers not supported");
1822         else if ((item_flags & l34m) != 0)
1823                 return rte_flow_error_set(error, EINVAL,
1824                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1825                                           "VLAN cannot follow L3/L4 layer");
1826         if (!mask)
1827                 mask = &rte_flow_item_vlan_mask;
1828         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1829                                         (const uint8_t *)&nic_mask,
1830                                         sizeof(struct rte_flow_item_vlan),
1831                                         MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1832         if (ret)
1833                 return ret;
1834         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1835                 struct mlx5_priv *priv = dev->data->dev_private;
1836
1837                 if (priv->vmwa_context) {
1838                         /*
1839                          * Non-NULL context means we have a virtual machine
1840                          * and SR-IOV enabled, we have to create VLAN interface
1841                          * to make hypervisor to setup E-Switch vport
1842                          * context correctly. We avoid creating the multiple
1843                          * VLAN interfaces, so we cannot support VLAN tag mask.
1844                          */
1845                         return rte_flow_error_set(error, EINVAL,
1846                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1847                                                   item,
1848                                                   "VLAN tag mask is not"
1849                                                   " supported in virtual"
1850                                                   " environment");
1851                 }
1852         }
1853         if (spec) {
1854                 vlan_tag = spec->tci;
1855                 vlan_tag &= mask->tci;
1856         }
1857         /*
1858          * From verbs perspective an empty VLAN is equivalent
1859          * to a packet without VLAN layer.
1860          */
1861         if (!vlan_tag)
1862                 return rte_flow_error_set(error, EINVAL,
1863                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1864                                           item->spec,
1865                                           "VLAN cannot be empty");
1866         return 0;
1867 }
1868
1869 /**
1870  * Validate IPV4 item.
1871  *
1872  * @param[in] item
1873  *   Item specification.
1874  * @param[in] item_flags
1875  *   Bit-fields that holds the items detected until now.
1876  * @param[in] last_item
1877  *   Previous validated item in the pattern items.
1878  * @param[in] ether_type
1879  *   Type in the ethernet layer header (including dot1q).
1880  * @param[in] acc_mask
1881  *   Acceptable mask, if NULL default internal default mask
1882  *   will be used to check whether item fields are supported.
1883  * @param[in] range_accepted
1884  *   True if range of values is accepted for specific fields, false otherwise.
1885  * @param[out] error
1886  *   Pointer to error structure.
1887  *
1888  * @return
1889  *   0 on success, a negative errno value otherwise and rte_errno is set.
1890  */
1891 int
1892 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1893                              uint64_t item_flags,
1894                              uint64_t last_item,
1895                              uint16_t ether_type,
1896                              const struct rte_flow_item_ipv4 *acc_mask,
1897                              bool range_accepted,
1898                              struct rte_flow_error *error)
1899 {
1900         const struct rte_flow_item_ipv4 *mask = item->mask;
1901         const struct rte_flow_item_ipv4 *spec = item->spec;
1902         const struct rte_flow_item_ipv4 nic_mask = {
1903                 .hdr = {
1904                         .src_addr = RTE_BE32(0xffffffff),
1905                         .dst_addr = RTE_BE32(0xffffffff),
1906                         .type_of_service = 0xff,
1907                         .next_proto_id = 0xff,
1908                 },
1909         };
1910         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1911         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1912                                       MLX5_FLOW_LAYER_OUTER_L3;
1913         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1914                                       MLX5_FLOW_LAYER_OUTER_L4;
1915         int ret;
1916         uint8_t next_proto = 0xFF;
1917         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1918                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1919                                   MLX5_FLOW_LAYER_INNER_VLAN);
1920
1921         if ((last_item & l2_vlan) && ether_type &&
1922             ether_type != RTE_ETHER_TYPE_IPV4)
1923                 return rte_flow_error_set(error, EINVAL,
1924                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1925                                           "IPv4 cannot follow L2/VLAN layer "
1926                                           "which ether type is not IPv4");
1927         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1928                 if (mask && spec)
1929                         next_proto = mask->hdr.next_proto_id &
1930                                      spec->hdr.next_proto_id;
1931                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1932                         return rte_flow_error_set(error, EINVAL,
1933                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1934                                                   item,
1935                                                   "multiple tunnel "
1936                                                   "not supported");
1937         }
1938         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1939                 return rte_flow_error_set(error, EINVAL,
1940                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1941                                           "wrong tunnel type - IPv6 specified "
1942                                           "but IPv4 item provided");
1943         if (item_flags & l3m)
1944                 return rte_flow_error_set(error, ENOTSUP,
1945                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1946                                           "multiple L3 layers not supported");
1947         else if (item_flags & l4m)
1948                 return rte_flow_error_set(error, EINVAL,
1949                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1950                                           "L3 cannot follow an L4 layer.");
1951         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1952                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1953                 return rte_flow_error_set(error, EINVAL,
1954                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1955                                           "L3 cannot follow an NVGRE layer.");
1956         if (!mask)
1957                 mask = &rte_flow_item_ipv4_mask;
1958         else if (mask->hdr.next_proto_id != 0 &&
1959                  mask->hdr.next_proto_id != 0xff)
1960                 return rte_flow_error_set(error, EINVAL,
1961                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1962                                           "partial mask is not supported"
1963                                           " for protocol");
1964         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1965                                         acc_mask ? (const uint8_t *)acc_mask
1966                                                  : (const uint8_t *)&nic_mask,
1967                                         sizeof(struct rte_flow_item_ipv4),
1968                                         range_accepted, error);
1969         if (ret < 0)
1970                 return ret;
1971         return 0;
1972 }
1973
1974 /**
1975  * Validate IPV6 item.
1976  *
1977  * @param[in] item
1978  *   Item specification.
1979  * @param[in] item_flags
1980  *   Bit-fields that holds the items detected until now.
1981  * @param[in] last_item
1982  *   Previous validated item in the pattern items.
1983  * @param[in] ether_type
1984  *   Type in the ethernet layer header (including dot1q).
1985  * @param[in] acc_mask
1986  *   Acceptable mask, if NULL default internal default mask
1987  *   will be used to check whether item fields are supported.
1988  * @param[out] error
1989  *   Pointer to error structure.
1990  *
1991  * @return
1992  *   0 on success, a negative errno value otherwise and rte_errno is set.
1993  */
1994 int
1995 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1996                              uint64_t item_flags,
1997                              uint64_t last_item,
1998                              uint16_t ether_type,
1999                              const struct rte_flow_item_ipv6 *acc_mask,
2000                              struct rte_flow_error *error)
2001 {
2002         const struct rte_flow_item_ipv6 *mask = item->mask;
2003         const struct rte_flow_item_ipv6 *spec = item->spec;
2004         const struct rte_flow_item_ipv6 nic_mask = {
2005                 .hdr = {
2006                         .src_addr =
2007                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
2008                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
2009                         .dst_addr =
2010                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
2011                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
2012                         .vtc_flow = RTE_BE32(0xffffffff),
2013                         .proto = 0xff,
2014                 },
2015         };
2016         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2017         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2018                                       MLX5_FLOW_LAYER_OUTER_L3;
2019         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2020                                       MLX5_FLOW_LAYER_OUTER_L4;
2021         int ret;
2022         uint8_t next_proto = 0xFF;
2023         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2024                                   MLX5_FLOW_LAYER_OUTER_VLAN |
2025                                   MLX5_FLOW_LAYER_INNER_VLAN);
2026
2027         if ((last_item & l2_vlan) && ether_type &&
2028             ether_type != RTE_ETHER_TYPE_IPV6)
2029                 return rte_flow_error_set(error, EINVAL,
2030                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2031                                           "IPv6 cannot follow L2/VLAN layer "
2032                                           "which ether type is not IPv6");
2033         if (mask && mask->hdr.proto == UINT8_MAX && spec)
2034                 next_proto = spec->hdr.proto;
2035         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
2036                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2037                         return rte_flow_error_set(error, EINVAL,
2038                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2039                                                   item,
2040                                                   "multiple tunnel "
2041                                                   "not supported");
2042         }
2043         if (next_proto == IPPROTO_HOPOPTS  ||
2044             next_proto == IPPROTO_ROUTING  ||
2045             next_proto == IPPROTO_FRAGMENT ||
2046             next_proto == IPPROTO_ESP      ||
2047             next_proto == IPPROTO_AH       ||
2048             next_proto == IPPROTO_DSTOPTS)
2049                 return rte_flow_error_set(error, EINVAL,
2050                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2051                                           "IPv6 proto (next header) should "
2052                                           "not be set as extension header");
2053         if (item_flags & MLX5_FLOW_LAYER_IPIP)
2054                 return rte_flow_error_set(error, EINVAL,
2055                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2056                                           "wrong tunnel type - IPv4 specified "
2057                                           "but IPv6 item provided");
2058         if (item_flags & l3m)
2059                 return rte_flow_error_set(error, ENOTSUP,
2060                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2061                                           "multiple L3 layers not supported");
2062         else if (item_flags & l4m)
2063                 return rte_flow_error_set(error, EINVAL,
2064                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2065                                           "L3 cannot follow an L4 layer.");
2066         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2067                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2068                 return rte_flow_error_set(error, EINVAL,
2069                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2070                                           "L3 cannot follow an NVGRE layer.");
2071         if (!mask)
2072                 mask = &rte_flow_item_ipv6_mask;
2073         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2074                                         acc_mask ? (const uint8_t *)acc_mask
2075                                                  : (const uint8_t *)&nic_mask,
2076                                         sizeof(struct rte_flow_item_ipv6),
2077                                         MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2078         if (ret < 0)
2079                 return ret;
2080         return 0;
2081 }
2082
2083 /**
2084  * Validate UDP item.
2085  *
2086  * @param[in] item
2087  *   Item specification.
2088  * @param[in] item_flags
2089  *   Bit-fields that holds the items detected until now.
2090  * @param[in] target_protocol
2091  *   The next protocol in the previous item.
2092  * @param[in] flow_mask
2093  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2094  * @param[out] error
2095  *   Pointer to error structure.
2096  *
2097  * @return
2098  *   0 on success, a negative errno value otherwise and rte_errno is set.
2099  */
2100 int
2101 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2102                             uint64_t item_flags,
2103                             uint8_t target_protocol,
2104                             struct rte_flow_error *error)
2105 {
2106         const struct rte_flow_item_udp *mask = item->mask;
2107         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2108         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2109                                       MLX5_FLOW_LAYER_OUTER_L3;
2110         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2111                                       MLX5_FLOW_LAYER_OUTER_L4;
2112         int ret;
2113
2114         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2115                 return rte_flow_error_set(error, EINVAL,
2116                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2117                                           "protocol filtering not compatible"
2118                                           " with UDP layer");
2119         if (!(item_flags & l3m))
2120                 return rte_flow_error_set(error, EINVAL,
2121                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2122                                           "L3 is mandatory to filter on L4");
2123         if (item_flags & l4m)
2124                 return rte_flow_error_set(error, EINVAL,
2125                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2126                                           "multiple L4 layers not supported");
2127         if (!mask)
2128                 mask = &rte_flow_item_udp_mask;
2129         ret = mlx5_flow_item_acceptable
2130                 (item, (const uint8_t *)mask,
2131                  (const uint8_t *)&rte_flow_item_udp_mask,
2132                  sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2133                  error);
2134         if (ret < 0)
2135                 return ret;
2136         return 0;
2137 }
2138
2139 /**
2140  * Validate TCP item.
2141  *
2142  * @param[in] item
2143  *   Item specification.
2144  * @param[in] item_flags
2145  *   Bit-fields that holds the items detected until now.
2146  * @param[in] target_protocol
2147  *   The next protocol in the previous item.
2148  * @param[out] error
2149  *   Pointer to error structure.
2150  *
2151  * @return
2152  *   0 on success, a negative errno value otherwise and rte_errno is set.
2153  */
2154 int
2155 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2156                             uint64_t item_flags,
2157                             uint8_t target_protocol,
2158                             const struct rte_flow_item_tcp *flow_mask,
2159                             struct rte_flow_error *error)
2160 {
2161         const struct rte_flow_item_tcp *mask = item->mask;
2162         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2163         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2164                                       MLX5_FLOW_LAYER_OUTER_L3;
2165         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2166                                       MLX5_FLOW_LAYER_OUTER_L4;
2167         int ret;
2168
2169         MLX5_ASSERT(flow_mask);
2170         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2171                 return rte_flow_error_set(error, EINVAL,
2172                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2173                                           "protocol filtering not compatible"
2174                                           " with TCP layer");
2175         if (!(item_flags & l3m))
2176                 return rte_flow_error_set(error, EINVAL,
2177                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2178                                           "L3 is mandatory to filter on L4");
2179         if (item_flags & l4m)
2180                 return rte_flow_error_set(error, EINVAL,
2181                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2182                                           "multiple L4 layers not supported");
2183         if (!mask)
2184                 mask = &rte_flow_item_tcp_mask;
2185         ret = mlx5_flow_item_acceptable
2186                 (item, (const uint8_t *)mask,
2187                  (const uint8_t *)flow_mask,
2188                  sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2189                  error);
2190         if (ret < 0)
2191                 return ret;
2192         return 0;
2193 }
2194
2195 /**
2196  * Validate VXLAN item.
2197  *
2198  * @param[in] item
2199  *   Item specification.
2200  * @param[in] item_flags
2201  *   Bit-fields that holds the items detected until now.
2202  * @param[in] target_protocol
2203  *   The next protocol in the previous item.
2204  * @param[out] error
2205  *   Pointer to error structure.
2206  *
2207  * @return
2208  *   0 on success, a negative errno value otherwise and rte_errno is set.
2209  */
2210 int
2211 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2212                               uint64_t item_flags,
2213                               struct rte_flow_error *error)
2214 {
2215         const struct rte_flow_item_vxlan *spec = item->spec;
2216         const struct rte_flow_item_vxlan *mask = item->mask;
2217         int ret;
2218         union vni {
2219                 uint32_t vlan_id;
2220                 uint8_t vni[4];
2221         } id = { .vlan_id = 0, };
2222
2223
2224         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2225                 return rte_flow_error_set(error, ENOTSUP,
2226                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2227                                           "multiple tunnel layers not"
2228                                           " supported");
2229         /*
2230          * Verify only UDPv4 is present as defined in
2231          * https://tools.ietf.org/html/rfc7348
2232          */
2233         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2234                 return rte_flow_error_set(error, EINVAL,
2235                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2236                                           "no outer UDP layer found");
2237         if (!mask)
2238                 mask = &rte_flow_item_vxlan_mask;
2239         ret = mlx5_flow_item_acceptable
2240                 (item, (const uint8_t *)mask,
2241                  (const uint8_t *)&rte_flow_item_vxlan_mask,
2242                  sizeof(struct rte_flow_item_vxlan),
2243                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2244         if (ret < 0)
2245                 return ret;
2246         if (spec) {
2247                 memcpy(&id.vni[1], spec->vni, 3);
2248                 memcpy(&id.vni[1], mask->vni, 3);
2249         }
2250         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2251                 return rte_flow_error_set(error, ENOTSUP,
2252                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2253                                           "VXLAN tunnel must be fully defined");
2254         return 0;
2255 }
2256
2257 /**
2258  * Validate VXLAN_GPE item.
2259  *
2260  * @param[in] item
2261  *   Item specification.
2262  * @param[in] item_flags
2263  *   Bit-fields that holds the items detected until now.
2264  * @param[in] priv
2265  *   Pointer to the private data structure.
2266  * @param[in] target_protocol
2267  *   The next protocol in the previous item.
2268  * @param[out] error
2269  *   Pointer to error structure.
2270  *
2271  * @return
2272  *   0 on success, a negative errno value otherwise and rte_errno is set.
2273  */
2274 int
2275 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2276                                   uint64_t item_flags,
2277                                   struct rte_eth_dev *dev,
2278                                   struct rte_flow_error *error)
2279 {
2280         struct mlx5_priv *priv = dev->data->dev_private;
2281         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2282         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2283         int ret;
2284         union vni {
2285                 uint32_t vlan_id;
2286                 uint8_t vni[4];
2287         } id = { .vlan_id = 0, };
2288
2289         if (!priv->config.l3_vxlan_en)
2290                 return rte_flow_error_set(error, ENOTSUP,
2291                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2292                                           "L3 VXLAN is not enabled by device"
2293                                           " parameter and/or not configured in"
2294                                           " firmware");
2295         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2296                 return rte_flow_error_set(error, ENOTSUP,
2297                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2298                                           "multiple tunnel layers not"
2299                                           " supported");
2300         /*
2301          * Verify only UDPv4 is present as defined in
2302          * https://tools.ietf.org/html/rfc7348
2303          */
2304         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2305                 return rte_flow_error_set(error, EINVAL,
2306                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2307                                           "no outer UDP layer found");
2308         if (!mask)
2309                 mask = &rte_flow_item_vxlan_gpe_mask;
2310         ret = mlx5_flow_item_acceptable
2311                 (item, (const uint8_t *)mask,
2312                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2313                  sizeof(struct rte_flow_item_vxlan_gpe),
2314                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2315         if (ret < 0)
2316                 return ret;
2317         if (spec) {
2318                 if (spec->protocol)
2319                         return rte_flow_error_set(error, ENOTSUP,
2320                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2321                                                   item,
2322                                                   "VxLAN-GPE protocol"
2323                                                   " not supported");
2324                 memcpy(&id.vni[1], spec->vni, 3);
2325                 memcpy(&id.vni[1], mask->vni, 3);
2326         }
2327         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2328                 return rte_flow_error_set(error, ENOTSUP,
2329                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2330                                           "VXLAN-GPE tunnel must be fully"
2331                                           " defined");
2332         return 0;
2333 }
2334 /**
2335  * Validate GRE Key item.
2336  *
2337  * @param[in] item
2338  *   Item specification.
2339  * @param[in] item_flags
2340  *   Bit flags to mark detected items.
2341  * @param[in] gre_item
2342  *   Pointer to gre_item
2343  * @param[out] error
2344  *   Pointer to error structure.
2345  *
2346  * @return
2347  *   0 on success, a negative errno value otherwise and rte_errno is set.
2348  */
2349 int
2350 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2351                                 uint64_t item_flags,
2352                                 const struct rte_flow_item *gre_item,
2353                                 struct rte_flow_error *error)
2354 {
2355         const rte_be32_t *mask = item->mask;
2356         int ret = 0;
2357         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2358         const struct rte_flow_item_gre *gre_spec;
2359         const struct rte_flow_item_gre *gre_mask;
2360
2361         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2362                 return rte_flow_error_set(error, ENOTSUP,
2363                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2364                                           "Multiple GRE key not support");
2365         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2366                 return rte_flow_error_set(error, ENOTSUP,
2367                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2368                                           "No preceding GRE header");
2369         if (item_flags & MLX5_FLOW_LAYER_INNER)
2370                 return rte_flow_error_set(error, ENOTSUP,
2371                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2372                                           "GRE key following a wrong item");
2373         gre_mask = gre_item->mask;
2374         if (!gre_mask)
2375                 gre_mask = &rte_flow_item_gre_mask;
2376         gre_spec = gre_item->spec;
2377         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2378                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2379                 return rte_flow_error_set(error, EINVAL,
2380                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2381                                           "Key bit must be on");
2382
2383         if (!mask)
2384                 mask = &gre_key_default_mask;
2385         ret = mlx5_flow_item_acceptable
2386                 (item, (const uint8_t *)mask,
2387                  (const uint8_t *)&gre_key_default_mask,
2388                  sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2389         return ret;
2390 }
2391
2392 /**
2393  * Validate GRE item.
2394  *
2395  * @param[in] item
2396  *   Item specification.
2397  * @param[in] item_flags
2398  *   Bit flags to mark detected items.
2399  * @param[in] target_protocol
2400  *   The next protocol in the previous item.
2401  * @param[out] error
2402  *   Pointer to error structure.
2403  *
2404  * @return
2405  *   0 on success, a negative errno value otherwise and rte_errno is set.
2406  */
2407 int
2408 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2409                             uint64_t item_flags,
2410                             uint8_t target_protocol,
2411                             struct rte_flow_error *error)
2412 {
2413         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2414         const struct rte_flow_item_gre *mask = item->mask;
2415         int ret;
2416         const struct rte_flow_item_gre nic_mask = {
2417                 .c_rsvd0_ver = RTE_BE16(0xB000),
2418                 .protocol = RTE_BE16(UINT16_MAX),
2419         };
2420
2421         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2422                 return rte_flow_error_set(error, EINVAL,
2423                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2424                                           "protocol filtering not compatible"
2425                                           " with this GRE layer");
2426         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2427                 return rte_flow_error_set(error, ENOTSUP,
2428                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2429                                           "multiple tunnel layers not"
2430                                           " supported");
2431         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2432                 return rte_flow_error_set(error, ENOTSUP,
2433                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2434                                           "L3 Layer is missing");
2435         if (!mask)
2436                 mask = &rte_flow_item_gre_mask;
2437         ret = mlx5_flow_item_acceptable
2438                 (item, (const uint8_t *)mask,
2439                  (const uint8_t *)&nic_mask,
2440                  sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2441                  error);
2442         if (ret < 0)
2443                 return ret;
2444 #ifndef HAVE_MLX5DV_DR
2445 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2446         if (spec && (spec->protocol & mask->protocol))
2447                 return rte_flow_error_set(error, ENOTSUP,
2448                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2449                                           "without MPLS support the"
2450                                           " specification cannot be used for"
2451                                           " filtering");
2452 #endif
2453 #endif
2454         return 0;
2455 }
2456
2457 /**
2458  * Validate Geneve item.
2459  *
2460  * @param[in] item
2461  *   Item specification.
2462  * @param[in] itemFlags
2463  *   Bit-fields that holds the items detected until now.
2464  * @param[in] enPriv
2465  *   Pointer to the private data structure.
2466  * @param[out] error
2467  *   Pointer to error structure.
2468  *
2469  * @return
2470  *   0 on success, a negative errno value otherwise and rte_errno is set.
2471  */
2472
2473 int
2474 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2475                                uint64_t item_flags,
2476                                struct rte_eth_dev *dev,
2477                                struct rte_flow_error *error)
2478 {
2479         struct mlx5_priv *priv = dev->data->dev_private;
2480         const struct rte_flow_item_geneve *spec = item->spec;
2481         const struct rte_flow_item_geneve *mask = item->mask;
2482         int ret;
2483         uint16_t gbhdr;
2484         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2485                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2486         const struct rte_flow_item_geneve nic_mask = {
2487                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2488                 .vni = "\xff\xff\xff",
2489                 .protocol = RTE_BE16(UINT16_MAX),
2490         };
2491
2492         if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2493                 return rte_flow_error_set(error, ENOTSUP,
2494                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2495                                           "L3 Geneve is not enabled by device"
2496                                           " parameter and/or not configured in"
2497                                           " firmware");
2498         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2499                 return rte_flow_error_set(error, ENOTSUP,
2500                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2501                                           "multiple tunnel layers not"
2502                                           " supported");
2503         /*
2504          * Verify only UDPv4 is present as defined in
2505          * https://tools.ietf.org/html/rfc7348
2506          */
2507         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2508                 return rte_flow_error_set(error, EINVAL,
2509                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2510                                           "no outer UDP layer found");
2511         if (!mask)
2512                 mask = &rte_flow_item_geneve_mask;
2513         ret = mlx5_flow_item_acceptable
2514                                   (item, (const uint8_t *)mask,
2515                                    (const uint8_t *)&nic_mask,
2516                                    sizeof(struct rte_flow_item_geneve),
2517                                    MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2518         if (ret)
2519                 return ret;
2520         if (spec) {
2521                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2522                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2523                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2524                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2525                         return rte_flow_error_set(error, ENOTSUP,
2526                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2527                                                   item,
2528                                                   "Geneve protocol unsupported"
2529                                                   " fields are being used");
2530                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2531                         return rte_flow_error_set
2532                                         (error, ENOTSUP,
2533                                          RTE_FLOW_ERROR_TYPE_ITEM,
2534                                          item,
2535                                          "Unsupported Geneve options length");
2536         }
2537         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2538                 return rte_flow_error_set
2539                                     (error, ENOTSUP,
2540                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2541                                      "Geneve tunnel must be fully defined");
2542         return 0;
2543 }
2544
2545 /**
2546  * Validate MPLS item.
2547  *
2548  * @param[in] dev
2549  *   Pointer to the rte_eth_dev structure.
2550  * @param[in] item
2551  *   Item specification.
2552  * @param[in] item_flags
2553  *   Bit-fields that holds the items detected until now.
2554  * @param[in] prev_layer
2555  *   The protocol layer indicated in previous item.
2556  * @param[out] error
2557  *   Pointer to error structure.
2558  *
2559  * @return
2560  *   0 on success, a negative errno value otherwise and rte_errno is set.
2561  */
2562 int
2563 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2564                              const struct rte_flow_item *item __rte_unused,
2565                              uint64_t item_flags __rte_unused,
2566                              uint64_t prev_layer __rte_unused,
2567                              struct rte_flow_error *error)
2568 {
2569 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2570         const struct rte_flow_item_mpls *mask = item->mask;
2571         struct mlx5_priv *priv = dev->data->dev_private;
2572         int ret;
2573
2574         if (!priv->config.mpls_en)
2575                 return rte_flow_error_set(error, ENOTSUP,
2576                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2577                                           "MPLS not supported or"
2578                                           " disabled in firmware"
2579                                           " configuration.");
2580         /* MPLS over IP, UDP, GRE is allowed */
2581         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2582                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2583                             MLX5_FLOW_LAYER_GRE)))
2584                 return rte_flow_error_set(error, EINVAL,
2585                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2586                                           "protocol filtering not compatible"
2587                                           " with MPLS layer");
2588         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2589         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2590             !(item_flags & MLX5_FLOW_LAYER_GRE))
2591                 return rte_flow_error_set(error, ENOTSUP,
2592                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2593                                           "multiple tunnel layers not"
2594                                           " supported");
2595         if (!mask)
2596                 mask = &rte_flow_item_mpls_mask;
2597         ret = mlx5_flow_item_acceptable
2598                 (item, (const uint8_t *)mask,
2599                  (const uint8_t *)&rte_flow_item_mpls_mask,
2600                  sizeof(struct rte_flow_item_mpls),
2601                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2602         if (ret < 0)
2603                 return ret;
2604         return 0;
2605 #else
2606         return rte_flow_error_set(error, ENOTSUP,
2607                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2608                                   "MPLS is not supported by Verbs, please"
2609                                   " update.");
2610 #endif
2611 }
2612
2613 /**
2614  * Validate NVGRE item.
2615  *
2616  * @param[in] item
2617  *   Item specification.
2618  * @param[in] item_flags
2619  *   Bit flags to mark detected items.
2620  * @param[in] target_protocol
2621  *   The next protocol in the previous item.
2622  * @param[out] error
2623  *   Pointer to error structure.
2624  *
2625  * @return
2626  *   0 on success, a negative errno value otherwise and rte_errno is set.
2627  */
2628 int
2629 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2630                               uint64_t item_flags,
2631                               uint8_t target_protocol,
2632                               struct rte_flow_error *error)
2633 {
2634         const struct rte_flow_item_nvgre *mask = item->mask;
2635         int ret;
2636
2637         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2638                 return rte_flow_error_set(error, EINVAL,
2639                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2640                                           "protocol filtering not compatible"
2641                                           " with this GRE layer");
2642         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2643                 return rte_flow_error_set(error, ENOTSUP,
2644                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2645                                           "multiple tunnel layers not"
2646                                           " supported");
2647         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2648                 return rte_flow_error_set(error, ENOTSUP,
2649                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2650                                           "L3 Layer is missing");
2651         if (!mask)
2652                 mask = &rte_flow_item_nvgre_mask;
2653         ret = mlx5_flow_item_acceptable
2654                 (item, (const uint8_t *)mask,
2655                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2656                  sizeof(struct rte_flow_item_nvgre),
2657                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2658         if (ret < 0)
2659                 return ret;
2660         return 0;
2661 }
2662
2663 /**
2664  * Validate eCPRI item.
2665  *
2666  * @param[in] item
2667  *   Item specification.
2668  * @param[in] item_flags
2669  *   Bit-fields that holds the items detected until now.
2670  * @param[in] last_item
2671  *   Previous validated item in the pattern items.
2672  * @param[in] ether_type
2673  *   Type in the ethernet layer header (including dot1q).
2674  * @param[in] acc_mask
2675  *   Acceptable mask, if NULL default internal default mask
2676  *   will be used to check whether item fields are supported.
2677  * @param[out] error
2678  *   Pointer to error structure.
2679  *
2680  * @return
2681  *   0 on success, a negative errno value otherwise and rte_errno is set.
2682  */
2683 int
2684 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2685                               uint64_t item_flags,
2686                               uint64_t last_item,
2687                               uint16_t ether_type,
2688                               const struct rte_flow_item_ecpri *acc_mask,
2689                               struct rte_flow_error *error)
2690 {
2691         const struct rte_flow_item_ecpri *mask = item->mask;
2692         const struct rte_flow_item_ecpri nic_mask = {
2693                 .hdr = {
2694                         .common = {
2695                                 .u32 =
2696                                 RTE_BE32(((const struct rte_ecpri_common_hdr) {
2697                                         .type = 0xFF,
2698                                         }).u32),
2699                         },
2700                         .dummy[0] = 0xFFFFFFFF,
2701                 },
2702         };
2703         const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2704                                         MLX5_FLOW_LAYER_OUTER_VLAN);
2705         struct rte_flow_item_ecpri mask_lo;
2706
2707         if ((last_item & outer_l2_vlan) && ether_type &&
2708             ether_type != RTE_ETHER_TYPE_ECPRI)
2709                 return rte_flow_error_set(error, EINVAL,
2710                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2711                                           "eCPRI cannot follow L2/VLAN layer "
2712                                           "which ether type is not 0xAEFE.");
2713         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2714                 return rte_flow_error_set(error, EINVAL,
2715                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2716                                           "eCPRI with tunnel is not supported "
2717                                           "right now.");
2718         if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2719                 return rte_flow_error_set(error, ENOTSUP,
2720                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2721                                           "multiple L3 layers not supported");
2722         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2723                 return rte_flow_error_set(error, EINVAL,
2724                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2725                                           "eCPRI cannot follow a TCP layer.");
2726         /* In specification, eCPRI could be over UDP layer. */
2727         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2728                 return rte_flow_error_set(error, EINVAL,
2729                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2730                                           "eCPRI over UDP layer is not yet "
2731                                           "supported right now.");
2732         /* Mask for type field in common header could be zero. */
2733         if (!mask)
2734                 mask = &rte_flow_item_ecpri_mask;
2735         mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2736         /* Input mask is in big-endian format. */
2737         if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2738                 return rte_flow_error_set(error, EINVAL,
2739                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2740                                           "partial mask is not supported "
2741                                           "for protocol");
2742         else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2743                 return rte_flow_error_set(error, EINVAL,
2744                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2745                                           "message header mask must be after "
2746                                           "a type mask");
2747         return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2748                                          acc_mask ? (const uint8_t *)acc_mask
2749                                                   : (const uint8_t *)&nic_mask,
2750                                          sizeof(struct rte_flow_item_ecpri),
2751                                          MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2752 }
2753
2754 /* Allocate unique ID for the split Q/RSS subflows. */
2755 static uint32_t
2756 flow_qrss_get_id(struct rte_eth_dev *dev)
2757 {
2758         struct mlx5_priv *priv = dev->data->dev_private;
2759         uint32_t qrss_id, ret;
2760
2761         ret = mlx5_flow_id_get(priv->qrss_id_pool, &qrss_id);
2762         if (ret)
2763                 return 0;
2764         MLX5_ASSERT(qrss_id);
2765         return qrss_id;
2766 }
2767
2768 /* Free unique ID for the split Q/RSS subflows. */
2769 static void
2770 flow_qrss_free_id(struct rte_eth_dev *dev,  uint32_t qrss_id)
2771 {
2772         struct mlx5_priv *priv = dev->data->dev_private;
2773
2774         if (qrss_id)
2775                 mlx5_flow_id_release(priv->qrss_id_pool, qrss_id);
2776 }
2777
2778 /**
2779  * Release resource related QUEUE/RSS action split.
2780  *
2781  * @param dev
2782  *   Pointer to Ethernet device.
2783  * @param flow
2784  *   Flow to release id's from.
2785  */
2786 static void
2787 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2788                              struct rte_flow *flow)
2789 {
2790         struct mlx5_priv *priv = dev->data->dev_private;
2791         uint32_t handle_idx;
2792         struct mlx5_flow_handle *dev_handle;
2793
2794         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2795                        handle_idx, dev_handle, next)
2796                 if (dev_handle->split_flow_id)
2797                         flow_qrss_free_id(dev, dev_handle->split_flow_id);
2798 }
2799
2800 static int
2801 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2802                    const struct rte_flow_attr *attr __rte_unused,
2803                    const struct rte_flow_item items[] __rte_unused,
2804                    const struct rte_flow_action actions[] __rte_unused,
2805                    bool external __rte_unused,
2806                    int hairpin __rte_unused,
2807                    struct rte_flow_error *error)
2808 {
2809         return rte_flow_error_set(error, ENOTSUP,
2810                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2811 }
2812
2813 static struct mlx5_flow *
2814 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2815                   const struct rte_flow_attr *attr __rte_unused,
2816                   const struct rte_flow_item items[] __rte_unused,
2817                   const struct rte_flow_action actions[] __rte_unused,
2818                   struct rte_flow_error *error)
2819 {
2820         rte_flow_error_set(error, ENOTSUP,
2821                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2822         return NULL;
2823 }
2824
2825 static int
2826 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2827                     struct mlx5_flow *dev_flow __rte_unused,
2828                     const struct rte_flow_attr *attr __rte_unused,
2829                     const struct rte_flow_item items[] __rte_unused,
2830                     const struct rte_flow_action actions[] __rte_unused,
2831                     struct rte_flow_error *error)
2832 {
2833         return rte_flow_error_set(error, ENOTSUP,
2834                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2835 }
2836
2837 static int
2838 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2839                 struct rte_flow *flow __rte_unused,
2840                 struct rte_flow_error *error)
2841 {
2842         return rte_flow_error_set(error, ENOTSUP,
2843                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2844 }
2845
2846 static void
2847 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2848                  struct rte_flow *flow __rte_unused)
2849 {
2850 }
2851
2852 static void
2853 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2854                   struct rte_flow *flow __rte_unused)
2855 {
2856 }
2857
2858 static int
2859 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2860                 struct rte_flow *flow __rte_unused,
2861                 const struct rte_flow_action *actions __rte_unused,
2862                 void *data __rte_unused,
2863                 struct rte_flow_error *error)
2864 {
2865         return rte_flow_error_set(error, ENOTSUP,
2866                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2867 }
2868
2869 /* Void driver to protect from null pointer reference. */
2870 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2871         .validate = flow_null_validate,
2872         .prepare = flow_null_prepare,
2873         .translate = flow_null_translate,
2874         .apply = flow_null_apply,
2875         .remove = flow_null_remove,
2876         .destroy = flow_null_destroy,
2877         .query = flow_null_query,
2878 };
2879
2880 /**
2881  * Select flow driver type according to flow attributes and device
2882  * configuration.
2883  *
2884  * @param[in] dev
2885  *   Pointer to the dev structure.
2886  * @param[in] attr
2887  *   Pointer to the flow attributes.
2888  *
2889  * @return
2890  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2891  */
2892 static enum mlx5_flow_drv_type
2893 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2894 {
2895         struct mlx5_priv *priv = dev->data->dev_private;
2896         /* The OS can determine first a specific flow type (DV, VERBS) */
2897         enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2898
2899         if (type != MLX5_FLOW_TYPE_MAX)
2900                 return type;
2901         /* If no OS specific type - continue with DV/VERBS selection */
2902         if (attr->transfer && priv->config.dv_esw_en)
2903                 type = MLX5_FLOW_TYPE_DV;
2904         if (!attr->transfer)
2905                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2906                                                  MLX5_FLOW_TYPE_VERBS;
2907         return type;
2908 }
2909
2910 #define flow_get_drv_ops(type) flow_drv_ops[type]
2911
2912 /**
2913  * Flow driver validation API. This abstracts calling driver specific functions.
2914  * The type of flow driver is determined according to flow attributes.
2915  *
2916  * @param[in] dev
2917  *   Pointer to the dev structure.
2918  * @param[in] attr
2919  *   Pointer to the flow attributes.
2920  * @param[in] items
2921  *   Pointer to the list of items.
2922  * @param[in] actions
2923  *   Pointer to the list of actions.
2924  * @param[in] external
2925  *   This flow rule is created by request external to PMD.
2926  * @param[in] hairpin
2927  *   Number of hairpin TX actions, 0 means classic flow.
2928  * @param[out] error
2929  *   Pointer to the error structure.
2930  *
2931  * @return
2932  *   0 on success, a negative errno value otherwise and rte_errno is set.
2933  */
2934 static inline int
2935 flow_drv_validate(struct rte_eth_dev *dev,
2936                   const struct rte_flow_attr *attr,
2937                   const struct rte_flow_item items[],
2938                   const struct rte_flow_action actions[],
2939                   bool external, int hairpin, struct rte_flow_error *error)
2940 {
2941         const struct mlx5_flow_driver_ops *fops;
2942         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2943
2944         fops = flow_get_drv_ops(type);
2945         return fops->validate(dev, attr, items, actions, external,
2946                               hairpin, error);
2947 }
2948
2949 /**
2950  * Flow driver preparation API. This abstracts calling driver specific
2951  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2952  * calculates the size of memory required for device flow, allocates the memory,
2953  * initializes the device flow and returns the pointer.
2954  *
2955  * @note
2956  *   This function initializes device flow structure such as dv or verbs in
2957  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2958  *   rest. For example, adding returning device flow to flow->dev_flow list and
2959  *   setting backward reference to the flow should be done out of this function.
2960  *   layers field is not filled either.
2961  *
2962  * @param[in] dev
2963  *   Pointer to the dev structure.
2964  * @param[in] attr
2965  *   Pointer to the flow attributes.
2966  * @param[in] items
2967  *   Pointer to the list of items.
2968  * @param[in] actions
2969  *   Pointer to the list of actions.
2970  * @param[in] flow_idx
2971  *   This memory pool index to the flow.
2972  * @param[out] error
2973  *   Pointer to the error structure.
2974  *
2975  * @return
2976  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2977  */
2978 static inline struct mlx5_flow *
2979 flow_drv_prepare(struct rte_eth_dev *dev,
2980                  const struct rte_flow *flow,
2981                  const struct rte_flow_attr *attr,
2982                  const struct rte_flow_item items[],
2983                  const struct rte_flow_action actions[],
2984                  uint32_t flow_idx,
2985                  struct rte_flow_error *error)
2986 {
2987         const struct mlx5_flow_driver_ops *fops;
2988         enum mlx5_flow_drv_type type = flow->drv_type;
2989         struct mlx5_flow *mlx5_flow = NULL;
2990
2991         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2992         fops = flow_get_drv_ops(type);
2993         mlx5_flow = fops->prepare(dev, attr, items, actions, error);
2994         if (mlx5_flow)
2995                 mlx5_flow->flow_idx = flow_idx;
2996         return mlx5_flow;
2997 }
2998
2999 /**
3000  * Flow driver translation API. This abstracts calling driver specific
3001  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3002  * translates a generic flow into a driver flow. flow_drv_prepare() must
3003  * precede.
3004  *
3005  * @note
3006  *   dev_flow->layers could be filled as a result of parsing during translation
3007  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3008  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3009  *   flow->actions could be overwritten even though all the expanded dev_flows
3010  *   have the same actions.
3011  *
3012  * @param[in] dev
3013  *   Pointer to the rte dev structure.
3014  * @param[in, out] dev_flow
3015  *   Pointer to the mlx5 flow.
3016  * @param[in] attr
3017  *   Pointer to the flow attributes.
3018  * @param[in] items
3019  *   Pointer to the list of items.
3020  * @param[in] actions
3021  *   Pointer to the list of actions.
3022  * @param[out] error
3023  *   Pointer to the error structure.
3024  *
3025  * @return
3026  *   0 on success, a negative errno value otherwise and rte_errno is set.
3027  */
3028 static inline int
3029 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3030                    const struct rte_flow_attr *attr,
3031                    const struct rte_flow_item items[],
3032                    const struct rte_flow_action actions[],
3033                    struct rte_flow_error *error)
3034 {
3035         const struct mlx5_flow_driver_ops *fops;
3036         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3037
3038         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3039         fops = flow_get_drv_ops(type);
3040         return fops->translate(dev, dev_flow, attr, items, actions, error);
3041 }
3042
3043 /**
3044  * Flow driver apply API. This abstracts calling driver specific functions.
3045  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3046  * translated driver flows on to device. flow_drv_translate() must precede.
3047  *
3048  * @param[in] dev
3049  *   Pointer to Ethernet device structure.
3050  * @param[in, out] flow
3051  *   Pointer to flow structure.
3052  * @param[out] error
3053  *   Pointer to error structure.
3054  *
3055  * @return
3056  *   0 on success, a negative errno value otherwise and rte_errno is set.
3057  */
3058 static inline int
3059 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3060                struct rte_flow_error *error)
3061 {
3062         const struct mlx5_flow_driver_ops *fops;
3063         enum mlx5_flow_drv_type type = flow->drv_type;
3064
3065         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3066         fops = flow_get_drv_ops(type);
3067         return fops->apply(dev, flow, error);
3068 }
3069
3070 /**
3071  * Flow driver remove API. This abstracts calling driver specific functions.
3072  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3073  * on device. All the resources of the flow should be freed by calling
3074  * flow_drv_destroy().
3075  *
3076  * @param[in] dev
3077  *   Pointer to Ethernet device.
3078  * @param[in, out] flow
3079  *   Pointer to flow structure.
3080  */
3081 static inline void
3082 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
3083 {
3084         const struct mlx5_flow_driver_ops *fops;
3085         enum mlx5_flow_drv_type type = flow->drv_type;
3086
3087         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3088         fops = flow_get_drv_ops(type);
3089         fops->remove(dev, flow);
3090 }
3091
3092 /**
3093  * Flow driver destroy API. This abstracts calling driver specific functions.
3094  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3095  * on device and releases resources of the flow.
3096  *
3097  * @param[in] dev
3098  *   Pointer to Ethernet device.
3099  * @param[in, out] flow
3100  *   Pointer to flow structure.
3101  */
3102 static inline void
3103 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3104 {
3105         const struct mlx5_flow_driver_ops *fops;
3106         enum mlx5_flow_drv_type type = flow->drv_type;
3107
3108         flow_mreg_split_qrss_release(dev, flow);
3109         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3110         fops = flow_get_drv_ops(type);
3111         fops->destroy(dev, flow);
3112 }
3113
3114 /**
3115  * Get RSS action from the action list.
3116  *
3117  * @param[in] actions
3118  *   Pointer to the list of actions.
3119  *
3120  * @return
3121  *   Pointer to the RSS action if exist, else return NULL.
3122  */
3123 static const struct rte_flow_action_rss*
3124 flow_get_rss_action(const struct rte_flow_action actions[])
3125 {
3126         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3127                 switch (actions->type) {
3128                 case RTE_FLOW_ACTION_TYPE_RSS:
3129                         return (const struct rte_flow_action_rss *)
3130                                actions->conf;
3131                 default:
3132                         break;
3133                 }
3134         }
3135         return NULL;
3136 }
3137
3138 /* maps shared action to translated non shared in some actions array */
3139 struct mlx5_translated_shared_action {
3140         struct rte_flow_shared_action *action; /**< Shared action */
3141         int index; /**< Index in related array of rte_flow_action */
3142 };
3143
3144 /**
3145  * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related
3146  * non shared action if translation possible.
3147  * This functionality used to run same execution path for both shared & non
3148  * shared actions on flow create. All necessary preparations for shared
3149  * action handling should be preformed on *shared* actions list returned
3150  * from this call.
3151  *
3152  * @param[in] actions
3153  *   List of actions to translate.
3154  * @param[out] shared
3155  *   List to store translated shared actions.
3156  * @param[in, out] shared_n
3157  *   Size of *shared* array. On return should be updated with number of shared
3158  *   actions retrieved from the *actions* list.
3159  * @param[out] translated_actions
3160  *   List of actions where all shared actions were translated to non shared
3161  *   if possible. NULL if no translation took place.
3162  * @param[out] error
3163  *   Pointer to the error structure.
3164  *
3165  * @return
3166  *   0 on success, a negative errno value otherwise and rte_errno is set.
3167  */
3168 static int
3169 flow_shared_actions_translate(const struct rte_flow_action actions[],
3170         struct mlx5_translated_shared_action *shared,
3171         int *shared_n,
3172         struct rte_flow_action **translated_actions,
3173         struct rte_flow_error *error)
3174 {
3175         struct rte_flow_action *translated = NULL;
3176         size_t actions_size;
3177         int n;
3178         int copied_n = 0;
3179         struct mlx5_translated_shared_action *shared_end = NULL;
3180
3181         for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3182                 if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED)
3183                         continue;
3184                 if (copied_n == *shared_n) {
3185                         return rte_flow_error_set
3186                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3187                                  NULL, "too many shared actions");
3188                 }
3189                 rte_memcpy(&shared[copied_n].action, &actions[n].conf,
3190                            sizeof(actions[n].conf));
3191                 shared[copied_n].index = n;
3192                 copied_n++;
3193         }
3194         n++;
3195         *shared_n = copied_n;
3196         if (!copied_n)
3197                 return 0;
3198         actions_size = sizeof(struct rte_flow_action) * n;
3199         translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3200         if (!translated) {
3201                 rte_errno = ENOMEM;
3202                 return -ENOMEM;
3203         }
3204         memcpy(translated, actions, actions_size);
3205         for (shared_end = shared + copied_n; shared < shared_end; shared++) {
3206                 const struct rte_flow_shared_action *shared_action;
3207
3208                 shared_action = shared->action;
3209                 switch (shared_action->type) {
3210                 case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS:
3211                         translated[shared->index].type =
3212                                 RTE_FLOW_ACTION_TYPE_RSS;
3213                         translated[shared->index].conf =
3214                                 &shared_action->rss.origin;
3215                         break;
3216                 default:
3217                         mlx5_free(translated);
3218                         return rte_flow_error_set
3219                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3220                                  NULL, "invalid shared action type");
3221                 }
3222         }
3223         *translated_actions = translated;
3224         return 0;
3225 }
3226
3227 /**
3228  * Get Shared RSS action from the action list.
3229  *
3230  * @param[in] shared
3231  *   Pointer to the list of actions.
3232  * @param[in] shared_n
3233  *   Actions list length.
3234  *
3235  * @return
3236  *   Pointer to the MLX5 RSS action if exists, otherwise return NULL.
3237  */
3238 static struct mlx5_shared_action_rss *
3239 flow_get_shared_rss_action(struct mlx5_translated_shared_action *shared,
3240                            int shared_n)
3241 {
3242         struct mlx5_translated_shared_action *shared_end;
3243
3244         for (shared_end = shared + shared_n; shared < shared_end; shared++) {
3245                 struct rte_flow_shared_action *shared_action;
3246
3247                 shared_action = shared->action;
3248                 switch (shared_action->type) {
3249                 case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS:
3250                         __atomic_add_fetch(&shared_action->refcnt, 1,
3251                                            __ATOMIC_RELAXED);
3252                         return &shared_action->rss;
3253                 default:
3254                         break;
3255                 }
3256         }
3257         return NULL;
3258 }
3259
3260 struct rte_flow_shared_action *
3261 mlx5_flow_get_shared_rss(struct rte_flow *flow)
3262 {
3263         if (flow->shared_rss)
3264                 return container_of(flow->shared_rss,
3265                                     struct rte_flow_shared_action, rss);
3266         else
3267                 return NULL;
3268 }
3269
3270 static unsigned int
3271 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3272 {
3273         const struct rte_flow_item *item;
3274         unsigned int has_vlan = 0;
3275
3276         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3277                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3278                         has_vlan = 1;
3279                         break;
3280                 }
3281         }
3282         if (has_vlan)
3283                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3284                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3285         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3286                                MLX5_EXPANSION_ROOT_OUTER;
3287 }
3288
3289 /**
3290  *  Get layer flags from the prefix flow.
3291  *
3292  *  Some flows may be split to several subflows, the prefix subflow gets the
3293  *  match items and the suffix sub flow gets the actions.
3294  *  Some actions need the user defined match item flags to get the detail for
3295  *  the action.
3296  *  This function helps the suffix flow to get the item layer flags from prefix
3297  *  subflow.
3298  *
3299  * @param[in] dev_flow
3300  *   Pointer the created preifx subflow.
3301  *
3302  * @return
3303  *   The layers get from prefix subflow.
3304  */
3305 static inline uint64_t
3306 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3307 {
3308         uint64_t layers = 0;
3309
3310         /*
3311          * Layers bits could be localization, but usually the compiler will
3312          * help to do the optimization work for source code.
3313          * If no decap actions, use the layers directly.
3314          */
3315         if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3316                 return dev_flow->handle->layers;
3317         /* Convert L3 layers with decap action. */
3318         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3319                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3320         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3321                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3322         /* Convert L4 layers with decap action.  */
3323         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3324                 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3325         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3326                 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3327         return layers;
3328 }
3329
3330 /**
3331  * Get metadata split action information.
3332  *
3333  * @param[in] actions
3334  *   Pointer to the list of actions.
3335  * @param[out] qrss
3336  *   Pointer to the return pointer.
3337  * @param[out] qrss_type
3338  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3339  *   if no QUEUE/RSS is found.
3340  * @param[out] encap_idx
3341  *   Pointer to the index of the encap action if exists, otherwise the last
3342  *   action index.
3343  *
3344  * @return
3345  *   Total number of actions.
3346  */
3347 static int
3348 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3349                                        const struct rte_flow_action **qrss,
3350                                        int *encap_idx)
3351 {
3352         const struct rte_flow_action_raw_encap *raw_encap;
3353         int actions_n = 0;
3354         int raw_decap_idx = -1;
3355
3356         *encap_idx = -1;
3357         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3358                 switch (actions->type) {
3359                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3360                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3361                         *encap_idx = actions_n;
3362                         break;
3363                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3364                         raw_decap_idx = actions_n;
3365                         break;
3366                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3367                         raw_encap = actions->conf;
3368                         if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3369                                 *encap_idx = raw_decap_idx != -1 ?
3370                                                       raw_decap_idx : actions_n;
3371                         break;
3372                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3373                 case RTE_FLOW_ACTION_TYPE_RSS:
3374                         *qrss = actions;
3375                         break;
3376                 default:
3377                         break;
3378                 }
3379                 actions_n++;
3380         }
3381         if (*encap_idx == -1)
3382                 *encap_idx = actions_n;
3383         /* Count RTE_FLOW_ACTION_TYPE_END. */
3384         return actions_n + 1;
3385 }
3386
3387 /**
3388  * Check meter action from the action list.
3389  *
3390  * @param[in] actions
3391  *   Pointer to the list of actions.
3392  * @param[out] mtr
3393  *   Pointer to the meter exist flag.
3394  *
3395  * @return
3396  *   Total number of actions.
3397  */
3398 static int
3399 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3400 {
3401         int actions_n = 0;
3402
3403         MLX5_ASSERT(mtr);
3404         *mtr = 0;
3405         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3406                 switch (actions->type) {
3407                 case RTE_FLOW_ACTION_TYPE_METER:
3408                         *mtr = 1;
3409                         break;
3410                 default:
3411                         break;
3412                 }
3413                 actions_n++;
3414         }
3415         /* Count RTE_FLOW_ACTION_TYPE_END. */
3416         return actions_n + 1;
3417 }
3418
3419 /**
3420  * Check if the flow should be split due to hairpin.
3421  * The reason for the split is that in current HW we can't
3422  * support encap and push-vlan on Rx, so if a flow contains
3423  * these actions we move it to Tx.
3424  *
3425  * @param dev
3426  *   Pointer to Ethernet device.
3427  * @param[in] attr
3428  *   Flow rule attributes.
3429  * @param[in] actions
3430  *   Associated actions (list terminated by the END action).
3431  *
3432  * @return
3433  *   > 0 the number of actions and the flow should be split,
3434  *   0 when no split required.
3435  */
3436 static int
3437 flow_check_hairpin_split(struct rte_eth_dev *dev,
3438                          const struct rte_flow_attr *attr,
3439                          const struct rte_flow_action actions[])
3440 {
3441         int queue_action = 0;
3442         int action_n = 0;
3443         int split = 0;
3444         const struct rte_flow_action_queue *queue;
3445         const struct rte_flow_action_rss *rss;
3446         const struct rte_flow_action_raw_encap *raw_encap;
3447
3448         if (!attr->ingress)
3449                 return 0;
3450         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3451                 switch (actions->type) {
3452                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3453                         queue = actions->conf;
3454                         if (queue == NULL)
3455                                 return 0;
3456                         if (mlx5_rxq_get_type(dev, queue->index) !=
3457                             MLX5_RXQ_TYPE_HAIRPIN)
3458                                 return 0;
3459                         queue_action = 1;
3460                         action_n++;
3461                         break;
3462                 case RTE_FLOW_ACTION_TYPE_RSS:
3463                         rss = actions->conf;
3464                         if (rss == NULL || rss->queue_num == 0)
3465                                 return 0;
3466                         if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
3467                             MLX5_RXQ_TYPE_HAIRPIN)
3468                                 return 0;
3469                         queue_action = 1;
3470                         action_n++;
3471                         break;
3472                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3473                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3474                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3475                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3476                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3477                         split++;
3478                         action_n++;
3479                         break;
3480                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3481                         raw_encap = actions->conf;
3482                         if (raw_encap->size >
3483                             (sizeof(struct rte_flow_item_eth) +
3484                              sizeof(struct rte_flow_item_ipv4)))
3485                                 split++;
3486                         action_n++;
3487                         break;
3488                 default:
3489                         action_n++;
3490                         break;
3491                 }
3492         }
3493         if (split && queue_action)
3494                 return action_n;
3495         return 0;
3496 }
3497
3498 /* Declare flow create/destroy prototype in advance. */
3499 static uint32_t
3500 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3501                  const struct rte_flow_attr *attr,
3502                  const struct rte_flow_item items[],
3503                  const struct rte_flow_action actions[],
3504                  bool external, struct rte_flow_error *error);
3505
3506 static void
3507 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3508                   uint32_t flow_idx);
3509
3510 /**
3511  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3512  *
3513  * As mark_id is unique, if there's already a registered flow for the mark_id,
3514  * return by increasing the reference counter of the resource. Otherwise, create
3515  * the resource (mcp_res) and flow.
3516  *
3517  * Flow looks like,
3518  *   - If ingress port is ANY and reg_c[1] is mark_id,
3519  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3520  *
3521  * For default flow (zero mark_id), flow is like,
3522  *   - If ingress port is ANY,
3523  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3524  *
3525  * @param dev
3526  *   Pointer to Ethernet device.
3527  * @param mark_id
3528  *   ID of MARK action, zero means default flow for META.
3529  * @param[out] error
3530  *   Perform verbose error reporting if not NULL.
3531  *
3532  * @return
3533  *   Associated resource on success, NULL otherwise and rte_errno is set.
3534  */
3535 static struct mlx5_flow_mreg_copy_resource *
3536 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3537                           struct rte_flow_error *error)
3538 {
3539         struct mlx5_priv *priv = dev->data->dev_private;
3540         struct rte_flow_attr attr = {
3541                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3542                 .ingress = 1,
3543         };
3544         struct mlx5_rte_flow_item_tag tag_spec = {
3545                 .data = mark_id,
3546         };
3547         struct rte_flow_item items[] = {
3548                 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3549         };
3550         struct rte_flow_action_mark ftag = {
3551                 .id = mark_id,
3552         };
3553         struct mlx5_flow_action_copy_mreg cp_mreg = {
3554                 .dst = REG_B,
3555                 .src = REG_NON,
3556         };
3557         struct rte_flow_action_jump jump = {
3558                 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3559         };
3560         struct rte_flow_action actions[] = {
3561                 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3562         };
3563         struct mlx5_flow_mreg_copy_resource *mcp_res;
3564         uint32_t idx = 0;
3565         int ret;
3566
3567         /* Fill the register fileds in the flow. */
3568         ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3569         if (ret < 0)
3570                 return NULL;
3571         tag_spec.id = ret;
3572         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3573         if (ret < 0)
3574                 return NULL;
3575         cp_mreg.src = ret;
3576         /* Check if already registered. */
3577         MLX5_ASSERT(priv->mreg_cp_tbl);
3578         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id);
3579         if (mcp_res) {
3580                 /* For non-default rule. */
3581                 if (mark_id != MLX5_DEFAULT_COPY_ID)
3582                         mcp_res->refcnt++;
3583                 MLX5_ASSERT(mark_id != MLX5_DEFAULT_COPY_ID ||
3584                             mcp_res->refcnt == 1);
3585                 return mcp_res;
3586         }
3587         /* Provide the full width of FLAG specific value. */
3588         if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3589                 tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3590         /* Build a new flow. */
3591         if (mark_id != MLX5_DEFAULT_COPY_ID) {
3592                 items[0] = (struct rte_flow_item){
3593                         .type = (enum rte_flow_item_type)
3594                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3595                         .spec = &tag_spec,
3596                 };
3597                 items[1] = (struct rte_flow_item){
3598                         .type = RTE_FLOW_ITEM_TYPE_END,
3599                 };
3600                 actions[0] = (struct rte_flow_action){
3601                         .type = (enum rte_flow_action_type)
3602                                 MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3603                         .conf = &ftag,
3604                 };
3605                 actions[1] = (struct rte_flow_action){
3606                         .type = (enum rte_flow_action_type)
3607                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3608                         .conf = &cp_mreg,
3609                 };
3610                 actions[2] = (struct rte_flow_action){
3611                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3612                         .conf = &jump,
3613                 };
3614                 actions[3] = (struct rte_flow_action){
3615                         .type = RTE_FLOW_ACTION_TYPE_END,
3616                 };
3617         } else {
3618                 /* Default rule, wildcard match. */
3619                 attr.priority = MLX5_FLOW_PRIO_RSVD;
3620                 items[0] = (struct rte_flow_item){
3621                         .type = RTE_FLOW_ITEM_TYPE_END,
3622                 };
3623                 actions[0] = (struct rte_flow_action){
3624                         .type = (enum rte_flow_action_type)
3625                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3626                         .conf = &cp_mreg,
3627                 };
3628                 actions[1] = (struct rte_flow_action){
3629                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3630                         .conf = &jump,
3631                 };
3632                 actions[2] = (struct rte_flow_action){
3633                         .type = RTE_FLOW_ACTION_TYPE_END,
3634                 };
3635         }
3636         /* Build a new entry. */
3637         mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3638         if (!mcp_res) {
3639                 rte_errno = ENOMEM;
3640                 return NULL;
3641         }
3642         mcp_res->idx = idx;
3643         /*
3644          * The copy Flows are not included in any list. There
3645          * ones are referenced from other Flows and can not
3646          * be applied, removed, deleted in ardbitrary order
3647          * by list traversing.
3648          */
3649         mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3650                                          actions, false, error);
3651         if (!mcp_res->rix_flow)
3652                 goto error;
3653         mcp_res->refcnt++;
3654         mcp_res->hlist_ent.key = mark_id;
3655         ret = mlx5_hlist_insert(priv->mreg_cp_tbl,
3656                                 &mcp_res->hlist_ent);
3657         MLX5_ASSERT(!ret);
3658         if (ret)
3659                 goto error;
3660         return mcp_res;
3661 error:
3662         if (mcp_res->rix_flow)
3663                 flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3664         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3665         return NULL;
3666 }
3667
3668 /**
3669  * Release flow in RX_CP_TBL.
3670  *
3671  * @param dev
3672  *   Pointer to Ethernet device.
3673  * @flow
3674  *   Parent flow for wich copying is provided.
3675  */
3676 static void
3677 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3678                           struct rte_flow *flow)
3679 {
3680         struct mlx5_flow_mreg_copy_resource *mcp_res;
3681         struct mlx5_priv *priv = dev->data->dev_private;
3682
3683         if (!flow->rix_mreg_copy)
3684                 return;
3685         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3686                                  flow->rix_mreg_copy);
3687         if (!mcp_res || !priv->mreg_cp_tbl)
3688                 return;
3689         if (flow->copy_applied) {
3690                 MLX5_ASSERT(mcp_res->appcnt);
3691                 flow->copy_applied = 0;
3692                 --mcp_res->appcnt;
3693                 if (!mcp_res->appcnt) {
3694                         struct rte_flow *mcp_flow = mlx5_ipool_get
3695                                         (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3696                                         mcp_res->rix_flow);
3697
3698                         if (mcp_flow)
3699                                 flow_drv_remove(dev, mcp_flow);
3700                 }
3701         }
3702         /*
3703          * We do not check availability of metadata registers here,
3704          * because copy resources are not allocated in this case.
3705          */
3706         if (--mcp_res->refcnt)
3707                 return;
3708         MLX5_ASSERT(mcp_res->rix_flow);
3709         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3710         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3711         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3712         flow->rix_mreg_copy = 0;
3713 }
3714
3715 /**
3716  * Start flow in RX_CP_TBL.
3717  *
3718  * @param dev
3719  *   Pointer to Ethernet device.
3720  * @flow
3721  *   Parent flow for wich copying is provided.
3722  *
3723  * @return
3724  *   0 on success, a negative errno value otherwise and rte_errno is set.
3725  */
3726 static int
3727 flow_mreg_start_copy_action(struct rte_eth_dev *dev,
3728                             struct rte_flow *flow)
3729 {
3730         struct mlx5_flow_mreg_copy_resource *mcp_res;
3731         struct mlx5_priv *priv = dev->data->dev_private;
3732         int ret;
3733
3734         if (!flow->rix_mreg_copy || flow->copy_applied)
3735                 return 0;
3736         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3737                                  flow->rix_mreg_copy);
3738         if (!mcp_res)
3739                 return 0;
3740         if (!mcp_res->appcnt) {
3741                 struct rte_flow *mcp_flow = mlx5_ipool_get
3742                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3743                                 mcp_res->rix_flow);
3744
3745                 if (mcp_flow) {
3746                         ret = flow_drv_apply(dev, mcp_flow, NULL);
3747                         if (ret)
3748                                 return ret;
3749                 }
3750         }
3751         ++mcp_res->appcnt;
3752         flow->copy_applied = 1;
3753         return 0;
3754 }
3755
3756 /**
3757  * Stop flow in RX_CP_TBL.
3758  *
3759  * @param dev
3760  *   Pointer to Ethernet device.
3761  * @flow
3762  *   Parent flow for wich copying is provided.
3763  */
3764 static void
3765 flow_mreg_stop_copy_action(struct rte_eth_dev *dev,
3766                            struct rte_flow *flow)
3767 {
3768         struct mlx5_flow_mreg_copy_resource *mcp_res;
3769         struct mlx5_priv *priv = dev->data->dev_private;
3770
3771         if (!flow->rix_mreg_copy || !flow->copy_applied)
3772                 return;
3773         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3774                                  flow->rix_mreg_copy);
3775         if (!mcp_res)
3776                 return;
3777         MLX5_ASSERT(mcp_res->appcnt);
3778         --mcp_res->appcnt;
3779         flow->copy_applied = 0;
3780         if (!mcp_res->appcnt) {
3781                 struct rte_flow *mcp_flow = mlx5_ipool_get
3782                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3783                                 mcp_res->rix_flow);
3784
3785                 if (mcp_flow)
3786                         flow_drv_remove(dev, mcp_flow);
3787         }
3788 }
3789
3790 /**
3791  * Remove the default copy action from RX_CP_TBL.
3792  *
3793  * @param dev
3794  *   Pointer to Ethernet device.
3795  */
3796 static void
3797 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3798 {
3799         struct mlx5_flow_mreg_copy_resource *mcp_res;
3800         struct mlx5_priv *priv = dev->data->dev_private;
3801
3802         /* Check if default flow is registered. */
3803         if (!priv->mreg_cp_tbl)
3804                 return;
3805         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl,
3806                                             MLX5_DEFAULT_COPY_ID);
3807         if (!mcp_res)
3808                 return;
3809         MLX5_ASSERT(mcp_res->rix_flow);
3810         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3811         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3812         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3813 }
3814
3815 /**
3816  * Add the default copy action in in RX_CP_TBL.
3817  *
3818  * @param dev
3819  *   Pointer to Ethernet device.
3820  * @param[out] error
3821  *   Perform verbose error reporting if not NULL.
3822  *
3823  * @return
3824  *   0 for success, negative value otherwise and rte_errno is set.
3825  */
3826 static int
3827 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3828                                   struct rte_flow_error *error)
3829 {
3830         struct mlx5_priv *priv = dev->data->dev_private;
3831         struct mlx5_flow_mreg_copy_resource *mcp_res;
3832
3833         /* Check whether extensive metadata feature is engaged. */
3834         if (!priv->config.dv_flow_en ||
3835             priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3836             !mlx5_flow_ext_mreg_supported(dev) ||
3837             !priv->sh->dv_regc0_mask)
3838                 return 0;
3839         mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3840         if (!mcp_res)
3841                 return -rte_errno;
3842         return 0;
3843 }
3844
3845 /**
3846  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3847  *
3848  * All the flow having Q/RSS action should be split by
3849  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3850  * performs the following,
3851  *   - CQE->flow_tag := reg_c[1] (MARK)
3852  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3853  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3854  * but there should be a flow per each MARK ID set by MARK action.
3855  *
3856  * For the aforementioned reason, if there's a MARK action in flow's action
3857  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3858  * the MARK ID to CQE's flow_tag like,
3859  *   - If reg_c[1] is mark_id,
3860  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3861  *
3862  * For SET_META action which stores value in reg_c[0], as the destination is
3863  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3864  * MARK ID means the default flow. The default flow looks like,
3865  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3866  *
3867  * @param dev
3868  *   Pointer to Ethernet device.
3869  * @param flow
3870  *   Pointer to flow structure.
3871  * @param[in] actions
3872  *   Pointer to the list of actions.
3873  * @param[out] error
3874  *   Perform verbose error reporting if not NULL.
3875  *
3876  * @return
3877  *   0 on success, negative value otherwise and rte_errno is set.
3878  */
3879 static int
3880 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3881                             struct rte_flow *flow,
3882                             const struct rte_flow_action *actions,
3883                             struct rte_flow_error *error)
3884 {
3885         struct mlx5_priv *priv = dev->data->dev_private;
3886         struct mlx5_dev_config *config = &priv->config;
3887         struct mlx5_flow_mreg_copy_resource *mcp_res;
3888         const struct rte_flow_action_mark *mark;
3889
3890         /* Check whether extensive metadata feature is engaged. */
3891         if (!config->dv_flow_en ||
3892             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3893             !mlx5_flow_ext_mreg_supported(dev) ||
3894             !priv->sh->dv_regc0_mask)
3895                 return 0;
3896         /* Find MARK action. */
3897         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3898                 switch (actions->type) {
3899                 case RTE_FLOW_ACTION_TYPE_FLAG:
3900                         mcp_res = flow_mreg_add_copy_action
3901                                 (dev, MLX5_FLOW_MARK_DEFAULT, error);
3902                         if (!mcp_res)
3903                                 return -rte_errno;
3904                         flow->rix_mreg_copy = mcp_res->idx;
3905                         if (dev->data->dev_started) {
3906                                 mcp_res->appcnt++;
3907                                 flow->copy_applied = 1;
3908                         }
3909                         return 0;
3910                 case RTE_FLOW_ACTION_TYPE_MARK:
3911                         mark = (const struct rte_flow_action_mark *)
3912                                 actions->conf;
3913                         mcp_res =
3914                                 flow_mreg_add_copy_action(dev, mark->id, error);
3915                         if (!mcp_res)
3916                                 return -rte_errno;
3917                         flow->rix_mreg_copy = mcp_res->idx;
3918                         if (dev->data->dev_started) {
3919                                 mcp_res->appcnt++;
3920                                 flow->copy_applied = 1;
3921                         }
3922                         return 0;
3923                 default:
3924                         break;
3925                 }
3926         }
3927         return 0;
3928 }
3929
3930 #define MLX5_MAX_SPLIT_ACTIONS 24
3931 #define MLX5_MAX_SPLIT_ITEMS 24
3932
3933 /**
3934  * Split the hairpin flow.
3935  * Since HW can't support encap and push-vlan on Rx, we move these
3936  * actions to Tx.
3937  * If the count action is after the encap then we also
3938  * move the count action. in this case the count will also measure
3939  * the outer bytes.
3940  *
3941  * @param dev
3942  *   Pointer to Ethernet device.
3943  * @param[in] actions
3944  *   Associated actions (list terminated by the END action).
3945  * @param[out] actions_rx
3946  *   Rx flow actions.
3947  * @param[out] actions_tx
3948  *   Tx flow actions..
3949  * @param[out] pattern_tx
3950  *   The pattern items for the Tx flow.
3951  * @param[out] flow_id
3952  *   The flow ID connected to this flow.
3953  *
3954  * @return
3955  *   0 on success.
3956  */
3957 static int
3958 flow_hairpin_split(struct rte_eth_dev *dev,
3959                    const struct rte_flow_action actions[],
3960                    struct rte_flow_action actions_rx[],
3961                    struct rte_flow_action actions_tx[],
3962                    struct rte_flow_item pattern_tx[],
3963                    uint32_t *flow_id)
3964 {
3965         struct mlx5_priv *priv = dev->data->dev_private;
3966         const struct rte_flow_action_raw_encap *raw_encap;
3967         const struct rte_flow_action_raw_decap *raw_decap;
3968         struct mlx5_rte_flow_action_set_tag *set_tag;
3969         struct rte_flow_action *tag_action;
3970         struct mlx5_rte_flow_item_tag *tag_item;
3971         struct rte_flow_item *item;
3972         char *addr;
3973         int encap = 0;
3974
3975         mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
3976         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3977                 switch (actions->type) {
3978                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3979                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3980                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3981                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3982                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3983                         rte_memcpy(actions_tx, actions,
3984                                sizeof(struct rte_flow_action));
3985                         actions_tx++;
3986                         break;
3987                 case RTE_FLOW_ACTION_TYPE_COUNT:
3988                         if (encap) {
3989                                 rte_memcpy(actions_tx, actions,
3990                                            sizeof(struct rte_flow_action));
3991                                 actions_tx++;
3992                         } else {
3993                                 rte_memcpy(actions_rx, actions,
3994                                            sizeof(struct rte_flow_action));
3995                                 actions_rx++;
3996                         }
3997                         break;
3998                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3999                         raw_encap = actions->conf;
4000                         if (raw_encap->size >
4001                             (sizeof(struct rte_flow_item_eth) +
4002                              sizeof(struct rte_flow_item_ipv4))) {
4003                                 memcpy(actions_tx, actions,
4004                                        sizeof(struct rte_flow_action));
4005                                 actions_tx++;
4006                                 encap = 1;
4007                         } else {
4008                                 rte_memcpy(actions_rx, actions,
4009                                            sizeof(struct rte_flow_action));
4010                                 actions_rx++;
4011                         }
4012                         break;
4013                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4014                         raw_decap = actions->conf;
4015                         if (raw_decap->size <
4016                             (sizeof(struct rte_flow_item_eth) +
4017                              sizeof(struct rte_flow_item_ipv4))) {
4018                                 memcpy(actions_tx, actions,
4019                                        sizeof(struct rte_flow_action));
4020                                 actions_tx++;
4021                         } else {
4022                                 rte_memcpy(actions_rx, actions,
4023                                            sizeof(struct rte_flow_action));
4024                                 actions_rx++;
4025                         }
4026                         break;
4027                 default:
4028                         rte_memcpy(actions_rx, actions,
4029                                    sizeof(struct rte_flow_action));
4030                         actions_rx++;
4031                         break;
4032                 }
4033         }
4034         /* Add set meta action and end action for the Rx flow. */
4035         tag_action = actions_rx;
4036         tag_action->type = (enum rte_flow_action_type)
4037                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4038         actions_rx++;
4039         rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4040         actions_rx++;
4041         set_tag = (void *)actions_rx;
4042         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
4043         MLX5_ASSERT(set_tag->id > REG_NON);
4044         set_tag->data = *flow_id;
4045         tag_action->conf = set_tag;
4046         /* Create Tx item list. */
4047         rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4048         addr = (void *)&pattern_tx[2];
4049         item = pattern_tx;
4050         item->type = (enum rte_flow_item_type)
4051                      MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4052         tag_item = (void *)addr;
4053         tag_item->data = *flow_id;
4054         tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4055         MLX5_ASSERT(set_tag->id > REG_NON);
4056         item->spec = tag_item;
4057         addr += sizeof(struct mlx5_rte_flow_item_tag);
4058         tag_item = (void *)addr;
4059         tag_item->data = UINT32_MAX;
4060         tag_item->id = UINT16_MAX;
4061         item->mask = tag_item;
4062         item->last = NULL;
4063         item++;
4064         item->type = RTE_FLOW_ITEM_TYPE_END;
4065         return 0;
4066 }
4067
4068 /**
4069  * The last stage of splitting chain, just creates the subflow
4070  * without any modification.
4071  *
4072  * @param[in] dev
4073  *   Pointer to Ethernet device.
4074  * @param[in] flow
4075  *   Parent flow structure pointer.
4076  * @param[in, out] sub_flow
4077  *   Pointer to return the created subflow, may be NULL.
4078  * @param[in] prefix_layers
4079  *   Prefix subflow layers, may be 0.
4080  * @param[in] prefix_mark
4081  *   Prefix subflow mark flag, may be 0.
4082  * @param[in] attr
4083  *   Flow rule attributes.
4084  * @param[in] items
4085  *   Pattern specification (list terminated by the END pattern item).
4086  * @param[in] actions
4087  *   Associated actions (list terminated by the END action).
4088  * @param[in] external
4089  *   This flow rule is created by request external to PMD.
4090  * @param[in] flow_idx
4091  *   This memory pool index to the flow.
4092  * @param[out] error
4093  *   Perform verbose error reporting if not NULL.
4094  * @return
4095  *   0 on success, negative value otherwise
4096  */
4097 static int
4098 flow_create_split_inner(struct rte_eth_dev *dev,
4099                         struct rte_flow *flow,
4100                         struct mlx5_flow **sub_flow,
4101                         uint64_t prefix_layers,
4102                         uint32_t prefix_mark,
4103                         const struct rte_flow_attr *attr,
4104                         const struct rte_flow_item items[],
4105                         const struct rte_flow_action actions[],
4106                         bool external, uint32_t flow_idx,
4107                         struct rte_flow_error *error)
4108 {
4109         struct mlx5_flow *dev_flow;
4110
4111         dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4112                 flow_idx, error);
4113         if (!dev_flow)
4114                 return -rte_errno;
4115         dev_flow->flow = flow;
4116         dev_flow->external = external;
4117         /* Subflow object was created, we must include one in the list. */
4118         SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4119                       dev_flow->handle, next);
4120         /*
4121          * If dev_flow is as one of the suffix flow, some actions in suffix
4122          * flow may need some user defined item layer flags, and pass the
4123          * Metadate rxq mark flag to suffix flow as well.
4124          */
4125         if (prefix_layers)
4126                 dev_flow->handle->layers = prefix_layers;
4127         if (prefix_mark)
4128                 dev_flow->handle->mark = 1;
4129         if (sub_flow)
4130                 *sub_flow = dev_flow;
4131         return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4132 }
4133
4134 /**
4135  * Split the meter flow.
4136  *
4137  * As meter flow will split to three sub flow, other than meter
4138  * action, the other actions make sense to only meter accepts
4139  * the packet. If it need to be dropped, no other additional
4140  * actions should be take.
4141  *
4142  * One kind of special action which decapsulates the L3 tunnel
4143  * header will be in the prefix sub flow, as not to take the
4144  * L3 tunnel header into account.
4145  *
4146  * @param dev
4147  *   Pointer to Ethernet device.
4148  * @param[in] items
4149  *   Pattern specification (list terminated by the END pattern item).
4150  * @param[out] sfx_items
4151  *   Suffix flow match items (list terminated by the END pattern item).
4152  * @param[in] actions
4153  *   Associated actions (list terminated by the END action).
4154  * @param[out] actions_sfx
4155  *   Suffix flow actions.
4156  * @param[out] actions_pre
4157  *   Prefix flow actions.
4158  * @param[out] pattern_sfx
4159  *   The pattern items for the suffix flow.
4160  * @param[out] tag_sfx
4161  *   Pointer to suffix flow tag.
4162  *
4163  * @return
4164  *   0 on success.
4165  */
4166 static int
4167 flow_meter_split_prep(struct rte_eth_dev *dev,
4168                  const struct rte_flow_item items[],
4169                  struct rte_flow_item sfx_items[],
4170                  const struct rte_flow_action actions[],
4171                  struct rte_flow_action actions_sfx[],
4172                  struct rte_flow_action actions_pre[])
4173 {
4174         struct rte_flow_action *tag_action = NULL;
4175         struct rte_flow_item *tag_item;
4176         struct mlx5_rte_flow_action_set_tag *set_tag;
4177         struct rte_flow_error error;
4178         const struct rte_flow_action_raw_encap *raw_encap;
4179         const struct rte_flow_action_raw_decap *raw_decap;
4180         struct mlx5_rte_flow_item_tag *tag_spec;
4181         struct mlx5_rte_flow_item_tag *tag_mask;
4182         uint32_t tag_id;
4183         bool copy_vlan = false;
4184
4185         /* Prepare the actions for prefix and suffix flow. */
4186         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4187                 struct rte_flow_action **action_cur = NULL;
4188
4189                 switch (actions->type) {
4190                 case RTE_FLOW_ACTION_TYPE_METER:
4191                         /* Add the extra tag action first. */
4192                         tag_action = actions_pre;
4193                         tag_action->type = (enum rte_flow_action_type)
4194                                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4195                         actions_pre++;
4196                         action_cur = &actions_pre;
4197                         break;
4198                 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4199                 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4200                         action_cur = &actions_pre;
4201                         break;
4202                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4203                         raw_encap = actions->conf;
4204                         if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4205                                 action_cur = &actions_pre;
4206                         break;
4207                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4208                         raw_decap = actions->conf;
4209                         if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4210                                 action_cur = &actions_pre;
4211                         break;
4212                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4213                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4214                         copy_vlan = true;
4215                         break;
4216                 default:
4217                         break;
4218                 }
4219                 if (!action_cur)
4220                         action_cur = &actions_sfx;
4221                 memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4222                 (*action_cur)++;
4223         }
4224         /* Add end action to the actions. */
4225         actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4226         actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4227         actions_pre++;
4228         /* Set the tag. */
4229         set_tag = (void *)actions_pre;
4230         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4231         /*
4232          * Get the id from the qrss_pool to make qrss share the id with meter.
4233          */
4234         tag_id = flow_qrss_get_id(dev);
4235         set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4236         assert(tag_action);
4237         tag_action->conf = set_tag;
4238         /* Prepare the suffix subflow items. */
4239         tag_item = sfx_items++;
4240         for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4241                 int item_type = items->type;
4242
4243                 switch (item_type) {
4244                 case RTE_FLOW_ITEM_TYPE_PORT_ID:
4245                         memcpy(sfx_items, items, sizeof(*sfx_items));
4246                         sfx_items++;
4247                         break;
4248                 case RTE_FLOW_ITEM_TYPE_VLAN:
4249                         if (copy_vlan) {
4250                                 memcpy(sfx_items, items, sizeof(*sfx_items));
4251                                 /*
4252                                  * Convert to internal match item, it is used
4253                                  * for vlan push and set vid.
4254                                  */
4255                                 sfx_items->type = (enum rte_flow_item_type)
4256                                                   MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4257                                 sfx_items++;
4258                         }
4259                         break;
4260                 default:
4261                         break;
4262                 }
4263         }
4264         sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4265         sfx_items++;
4266         tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4267         tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4268         tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4269         tag_mask = tag_spec + 1;
4270         tag_mask->data = 0xffffff00;
4271         tag_item->type = (enum rte_flow_item_type)
4272                          MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4273         tag_item->spec = tag_spec;
4274         tag_item->last = NULL;
4275         tag_item->mask = tag_mask;
4276         return tag_id;
4277 }
4278
4279 /**
4280  * Split action list having QUEUE/RSS for metadata register copy.
4281  *
4282  * Once Q/RSS action is detected in user's action list, the flow action
4283  * should be split in order to copy metadata registers, which will happen in
4284  * RX_CP_TBL like,
4285  *   - CQE->flow_tag := reg_c[1] (MARK)
4286  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4287  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4288  * This is because the last action of each flow must be a terminal action
4289  * (QUEUE, RSS or DROP).
4290  *
4291  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4292  * stored and kept in the mlx5_flow structure per each sub_flow.
4293  *
4294  * The Q/RSS action is replaced with,
4295  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4296  * And the following JUMP action is added at the end,
4297  *   - JUMP, to RX_CP_TBL.
4298  *
4299  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4300  * flow_create_split_metadata() routine. The flow will look like,
4301  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4302  *
4303  * @param dev
4304  *   Pointer to Ethernet device.
4305  * @param[out] split_actions
4306  *   Pointer to store split actions to jump to CP_TBL.
4307  * @param[in] actions
4308  *   Pointer to the list of original flow actions.
4309  * @param[in] qrss
4310  *   Pointer to the Q/RSS action.
4311  * @param[in] actions_n
4312  *   Number of original actions.
4313  * @param[out] error
4314  *   Perform verbose error reporting if not NULL.
4315  *
4316  * @return
4317  *   non-zero unique flow_id on success, otherwise 0 and
4318  *   error/rte_error are set.
4319  */
4320 static uint32_t
4321 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4322                           struct rte_flow_action *split_actions,
4323                           const struct rte_flow_action *actions,
4324                           const struct rte_flow_action *qrss,
4325                           int actions_n, struct rte_flow_error *error)
4326 {
4327         struct mlx5_rte_flow_action_set_tag *set_tag;
4328         struct rte_flow_action_jump *jump;
4329         const int qrss_idx = qrss - actions;
4330         uint32_t flow_id = 0;
4331         int ret = 0;
4332
4333         /*
4334          * Given actions will be split
4335          * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4336          * - Add jump to mreg CP_TBL.
4337          * As a result, there will be one more action.
4338          */
4339         ++actions_n;
4340         memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4341         set_tag = (void *)(split_actions + actions_n);
4342         /*
4343          * If tag action is not set to void(it means we are not the meter
4344          * suffix flow), add the tag action. Since meter suffix flow already
4345          * has the tag added.
4346          */
4347         if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4348                 /*
4349                  * Allocate the new subflow ID. This one is unique within
4350                  * device and not shared with representors. Otherwise,
4351                  * we would have to resolve multi-thread access synch
4352                  * issue. Each flow on the shared device is appended
4353                  * with source vport identifier, so the resulting
4354                  * flows will be unique in the shared (by master and
4355                  * representors) domain even if they have coinciding
4356                  * IDs.
4357                  */
4358                 flow_id = flow_qrss_get_id(dev);
4359                 if (!flow_id)
4360                         return rte_flow_error_set(error, ENOMEM,
4361                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4362                                                   NULL, "can't allocate id "
4363                                                   "for split Q/RSS subflow");
4364                 /* Internal SET_TAG action to set flow ID. */
4365                 *set_tag = (struct mlx5_rte_flow_action_set_tag){
4366                         .data = flow_id,
4367                 };
4368                 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4369                 if (ret < 0)
4370                         return ret;
4371                 set_tag->id = ret;
4372                 /* Construct new actions array. */
4373                 /* Replace QUEUE/RSS action. */
4374                 split_actions[qrss_idx] = (struct rte_flow_action){
4375                         .type = (enum rte_flow_action_type)
4376                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4377                         .conf = set_tag,
4378                 };
4379         }
4380         /* JUMP action to jump to mreg copy table (CP_TBL). */
4381         jump = (void *)(set_tag + 1);
4382         *jump = (struct rte_flow_action_jump){
4383                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4384         };
4385         split_actions[actions_n - 2] = (struct rte_flow_action){
4386                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
4387                 .conf = jump,
4388         };
4389         split_actions[actions_n - 1] = (struct rte_flow_action){
4390                 .type = RTE_FLOW_ACTION_TYPE_END,
4391         };
4392         return flow_id;
4393 }
4394
4395 /**
4396  * Extend the given action list for Tx metadata copy.
4397  *
4398  * Copy the given action list to the ext_actions and add flow metadata register
4399  * copy action in order to copy reg_a set by WQE to reg_c[0].
4400  *
4401  * @param[out] ext_actions
4402  *   Pointer to the extended action list.
4403  * @param[in] actions
4404  *   Pointer to the list of actions.
4405  * @param[in] actions_n
4406  *   Number of actions in the list.
4407  * @param[out] error
4408  *   Perform verbose error reporting if not NULL.
4409  * @param[in] encap_idx
4410  *   The encap action inndex.
4411  *
4412  * @return
4413  *   0 on success, negative value otherwise
4414  */
4415 static int
4416 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4417                        struct rte_flow_action *ext_actions,
4418                        const struct rte_flow_action *actions,
4419                        int actions_n, struct rte_flow_error *error,
4420                        int encap_idx)
4421 {
4422         struct mlx5_flow_action_copy_mreg *cp_mreg =
4423                 (struct mlx5_flow_action_copy_mreg *)
4424                         (ext_actions + actions_n + 1);
4425         int ret;
4426
4427         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4428         if (ret < 0)
4429                 return ret;
4430         cp_mreg->dst = ret;
4431         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4432         if (ret < 0)
4433                 return ret;
4434         cp_mreg->src = ret;
4435         if (encap_idx != 0)
4436                 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4437         if (encap_idx == actions_n - 1) {
4438                 ext_actions[actions_n - 1] = (struct rte_flow_action){
4439                         .type = (enum rte_flow_action_type)
4440                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4441                         .conf = cp_mreg,
4442                 };
4443                 ext_actions[actions_n] = (struct rte_flow_action){
4444                         .type = RTE_FLOW_ACTION_TYPE_END,
4445                 };
4446         } else {
4447                 ext_actions[encap_idx] = (struct rte_flow_action){
4448                         .type = (enum rte_flow_action_type)
4449                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4450                         .conf = cp_mreg,
4451                 };
4452                 memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4453                                 sizeof(*ext_actions) * (actions_n - encap_idx));
4454         }
4455         return 0;
4456 }
4457
4458 /**
4459  * Check the match action from the action list.
4460  *
4461  * @param[in] actions
4462  *   Pointer to the list of actions.
4463  * @param[in] attr
4464  *   Flow rule attributes.
4465  * @param[in] action
4466  *   The action to be check if exist.
4467  * @param[out] match_action_pos
4468  *   Pointer to the position of the matched action if exists, otherwise is -1.
4469  * @param[out] qrss_action_pos
4470  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
4471  *
4472  * @return
4473  *   > 0 the total number of actions.
4474  *   0 if not found match action in action list.
4475  */
4476 static int
4477 flow_check_match_action(const struct rte_flow_action actions[],
4478                         const struct rte_flow_attr *attr,
4479                         enum rte_flow_action_type action,
4480                         int *match_action_pos, int *qrss_action_pos)
4481 {
4482         const struct rte_flow_action_sample *sample;
4483         int actions_n = 0;
4484         int jump_flag = 0;
4485         uint32_t ratio = 0;
4486         int sub_type = 0;
4487         int flag = 0;
4488
4489         *match_action_pos = -1;
4490         *qrss_action_pos = -1;
4491         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4492                 if (actions->type == action) {
4493                         flag = 1;
4494                         *match_action_pos = actions_n;
4495                 }
4496                 if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE ||
4497                     actions->type == RTE_FLOW_ACTION_TYPE_RSS)
4498                         *qrss_action_pos = actions_n;
4499                 if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP)
4500                         jump_flag = 1;
4501                 if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) {
4502                         sample = actions->conf;
4503                         ratio = sample->ratio;
4504                         sub_type = ((const struct rte_flow_action *)
4505                                         (sample->actions))->type;
4506                 }
4507                 actions_n++;
4508         }
4509         if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) {
4510                 if (ratio == 1) {
4511                         /* JUMP Action not support for Mirroring;
4512                          * Mirroring support multi-destination;
4513                          */
4514                         if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END)
4515                                 flag = 0;
4516                 }
4517         }
4518         /* Count RTE_FLOW_ACTION_TYPE_END. */
4519         return flag ? actions_n + 1 : 0;
4520 }
4521
4522 #define SAMPLE_SUFFIX_ITEM 2
4523
4524 /**
4525  * Split the sample flow.
4526  *
4527  * As sample flow will split to two sub flow, sample flow with
4528  * sample action, the other actions will move to new suffix flow.
4529  *
4530  * Also add unique tag id with tag action in the sample flow,
4531  * the same tag id will be as match in the suffix flow.
4532  *
4533  * @param dev
4534  *   Pointer to Ethernet device.
4535  * @param[in] fdb_tx
4536  *   FDB egress flow flag.
4537  * @param[out] sfx_items
4538  *   Suffix flow match items (list terminated by the END pattern item).
4539  * @param[in] actions
4540  *   Associated actions (list terminated by the END action).
4541  * @param[out] actions_sfx
4542  *   Suffix flow actions.
4543  * @param[out] actions_pre
4544  *   Prefix flow actions.
4545  * @param[in] actions_n
4546  *  The total number of actions.
4547  * @param[in] sample_action_pos
4548  *   The sample action position.
4549  * @param[in] qrss_action_pos
4550  *   The Queue/RSS action position.
4551  * @param[out] error
4552  *   Perform verbose error reporting if not NULL.
4553  *
4554  * @return
4555  *   0 on success, or unique flow_id, a negative errno value
4556  *   otherwise and rte_errno is set.
4557  */
4558 static int
4559 flow_sample_split_prep(struct rte_eth_dev *dev,
4560                        uint32_t fdb_tx,
4561                        struct rte_flow_item sfx_items[],
4562                        const struct rte_flow_action actions[],
4563                        struct rte_flow_action actions_sfx[],
4564                        struct rte_flow_action actions_pre[],
4565                        int actions_n,
4566                        int sample_action_pos,
4567                        int qrss_action_pos,
4568                        struct rte_flow_error *error)
4569 {
4570         struct mlx5_rte_flow_action_set_tag *set_tag;
4571         struct mlx5_rte_flow_item_tag *tag_spec;
4572         struct mlx5_rte_flow_item_tag *tag_mask;
4573         uint32_t tag_id = 0;
4574         int index;
4575         int ret;
4576
4577         if (sample_action_pos < 0)
4578                 return rte_flow_error_set(error, EINVAL,
4579                                           RTE_FLOW_ERROR_TYPE_ACTION,
4580                                           NULL, "invalid position of sample "
4581                                           "action in list");
4582         if (!fdb_tx) {
4583                 /* Prepare the prefix tag action. */
4584                 set_tag = (void *)(actions_pre + actions_n + 1);
4585                 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
4586                 if (ret < 0)
4587                         return ret;
4588                 set_tag->id = ret;
4589                 tag_id = flow_qrss_get_id(dev);
4590                 set_tag->data = tag_id;
4591                 /* Prepare the suffix subflow items. */
4592                 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
4593                 tag_spec->data = tag_id;
4594                 tag_spec->id = set_tag->id;
4595                 tag_mask = tag_spec + 1;
4596                 tag_mask->data = UINT32_MAX;
4597                 sfx_items[0] = (struct rte_flow_item){
4598                         .type = (enum rte_flow_item_type)
4599                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4600                         .spec = tag_spec,
4601                         .last = NULL,
4602                         .mask = tag_mask,
4603                 };
4604                 sfx_items[1] = (struct rte_flow_item){
4605                         .type = (enum rte_flow_item_type)
4606                                 RTE_FLOW_ITEM_TYPE_END,
4607                 };
4608         }
4609         /* Prepare the actions for prefix and suffix flow. */
4610         if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
4611                 index = qrss_action_pos;
4612                 /* Put the preceding the Queue/RSS action into prefix flow. */
4613                 if (index != 0)
4614                         memcpy(actions_pre, actions,
4615                                sizeof(struct rte_flow_action) * index);
4616                 /* Put others preceding the sample action into prefix flow. */
4617                 if (sample_action_pos > index + 1)
4618                         memcpy(actions_pre + index, actions + index + 1,
4619                                sizeof(struct rte_flow_action) *
4620                                (sample_action_pos - index - 1));
4621                 index = sample_action_pos - 1;
4622                 /* Put Queue/RSS action into Suffix flow. */
4623                 memcpy(actions_sfx, actions + qrss_action_pos,
4624                        sizeof(struct rte_flow_action));
4625                 actions_sfx++;
4626         } else {
4627                 index = sample_action_pos;
4628                 if (index != 0)
4629                         memcpy(actions_pre, actions,
4630                                sizeof(struct rte_flow_action) * index);
4631         }
4632         /* Add the extra tag action for NIC-RX and E-Switch ingress. */
4633         if (!fdb_tx) {
4634                 actions_pre[index++] =
4635                         (struct rte_flow_action){
4636                         .type = (enum rte_flow_action_type)
4637                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4638                         .conf = set_tag,
4639                 };
4640         }
4641         memcpy(actions_pre + index, actions + sample_action_pos,
4642                sizeof(struct rte_flow_action));
4643         index += 1;
4644         actions_pre[index] = (struct rte_flow_action){
4645                 .type = (enum rte_flow_action_type)
4646                         RTE_FLOW_ACTION_TYPE_END,
4647         };
4648         /* Put the actions after sample into Suffix flow. */
4649         memcpy(actions_sfx, actions + sample_action_pos + 1,
4650                sizeof(struct rte_flow_action) *
4651                (actions_n - sample_action_pos - 1));
4652         return tag_id;
4653 }
4654
4655 /**
4656  * The splitting for metadata feature.
4657  *
4658  * - Q/RSS action on NIC Rx should be split in order to pass by
4659  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4660  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4661  *
4662  * - All the actions on NIC Tx should have a mreg copy action to
4663  *   copy reg_a from WQE to reg_c[0].
4664  *
4665  * @param dev
4666  *   Pointer to Ethernet device.
4667  * @param[in] flow
4668  *   Parent flow structure pointer.
4669  * @param[in] prefix_layers
4670  *   Prefix flow layer flags.
4671  * @param[in] prefix_mark
4672  *   Prefix subflow mark flag, may be 0.
4673  * @param[in] attr
4674  *   Flow rule attributes.
4675  * @param[in] items
4676  *   Pattern specification (list terminated by the END pattern item).
4677  * @param[in] actions
4678  *   Associated actions (list terminated by the END action).
4679  * @param[in] external
4680  *   This flow rule is created by request external to PMD.
4681  * @param[in] flow_idx
4682  *   This memory pool index to the flow.
4683  * @param[out] error
4684  *   Perform verbose error reporting if not NULL.
4685  * @return
4686  *   0 on success, negative value otherwise
4687  */
4688 static int
4689 flow_create_split_metadata(struct rte_eth_dev *dev,
4690                            struct rte_flow *flow,
4691                            uint64_t prefix_layers,
4692                            uint32_t prefix_mark,
4693                            const struct rte_flow_attr *attr,
4694                            const struct rte_flow_item items[],
4695                            const struct rte_flow_action actions[],
4696                            bool external, uint32_t flow_idx,
4697                            struct rte_flow_error *error)
4698 {
4699         struct mlx5_priv *priv = dev->data->dev_private;
4700         struct mlx5_dev_config *config = &priv->config;
4701         const struct rte_flow_action *qrss = NULL;
4702         struct rte_flow_action *ext_actions = NULL;
4703         struct mlx5_flow *dev_flow = NULL;
4704         uint32_t qrss_id = 0;
4705         int mtr_sfx = 0;
4706         size_t act_size;
4707         int actions_n;
4708         int encap_idx;
4709         int ret;
4710
4711         /* Check whether extensive metadata feature is engaged. */
4712         if (!config->dv_flow_en ||
4713             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4714             !mlx5_flow_ext_mreg_supported(dev))
4715                 return flow_create_split_inner(dev, flow, NULL, prefix_layers,
4716                                                prefix_mark, attr, items,
4717                                                actions, external, flow_idx,
4718                                                error);
4719         actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4720                                                            &encap_idx);
4721         if (qrss) {
4722                 /* Exclude hairpin flows from splitting. */
4723                 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4724                         const struct rte_flow_action_queue *queue;
4725
4726                         queue = qrss->conf;
4727                         if (mlx5_rxq_get_type(dev, queue->index) ==
4728                             MLX5_RXQ_TYPE_HAIRPIN)
4729                                 qrss = NULL;
4730                 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4731                         const struct rte_flow_action_rss *rss;
4732
4733                         rss = qrss->conf;
4734                         if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4735                             MLX5_RXQ_TYPE_HAIRPIN)
4736                                 qrss = NULL;
4737                 }
4738         }
4739         if (qrss) {
4740                 /* Check if it is in meter suffix table. */
4741                 mtr_sfx = attr->group == (attr->transfer ?
4742                           (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4743                           MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4744                 /*
4745                  * Q/RSS action on NIC Rx should be split in order to pass by
4746                  * the mreg copy table (RX_CP_TBL) and then it jumps to the
4747                  * action table (RX_ACT_TBL) which has the split Q/RSS action.
4748                  */
4749                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4750                            sizeof(struct rte_flow_action_set_tag) +
4751                            sizeof(struct rte_flow_action_jump);
4752                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4753                                           SOCKET_ID_ANY);
4754                 if (!ext_actions)
4755                         return rte_flow_error_set(error, ENOMEM,
4756                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4757                                                   NULL, "no memory to split "
4758                                                   "metadata flow");
4759                 /*
4760                  * If we are the suffix flow of meter, tag already exist.
4761                  * Set the tag action to void.
4762                  */
4763                 if (mtr_sfx)
4764                         ext_actions[qrss - actions].type =
4765                                                 RTE_FLOW_ACTION_TYPE_VOID;
4766                 else
4767                         ext_actions[qrss - actions].type =
4768                                                 (enum rte_flow_action_type)
4769                                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4770                 /*
4771                  * Create the new actions list with removed Q/RSS action
4772                  * and appended set tag and jump to register copy table
4773                  * (RX_CP_TBL). We should preallocate unique tag ID here
4774                  * in advance, because it is needed for set tag action.
4775                  */
4776                 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4777                                                     qrss, actions_n, error);
4778                 if (!mtr_sfx && !qrss_id) {
4779                         ret = -rte_errno;
4780                         goto exit;
4781                 }
4782         } else if (attr->egress && !attr->transfer) {
4783                 /*
4784                  * All the actions on NIC Tx should have a metadata register
4785                  * copy action to copy reg_a from WQE to reg_c[meta]
4786                  */
4787                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4788                            sizeof(struct mlx5_flow_action_copy_mreg);
4789                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4790                                           SOCKET_ID_ANY);
4791                 if (!ext_actions)
4792                         return rte_flow_error_set(error, ENOMEM,
4793                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4794                                                   NULL, "no memory to split "
4795                                                   "metadata flow");
4796                 /* Create the action list appended with copy register. */
4797                 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4798                                              actions_n, error, encap_idx);
4799                 if (ret < 0)
4800                         goto exit;
4801         }
4802         /* Add the unmodified original or prefix subflow. */
4803         ret = flow_create_split_inner(dev, flow, &dev_flow, prefix_layers,
4804                                       prefix_mark, attr,
4805                                       items, ext_actions ? ext_actions :
4806                                       actions, external, flow_idx, error);
4807         if (ret < 0)
4808                 goto exit;
4809         MLX5_ASSERT(dev_flow);
4810         if (qrss) {
4811                 const struct rte_flow_attr q_attr = {
4812                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4813                         .ingress = 1,
4814                 };
4815                 /* Internal PMD action to set register. */
4816                 struct mlx5_rte_flow_item_tag q_tag_spec = {
4817                         .data = qrss_id,
4818                         .id = REG_NON,
4819                 };
4820                 struct rte_flow_item q_items[] = {
4821                         {
4822                                 .type = (enum rte_flow_item_type)
4823                                         MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4824                                 .spec = &q_tag_spec,
4825                                 .last = NULL,
4826                                 .mask = NULL,
4827                         },
4828                         {
4829                                 .type = RTE_FLOW_ITEM_TYPE_END,
4830                         },
4831                 };
4832                 struct rte_flow_action q_actions[] = {
4833                         {
4834                                 .type = qrss->type,
4835                                 .conf = qrss->conf,
4836                         },
4837                         {
4838                                 .type = RTE_FLOW_ACTION_TYPE_END,
4839                         },
4840                 };
4841                 uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4842
4843                 /*
4844                  * Configure the tag item only if there is no meter subflow.
4845                  * Since tag is already marked in the meter suffix subflow
4846                  * we can just use the meter suffix items as is.
4847                  */
4848                 if (qrss_id) {
4849                         /* Not meter subflow. */
4850                         MLX5_ASSERT(!mtr_sfx);
4851                         /*
4852                          * Put unique id in prefix flow due to it is destroyed
4853                          * after suffix flow and id will be freed after there
4854                          * is no actual flows with this id and identifier
4855                          * reallocation becomes possible (for example, for
4856                          * other flows in other threads).
4857                          */
4858                         dev_flow->handle->split_flow_id = qrss_id;
4859                         ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4860                                                    error);
4861                         if (ret < 0)
4862                                 goto exit;
4863                         q_tag_spec.id = ret;
4864                 }
4865                 dev_flow = NULL;
4866                 /* Add suffix subflow to execute Q/RSS. */
4867                 ret = flow_create_split_inner(dev, flow, &dev_flow, layers, 0,
4868                                               &q_attr, mtr_sfx ? items :
4869                                               q_items, q_actions,
4870                                               external, flow_idx, error);
4871                 if (ret < 0)
4872                         goto exit;
4873                 /* qrss ID should be freed if failed. */
4874                 qrss_id = 0;
4875                 MLX5_ASSERT(dev_flow);
4876         }
4877
4878 exit:
4879         /*
4880          * We do not destroy the partially created sub_flows in case of error.
4881          * These ones are included into parent flow list and will be destroyed
4882          * by flow_drv_destroy.
4883          */
4884         flow_qrss_free_id(dev, qrss_id);
4885         mlx5_free(ext_actions);
4886         return ret;
4887 }
4888
4889 /**
4890  * The splitting for meter feature.
4891  *
4892  * - The meter flow will be split to two flows as prefix and
4893  *   suffix flow. The packets make sense only it pass the prefix
4894  *   meter action.
4895  *
4896  * - Reg_C_5 is used for the packet to match betweend prefix and
4897  *   suffix flow.
4898  *
4899  * @param dev
4900  *   Pointer to Ethernet device.
4901  * @param[in] flow
4902  *   Parent flow structure pointer.
4903  * @param[in] prefix_layers
4904  *   Prefix subflow layers, may be 0.
4905  * @param[in] prefix_mark
4906  *   Prefix subflow mark flag, may be 0.
4907  * @param[in] attr
4908  *   Flow rule attributes.
4909  * @param[in] items
4910  *   Pattern specification (list terminated by the END pattern item).
4911  * @param[in] actions
4912  *   Associated actions (list terminated by the END action).
4913  * @param[in] external
4914  *   This flow rule is created by request external to PMD.
4915  * @param[in] flow_idx
4916  *   This memory pool index to the flow.
4917  * @param[out] error
4918  *   Perform verbose error reporting if not NULL.
4919  * @return
4920  *   0 on success, negative value otherwise
4921  */
4922 static int
4923 flow_create_split_meter(struct rte_eth_dev *dev,
4924                         struct rte_flow *flow,
4925                         uint64_t prefix_layers,
4926                         uint32_t prefix_mark,
4927                         const struct rte_flow_attr *attr,
4928                         const struct rte_flow_item items[],
4929                         const struct rte_flow_action actions[],
4930                         bool external, uint32_t flow_idx,
4931                         struct rte_flow_error *error)
4932 {
4933         struct mlx5_priv *priv = dev->data->dev_private;
4934         struct rte_flow_action *sfx_actions = NULL;
4935         struct rte_flow_action *pre_actions = NULL;
4936         struct rte_flow_item *sfx_items = NULL;
4937         struct mlx5_flow *dev_flow = NULL;
4938         struct rte_flow_attr sfx_attr = *attr;
4939         uint32_t mtr = 0;
4940         uint32_t mtr_tag_id = 0;
4941         size_t act_size;
4942         size_t item_size;
4943         int actions_n = 0;
4944         int ret;
4945
4946         if (priv->mtr_en)
4947                 actions_n = flow_check_meter_action(actions, &mtr);
4948         if (mtr) {
4949                 /* The five prefix actions: meter, decap, encap, tag, end. */
4950                 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4951                            sizeof(struct mlx5_rte_flow_action_set_tag);
4952                 /* tag, vlan, port id, end. */
4953 #define METER_SUFFIX_ITEM 4
4954                 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4955                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
4956                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4957                                           0, SOCKET_ID_ANY);
4958                 if (!sfx_actions)
4959                         return rte_flow_error_set(error, ENOMEM,
4960                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4961                                                   NULL, "no memory to split "
4962                                                   "meter flow");
4963                 sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4964                              act_size);
4965                 pre_actions = sfx_actions + actions_n;
4966                 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4967                                                    actions, sfx_actions,
4968                                                    pre_actions);
4969                 if (!mtr_tag_id) {
4970                         ret = -rte_errno;
4971                         goto exit;
4972                 }
4973                 /* Add the prefix subflow. */
4974                 ret = flow_create_split_inner(dev, flow, &dev_flow,
4975                                               prefix_layers, 0,
4976                                               attr, items,
4977                                               pre_actions, external,
4978                                               flow_idx, error);
4979                 if (ret) {
4980                         ret = -rte_errno;
4981                         goto exit;
4982                 }
4983                 dev_flow->handle->split_flow_id = mtr_tag_id;
4984                 /* Setting the sfx group atrr. */
4985                 sfx_attr.group = sfx_attr.transfer ?
4986                                 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4987                                  MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4988         }
4989         /* Add the prefix subflow. */
4990         ret = flow_create_split_metadata(dev, flow, dev_flow ?
4991                                          flow_get_prefix_layer_flags(dev_flow) :
4992                                          prefix_layers, dev_flow ?
4993                                          dev_flow->handle->mark : prefix_mark,
4994                                          &sfx_attr, sfx_items ?
4995                                          sfx_items : items,
4996                                          sfx_actions ? sfx_actions : actions,
4997                                          external, flow_idx, error);
4998 exit:
4999         if (sfx_actions)
5000                 mlx5_free(sfx_actions);
5001         return ret;
5002 }
5003
5004 /**
5005  * The splitting for sample feature.
5006  *
5007  * Once Sample action is detected in the action list, the flow actions should
5008  * be split into prefix sub flow and suffix sub flow.
5009  *
5010  * The original items remain in the prefix sub flow, all actions preceding the
5011  * sample action and the sample action itself will be copied to the prefix
5012  * sub flow, the actions following the sample action will be copied to the
5013  * suffix sub flow, Queue action always be located in the suffix sub flow.
5014  *
5015  * In order to make the packet from prefix sub flow matches with suffix sub
5016  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
5017  * flow uses tag item with the unique flow id.
5018  *
5019  * @param dev
5020  *   Pointer to Ethernet device.
5021  * @param[in] flow
5022  *   Parent flow structure pointer.
5023  * @param[in] attr
5024  *   Flow rule attributes.
5025  * @param[in] items
5026  *   Pattern specification (list terminated by the END pattern item).
5027  * @param[in] actions
5028  *   Associated actions (list terminated by the END action).
5029  * @param[in] external
5030  *   This flow rule is created by request external to PMD.
5031  * @param[in] flow_idx
5032  *   This memory pool index to the flow.
5033  * @param[out] error
5034  *   Perform verbose error reporting if not NULL.
5035  * @return
5036  *   0 on success, negative value otherwise
5037  */
5038 static int
5039 flow_create_split_sample(struct rte_eth_dev *dev,
5040                          struct rte_flow *flow,
5041                          const struct rte_flow_attr *attr,
5042                          const struct rte_flow_item items[],
5043                          const struct rte_flow_action actions[],
5044                          bool external, uint32_t flow_idx,
5045                          struct rte_flow_error *error)
5046 {
5047         struct mlx5_priv *priv = dev->data->dev_private;
5048         struct rte_flow_action *sfx_actions = NULL;
5049         struct rte_flow_action *pre_actions = NULL;
5050         struct rte_flow_item *sfx_items = NULL;
5051         struct mlx5_flow *dev_flow = NULL;
5052         struct rte_flow_attr sfx_attr = *attr;
5053 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5054         struct mlx5_flow_dv_sample_resource *sample_res;
5055         struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
5056         struct mlx5_flow_tbl_resource *sfx_tbl;
5057         union mlx5_flow_tbl_key sfx_table_key;
5058 #endif
5059         size_t act_size;
5060         size_t item_size;
5061         uint32_t fdb_tx = 0;
5062         int32_t tag_id = 0;
5063         int actions_n = 0;
5064         int sample_action_pos;
5065         int qrss_action_pos;
5066         int ret = 0;
5067
5068         if (priv->sampler_en)
5069                 actions_n = flow_check_match_action(actions, attr,
5070                                         RTE_FLOW_ACTION_TYPE_SAMPLE,
5071                                         &sample_action_pos, &qrss_action_pos);
5072         if (actions_n) {
5073                 /* The prefix actions must includes sample, tag, end. */
5074                 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
5075                            + sizeof(struct mlx5_rte_flow_action_set_tag);
5076                 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
5077                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
5078                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
5079                                           item_size), 0, SOCKET_ID_ANY);
5080                 if (!sfx_actions)
5081                         return rte_flow_error_set(error, ENOMEM,
5082                                                   RTE_FLOW_ERROR_TYPE_ACTION,
5083                                                   NULL, "no memory to split "
5084                                                   "sample flow");
5085                 /* The representor_id is -1 for uplink. */
5086                 fdb_tx = (attr->transfer && priv->representor_id != -1);
5087                 if (!fdb_tx)
5088                         sfx_items = (struct rte_flow_item *)((char *)sfx_actions
5089                                         + act_size);
5090                 pre_actions = sfx_actions + actions_n;
5091                 tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items,
5092                                                 actions, sfx_actions,
5093                                                 pre_actions, actions_n,
5094                                                 sample_action_pos,
5095                                                 qrss_action_pos, error);
5096                 if (tag_id < 0 || (!fdb_tx && !tag_id)) {
5097                         ret = -rte_errno;
5098                         goto exit;
5099                 }
5100                 /* Add the prefix subflow. */
5101                 ret = flow_create_split_inner(dev, flow, &dev_flow, 0, 0, attr,
5102                                               items, pre_actions, external,
5103                                               flow_idx, error);
5104                 if (ret) {
5105                         ret = -rte_errno;
5106                         goto exit;
5107                 }
5108                 dev_flow->handle->split_flow_id = tag_id;
5109 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5110                 /* Set the sfx group attr. */
5111                 sample_res = (struct mlx5_flow_dv_sample_resource *)
5112                                         dev_flow->dv.sample_res;
5113                 sfx_tbl = (struct mlx5_flow_tbl_resource *)
5114                                         sample_res->normal_path_tbl;
5115                 sfx_tbl_data = container_of(sfx_tbl,
5116                                         struct mlx5_flow_tbl_data_entry, tbl);
5117                 sfx_table_key.v64 = sfx_tbl_data->entry.key;
5118                 sfx_attr.group = sfx_attr.transfer ?
5119                                         (sfx_table_key.table_id - 1) :
5120                                          sfx_table_key.table_id;
5121 #endif
5122         }
5123         /* Add the suffix subflow. */
5124         ret = flow_create_split_meter(dev, flow, dev_flow ?
5125                                  flow_get_prefix_layer_flags(dev_flow) : 0,
5126                                  dev_flow ? dev_flow->handle->mark : 0,
5127                                  &sfx_attr, sfx_items ? sfx_items : items,
5128                                  sfx_actions ? sfx_actions : actions,
5129                                  external, flow_idx, error);
5130 exit:
5131         if (sfx_actions)
5132                 mlx5_free(sfx_actions);
5133         return ret;
5134 }
5135
5136 /**
5137  * Split the flow to subflow set. The splitters might be linked
5138  * in the chain, like this:
5139  * flow_create_split_outer() calls:
5140  *   flow_create_split_meter() calls:
5141  *     flow_create_split_metadata(meter_subflow_0) calls:
5142  *       flow_create_split_inner(metadata_subflow_0)
5143  *       flow_create_split_inner(metadata_subflow_1)
5144  *       flow_create_split_inner(metadata_subflow_2)
5145  *     flow_create_split_metadata(meter_subflow_1) calls:
5146  *       flow_create_split_inner(metadata_subflow_0)
5147  *       flow_create_split_inner(metadata_subflow_1)
5148  *       flow_create_split_inner(metadata_subflow_2)
5149  *
5150  * This provide flexible way to add new levels of flow splitting.
5151  * The all of successfully created subflows are included to the
5152  * parent flow dev_flow list.
5153  *
5154  * @param dev
5155  *   Pointer to Ethernet device.
5156  * @param[in] flow
5157  *   Parent flow structure pointer.
5158  * @param[in] attr
5159  *   Flow rule attributes.
5160  * @param[in] items
5161  *   Pattern specification (list terminated by the END pattern item).
5162  * @param[in] actions
5163  *   Associated actions (list terminated by the END action).
5164  * @param[in] external
5165  *   This flow rule is created by request external to PMD.
5166  * @param[in] flow_idx
5167  *   This memory pool index to the flow.
5168  * @param[out] error
5169  *   Perform verbose error reporting if not NULL.
5170  * @return
5171  *   0 on success, negative value otherwise
5172  */
5173 static int
5174 flow_create_split_outer(struct rte_eth_dev *dev,
5175                         struct rte_flow *flow,
5176                         const struct rte_flow_attr *attr,
5177                         const struct rte_flow_item items[],
5178                         const struct rte_flow_action actions[],
5179                         bool external, uint32_t flow_idx,
5180                         struct rte_flow_error *error)
5181 {
5182         int ret;
5183
5184         ret = flow_create_split_sample(dev, flow, attr, items,
5185                                        actions, external, flow_idx, error);
5186         MLX5_ASSERT(ret <= 0);
5187         return ret;
5188 }
5189
5190 /**
5191  * Create a flow and add it to @p list.
5192  *
5193  * @param dev
5194  *   Pointer to Ethernet device.
5195  * @param list
5196  *   Pointer to a TAILQ flow list. If this parameter NULL,
5197  *   no list insertion occurred, flow is just created,
5198  *   this is caller's responsibility to track the
5199  *   created flow.
5200  * @param[in] attr
5201  *   Flow rule attributes.
5202  * @param[in] items
5203  *   Pattern specification (list terminated by the END pattern item).
5204  * @param[in] actions
5205  *   Associated actions (list terminated by the END action).
5206  * @param[in] external
5207  *   This flow rule is created by request external to PMD.
5208  * @param[out] error
5209  *   Perform verbose error reporting if not NULL.
5210  *
5211  * @return
5212  *   A flow index on success, 0 otherwise and rte_errno is set.
5213  */
5214 static uint32_t
5215 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
5216                  const struct rte_flow_attr *attr,
5217                  const struct rte_flow_item items[],
5218                  const struct rte_flow_action original_actions[],
5219                  bool external, struct rte_flow_error *error)
5220 {
5221         struct mlx5_priv *priv = dev->data->dev_private;
5222         struct rte_flow *flow = NULL;
5223         struct mlx5_flow *dev_flow;
5224         const struct rte_flow_action_rss *rss;
5225         struct mlx5_translated_shared_action
5226                 shared_actions[MLX5_MAX_SHARED_ACTIONS];
5227         int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5228         union {
5229                 struct mlx5_flow_expand_rss buf;
5230                 uint8_t buffer[2048];
5231         } expand_buffer;
5232         union {
5233                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5234                 uint8_t buffer[2048];
5235         } actions_rx;
5236         union {
5237                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5238                 uint8_t buffer[2048];
5239         } actions_hairpin_tx;
5240         union {
5241                 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
5242                 uint8_t buffer[2048];
5243         } items_tx;
5244         struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
5245         struct mlx5_flow_rss_desc *rss_desc = &((struct mlx5_flow_rss_desc *)
5246                                               priv->rss_desc)[!!priv->flow_idx];
5247         const struct rte_flow_action *p_actions_rx;
5248         uint32_t i;
5249         uint32_t idx = 0;
5250         int hairpin_flow;
5251         uint32_t hairpin_id = 0;
5252         struct rte_flow_attr attr_tx = { .priority = 0 };
5253         struct rte_flow_attr attr_factor = {0};
5254         const struct rte_flow_action *actions;
5255         struct rte_flow_action *translated_actions = NULL;
5256         int ret = flow_shared_actions_translate(original_actions,
5257                                                 shared_actions,
5258                                                 &shared_actions_n,
5259                                                 &translated_actions, error);
5260
5261         if (ret < 0) {
5262                 MLX5_ASSERT(translated_actions == NULL);
5263                 return 0;
5264         }
5265         actions = translated_actions ? translated_actions : original_actions;
5266         memcpy((void *)&attr_factor, (const void *)attr, sizeof(*attr));
5267         if (external)
5268                 attr_factor.group *= MLX5_FLOW_TABLE_FACTOR;
5269         p_actions_rx = actions;
5270         hairpin_flow = flow_check_hairpin_split(dev, &attr_factor, actions);
5271         ret = flow_drv_validate(dev, &attr_factor, items, p_actions_rx,
5272                                 external, hairpin_flow, error);
5273         if (ret < 0)
5274                 goto error_before_hairpin_split;
5275         if (hairpin_flow > 0) {
5276                 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
5277                         rte_errno = EINVAL;
5278                         goto error_before_hairpin_split;
5279                 }
5280                 flow_hairpin_split(dev, actions, actions_rx.actions,
5281                                    actions_hairpin_tx.actions, items_tx.items,
5282                                    &hairpin_id);
5283                 p_actions_rx = actions_rx.actions;
5284         }
5285         flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
5286         if (!flow) {
5287                 rte_errno = ENOMEM;
5288                 goto error_before_flow;
5289         }
5290         flow->drv_type = flow_get_drv_type(dev, &attr_factor);
5291         if (hairpin_id != 0)
5292                 flow->hairpin_flow_id = hairpin_id;
5293         MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
5294                     flow->drv_type < MLX5_FLOW_TYPE_MAX);
5295         memset(rss_desc, 0, sizeof(*rss_desc));
5296         rss = flow_get_rss_action(p_actions_rx);
5297         if (rss) {
5298                 /*
5299                  * The following information is required by
5300                  * mlx5_flow_hashfields_adjust() in advance.
5301                  */
5302                 rss_desc->level = rss->level;
5303                 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
5304                 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
5305         }
5306         flow->dev_handles = 0;
5307         if (rss && rss->types) {
5308                 unsigned int graph_root;
5309
5310                 graph_root = find_graph_root(items, rss->level);
5311                 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
5312                                            items, rss->types,
5313                                            mlx5_support_expansion, graph_root);
5314                 MLX5_ASSERT(ret > 0 &&
5315                        (unsigned int)ret < sizeof(expand_buffer.buffer));
5316         } else {
5317                 buf->entries = 1;
5318                 buf->entry[0].pattern = (void *)(uintptr_t)items;
5319         }
5320         flow->shared_rss = flow_get_shared_rss_action(shared_actions,
5321                                                       shared_actions_n);
5322         /*
5323          * Record the start index when there is a nested call. All sub-flows
5324          * need to be translated before another calling.
5325          * No need to use ping-pong buffer to save memory here.
5326          */
5327         if (priv->flow_idx) {
5328                 MLX5_ASSERT(!priv->flow_nested_idx);
5329                 priv->flow_nested_idx = priv->flow_idx;
5330         }
5331         for (i = 0; i < buf->entries; ++i) {
5332                 /*
5333                  * The splitter may create multiple dev_flows,
5334                  * depending on configuration. In the simplest
5335                  * case it just creates unmodified original flow.
5336                  */
5337                 ret = flow_create_split_outer(dev, flow, &attr_factor,
5338                                               buf->entry[i].pattern,
5339                                               p_actions_rx, external, idx,
5340                                               error);
5341                 if (ret < 0)
5342                         goto error;
5343         }
5344         /* Create the tx flow. */
5345         if (hairpin_flow) {
5346                 attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
5347                 attr_tx.ingress = 0;
5348                 attr_tx.egress = 1;
5349                 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
5350                                          actions_hairpin_tx.actions,
5351                                          idx, error);
5352                 if (!dev_flow)
5353                         goto error;
5354                 dev_flow->flow = flow;
5355                 dev_flow->external = 0;
5356                 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5357                               dev_flow->handle, next);
5358                 ret = flow_drv_translate(dev, dev_flow, &attr_tx,
5359                                          items_tx.items,
5360                                          actions_hairpin_tx.actions, error);
5361                 if (ret < 0)
5362                         goto error;
5363         }
5364         /*
5365          * Update the metadata register copy table. If extensive
5366          * metadata feature is enabled and registers are supported
5367          * we might create the extra rte_flow for each unique
5368          * MARK/FLAG action ID.
5369          *
5370          * The table is updated for ingress Flows only, because
5371          * the egress Flows belong to the different device and
5372          * copy table should be updated in peer NIC Rx domain.
5373          */
5374         if (attr_factor.ingress &&
5375             (external || attr_factor.group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
5376                 ret = flow_mreg_update_copy_table(dev, flow, actions, error);
5377                 if (ret)
5378                         goto error;
5379         }
5380         /*
5381          * If the flow is external (from application) OR device is started, then
5382          * the flow will be applied immediately.
5383          */
5384         if (external || dev->data->dev_started) {
5385                 ret = flow_drv_apply(dev, flow, error);
5386                 if (ret < 0)
5387                         goto error;
5388         }
5389         if (list)
5390                 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
5391                              flow, next);
5392         flow_rxq_flags_set(dev, flow);
5393         rte_free(translated_actions);
5394         /* Nested flow creation index recovery. */
5395         priv->flow_idx = priv->flow_nested_idx;
5396         if (priv->flow_nested_idx)
5397                 priv->flow_nested_idx = 0;
5398         return idx;
5399 error:
5400         MLX5_ASSERT(flow);
5401         ret = rte_errno; /* Save rte_errno before cleanup. */
5402         flow_mreg_del_copy_action(dev, flow);
5403         flow_drv_destroy(dev, flow);
5404         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
5405         rte_errno = ret; /* Restore rte_errno. */
5406 error_before_flow:
5407         ret = rte_errno;
5408         if (hairpin_id)
5409                 mlx5_flow_id_release(priv->sh->flow_id_pool,
5410                                      hairpin_id);
5411         rte_errno = ret;
5412         priv->flow_idx = priv->flow_nested_idx;
5413         if (priv->flow_nested_idx)
5414                 priv->flow_nested_idx = 0;
5415 error_before_hairpin_split:
5416         rte_free(translated_actions);
5417         return 0;
5418 }
5419
5420 /**
5421  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
5422  * incoming packets to table 1.
5423  *
5424  * Other flow rules, requested for group n, will be created in
5425  * e-switch table n+1.
5426  * Jump action to e-switch group n will be created to group n+1.
5427  *
5428  * Used when working in switchdev mode, to utilise advantages of table 1
5429  * and above.
5430  *
5431  * @param dev
5432  *   Pointer to Ethernet device.
5433  *
5434  * @return
5435  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
5436  */
5437 struct rte_flow *
5438 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
5439 {
5440         const struct rte_flow_attr attr = {
5441                 .group = 0,
5442                 .priority = 0,
5443                 .ingress = 1,
5444                 .egress = 0,
5445                 .transfer = 1,
5446         };
5447         const struct rte_flow_item pattern = {
5448                 .type = RTE_FLOW_ITEM_TYPE_END,
5449         };
5450         struct rte_flow_action_jump jump = {
5451                 .group = 1,
5452         };
5453         const struct rte_flow_action actions[] = {
5454                 {
5455                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
5456                         .conf = &jump,
5457                 },
5458                 {
5459                         .type = RTE_FLOW_ACTION_TYPE_END,
5460                 },
5461         };
5462         struct mlx5_priv *priv = dev->data->dev_private;
5463         struct rte_flow_error error;
5464
5465         return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
5466                                                    &attr, &pattern,
5467                                                    actions, false, &error);
5468 }
5469
5470 /**
5471  * Validate a flow supported by the NIC.
5472  *
5473  * @see rte_flow_validate()
5474  * @see rte_flow_ops
5475  */
5476 int
5477 mlx5_flow_validate(struct rte_eth_dev *dev,
5478                    const struct rte_flow_attr *attr,
5479                    const struct rte_flow_item items[],
5480                    const struct rte_flow_action original_actions[],
5481                    struct rte_flow_error *error)
5482 {
5483         int hairpin_flow;
5484         struct mlx5_translated_shared_action
5485                 shared_actions[MLX5_MAX_SHARED_ACTIONS];
5486         int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5487         const struct rte_flow_action *actions;
5488         struct rte_flow_action *translated_actions = NULL;
5489         int ret = flow_shared_actions_translate(original_actions,
5490                                                 shared_actions,
5491                                                 &shared_actions_n,
5492                                                 &translated_actions, error);
5493
5494         if (ret)
5495                 return ret;
5496         actions = translated_actions ? translated_actions : original_actions;
5497         hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5498         ret = flow_drv_validate(dev, attr, items, actions,
5499                                 true, hairpin_flow, error);
5500         rte_free(translated_actions);
5501         return ret;
5502 }
5503
5504 /**
5505  * Create a flow.
5506  *
5507  * @see rte_flow_create()
5508  * @see rte_flow_ops
5509  */
5510 struct rte_flow *
5511 mlx5_flow_create(struct rte_eth_dev *dev,
5512                  const struct rte_flow_attr *attr,
5513                  const struct rte_flow_item items[],
5514                  const struct rte_flow_action actions[],
5515                  struct rte_flow_error *error)
5516 {
5517         struct mlx5_priv *priv = dev->data->dev_private;
5518
5519         /*
5520          * If the device is not started yet, it is not allowed to created a
5521          * flow from application. PMD default flows and traffic control flows
5522          * are not affected.
5523          */
5524         if (unlikely(!dev->data->dev_started)) {
5525                 DRV_LOG(DEBUG, "port %u is not started when "
5526                         "inserting a flow", dev->data->port_id);
5527                 rte_flow_error_set(error, ENODEV,
5528                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5529                                    NULL,
5530                                    "port not started");
5531                 return NULL;
5532         }
5533         return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
5534                                   attr, items, actions, true, error);
5535 }
5536
5537 /**
5538  * Destroy a flow in a list.
5539  *
5540  * @param dev
5541  *   Pointer to Ethernet device.
5542  * @param list
5543  *   Pointer to the Indexed flow list. If this parameter NULL,
5544  *   there is no flow removal from the list. Be noted that as
5545  *   flow is add to the indexed list, memory of the indexed
5546  *   list points to maybe changed as flow destroyed.
5547  * @param[in] flow_idx
5548  *   Index of flow to destroy.
5549  */
5550 static void
5551 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
5552                   uint32_t flow_idx)
5553 {
5554         struct mlx5_priv *priv = dev->data->dev_private;
5555         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5556         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5557                                                [MLX5_IPOOL_RTE_FLOW], flow_idx);
5558
5559         if (!flow)
5560                 return;
5561         /*
5562          * Update RX queue flags only if port is started, otherwise it is
5563          * already clean.
5564          */
5565         if (dev->data->dev_started)
5566                 flow_rxq_flags_trim(dev, flow);
5567         if (flow->hairpin_flow_id)
5568                 mlx5_flow_id_release(priv->sh->flow_id_pool,
5569                                      flow->hairpin_flow_id);
5570         flow_drv_destroy(dev, flow);
5571         if (list)
5572                 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
5573                              flow_idx, flow, next);
5574         flow_mreg_del_copy_action(dev, flow);
5575         if (flow->fdir) {
5576                 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
5577                         if (priv_fdir_flow->rix_flow == flow_idx)
5578                                 break;
5579                 }
5580                 if (priv_fdir_flow) {
5581                         LIST_REMOVE(priv_fdir_flow, next);
5582                         mlx5_free(priv_fdir_flow->fdir);
5583                         mlx5_free(priv_fdir_flow);
5584                 }
5585         }
5586         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5587 }
5588
5589 /**
5590  * Destroy all flows.
5591  *
5592  * @param dev
5593  *   Pointer to Ethernet device.
5594  * @param list
5595  *   Pointer to the Indexed flow list.
5596  * @param active
5597  *   If flushing is called avtively.
5598  */
5599 void
5600 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5601 {
5602         uint32_t num_flushed = 0;
5603
5604         while (*list) {
5605                 flow_list_destroy(dev, list, *list);
5606                 num_flushed++;
5607         }
5608         if (active) {
5609                 DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5610                         dev->data->port_id, num_flushed);
5611         }
5612 }
5613
5614 /**
5615  * Remove all flows.
5616  *
5617  * @param dev
5618  *   Pointer to Ethernet device.
5619  * @param list
5620  *   Pointer to the Indexed flow list.
5621  */
5622 void
5623 mlx5_flow_stop(struct rte_eth_dev *dev, uint32_t *list)
5624 {
5625         struct mlx5_priv *priv = dev->data->dev_private;
5626         struct rte_flow *flow = NULL;
5627         uint32_t idx;
5628
5629         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5630                       flow, next) {
5631                 flow_drv_remove(dev, flow);
5632                 flow_mreg_stop_copy_action(dev, flow);
5633         }
5634         flow_mreg_del_default_copy_action(dev);
5635         flow_rxq_flags_clear(dev);
5636 }
5637
5638 /**
5639  * Add all flows.
5640  *
5641  * @param dev
5642  *   Pointer to Ethernet device.
5643  * @param list
5644  *   Pointer to the Indexed flow list.
5645  *
5646  * @return
5647  *   0 on success, a negative errno value otherwise and rte_errno is set.
5648  */
5649 int
5650 mlx5_flow_start(struct rte_eth_dev *dev, uint32_t *list)
5651 {
5652         struct mlx5_priv *priv = dev->data->dev_private;
5653         struct rte_flow *flow = NULL;
5654         struct rte_flow_error error;
5655         uint32_t idx;
5656         int ret = 0;
5657
5658         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5659         ret = flow_mreg_add_default_copy_action(dev, &error);
5660         if (ret < 0)
5661                 return -rte_errno;
5662         /* Apply Flows created by application. */
5663         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5664                       flow, next) {
5665                 ret = flow_mreg_start_copy_action(dev, flow);
5666                 if (ret < 0)
5667                         goto error;
5668                 ret = flow_drv_apply(dev, flow, &error);
5669                 if (ret < 0)
5670                         goto error;
5671                 flow_rxq_flags_set(dev, flow);
5672         }
5673         return 0;
5674 error:
5675         ret = rte_errno; /* Save rte_errno before cleanup. */
5676         mlx5_flow_stop(dev, list);
5677         rte_errno = ret; /* Restore rte_errno. */
5678         return -rte_errno;
5679 }
5680
5681 /**
5682  * Stop all default actions for flows.
5683  *
5684  * @param dev
5685  *   Pointer to Ethernet device.
5686  */
5687 void
5688 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5689 {
5690         flow_mreg_del_default_copy_action(dev);
5691         flow_rxq_flags_clear(dev);
5692 }
5693
5694 /**
5695  * Start all default actions for flows.
5696  *
5697  * @param dev
5698  *   Pointer to Ethernet device.
5699  * @return
5700  *   0 on success, a negative errno value otherwise and rte_errno is set.
5701  */
5702 int
5703 mlx5_flow_start_default(struct rte_eth_dev *dev)
5704 {
5705         struct rte_flow_error error;
5706
5707         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5708         return flow_mreg_add_default_copy_action(dev, &error);
5709 }
5710
5711 /**
5712  * Allocate intermediate resources for flow creation.
5713  *
5714  * @param dev
5715  *   Pointer to Ethernet device.
5716  */
5717 void
5718 mlx5_flow_alloc_intermediate(struct rte_eth_dev *dev)
5719 {
5720         struct mlx5_priv *priv = dev->data->dev_private;
5721
5722         if (!priv->inter_flows) {
5723                 priv->inter_flows = mlx5_malloc(MLX5_MEM_ZERO,
5724                                     MLX5_NUM_MAX_DEV_FLOWS *
5725                                     sizeof(struct mlx5_flow) +
5726                                     (sizeof(struct mlx5_flow_rss_desc) +
5727                                     sizeof(uint16_t) * UINT16_MAX) * 2, 0,
5728                                     SOCKET_ID_ANY);
5729                 if (!priv->inter_flows) {
5730                         DRV_LOG(ERR, "can't allocate intermediate memory.");
5731                         return;
5732                 }
5733         }
5734         priv->rss_desc = &((struct mlx5_flow *)priv->inter_flows)
5735                          [MLX5_NUM_MAX_DEV_FLOWS];
5736         /* Reset the index. */
5737         priv->flow_idx = 0;
5738         priv->flow_nested_idx = 0;
5739 }
5740
5741 /**
5742  * Free intermediate resources for flows.
5743  *
5744  * @param dev
5745  *   Pointer to Ethernet device.
5746  */
5747 void
5748 mlx5_flow_free_intermediate(struct rte_eth_dev *dev)
5749 {
5750         struct mlx5_priv *priv = dev->data->dev_private;
5751
5752         mlx5_free(priv->inter_flows);
5753         priv->inter_flows = NULL;
5754 }
5755
5756 /**
5757  * Verify the flow list is empty
5758  *
5759  * @param dev
5760  *  Pointer to Ethernet device.
5761  *
5762  * @return the number of flows not released.
5763  */
5764 int
5765 mlx5_flow_verify(struct rte_eth_dev *dev)
5766 {
5767         struct mlx5_priv *priv = dev->data->dev_private;
5768         struct rte_flow *flow;
5769         uint32_t idx;
5770         int ret = 0;
5771
5772         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5773                       flow, next) {
5774                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
5775                         dev->data->port_id, (void *)flow);
5776                 ++ret;
5777         }
5778         return ret;
5779 }
5780
5781 /**
5782  * Enable default hairpin egress flow.
5783  *
5784  * @param dev
5785  *   Pointer to Ethernet device.
5786  * @param queue
5787  *   The queue index.
5788  *
5789  * @return
5790  *   0 on success, a negative errno value otherwise and rte_errno is set.
5791  */
5792 int
5793 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5794                             uint32_t queue)
5795 {
5796         struct mlx5_priv *priv = dev->data->dev_private;
5797         const struct rte_flow_attr attr = {
5798                 .egress = 1,
5799                 .priority = 0,
5800         };
5801         struct mlx5_rte_flow_item_tx_queue queue_spec = {
5802                 .queue = queue,
5803         };
5804         struct mlx5_rte_flow_item_tx_queue queue_mask = {
5805                 .queue = UINT32_MAX,
5806         };
5807         struct rte_flow_item items[] = {
5808                 {
5809                         .type = (enum rte_flow_item_type)
5810                                 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5811                         .spec = &queue_spec,
5812                         .last = NULL,
5813                         .mask = &queue_mask,
5814                 },
5815                 {
5816                         .type = RTE_FLOW_ITEM_TYPE_END,
5817                 },
5818         };
5819         struct rte_flow_action_jump jump = {
5820                 .group = MLX5_HAIRPIN_TX_TABLE,
5821         };
5822         struct rte_flow_action actions[2];
5823         uint32_t flow_idx;
5824         struct rte_flow_error error;
5825
5826         actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5827         actions[0].conf = &jump;
5828         actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5829         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5830                                 &attr, items, actions, false, &error);
5831         if (!flow_idx) {
5832                 DRV_LOG(DEBUG,
5833                         "Failed to create ctrl flow: rte_errno(%d),"
5834                         " type(%d), message(%s)",
5835                         rte_errno, error.type,
5836                         error.message ? error.message : " (no stated reason)");
5837                 return -rte_errno;
5838         }
5839         return 0;
5840 }
5841
5842 /**
5843  * Enable a control flow configured from the control plane.
5844  *
5845  * @param dev
5846  *   Pointer to Ethernet device.
5847  * @param eth_spec
5848  *   An Ethernet flow spec to apply.
5849  * @param eth_mask
5850  *   An Ethernet flow mask to apply.
5851  * @param vlan_spec
5852  *   A VLAN flow spec to apply.
5853  * @param vlan_mask
5854  *   A VLAN flow mask to apply.
5855  *
5856  * @return
5857  *   0 on success, a negative errno value otherwise and rte_errno is set.
5858  */
5859 int
5860 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5861                     struct rte_flow_item_eth *eth_spec,
5862                     struct rte_flow_item_eth *eth_mask,
5863                     struct rte_flow_item_vlan *vlan_spec,
5864                     struct rte_flow_item_vlan *vlan_mask)
5865 {
5866         struct mlx5_priv *priv = dev->data->dev_private;
5867         const struct rte_flow_attr attr = {
5868                 .ingress = 1,
5869                 .priority = MLX5_FLOW_PRIO_RSVD,
5870         };
5871         struct rte_flow_item items[] = {
5872                 {
5873                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5874                         .spec = eth_spec,
5875                         .last = NULL,
5876                         .mask = eth_mask,
5877                 },
5878                 {
5879                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5880                                               RTE_FLOW_ITEM_TYPE_END,
5881                         .spec = vlan_spec,
5882                         .last = NULL,
5883                         .mask = vlan_mask,
5884                 },
5885                 {
5886                         .type = RTE_FLOW_ITEM_TYPE_END,
5887                 },
5888         };
5889         uint16_t queue[priv->reta_idx_n];
5890         struct rte_flow_action_rss action_rss = {
5891                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5892                 .level = 0,
5893                 .types = priv->rss_conf.rss_hf,
5894                 .key_len = priv->rss_conf.rss_key_len,
5895                 .queue_num = priv->reta_idx_n,
5896                 .key = priv->rss_conf.rss_key,
5897                 .queue = queue,
5898         };
5899         struct rte_flow_action actions[] = {
5900                 {
5901                         .type = RTE_FLOW_ACTION_TYPE_RSS,
5902                         .conf = &action_rss,
5903                 },
5904                 {
5905                         .type = RTE_FLOW_ACTION_TYPE_END,
5906                 },
5907         };
5908         uint32_t flow_idx;
5909         struct rte_flow_error error;
5910         unsigned int i;
5911
5912         if (!priv->reta_idx_n || !priv->rxqs_n) {
5913                 return 0;
5914         }
5915         if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
5916                 action_rss.types = 0;
5917         for (i = 0; i != priv->reta_idx_n; ++i)
5918                 queue[i] = (*priv->reta_idx)[i];
5919         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5920                                 &attr, items, actions, false, &error);
5921         if (!flow_idx)
5922                 return -rte_errno;
5923         return 0;
5924 }
5925
5926 /**
5927  * Enable a flow control configured from the control plane.
5928  *
5929  * @param dev
5930  *   Pointer to Ethernet device.
5931  * @param eth_spec
5932  *   An Ethernet flow spec to apply.
5933  * @param eth_mask
5934  *   An Ethernet flow mask to apply.
5935  *
5936  * @return
5937  *   0 on success, a negative errno value otherwise and rte_errno is set.
5938  */
5939 int
5940 mlx5_ctrl_flow(struct rte_eth_dev *dev,
5941                struct rte_flow_item_eth *eth_spec,
5942                struct rte_flow_item_eth *eth_mask)
5943 {
5944         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
5945 }
5946
5947 /**
5948  * Create default miss flow rule matching lacp traffic
5949  *
5950  * @param dev
5951  *   Pointer to Ethernet device.
5952  * @param eth_spec
5953  *   An Ethernet flow spec to apply.
5954  *
5955  * @return
5956  *   0 on success, a negative errno value otherwise and rte_errno is set.
5957  */
5958 int
5959 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
5960 {
5961         struct mlx5_priv *priv = dev->data->dev_private;
5962         /*
5963          * The LACP matching is done by only using ether type since using
5964          * a multicast dst mac causes kernel to give low priority to this flow.
5965          */
5966         static const struct rte_flow_item_eth lacp_spec = {
5967                 .type = RTE_BE16(0x8809),
5968         };
5969         static const struct rte_flow_item_eth lacp_mask = {
5970                 .type = 0xffff,
5971         };
5972         const struct rte_flow_attr attr = {
5973                 .ingress = 1,
5974         };
5975         struct rte_flow_item items[] = {
5976                 {
5977                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5978                         .spec = &lacp_spec,
5979                         .mask = &lacp_mask,
5980                 },
5981                 {
5982                         .type = RTE_FLOW_ITEM_TYPE_END,
5983                 },
5984         };
5985         struct rte_flow_action actions[] = {
5986                 {
5987                         .type = (enum rte_flow_action_type)
5988                                 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
5989                 },
5990                 {
5991                         .type = RTE_FLOW_ACTION_TYPE_END,
5992                 },
5993         };
5994         struct rte_flow_error error;
5995         uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5996                                 &attr, items, actions, false, &error);
5997
5998         if (!flow_idx)
5999                 return -rte_errno;
6000         return 0;
6001 }
6002
6003 /**
6004  * Destroy a flow.
6005  *
6006  * @see rte_flow_destroy()
6007  * @see rte_flow_ops
6008  */
6009 int
6010 mlx5_flow_destroy(struct rte_eth_dev *dev,
6011                   struct rte_flow *flow,
6012                   struct rte_flow_error *error __rte_unused)
6013 {
6014         struct mlx5_priv *priv = dev->data->dev_private;
6015
6016         flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
6017         return 0;
6018 }
6019
6020 /**
6021  * Destroy all flows.
6022  *
6023  * @see rte_flow_flush()
6024  * @see rte_flow_ops
6025  */
6026 int
6027 mlx5_flow_flush(struct rte_eth_dev *dev,
6028                 struct rte_flow_error *error __rte_unused)
6029 {
6030         struct mlx5_priv *priv = dev->data->dev_private;
6031
6032         mlx5_flow_list_flush(dev, &priv->flows, false);
6033         return 0;
6034 }
6035
6036 /**
6037  * Isolated mode.
6038  *
6039  * @see rte_flow_isolate()
6040  * @see rte_flow_ops
6041  */
6042 int
6043 mlx5_flow_isolate(struct rte_eth_dev *dev,
6044                   int enable,
6045                   struct rte_flow_error *error)
6046 {
6047         struct mlx5_priv *priv = dev->data->dev_private;
6048
6049         if (dev->data->dev_started) {
6050                 rte_flow_error_set(error, EBUSY,
6051                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6052                                    NULL,
6053                                    "port must be stopped first");
6054                 return -rte_errno;
6055         }
6056         priv->isolated = !!enable;
6057         if (enable)
6058                 dev->dev_ops = &mlx5_os_dev_ops_isolate;
6059         else
6060                 dev->dev_ops = &mlx5_os_dev_ops;
6061
6062         dev->rx_descriptor_status = mlx5_rx_descriptor_status;
6063         dev->tx_descriptor_status = mlx5_tx_descriptor_status;
6064
6065         return 0;
6066 }
6067
6068 /**
6069  * Query a flow.
6070  *
6071  * @see rte_flow_query()
6072  * @see rte_flow_ops
6073  */
6074 static int
6075 flow_drv_query(struct rte_eth_dev *dev,
6076                uint32_t flow_idx,
6077                const struct rte_flow_action *actions,
6078                void *data,
6079                struct rte_flow_error *error)
6080 {
6081         struct mlx5_priv *priv = dev->data->dev_private;
6082         const struct mlx5_flow_driver_ops *fops;
6083         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6084                                                [MLX5_IPOOL_RTE_FLOW],
6085                                                flow_idx);
6086         enum mlx5_flow_drv_type ftype;
6087
6088         if (!flow) {
6089                 return rte_flow_error_set(error, ENOENT,
6090                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6091                           NULL,
6092                           "invalid flow handle");
6093         }
6094         ftype = flow->drv_type;
6095         MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
6096         fops = flow_get_drv_ops(ftype);
6097
6098         return fops->query(dev, flow, actions, data, error);
6099 }
6100
6101 /**
6102  * Query a flow.
6103  *
6104  * @see rte_flow_query()
6105  * @see rte_flow_ops
6106  */
6107 int
6108 mlx5_flow_query(struct rte_eth_dev *dev,
6109                 struct rte_flow *flow,
6110                 const struct rte_flow_action *actions,
6111                 void *data,
6112                 struct rte_flow_error *error)
6113 {
6114         int ret;
6115
6116         ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
6117                              error);
6118         if (ret < 0)
6119                 return ret;
6120         return 0;
6121 }
6122
6123 /**
6124  * Convert a flow director filter to a generic flow.
6125  *
6126  * @param dev
6127  *   Pointer to Ethernet device.
6128  * @param fdir_filter
6129  *   Flow director filter to add.
6130  * @param attributes
6131  *   Generic flow parameters structure.
6132  *
6133  * @return
6134  *   0 on success, a negative errno value otherwise and rte_errno is set.
6135  */
6136 static int
6137 flow_fdir_filter_convert(struct rte_eth_dev *dev,
6138                          const struct rte_eth_fdir_filter *fdir_filter,
6139                          struct mlx5_fdir *attributes)
6140 {
6141         struct mlx5_priv *priv = dev->data->dev_private;
6142         const struct rte_eth_fdir_input *input = &fdir_filter->input;
6143         const struct rte_eth_fdir_masks *mask =
6144                 &dev->data->dev_conf.fdir_conf.mask;
6145
6146         /* Validate queue number. */
6147         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
6148                 DRV_LOG(ERR, "port %u invalid queue number %d",
6149                         dev->data->port_id, fdir_filter->action.rx_queue);
6150                 rte_errno = EINVAL;
6151                 return -rte_errno;
6152         }
6153         attributes->attr.ingress = 1;
6154         attributes->items[0] = (struct rte_flow_item) {
6155                 .type = RTE_FLOW_ITEM_TYPE_ETH,
6156                 .spec = &attributes->l2,
6157                 .mask = &attributes->l2_mask,
6158         };
6159         switch (fdir_filter->action.behavior) {
6160         case RTE_ETH_FDIR_ACCEPT:
6161                 attributes->actions[0] = (struct rte_flow_action){
6162                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
6163                         .conf = &attributes->queue,
6164                 };
6165                 break;
6166         case RTE_ETH_FDIR_REJECT:
6167                 attributes->actions[0] = (struct rte_flow_action){
6168                         .type = RTE_FLOW_ACTION_TYPE_DROP,
6169                 };
6170                 break;
6171         default:
6172                 DRV_LOG(ERR, "port %u invalid behavior %d",
6173                         dev->data->port_id,
6174                         fdir_filter->action.behavior);
6175                 rte_errno = ENOTSUP;
6176                 return -rte_errno;
6177         }
6178         attributes->queue.index = fdir_filter->action.rx_queue;
6179         /* Handle L3. */
6180         switch (fdir_filter->input.flow_type) {
6181         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
6182         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
6183         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
6184                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
6185                         .src_addr = input->flow.ip4_flow.src_ip,
6186                         .dst_addr = input->flow.ip4_flow.dst_ip,
6187                         .time_to_live = input->flow.ip4_flow.ttl,
6188                         .type_of_service = input->flow.ip4_flow.tos,
6189                 };
6190                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
6191                         .src_addr = mask->ipv4_mask.src_ip,
6192                         .dst_addr = mask->ipv4_mask.dst_ip,
6193                         .time_to_live = mask->ipv4_mask.ttl,
6194                         .type_of_service = mask->ipv4_mask.tos,
6195                         .next_proto_id = mask->ipv4_mask.proto,
6196                 };
6197                 attributes->items[1] = (struct rte_flow_item){
6198                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
6199                         .spec = &attributes->l3,
6200                         .mask = &attributes->l3_mask,
6201                 };
6202                 break;
6203         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
6204         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
6205         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
6206                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
6207                         .hop_limits = input->flow.ipv6_flow.hop_limits,
6208                         .proto = input->flow.ipv6_flow.proto,
6209                 };
6210
6211                 memcpy(attributes->l3.ipv6.hdr.src_addr,
6212                        input->flow.ipv6_flow.src_ip,
6213                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
6214                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
6215                        input->flow.ipv6_flow.dst_ip,
6216                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
6217                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
6218                        mask->ipv6_mask.src_ip,
6219                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
6220                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
6221                        mask->ipv6_mask.dst_ip,
6222                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
6223                 attributes->items[1] = (struct rte_flow_item){
6224                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
6225                         .spec = &attributes->l3,
6226                         .mask = &attributes->l3_mask,
6227                 };
6228                 break;
6229         default:
6230                 DRV_LOG(ERR, "port %u invalid flow type%d",
6231                         dev->data->port_id, fdir_filter->input.flow_type);
6232                 rte_errno = ENOTSUP;
6233                 return -rte_errno;
6234         }
6235         /* Handle L4. */
6236         switch (fdir_filter->input.flow_type) {
6237         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
6238                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
6239                         .src_port = input->flow.udp4_flow.src_port,
6240                         .dst_port = input->flow.udp4_flow.dst_port,
6241                 };
6242                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
6243                         .src_port = mask->src_port_mask,
6244                         .dst_port = mask->dst_port_mask,
6245                 };
6246                 attributes->items[2] = (struct rte_flow_item){
6247                         .type = RTE_FLOW_ITEM_TYPE_UDP,
6248                         .spec = &attributes->l4,
6249                         .mask = &attributes->l4_mask,
6250                 };
6251                 break;
6252         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
6253                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
6254                         .src_port = input->flow.tcp4_flow.src_port,
6255                         .dst_port = input->flow.tcp4_flow.dst_port,
6256                 };
6257                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
6258                         .src_port = mask->src_port_mask,
6259                         .dst_port = mask->dst_port_mask,
6260                 };
6261                 attributes->items[2] = (struct rte_flow_item){
6262                         .type = RTE_FLOW_ITEM_TYPE_TCP,
6263                         .spec = &attributes->l4,
6264                         .mask = &attributes->l4_mask,
6265                 };
6266                 break;
6267         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
6268                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
6269                         .src_port = input->flow.udp6_flow.src_port,
6270                         .dst_port = input->flow.udp6_flow.dst_port,
6271                 };
6272                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
6273                         .src_port = mask->src_port_mask,
6274                         .dst_port = mask->dst_port_mask,
6275                 };
6276                 attributes->items[2] = (struct rte_flow_item){
6277                         .type = RTE_FLOW_ITEM_TYPE_UDP,
6278                         .spec = &attributes->l4,
6279                         .mask = &attributes->l4_mask,
6280                 };
6281                 break;
6282         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
6283                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
6284                         .src_port = input->flow.tcp6_flow.src_port,
6285                         .dst_port = input->flow.tcp6_flow.dst_port,
6286                 };
6287                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
6288                         .src_port = mask->src_port_mask,
6289                         .dst_port = mask->dst_port_mask,
6290                 };
6291                 attributes->items[2] = (struct rte_flow_item){
6292                         .type = RTE_FLOW_ITEM_TYPE_TCP,
6293                         .spec = &attributes->l4,
6294                         .mask = &attributes->l4_mask,
6295                 };
6296                 break;
6297         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
6298         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
6299                 break;
6300         default:
6301                 DRV_LOG(ERR, "port %u invalid flow type%d",
6302                         dev->data->port_id, fdir_filter->input.flow_type);
6303                 rte_errno = ENOTSUP;
6304                 return -rte_errno;
6305         }
6306         return 0;
6307 }
6308
6309 #define FLOW_FDIR_CMP(f1, f2, fld) \
6310         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
6311
6312 /**
6313  * Compare two FDIR flows. If items and actions are identical, the two flows are
6314  * regarded as same.
6315  *
6316  * @param dev
6317  *   Pointer to Ethernet device.
6318  * @param f1
6319  *   FDIR flow to compare.
6320  * @param f2
6321  *   FDIR flow to compare.
6322  *
6323  * @return
6324  *   Zero on match, 1 otherwise.
6325  */
6326 static int
6327 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
6328 {
6329         if (FLOW_FDIR_CMP(f1, f2, attr) ||
6330             FLOW_FDIR_CMP(f1, f2, l2) ||
6331             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
6332             FLOW_FDIR_CMP(f1, f2, l3) ||
6333             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
6334             FLOW_FDIR_CMP(f1, f2, l4) ||
6335             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
6336             FLOW_FDIR_CMP(f1, f2, actions[0].type))
6337                 return 1;
6338         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
6339             FLOW_FDIR_CMP(f1, f2, queue))
6340                 return 1;
6341         return 0;
6342 }
6343
6344 /**
6345  * Search device flow list to find out a matched FDIR flow.
6346  *
6347  * @param dev
6348  *   Pointer to Ethernet device.
6349  * @param fdir_flow
6350  *   FDIR flow to lookup.
6351  *
6352  * @return
6353  *   Index of flow if found, 0 otherwise.
6354  */
6355 static uint32_t
6356 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
6357 {
6358         struct mlx5_priv *priv = dev->data->dev_private;
6359         uint32_t flow_idx = 0;
6360         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6361
6362         MLX5_ASSERT(fdir_flow);
6363         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
6364                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, fdir_flow)) {
6365                         DRV_LOG(DEBUG, "port %u found FDIR flow %u",
6366                                 dev->data->port_id, flow_idx);
6367                         flow_idx = priv_fdir_flow->rix_flow;
6368                         break;
6369                 }
6370         }
6371         return flow_idx;
6372 }
6373
6374 /**
6375  * Add new flow director filter and store it in list.
6376  *
6377  * @param dev
6378  *   Pointer to Ethernet device.
6379  * @param fdir_filter
6380  *   Flow director filter to add.
6381  *
6382  * @return
6383  *   0 on success, a negative errno value otherwise and rte_errno is set.
6384  */
6385 static int
6386 flow_fdir_filter_add(struct rte_eth_dev *dev,
6387                      const struct rte_eth_fdir_filter *fdir_filter)
6388 {
6389         struct mlx5_priv *priv = dev->data->dev_private;
6390         struct mlx5_fdir *fdir_flow;
6391         struct rte_flow *flow;
6392         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6393         uint32_t flow_idx;
6394         int ret;
6395
6396         fdir_flow = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*fdir_flow), 0,
6397                                 SOCKET_ID_ANY);
6398         if (!fdir_flow) {
6399                 rte_errno = ENOMEM;
6400                 return -rte_errno;
6401         }
6402         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
6403         if (ret)
6404                 goto error;
6405         flow_idx = flow_fdir_filter_lookup(dev, fdir_flow);
6406         if (flow_idx) {
6407                 rte_errno = EEXIST;
6408                 goto error;
6409         }
6410         priv_fdir_flow = mlx5_malloc(MLX5_MEM_ZERO,
6411                                      sizeof(struct mlx5_fdir_flow),
6412                                      0, SOCKET_ID_ANY);
6413         if (!priv_fdir_flow) {
6414                 rte_errno = ENOMEM;
6415                 goto error;
6416         }
6417         flow_idx = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
6418                                     fdir_flow->items, fdir_flow->actions, true,
6419                                     NULL);
6420         flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
6421         if (!flow)
6422                 goto error;
6423         flow->fdir = 1;
6424         priv_fdir_flow->fdir = fdir_flow;
6425         priv_fdir_flow->rix_flow = flow_idx;
6426         LIST_INSERT_HEAD(&priv->fdir_flows, priv_fdir_flow, next);
6427         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
6428                 dev->data->port_id, (void *)flow);
6429         return 0;
6430 error:
6431         mlx5_free(priv_fdir_flow);
6432         mlx5_free(fdir_flow);
6433         return -rte_errno;
6434 }
6435
6436 /**
6437  * Delete specific filter.
6438  *
6439  * @param dev
6440  *   Pointer to Ethernet device.
6441  * @param fdir_filter
6442  *   Filter to be deleted.
6443  *
6444  * @return
6445  *   0 on success, a negative errno value otherwise and rte_errno is set.
6446  */
6447 static int
6448 flow_fdir_filter_delete(struct rte_eth_dev *dev,
6449                         const struct rte_eth_fdir_filter *fdir_filter)
6450 {
6451         struct mlx5_priv *priv = dev->data->dev_private;
6452         uint32_t flow_idx;
6453         struct mlx5_fdir fdir_flow = {
6454                 .attr.group = 0,
6455         };
6456         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6457         int ret;
6458
6459         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
6460         if (ret)
6461                 return -rte_errno;
6462         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
6463                 /* Find the fdir in priv list */
6464                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, &fdir_flow))
6465                         break;
6466         }
6467         if (!priv_fdir_flow)
6468                 return 0;
6469         LIST_REMOVE(priv_fdir_flow, next);
6470         flow_idx = priv_fdir_flow->rix_flow;
6471         flow_list_destroy(dev, &priv->flows, flow_idx);
6472         mlx5_free(priv_fdir_flow->fdir);
6473         mlx5_free(priv_fdir_flow);
6474         DRV_LOG(DEBUG, "port %u deleted FDIR flow %u",
6475                 dev->data->port_id, flow_idx);
6476         return 0;
6477 }
6478
6479 /**
6480  * Update queue for specific filter.
6481  *
6482  * @param dev
6483  *   Pointer to Ethernet device.
6484  * @param fdir_filter
6485  *   Filter to be updated.
6486  *
6487  * @return
6488  *   0 on success, a negative errno value otherwise and rte_errno is set.
6489  */
6490 static int
6491 flow_fdir_filter_update(struct rte_eth_dev *dev,
6492                         const struct rte_eth_fdir_filter *fdir_filter)
6493 {
6494         int ret;
6495
6496         ret = flow_fdir_filter_delete(dev, fdir_filter);
6497         if (ret)
6498                 return ret;
6499         return flow_fdir_filter_add(dev, fdir_filter);
6500 }
6501
6502 /**
6503  * Flush all filters.
6504  *
6505  * @param dev
6506  *   Pointer to Ethernet device.
6507  */
6508 static void
6509 flow_fdir_filter_flush(struct rte_eth_dev *dev)
6510 {
6511         struct mlx5_priv *priv = dev->data->dev_private;
6512         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6513
6514         while (!LIST_EMPTY(&priv->fdir_flows)) {
6515                 priv_fdir_flow = LIST_FIRST(&priv->fdir_flows);
6516                 LIST_REMOVE(priv_fdir_flow, next);
6517                 flow_list_destroy(dev, &priv->flows, priv_fdir_flow->rix_flow);
6518                 mlx5_free(priv_fdir_flow->fdir);
6519                 mlx5_free(priv_fdir_flow);
6520         }
6521 }
6522
6523 /**
6524  * Get flow director information.
6525  *
6526  * @param dev
6527  *   Pointer to Ethernet device.
6528  * @param[out] fdir_info
6529  *   Resulting flow director information.
6530  */
6531 static void
6532 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
6533 {
6534         struct rte_eth_fdir_masks *mask =
6535                 &dev->data->dev_conf.fdir_conf.mask;
6536
6537         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
6538         fdir_info->guarant_spc = 0;
6539         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
6540         fdir_info->max_flexpayload = 0;
6541         fdir_info->flow_types_mask[0] = 0;
6542         fdir_info->flex_payload_unit = 0;
6543         fdir_info->max_flex_payload_segment_num = 0;
6544         fdir_info->flex_payload_limit = 0;
6545         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
6546 }
6547
6548 /**
6549  * Deal with flow director operations.
6550  *
6551  * @param dev
6552  *   Pointer to Ethernet device.
6553  * @param filter_op
6554  *   Operation to perform.
6555  * @param arg
6556  *   Pointer to operation-specific structure.
6557  *
6558  * @return
6559  *   0 on success, a negative errno value otherwise and rte_errno is set.
6560  */
6561 static int
6562 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
6563                     void *arg)
6564 {
6565         enum rte_fdir_mode fdir_mode =
6566                 dev->data->dev_conf.fdir_conf.mode;
6567
6568         if (filter_op == RTE_ETH_FILTER_NOP)
6569                 return 0;
6570         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
6571             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
6572                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
6573                         dev->data->port_id, fdir_mode);
6574                 rte_errno = EINVAL;
6575                 return -rte_errno;
6576         }
6577         switch (filter_op) {
6578         case RTE_ETH_FILTER_ADD:
6579                 return flow_fdir_filter_add(dev, arg);
6580         case RTE_ETH_FILTER_UPDATE:
6581                 return flow_fdir_filter_update(dev, arg);
6582         case RTE_ETH_FILTER_DELETE:
6583                 return flow_fdir_filter_delete(dev, arg);
6584         case RTE_ETH_FILTER_FLUSH:
6585                 flow_fdir_filter_flush(dev);
6586                 break;
6587         case RTE_ETH_FILTER_INFO:
6588                 flow_fdir_info_get(dev, arg);
6589                 break;
6590         default:
6591                 DRV_LOG(DEBUG, "port %u unknown operation %u",
6592                         dev->data->port_id, filter_op);
6593                 rte_errno = EINVAL;
6594                 return -rte_errno;
6595         }
6596         return 0;
6597 }
6598
6599 /**
6600  * Manage filter operations.
6601  *
6602  * @param dev
6603  *   Pointer to Ethernet device structure.
6604  * @param filter_type
6605  *   Filter type.
6606  * @param filter_op
6607  *   Operation to perform.
6608  * @param arg
6609  *   Pointer to operation-specific structure.
6610  *
6611  * @return
6612  *   0 on success, a negative errno value otherwise and rte_errno is set.
6613  */
6614 int
6615 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6616                      enum rte_filter_type filter_type,
6617                      enum rte_filter_op filter_op,
6618                      void *arg)
6619 {
6620         switch (filter_type) {
6621         case RTE_ETH_FILTER_GENERIC:
6622                 if (filter_op != RTE_ETH_FILTER_GET) {
6623                         rte_errno = EINVAL;
6624                         return -rte_errno;
6625                 }
6626                 *(const void **)arg = &mlx5_flow_ops;
6627                 return 0;
6628         case RTE_ETH_FILTER_FDIR:
6629                 return flow_fdir_ctrl_func(dev, filter_op, arg);
6630         default:
6631                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
6632                         dev->data->port_id, filter_type);
6633                 rte_errno = ENOTSUP;
6634                 return -rte_errno;
6635         }
6636         return 0;
6637 }
6638
6639 /**
6640  * Create the needed meter and suffix tables.
6641  *
6642  * @param[in] dev
6643  *   Pointer to Ethernet device.
6644  * @param[in] fm
6645  *   Pointer to the flow meter.
6646  *
6647  * @return
6648  *   Pointer to table set on success, NULL otherwise.
6649  */
6650 struct mlx5_meter_domains_infos *
6651 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6652                           const struct mlx5_flow_meter *fm)
6653 {
6654         const struct mlx5_flow_driver_ops *fops;
6655
6656         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6657         return fops->create_mtr_tbls(dev, fm);
6658 }
6659
6660 /**
6661  * Destroy the meter table set.
6662  *
6663  * @param[in] dev
6664  *   Pointer to Ethernet device.
6665  * @param[in] tbl
6666  *   Pointer to the meter table set.
6667  *
6668  * @return
6669  *   0 on success.
6670  */
6671 int
6672 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6673                            struct mlx5_meter_domains_infos *tbls)
6674 {
6675         const struct mlx5_flow_driver_ops *fops;
6676
6677         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6678         return fops->destroy_mtr_tbls(dev, tbls);
6679 }
6680
6681 /**
6682  * Create policer rules.
6683  *
6684  * @param[in] dev
6685  *   Pointer to Ethernet device.
6686  * @param[in] fm
6687  *   Pointer to flow meter structure.
6688  * @param[in] attr
6689  *   Pointer to flow attributes.
6690  *
6691  * @return
6692  *   0 on success, -1 otherwise.
6693  */
6694 int
6695 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6696                                struct mlx5_flow_meter *fm,
6697                                const struct rte_flow_attr *attr)
6698 {
6699         const struct mlx5_flow_driver_ops *fops;
6700
6701         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6702         return fops->create_policer_rules(dev, fm, attr);
6703 }
6704
6705 /**
6706  * Destroy policer rules.
6707  *
6708  * @param[in] fm
6709  *   Pointer to flow meter structure.
6710  * @param[in] attr
6711  *   Pointer to flow attributes.
6712  *
6713  * @return
6714  *   0 on success, -1 otherwise.
6715  */
6716 int
6717 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6718                                 struct mlx5_flow_meter *fm,
6719                                 const struct rte_flow_attr *attr)
6720 {
6721         const struct mlx5_flow_driver_ops *fops;
6722
6723         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6724         return fops->destroy_policer_rules(dev, fm, attr);
6725 }
6726
6727 /**
6728  * Allocate a counter.
6729  *
6730  * @param[in] dev
6731  *   Pointer to Ethernet device structure.
6732  *
6733  * @return
6734  *   Index to allocated counter  on success, 0 otherwise.
6735  */
6736 uint32_t
6737 mlx5_counter_alloc(struct rte_eth_dev *dev)
6738 {
6739         const struct mlx5_flow_driver_ops *fops;
6740         struct rte_flow_attr attr = { .transfer = 0 };
6741
6742         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6743                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6744                 return fops->counter_alloc(dev);
6745         }
6746         DRV_LOG(ERR,
6747                 "port %u counter allocate is not supported.",
6748                  dev->data->port_id);
6749         return 0;
6750 }
6751
6752 /**
6753  * Free a counter.
6754  *
6755  * @param[in] dev
6756  *   Pointer to Ethernet device structure.
6757  * @param[in] cnt
6758  *   Index to counter to be free.
6759  */
6760 void
6761 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6762 {
6763         const struct mlx5_flow_driver_ops *fops;
6764         struct rte_flow_attr attr = { .transfer = 0 };
6765
6766         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6767                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6768                 fops->counter_free(dev, cnt);
6769                 return;
6770         }
6771         DRV_LOG(ERR,
6772                 "port %u counter free is not supported.",
6773                  dev->data->port_id);
6774 }
6775
6776 /**
6777  * Query counter statistics.
6778  *
6779  * @param[in] dev
6780  *   Pointer to Ethernet device structure.
6781  * @param[in] cnt
6782  *   Index to counter to query.
6783  * @param[in] clear
6784  *   Set to clear counter statistics.
6785  * @param[out] pkts
6786  *   The counter hits packets number to save.
6787  * @param[out] bytes
6788  *   The counter hits bytes number to save.
6789  *
6790  * @return
6791  *   0 on success, a negative errno value otherwise.
6792  */
6793 int
6794 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6795                    bool clear, uint64_t *pkts, uint64_t *bytes)
6796 {
6797         const struct mlx5_flow_driver_ops *fops;
6798         struct rte_flow_attr attr = { .transfer = 0 };
6799
6800         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6801                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6802                 return fops->counter_query(dev, cnt, clear, pkts, bytes);
6803         }
6804         DRV_LOG(ERR,
6805                 "port %u counter query is not supported.",
6806                  dev->data->port_id);
6807         return -ENOTSUP;
6808 }
6809
6810 /**
6811  * Allocate a new memory for the counter values wrapped by all the needed
6812  * management.
6813  *
6814  * @param[in] sh
6815  *   Pointer to mlx5_dev_ctx_shared object.
6816  *
6817  * @return
6818  *   0 on success, a negative errno value otherwise.
6819  */
6820 static int
6821 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
6822 {
6823         struct mlx5_devx_mkey_attr mkey_attr;
6824         struct mlx5_counter_stats_mem_mng *mem_mng;
6825         volatile struct flow_counter_stats *raw_data;
6826         int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
6827         int size = (sizeof(struct flow_counter_stats) *
6828                         MLX5_COUNTERS_PER_POOL +
6829                         sizeof(struct mlx5_counter_stats_raw)) * raws_n +
6830                         sizeof(struct mlx5_counter_stats_mem_mng);
6831         size_t pgsize = rte_mem_page_size();
6832         uint8_t *mem;
6833         int i;
6834
6835         if (pgsize == (size_t)-1) {
6836                 DRV_LOG(ERR, "Failed to get mem page size");
6837                 rte_errno = ENOMEM;
6838                 return -ENOMEM;
6839         }
6840         mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
6841         if (!mem) {
6842                 rte_errno = ENOMEM;
6843                 return -ENOMEM;
6844         }
6845         mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
6846         size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
6847         mem_mng->umem = mlx5_glue->devx_umem_reg(sh->ctx, mem, size,
6848                                                  IBV_ACCESS_LOCAL_WRITE);
6849         if (!mem_mng->umem) {
6850                 rte_errno = errno;
6851                 mlx5_free(mem);
6852                 return -rte_errno;
6853         }
6854         mkey_attr.addr = (uintptr_t)mem;
6855         mkey_attr.size = size;
6856         mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
6857         mkey_attr.pd = sh->pdn;
6858         mkey_attr.log_entity_size = 0;
6859         mkey_attr.pg_access = 0;
6860         mkey_attr.klm_array = NULL;
6861         mkey_attr.klm_num = 0;
6862         mkey_attr.relaxed_ordering = sh->cmng.relaxed_ordering;
6863         mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
6864         if (!mem_mng->dm) {
6865                 mlx5_glue->devx_umem_dereg(mem_mng->umem);
6866                 rte_errno = errno;
6867                 mlx5_free(mem);
6868                 return -rte_errno;
6869         }
6870         mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
6871         raw_data = (volatile struct flow_counter_stats *)mem;
6872         for (i = 0; i < raws_n; ++i) {
6873                 mem_mng->raws[i].mem_mng = mem_mng;
6874                 mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
6875         }
6876         for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
6877                 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
6878                                  mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
6879                                  next);
6880         LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
6881         sh->cmng.mem_mng = mem_mng;
6882         return 0;
6883 }
6884
6885 /**
6886  * Set the statistic memory to the new counter pool.
6887  *
6888  * @param[in] sh
6889  *   Pointer to mlx5_dev_ctx_shared object.
6890  * @param[in] pool
6891  *   Pointer to the pool to set the statistic memory.
6892  *
6893  * @return
6894  *   0 on success, a negative errno value otherwise.
6895  */
6896 static int
6897 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
6898                                struct mlx5_flow_counter_pool *pool)
6899 {
6900         struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6901         /* Resize statistic memory once used out. */
6902         if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
6903             mlx5_flow_create_counter_stat_mem_mng(sh)) {
6904                 DRV_LOG(ERR, "Cannot resize counter stat mem.");
6905                 return -1;
6906         }
6907         rte_spinlock_lock(&pool->sl);
6908         pool->raw = cmng->mem_mng->raws + pool->index %
6909                     MLX5_CNT_CONTAINER_RESIZE;
6910         rte_spinlock_unlock(&pool->sl);
6911         pool->raw_hw = NULL;
6912         return 0;
6913 }
6914
6915 #define MLX5_POOL_QUERY_FREQ_US 1000000
6916
6917 /**
6918  * Set the periodic procedure for triggering asynchronous batch queries for all
6919  * the counter pools.
6920  *
6921  * @param[in] sh
6922  *   Pointer to mlx5_dev_ctx_shared object.
6923  */
6924 void
6925 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6926 {
6927         uint32_t pools_n, us;
6928
6929         pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
6930         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6931         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6932         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6933                 sh->cmng.query_thread_on = 0;
6934                 DRV_LOG(ERR, "Cannot reinitialize query alarm");
6935         } else {
6936                 sh->cmng.query_thread_on = 1;
6937         }
6938 }
6939
6940 /**
6941  * The periodic procedure for triggering asynchronous batch queries for all the
6942  * counter pools. This function is probably called by the host thread.
6943  *
6944  * @param[in] arg
6945  *   The parameter for the alarm process.
6946  */
6947 void
6948 mlx5_flow_query_alarm(void *arg)
6949 {
6950         struct mlx5_dev_ctx_shared *sh = arg;
6951         int ret;
6952         uint16_t pool_index = sh->cmng.pool_index;
6953         struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6954         struct mlx5_flow_counter_pool *pool;
6955         uint16_t n_valid;
6956
6957         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6958                 goto set_alarm;
6959         rte_spinlock_lock(&cmng->pool_update_sl);
6960         pool = cmng->pools[pool_index];
6961         n_valid = cmng->n_valid;
6962         rte_spinlock_unlock(&cmng->pool_update_sl);
6963         /* Set the statistic memory to the new created pool. */
6964         if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
6965                 goto set_alarm;
6966         if (pool->raw_hw)
6967                 /* There is a pool query in progress. */
6968                 goto set_alarm;
6969         pool->raw_hw =
6970                 LIST_FIRST(&sh->cmng.free_stat_raws);
6971         if (!pool->raw_hw)
6972                 /* No free counter statistics raw memory. */
6973                 goto set_alarm;
6974         /*
6975          * Identify the counters released between query trigger and query
6976          * handle more efficiently. The counter released in this gap period
6977          * should wait for a new round of query as the new arrived packets
6978          * will not be taken into account.
6979          */
6980         pool->query_gen++;
6981         ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
6982                                                MLX5_COUNTERS_PER_POOL,
6983                                                NULL, NULL,
6984                                                pool->raw_hw->mem_mng->dm->id,
6985                                                (void *)(uintptr_t)
6986                                                pool->raw_hw->data,
6987                                                sh->devx_comp,
6988                                                (uint64_t)(uintptr_t)pool);
6989         if (ret) {
6990                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6991                         " %d", pool->min_dcs->id);
6992                 pool->raw_hw = NULL;
6993                 goto set_alarm;
6994         }
6995         LIST_REMOVE(pool->raw_hw, next);
6996         sh->cmng.pending_queries++;
6997         pool_index++;
6998         if (pool_index >= n_valid)
6999                 pool_index = 0;
7000 set_alarm:
7001         sh->cmng.pool_index = pool_index;
7002         mlx5_set_query_alarm(sh);
7003 }
7004
7005 /**
7006  * Check and callback event for new aged flow in the counter pool
7007  *
7008  * @param[in] sh
7009  *   Pointer to mlx5_dev_ctx_shared object.
7010  * @param[in] pool
7011  *   Pointer to Current counter pool.
7012  */
7013 static void
7014 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
7015                    struct mlx5_flow_counter_pool *pool)
7016 {
7017         struct mlx5_priv *priv;
7018         struct mlx5_flow_counter *cnt;
7019         struct mlx5_age_info *age_info;
7020         struct mlx5_age_param *age_param;
7021         struct mlx5_counter_stats_raw *cur = pool->raw_hw;
7022         struct mlx5_counter_stats_raw *prev = pool->raw;
7023         const uint64_t curr_time = MLX5_CURR_TIME_SEC;
7024         const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
7025         uint16_t expected = AGE_CANDIDATE;
7026         uint32_t i;
7027
7028         pool->time_of_last_age_check = curr_time;
7029         for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
7030                 cnt = MLX5_POOL_GET_CNT(pool, i);
7031                 age_param = MLX5_CNT_TO_AGE(cnt);
7032                 if (__atomic_load_n(&age_param->state,
7033                                     __ATOMIC_RELAXED) != AGE_CANDIDATE)
7034                         continue;
7035                 if (cur->data[i].hits != prev->data[i].hits) {
7036                         __atomic_store_n(&age_param->sec_since_last_hit, 0,
7037                                          __ATOMIC_RELAXED);
7038                         continue;
7039                 }
7040                 if (__atomic_add_fetch(&age_param->sec_since_last_hit,
7041                                        time_delta,
7042                                        __ATOMIC_RELAXED) <= age_param->timeout)
7043                         continue;
7044                 /**
7045                  * Hold the lock first, or if between the
7046                  * state AGE_TMOUT and tailq operation the
7047                  * release happened, the release procedure
7048                  * may delete a non-existent tailq node.
7049                  */
7050                 priv = rte_eth_devices[age_param->port_id].data->dev_private;
7051                 age_info = GET_PORT_AGE_INFO(priv);
7052                 rte_spinlock_lock(&age_info->aged_sl);
7053                 if (__atomic_compare_exchange_n(&age_param->state, &expected,
7054                                                 AGE_TMOUT, false,
7055                                                 __ATOMIC_RELAXED,
7056                                                 __ATOMIC_RELAXED)) {
7057                         TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
7058                         MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
7059                 }
7060                 rte_spinlock_unlock(&age_info->aged_sl);
7061         }
7062         for (i = 0; i < sh->max_port; i++) {
7063                 age_info = &sh->port[i].age_info;
7064                 if (!MLX5_AGE_GET(age_info, MLX5_AGE_EVENT_NEW))
7065                         continue;
7066                 if (MLX5_AGE_GET(age_info, MLX5_AGE_TRIGGER))
7067                         rte_eth_dev_callback_process
7068                                 (&rte_eth_devices[sh->port[i].devx_ih_port_id],
7069                                 RTE_ETH_EVENT_FLOW_AGED, NULL);
7070                 age_info->flags = 0;
7071         }
7072 }
7073
7074 /**
7075  * Handler for the HW respond about ready values from an asynchronous batch
7076  * query. This function is probably called by the host thread.
7077  *
7078  * @param[in] sh
7079  *   The pointer to the shared device context.
7080  * @param[in] async_id
7081  *   The Devx async ID.
7082  * @param[in] status
7083  *   The status of the completion.
7084  */
7085 void
7086 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
7087                                   uint64_t async_id, int status)
7088 {
7089         struct mlx5_flow_counter_pool *pool =
7090                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
7091         struct mlx5_counter_stats_raw *raw_to_free;
7092         uint8_t query_gen = pool->query_gen ^ 1;
7093         struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7094         enum mlx5_counter_type cnt_type =
7095                 pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
7096                                 MLX5_COUNTER_TYPE_ORIGIN;
7097
7098         if (unlikely(status)) {
7099                 raw_to_free = pool->raw_hw;
7100         } else {
7101                 raw_to_free = pool->raw;
7102                 if (pool->is_aged)
7103                         mlx5_flow_aging_check(sh, pool);
7104                 rte_spinlock_lock(&pool->sl);
7105                 pool->raw = pool->raw_hw;
7106                 rte_spinlock_unlock(&pool->sl);
7107                 /* Be sure the new raw counters data is updated in memory. */
7108                 rte_io_wmb();
7109                 if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
7110                         rte_spinlock_lock(&cmng->csl[cnt_type]);
7111                         TAILQ_CONCAT(&cmng->counters[cnt_type],
7112                                      &pool->counters[query_gen], next);
7113                         rte_spinlock_unlock(&cmng->csl[cnt_type]);
7114                 }
7115         }
7116         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
7117         pool->raw_hw = NULL;
7118         sh->cmng.pending_queries--;
7119 }
7120
7121 /**
7122  * Translate the rte_flow group index to HW table value.
7123  *
7124  * @param[in] attributes
7125  *   Pointer to flow attributes
7126  * @param[in] external
7127  *   Value is part of flow rule created by request external to PMD.
7128  * @param[in] group
7129  *   rte_flow group index value.
7130  * @param[out] fdb_def_rule
7131  *   Whether fdb jump to table 1 is configured.
7132  * @param[out] table
7133  *   HW table value.
7134  * @param[out] error
7135  *   Pointer to error structure.
7136  *
7137  * @return
7138  *   0 on success, a negative errno value otherwise and rte_errno is set.
7139  */
7140 int
7141 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
7142                          uint32_t group, bool fdb_def_rule, uint32_t *table,
7143                          struct rte_flow_error *error)
7144 {
7145         if (attributes->transfer && external && fdb_def_rule) {
7146                 if (group == UINT32_MAX)
7147                         return rte_flow_error_set
7148                                                 (error, EINVAL,
7149                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7150                                                  NULL,
7151                                                  "group index not supported");
7152                 *table = group + 1;
7153         } else {
7154                 *table = group;
7155         }
7156         return 0;
7157 }
7158
7159 /**
7160  * Discover availability of metadata reg_c's.
7161  *
7162  * Iteratively use test flows to check availability.
7163  *
7164  * @param[in] dev
7165  *   Pointer to the Ethernet device structure.
7166  *
7167  * @return
7168  *   0 on success, a negative errno value otherwise and rte_errno is set.
7169  */
7170 int
7171 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
7172 {
7173         struct mlx5_priv *priv = dev->data->dev_private;
7174         struct mlx5_dev_config *config = &priv->config;
7175         enum modify_reg idx;
7176         int n = 0;
7177
7178         /* reg_c[0] and reg_c[1] are reserved. */
7179         config->flow_mreg_c[n++] = REG_C_0;
7180         config->flow_mreg_c[n++] = REG_C_1;
7181         /* Discover availability of other reg_c's. */
7182         for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
7183                 struct rte_flow_attr attr = {
7184                         .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
7185                         .priority = MLX5_FLOW_PRIO_RSVD,
7186                         .ingress = 1,
7187                 };
7188                 struct rte_flow_item items[] = {
7189                         [0] = {
7190                                 .type = RTE_FLOW_ITEM_TYPE_END,
7191                         },
7192                 };
7193                 struct rte_flow_action actions[] = {
7194                         [0] = {
7195                                 .type = (enum rte_flow_action_type)
7196                                         MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
7197                                 .conf = &(struct mlx5_flow_action_copy_mreg){
7198                                         .src = REG_C_1,
7199                                         .dst = idx,
7200                                 },
7201                         },
7202                         [1] = {
7203                                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
7204                                 .conf = &(struct rte_flow_action_jump){
7205                                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
7206                                 },
7207                         },
7208                         [2] = {
7209                                 .type = RTE_FLOW_ACTION_TYPE_END,
7210                         },
7211                 };
7212                 uint32_t flow_idx;
7213                 struct rte_flow *flow;
7214                 struct rte_flow_error error;
7215
7216                 if (!config->dv_flow_en)
7217                         break;
7218                 /* Create internal flow, validation skips copy action. */
7219                 flow_idx = flow_list_create(dev, NULL, &attr, items,
7220                                             actions, false, &error);
7221                 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
7222                                       flow_idx);
7223                 if (!flow)
7224                         continue;
7225                 if (dev->data->dev_started || !flow_drv_apply(dev, flow, NULL))
7226                         config->flow_mreg_c[n++] = idx;
7227                 flow_list_destroy(dev, NULL, flow_idx);
7228         }
7229         for (; n < MLX5_MREG_C_NUM; ++n)
7230                 config->flow_mreg_c[n] = REG_NON;
7231         return 0;
7232 }
7233
7234 /**
7235  * Dump flow raw hw data to file
7236  *
7237  * @param[in] dev
7238  *    The pointer to Ethernet device.
7239  * @param[in] file
7240  *   A pointer to a file for output.
7241  * @param[out] error
7242  *   Perform verbose error reporting if not NULL. PMDs initialize this
7243  *   structure in case of error only.
7244  * @return
7245  *   0 on success, a nagative value otherwise.
7246  */
7247 int
7248 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
7249                    FILE *file,
7250                    struct rte_flow_error *error __rte_unused)
7251 {
7252         struct mlx5_priv *priv = dev->data->dev_private;
7253         struct mlx5_dev_ctx_shared *sh = priv->sh;
7254
7255         if (!priv->config.dv_flow_en) {
7256                 if (fputs("device dv flow disabled\n", file) <= 0)
7257                         return -errno;
7258                 return -ENOTSUP;
7259         }
7260         return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
7261                                        sh->tx_domain, file);
7262 }
7263
7264 /**
7265  * Get aged-out flows.
7266  *
7267  * @param[in] dev
7268  *   Pointer to the Ethernet device structure.
7269  * @param[in] context
7270  *   The address of an array of pointers to the aged-out flows contexts.
7271  * @param[in] nb_countexts
7272  *   The length of context array pointers.
7273  * @param[out] error
7274  *   Perform verbose error reporting if not NULL. Initialized in case of
7275  *   error only.
7276  *
7277  * @return
7278  *   how many contexts get in success, otherwise negative errno value.
7279  *   if nb_contexts is 0, return the amount of all aged contexts.
7280  *   if nb_contexts is not 0 , return the amount of aged flows reported
7281  *   in the context array.
7282  */
7283 int
7284 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
7285                         uint32_t nb_contexts, struct rte_flow_error *error)
7286 {
7287         const struct mlx5_flow_driver_ops *fops;
7288         struct rte_flow_attr attr = { .transfer = 0 };
7289
7290         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7291                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7292                 return fops->get_aged_flows(dev, contexts, nb_contexts,
7293                                                     error);
7294         }
7295         DRV_LOG(ERR,
7296                 "port %u get aged flows is not supported.",
7297                  dev->data->port_id);
7298         return -ENOTSUP;
7299 }
7300
7301 /* Wrapper for driver action_validate op callback */
7302 static int
7303 flow_drv_action_validate(struct rte_eth_dev *dev,
7304                          const struct rte_flow_shared_action_conf *conf,
7305                          const struct rte_flow_action *action,
7306                          const struct mlx5_flow_driver_ops *fops,
7307                          struct rte_flow_error *error)
7308 {
7309         static const char err_msg[] = "shared action validation unsupported";
7310
7311         if (!fops->action_validate) {
7312                 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7313                 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7314                                    NULL, err_msg);
7315                 return -rte_errno;
7316         }
7317         return fops->action_validate(dev, conf, action, error);
7318 }
7319
7320 /**
7321  * Destroys the shared action by handle.
7322  *
7323  * @param dev
7324  *   Pointer to Ethernet device structure.
7325  * @param[in] action
7326  *   Handle for the shared action to be destroyed.
7327  * @param[out] error
7328  *   Perform verbose error reporting if not NULL. PMDs initialize this
7329  *   structure in case of error only.
7330  *
7331  * @return
7332  *   0 on success, a negative errno value otherwise and rte_errno is set.
7333  *
7334  * @note: wrapper for driver action_create op callback.
7335  */
7336 static int
7337 mlx5_shared_action_destroy(struct rte_eth_dev *dev,
7338                            struct rte_flow_shared_action *action,
7339                            struct rte_flow_error *error)
7340 {
7341         static const char err_msg[] = "shared action destruction unsupported";
7342         struct rte_flow_attr attr = { .transfer = 0 };
7343         const struct mlx5_flow_driver_ops *fops =
7344                         flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7345
7346         if (!fops->action_destroy) {
7347                 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7348                 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7349                                    NULL, err_msg);
7350                 return -rte_errno;
7351         }
7352         return fops->action_destroy(dev, action, error);
7353 }
7354
7355 /* Wrapper for driver action_destroy op callback */
7356 static int
7357 flow_drv_action_update(struct rte_eth_dev *dev,
7358                        struct rte_flow_shared_action *action,
7359                        const void *action_conf,
7360                        const struct mlx5_flow_driver_ops *fops,
7361                        struct rte_flow_error *error)
7362 {
7363         static const char err_msg[] = "shared action update unsupported";
7364
7365         if (!fops->action_update) {
7366                 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7367                 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7368                                    NULL, err_msg);
7369                 return -rte_errno;
7370         }
7371         return fops->action_update(dev, action, action_conf, error);
7372 }
7373
7374 /**
7375  * Create shared action for reuse in multiple flow rules.
7376  *
7377  * @param dev
7378  *   Pointer to Ethernet device structure.
7379  * @param[in] action
7380  *   Action configuration for shared action creation.
7381  * @param[out] error
7382  *   Perform verbose error reporting if not NULL. PMDs initialize this
7383  *   structure in case of error only.
7384  * @return
7385  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
7386  */
7387 static struct rte_flow_shared_action *
7388 mlx5_shared_action_create(struct rte_eth_dev *dev,
7389                           const struct rte_flow_shared_action_conf *conf,
7390                           const struct rte_flow_action *action,
7391                           struct rte_flow_error *error)
7392 {
7393         static const char err_msg[] = "shared action creation unsupported";
7394         struct rte_flow_attr attr = { .transfer = 0 };
7395         const struct mlx5_flow_driver_ops *fops =
7396                         flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7397
7398         if (flow_drv_action_validate(dev, conf, action, fops, error))
7399                 return NULL;
7400         if (!fops->action_create) {
7401                 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7402                 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7403                                    NULL, err_msg);
7404                 return NULL;
7405         }
7406         return fops->action_create(dev, conf, action, error);
7407 }
7408
7409 /**
7410  * Updates inplace the shared action configuration pointed by *action* handle
7411  * with the configuration provided as *action* argument.
7412  * The update of the shared action configuration effects all flow rules reusing
7413  * the action via handle.
7414  *
7415  * @param dev
7416  *   Pointer to Ethernet device structure.
7417  * @param[in] shared_action
7418  *   Handle for the shared action to be updated.
7419  * @param[in] action
7420  *   Action specification used to modify the action pointed by handle.
7421  *   *action* should be of same type with the action pointed by the *action*
7422  *   handle argument, otherwise considered as invalid.
7423  * @param[out] error
7424  *   Perform verbose error reporting if not NULL. PMDs initialize this
7425  *   structure in case of error only.
7426  *
7427  * @return
7428  *   0 on success, a negative errno value otherwise and rte_errno is set.
7429  */
7430 static int
7431 mlx5_shared_action_update(struct rte_eth_dev *dev,
7432                 struct rte_flow_shared_action *shared_action,
7433                 const struct rte_flow_action *action,
7434                 struct rte_flow_error *error)
7435 {
7436         struct rte_flow_attr attr = { .transfer = 0 };
7437         const struct mlx5_flow_driver_ops *fops =
7438                         flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7439         int ret;
7440
7441         switch (shared_action->type) {
7442         case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS:
7443                 if (action->type != RTE_FLOW_ACTION_TYPE_RSS) {
7444                         return rte_flow_error_set(error, EINVAL,
7445                                                   RTE_FLOW_ERROR_TYPE_ACTION,
7446                                                   NULL,
7447                                                   "update action type invalid");
7448                 }
7449                 ret = flow_drv_action_validate(dev, NULL, action, fops, error);
7450                 if (ret)
7451                         return ret;
7452                 return flow_drv_action_update(dev, shared_action, action->conf,
7453                                               fops, error);
7454         default:
7455                 return rte_flow_error_set(error, ENOTSUP,
7456                                           RTE_FLOW_ERROR_TYPE_ACTION,
7457                                           NULL,
7458                                           "action type not supported");
7459         }
7460 }
7461
7462 /**
7463  * Query the shared action by handle.
7464  *
7465  * This function allows retrieving action-specific data such as counters.
7466  * Data is gathered by special action which may be present/referenced in
7467  * more than one flow rule definition.
7468  *
7469  * \see RTE_FLOW_ACTION_TYPE_COUNT
7470  *
7471  * @param dev
7472  *   Pointer to Ethernet device structure.
7473  * @param[in] action
7474  *   Handle for the shared action to query.
7475  * @param[in, out] data
7476  *   Pointer to storage for the associated query data type.
7477  * @param[out] error
7478  *   Perform verbose error reporting if not NULL. PMDs initialize this
7479  *   structure in case of error only.
7480  *
7481  * @return
7482  *   0 on success, a negative errno value otherwise and rte_errno is set.
7483  */
7484 static int
7485 mlx5_shared_action_query(struct rte_eth_dev *dev,
7486                          const struct rte_flow_shared_action *action,
7487                          void *data,
7488                          struct rte_flow_error *error)
7489 {
7490         (void)dev;
7491         switch (action->type) {
7492         case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS:
7493                 __atomic_load(&action->refcnt, (uint32_t *)data,
7494                               __ATOMIC_RELAXED);
7495                 return 0;
7496         default:
7497                 return rte_flow_error_set(error, ENOTSUP,
7498                                           RTE_FLOW_ERROR_TYPE_ACTION,
7499                                           NULL,
7500                                           "action type not supported");
7501         }
7502 }
7503
7504 /**
7505  * Destroy all shared actions.
7506  *
7507  * @param dev
7508  *   Pointer to Ethernet device.
7509  *
7510  * @return
7511  *   0 on success, a negative errno value otherwise and rte_errno is set.
7512  */
7513 int
7514 mlx5_shared_action_flush(struct rte_eth_dev *dev)
7515 {
7516         struct rte_flow_error error;
7517         struct mlx5_priv *priv = dev->data->dev_private;
7518         struct rte_flow_shared_action *action;
7519         int ret = 0;
7520
7521         while (!LIST_EMPTY(&priv->shared_actions)) {
7522                 action = LIST_FIRST(&priv->shared_actions);
7523                 ret = mlx5_shared_action_destroy(dev, action, &error);
7524         }
7525         return ret;
7526 }