cd04c446b5d0b735fb8e1fde2228b54bb80d76cb
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE),
131                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
132                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133                         ETH_RSS_NONFRAG_IPV4_OTHER,
134         },
135         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137                                                  MLX5_EXPANSION_VXLAN_GPE),
138                 .type = RTE_FLOW_ITEM_TYPE_UDP,
139                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140         },
141         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142                 .type = RTE_FLOW_ITEM_TYPE_TCP,
143                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144         },
145         [MLX5_EXPANSION_OUTER_IPV6] = {
146                 .next = RTE_FLOW_EXPAND_RSS_NEXT
147                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
148                          MLX5_EXPANSION_OUTER_IPV6_TCP),
149                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
150                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151                         ETH_RSS_NONFRAG_IPV6_OTHER,
152         },
153         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155                                                  MLX5_EXPANSION_VXLAN_GPE),
156                 .type = RTE_FLOW_ITEM_TYPE_UDP,
157                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158         },
159         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160                 .type = RTE_FLOW_ITEM_TYPE_TCP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162         },
163         [MLX5_EXPANSION_VXLAN] = {
164                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
166         },
167         [MLX5_EXPANSION_VXLAN_GPE] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169                                                  MLX5_EXPANSION_IPV4,
170                                                  MLX5_EXPANSION_IPV6),
171                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172         },
173         [MLX5_EXPANSION_GRE] = {
174                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175                 .type = RTE_FLOW_ITEM_TYPE_GRE,
176         },
177         [MLX5_EXPANSION_MPLS] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179                                                  MLX5_EXPANSION_IPV6),
180                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
181         },
182         [MLX5_EXPANSION_ETH] = {
183                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184                                                  MLX5_EXPANSION_IPV6),
185                 .type = RTE_FLOW_ITEM_TYPE_ETH,
186         },
187         [MLX5_EXPANSION_ETH_VLAN] = {
188                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193                                                  MLX5_EXPANSION_IPV6),
194                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
195         },
196         [MLX5_EXPANSION_IPV4] = {
197                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198                                                  MLX5_EXPANSION_IPV4_TCP),
199                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
200                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201                         ETH_RSS_NONFRAG_IPV4_OTHER,
202         },
203         [MLX5_EXPANSION_IPV4_UDP] = {
204                 .type = RTE_FLOW_ITEM_TYPE_UDP,
205                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206         },
207         [MLX5_EXPANSION_IPV4_TCP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_TCP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210         },
211         [MLX5_EXPANSION_IPV6] = {
212                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213                                                  MLX5_EXPANSION_IPV6_TCP),
214                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
215                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216                         ETH_RSS_NONFRAG_IPV6_OTHER,
217         },
218         [MLX5_EXPANSION_IPV6_UDP] = {
219                 .type = RTE_FLOW_ITEM_TYPE_UDP,
220                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221         },
222         [MLX5_EXPANSION_IPV6_TCP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_TCP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225         },
226 };
227
228 static const struct rte_flow_ops mlx5_flow_ops = {
229         .validate = mlx5_flow_validate,
230         .create = mlx5_flow_create,
231         .destroy = mlx5_flow_destroy,
232         .flush = mlx5_flow_flush,
233         .isolate = mlx5_flow_isolate,
234         .query = mlx5_flow_query,
235 };
236
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239         struct rte_flow_attr attr;
240         struct rte_flow_item items[4];
241         struct rte_flow_item_eth l2;
242         struct rte_flow_item_eth l2_mask;
243         union {
244                 struct rte_flow_item_ipv4 ipv4;
245                 struct rte_flow_item_ipv6 ipv6;
246         } l3;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3_mask;
251         union {
252                 struct rte_flow_item_udp udp;
253                 struct rte_flow_item_tcp tcp;
254         } l4;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4_mask;
259         struct rte_flow_action actions[2];
260         struct rte_flow_action_queue queue;
261 };
262
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271         { 9, 10, 11 }, { 12, 13, 14 },
272 };
273
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281         {
282                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
283                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284         },
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_GRE,
291                 .ptype = RTE_PTYPE_TUNNEL_GRE,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300         },
301 };
302
303 /**
304  * Discover the maximum number of priority available.
305  *
306  * @param[in] dev
307  *   Pointer to the Ethernet device structure.
308  *
309  * @return
310  *   number of supported flow priority on success, a negative errno
311  *   value otherwise and rte_errno is set.
312  */
313 int
314 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
315 {
316         struct mlx5_priv *priv = dev->data->dev_private;
317         struct {
318                 struct ibv_flow_attr attr;
319                 struct ibv_flow_spec_eth eth;
320                 struct ibv_flow_spec_action_drop drop;
321         } flow_attr = {
322                 .attr = {
323                         .num_of_specs = 2,
324                         .port = (uint8_t)priv->ibv_port,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         mlx5_hrxq_drop_release(dev);
354         switch (priority) {
355         case 8:
356                 priority = RTE_DIM(priority_map_3);
357                 break;
358         case 16:
359                 priority = RTE_DIM(priority_map_5);
360                 break;
361         default:
362                 rte_errno = ENOTSUP;
363                 DRV_LOG(ERR,
364                         "port %u verbs maximum priority: %d expected 8/16",
365                         dev->data->port_id, priority);
366                 return -rte_errno;
367         }
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct mlx5_priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint64_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539         struct mlx5_priv *priv = dev->data->dev_private;
540         struct rte_flow *flow = dev_flow->flow;
541         const int mark = !!(flow->actions &
542                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544         unsigned int i;
545
546         for (i = 0; i != flow->rss.queue_num; ++i) {
547                 int idx = (*flow->queue)[i];
548                 struct mlx5_rxq_ctrl *rxq_ctrl =
549                         container_of((*priv->rxqs)[idx],
550                                      struct mlx5_rxq_ctrl, rxq);
551
552                 if (mark) {
553                         rxq_ctrl->rxq.mark = 1;
554                         rxq_ctrl->flow_mark_n++;
555                 }
556                 if (tunnel) {
557                         unsigned int j;
558
559                         /* Increase the counter matching the flow. */
560                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561                                 if ((tunnels_info[j].tunnel &
562                                      dev_flow->layers) ==
563                                     tunnels_info[j].tunnel) {
564                                         rxq_ctrl->flow_tunnels_n[j]++;
565                                         break;
566                                 }
567                         }
568                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
569                 }
570         }
571 }
572
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584         struct mlx5_flow *dev_flow;
585
586         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587                 flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602         struct mlx5_priv *priv = dev->data->dev_private;
603         struct rte_flow *flow = dev_flow->flow;
604         const int mark = !!(flow->actions &
605                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607         unsigned int i;
608
609         assert(dev->data->dev_started);
610         for (i = 0; i != flow->rss.queue_num; ++i) {
611                 int idx = (*flow->queue)[i];
612                 struct mlx5_rxq_ctrl *rxq_ctrl =
613                         container_of((*priv->rxqs)[idx],
614                                      struct mlx5_rxq_ctrl, rxq);
615
616                 if (mark) {
617                         rxq_ctrl->flow_mark_n--;
618                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619                 }
620                 if (tunnel) {
621                         unsigned int j;
622
623                         /* Decrease the counter matching the flow. */
624                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625                                 if ((tunnels_info[j].tunnel &
626                                      dev_flow->layers) ==
627                                     tunnels_info[j].tunnel) {
628                                         rxq_ctrl->flow_tunnels_n[j]--;
629                                         break;
630                                 }
631                         }
632                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
633                 }
634         }
635 }
636
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649         struct mlx5_flow *dev_flow;
650
651         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652                 flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664         struct mlx5_priv *priv = dev->data->dev_private;
665         unsigned int i;
666
667         for (i = 0; i != priv->rxqs_n; ++i) {
668                 struct mlx5_rxq_ctrl *rxq_ctrl;
669                 unsigned int j;
670
671                 if (!(*priv->rxqs)[i])
672                         continue;
673                 rxq_ctrl = container_of((*priv->rxqs)[i],
674                                         struct mlx5_rxq_ctrl, rxq);
675                 rxq_ctrl->flow_mark_n = 0;
676                 rxq_ctrl->rxq.mark = 0;
677                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678                         rxq_ctrl->flow_tunnels_n[j] = 0;
679                 rxq_ctrl->rxq.tunnel = 0;
680         }
681 }
682
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698                                const struct rte_flow_attr *attr,
699                                struct rte_flow_error *error)
700 {
701
702         if (action_flags & MLX5_FLOW_ACTION_DROP)
703                 return rte_flow_error_set(error, EINVAL,
704                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705                                           "can't drop and flag in same flow");
706         if (action_flags & MLX5_FLOW_ACTION_MARK)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't mark and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_FLAG)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't have 2 flag"
714                                           " actions in same flow");
715         if (attr->egress)
716                 return rte_flow_error_set(error, ENOTSUP,
717                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718                                           "flag action not supported for "
719                                           "egress");
720         return 0;
721 }
722
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740                                uint64_t action_flags,
741                                const struct rte_flow_attr *attr,
742                                struct rte_flow_error *error)
743 {
744         const struct rte_flow_action_mark *mark = action->conf;
745
746         if (!mark)
747                 return rte_flow_error_set(error, EINVAL,
748                                           RTE_FLOW_ERROR_TYPE_ACTION,
749                                           action,
750                                           "configuration cannot be null");
751         if (mark->id >= MLX5_FLOW_MARK_MAX)
752                 return rte_flow_error_set(error, EINVAL,
753                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754                                           &mark->id,
755                                           "mark id must in 0 <= id < "
756                                           RTE_STR(MLX5_FLOW_MARK_MAX));
757         if (action_flags & MLX5_FLOW_ACTION_DROP)
758                 return rte_flow_error_set(error, EINVAL,
759                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760                                           "can't drop and mark in same flow");
761         if (action_flags & MLX5_FLOW_ACTION_FLAG)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't flag and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_MARK)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't have 2 mark actions in same"
769                                           " flow");
770         if (attr->egress)
771                 return rte_flow_error_set(error, ENOTSUP,
772                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773                                           "mark action not supported for "
774                                           "egress");
775         return 0;
776 }
777
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_errno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793                                const struct rte_flow_attr *attr,
794                                struct rte_flow_error *error)
795 {
796         if (action_flags & MLX5_FLOW_ACTION_FLAG)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and flag in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_MARK)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and mark in same flow");
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "drop action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_errno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836                                 uint64_t action_flags,
837                                 struct rte_eth_dev *dev,
838                                 const struct rte_flow_attr *attr,
839                                 struct rte_flow_error *error)
840 {
841         struct mlx5_priv *priv = dev->data->dev_private;
842         const struct rte_flow_action_queue *queue = action->conf;
843
844         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (!priv->rxqs_n)
850                 return rte_flow_error_set(error, EINVAL,
851                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852                                           NULL, "No Rx queues configured");
853         if (queue->index >= priv->rxqs_n)
854                 return rte_flow_error_set(error, EINVAL,
855                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856                                           &queue->index,
857                                           "queue index out of range");
858         if (!(*priv->rxqs)[queue->index])
859                 return rte_flow_error_set(error, EINVAL,
860                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861                                           &queue->index,
862                                           "queue is not configured");
863         if (attr->egress)
864                 return rte_flow_error_set(error, ENOTSUP,
865                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866                                           "queue action not supported for "
867                                           "egress");
868         return 0;
869 }
870
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[in] item_flags
883  *   Items that were detected.
884  * @param[out] error
885  *   Pointer to error structure.
886  *
887  * @return
888  *   0 on success, a negative errno value otherwise and rte_errno is set.
889  */
890 int
891 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
892                               uint64_t action_flags,
893                               struct rte_eth_dev *dev,
894                               const struct rte_flow_attr *attr,
895                               uint64_t item_flags,
896                               struct rte_flow_error *error)
897 {
898         struct mlx5_priv *priv = dev->data->dev_private;
899         const struct rte_flow_action_rss *rss = action->conf;
900         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
901         unsigned int i;
902
903         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
904                 return rte_flow_error_set(error, EINVAL,
905                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
906                                           "can't have 2 fate actions"
907                                           " in same flow");
908         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
909             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
910                 return rte_flow_error_set(error, ENOTSUP,
911                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
912                                           &rss->func,
913                                           "RSS hash function not supported");
914 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
915         if (rss->level > 2)
916 #else
917         if (rss->level > 1)
918 #endif
919                 return rte_flow_error_set(error, ENOTSUP,
920                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
921                                           &rss->level,
922                                           "tunnel RSS is not supported");
923         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
924         if (rss->key_len == 0 && rss->key != NULL)
925                 return rte_flow_error_set(error, ENOTSUP,
926                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
927                                           &rss->key_len,
928                                           "RSS hash key length 0");
929         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
930                 return rte_flow_error_set(error, ENOTSUP,
931                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
932                                           &rss->key_len,
933                                           "RSS hash key too small");
934         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
935                 return rte_flow_error_set(error, ENOTSUP,
936                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
937                                           &rss->key_len,
938                                           "RSS hash key too large");
939         if (rss->queue_num > priv->config.ind_table_max_size)
940                 return rte_flow_error_set(error, ENOTSUP,
941                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
942                                           &rss->queue_num,
943                                           "number of queues too large");
944         if (rss->types & MLX5_RSS_HF_MASK)
945                 return rte_flow_error_set(error, ENOTSUP,
946                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
947                                           &rss->types,
948                                           "some RSS protocols are not"
949                                           " supported");
950         if (!priv->rxqs_n)
951                 return rte_flow_error_set(error, EINVAL,
952                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953                                           NULL, "No Rx queues configured");
954         if (!rss->queue_num)
955                 return rte_flow_error_set(error, EINVAL,
956                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957                                           NULL, "No queues configured");
958         for (i = 0; i != rss->queue_num; ++i) {
959                 if (!(*priv->rxqs)[rss->queue[i]])
960                         return rte_flow_error_set
961                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
962                                  &rss->queue[i], "queue is not configured");
963         }
964         if (attr->egress)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
967                                           "rss action not supported for "
968                                           "egress");
969         if (rss->level > 1 &&  !tunnel)
970                 return rte_flow_error_set(error, EINVAL,
971                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
972                                           "inner RSS is not supported for "
973                                           "non-tunnel flows");
974         return 0;
975 }
976
977 /*
978  * Validate the count action.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attr
983  *   Attributes of flow that includes this action.
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
992                                 const struct rte_flow_attr *attr,
993                                 struct rte_flow_error *error)
994 {
995         if (attr->egress)
996                 return rte_flow_error_set(error, ENOTSUP,
997                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
998                                           "count action not supported for "
999                                           "egress");
1000         return 0;
1001 }
1002
1003 /**
1004  * Verify the @p attributes will be correctly understood by the NIC and store
1005  * them in the @p flow if everything is correct.
1006  *
1007  * @param[in] dev
1008  *   Pointer to the Ethernet device structure.
1009  * @param[in] attributes
1010  *   Pointer to flow attributes
1011  * @param[out] error
1012  *   Pointer to error structure.
1013  *
1014  * @return
1015  *   0 on success, a negative errno value otherwise and rte_errno is set.
1016  */
1017 int
1018 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1019                               const struct rte_flow_attr *attributes,
1020                               struct rte_flow_error *error)
1021 {
1022         struct mlx5_priv *priv = dev->data->dev_private;
1023         uint32_t priority_max = priv->config.flow_prio - 1;
1024
1025         if (attributes->group)
1026                 return rte_flow_error_set(error, ENOTSUP,
1027                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1028                                           NULL, "groups is not supported");
1029         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1030             attributes->priority >= priority_max)
1031                 return rte_flow_error_set(error, ENOTSUP,
1032                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1033                                           NULL, "priority out of range");
1034         if (attributes->egress)
1035                 return rte_flow_error_set(error, ENOTSUP,
1036                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1037                                           "egress is not supported");
1038         if (attributes->transfer && !priv->config.dv_esw_en)
1039                 return rte_flow_error_set(error, ENOTSUP,
1040                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1041                                           NULL, "transfer is not supported");
1042         if (!attributes->ingress)
1043                 return rte_flow_error_set(error, EINVAL,
1044                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1045                                           NULL,
1046                                           "ingress attribute is mandatory");
1047         return 0;
1048 }
1049
1050 /**
1051  * Validate Ethernet item.
1052  *
1053  * @param[in] item
1054  *   Item specification.
1055  * @param[in] item_flags
1056  *   Bit-fields that holds the items detected until now.
1057  * @param[out] error
1058  *   Pointer to error structure.
1059  *
1060  * @return
1061  *   0 on success, a negative errno value otherwise and rte_errno is set.
1062  */
1063 int
1064 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1065                             uint64_t item_flags,
1066                             struct rte_flow_error *error)
1067 {
1068         const struct rte_flow_item_eth *mask = item->mask;
1069         const struct rte_flow_item_eth nic_mask = {
1070                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1071                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1072                 .type = RTE_BE16(0xffff),
1073         };
1074         int ret;
1075         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1076         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1077                                        MLX5_FLOW_LAYER_OUTER_L2;
1078
1079         if (item_flags & ethm)
1080                 return rte_flow_error_set(error, ENOTSUP,
1081                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1082                                           "multiple L2 layers not supported");
1083         if (!mask)
1084                 mask = &rte_flow_item_eth_mask;
1085         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1086                                         (const uint8_t *)&nic_mask,
1087                                         sizeof(struct rte_flow_item_eth),
1088                                         error);
1089         return ret;
1090 }
1091
1092 /**
1093  * Validate VLAN item.
1094  *
1095  * @param[in] item
1096  *   Item specification.
1097  * @param[in] item_flags
1098  *   Bit-fields that holds the items detected until now.
1099  * @param[out] error
1100  *   Pointer to error structure.
1101  *
1102  * @return
1103  *   0 on success, a negative errno value otherwise and rte_errno is set.
1104  */
1105 int
1106 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1107                              uint64_t item_flags,
1108                              struct rte_flow_error *error)
1109 {
1110         const struct rte_flow_item_vlan *spec = item->spec;
1111         const struct rte_flow_item_vlan *mask = item->mask;
1112         const struct rte_flow_item_vlan nic_mask = {
1113                 .tci = RTE_BE16(0x0fff),
1114                 .inner_type = RTE_BE16(0xffff),
1115         };
1116         uint16_t vlan_tag = 0;
1117         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1118         int ret;
1119         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1120                                         MLX5_FLOW_LAYER_INNER_L4) :
1121                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1122                                         MLX5_FLOW_LAYER_OUTER_L4);
1123         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1124                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1125
1126         if (item_flags & vlanm)
1127                 return rte_flow_error_set(error, EINVAL,
1128                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1129                                           "multiple VLAN layers not supported");
1130         else if ((item_flags & l34m) != 0)
1131                 return rte_flow_error_set(error, EINVAL,
1132                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1133                                           "L2 layer cannot follow L3/L4 layer");
1134         if (!mask)
1135                 mask = &rte_flow_item_vlan_mask;
1136         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1137                                         (const uint8_t *)&nic_mask,
1138                                         sizeof(struct rte_flow_item_vlan),
1139                                         error);
1140         if (ret)
1141                 return ret;
1142         if (spec) {
1143                 vlan_tag = spec->tci;
1144                 vlan_tag &= mask->tci;
1145         }
1146         /*
1147          * From verbs perspective an empty VLAN is equivalent
1148          * to a packet without VLAN layer.
1149          */
1150         if (!vlan_tag)
1151                 return rte_flow_error_set(error, EINVAL,
1152                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1153                                           item->spec,
1154                                           "VLAN cannot be empty");
1155         return 0;
1156 }
1157
1158 /**
1159  * Validate IPV4 item.
1160  *
1161  * @param[in] item
1162  *   Item specification.
1163  * @param[in] item_flags
1164  *   Bit-fields that holds the items detected until now.
1165  * @param[in] acc_mask
1166  *   Acceptable mask, if NULL default internal default mask
1167  *   will be used to check whether item fields are supported.
1168  * @param[out] error
1169  *   Pointer to error structure.
1170  *
1171  * @return
1172  *   0 on success, a negative errno value otherwise and rte_errno is set.
1173  */
1174 int
1175 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1176                              uint64_t item_flags,
1177                              const struct rte_flow_item_ipv4 *acc_mask,
1178                              struct rte_flow_error *error)
1179 {
1180         const struct rte_flow_item_ipv4 *mask = item->mask;
1181         const struct rte_flow_item_ipv4 nic_mask = {
1182                 .hdr = {
1183                         .src_addr = RTE_BE32(0xffffffff),
1184                         .dst_addr = RTE_BE32(0xffffffff),
1185                         .type_of_service = 0xff,
1186                         .next_proto_id = 0xff,
1187                 },
1188         };
1189         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1190         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1191                                       MLX5_FLOW_LAYER_OUTER_L3;
1192         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1193                                       MLX5_FLOW_LAYER_OUTER_L4;
1194         int ret;
1195
1196         if (item_flags & l3m)
1197                 return rte_flow_error_set(error, ENOTSUP,
1198                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1199                                           "multiple L3 layers not supported");
1200         else if (item_flags & l4m)
1201                 return rte_flow_error_set(error, EINVAL,
1202                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1203                                           "L3 cannot follow an L4 layer.");
1204         if (!mask)
1205                 mask = &rte_flow_item_ipv4_mask;
1206         else if (mask->hdr.next_proto_id != 0 &&
1207                  mask->hdr.next_proto_id != 0xff)
1208                 return rte_flow_error_set(error, EINVAL,
1209                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1210                                           "partial mask is not supported"
1211                                           " for protocol");
1212         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1213                                         acc_mask ? (const uint8_t *)acc_mask
1214                                                  : (const uint8_t *)&nic_mask,
1215                                         sizeof(struct rte_flow_item_ipv4),
1216                                         error);
1217         if (ret < 0)
1218                 return ret;
1219         return 0;
1220 }
1221
1222 /**
1223  * Validate IPV6 item.
1224  *
1225  * @param[in] item
1226  *   Item specification.
1227  * @param[in] item_flags
1228  *   Bit-fields that holds the items detected until now.
1229  * @param[in] acc_mask
1230  *   Acceptable mask, if NULL default internal default mask
1231  *   will be used to check whether item fields are supported.
1232  * @param[out] error
1233  *   Pointer to error structure.
1234  *
1235  * @return
1236  *   0 on success, a negative errno value otherwise and rte_errno is set.
1237  */
1238 int
1239 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1240                              uint64_t item_flags,
1241                              const struct rte_flow_item_ipv6 *acc_mask,
1242                              struct rte_flow_error *error)
1243 {
1244         const struct rte_flow_item_ipv6 *mask = item->mask;
1245         const struct rte_flow_item_ipv6 nic_mask = {
1246                 .hdr = {
1247                         .src_addr =
1248                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1249                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1250                         .dst_addr =
1251                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1252                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1253                         .vtc_flow = RTE_BE32(0xffffffff),
1254                         .proto = 0xff,
1255                         .hop_limits = 0xff,
1256                 },
1257         };
1258         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1259         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1260                                       MLX5_FLOW_LAYER_OUTER_L3;
1261         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1262                                       MLX5_FLOW_LAYER_OUTER_L4;
1263         int ret;
1264
1265         if (item_flags & l3m)
1266                 return rte_flow_error_set(error, ENOTSUP,
1267                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1268                                           "multiple L3 layers not supported");
1269         else if (item_flags & l4m)
1270                 return rte_flow_error_set(error, EINVAL,
1271                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1272                                           "L3 cannot follow an L4 layer.");
1273         if (!mask)
1274                 mask = &rte_flow_item_ipv6_mask;
1275         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1276                                         acc_mask ? (const uint8_t *)acc_mask
1277                                                  : (const uint8_t *)&nic_mask,
1278                                         sizeof(struct rte_flow_item_ipv6),
1279                                         error);
1280         if (ret < 0)
1281                 return ret;
1282         return 0;
1283 }
1284
1285 /**
1286  * Validate UDP item.
1287  *
1288  * @param[in] item
1289  *   Item specification.
1290  * @param[in] item_flags
1291  *   Bit-fields that holds the items detected until now.
1292  * @param[in] target_protocol
1293  *   The next protocol in the previous item.
1294  * @param[in] flow_mask
1295  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1296  * @param[out] error
1297  *   Pointer to error structure.
1298  *
1299  * @return
1300  *   0 on success, a negative errno value otherwise and rte_errno is set.
1301  */
1302 int
1303 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1304                             uint64_t item_flags,
1305                             uint8_t target_protocol,
1306                             struct rte_flow_error *error)
1307 {
1308         const struct rte_flow_item_udp *mask = item->mask;
1309         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1310         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1311                                       MLX5_FLOW_LAYER_OUTER_L3;
1312         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1313                                       MLX5_FLOW_LAYER_OUTER_L4;
1314         int ret;
1315
1316         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1317                 return rte_flow_error_set(error, EINVAL,
1318                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1319                                           "protocol filtering not compatible"
1320                                           " with UDP layer");
1321         if (!(item_flags & l3m))
1322                 return rte_flow_error_set(error, EINVAL,
1323                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1324                                           "L3 is mandatory to filter on L4");
1325         if (item_flags & l4m)
1326                 return rte_flow_error_set(error, EINVAL,
1327                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1328                                           "multiple L4 layers not supported");
1329         if (!mask)
1330                 mask = &rte_flow_item_udp_mask;
1331         ret = mlx5_flow_item_acceptable
1332                 (item, (const uint8_t *)mask,
1333                  (const uint8_t *)&rte_flow_item_udp_mask,
1334                  sizeof(struct rte_flow_item_udp), error);
1335         if (ret < 0)
1336                 return ret;
1337         return 0;
1338 }
1339
1340 /**
1341  * Validate TCP item.
1342  *
1343  * @param[in] item
1344  *   Item specification.
1345  * @param[in] item_flags
1346  *   Bit-fields that holds the items detected until now.
1347  * @param[in] target_protocol
1348  *   The next protocol in the previous item.
1349  * @param[out] error
1350  *   Pointer to error structure.
1351  *
1352  * @return
1353  *   0 on success, a negative errno value otherwise and rte_errno is set.
1354  */
1355 int
1356 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1357                             uint64_t item_flags,
1358                             uint8_t target_protocol,
1359                             const struct rte_flow_item_tcp *flow_mask,
1360                             struct rte_flow_error *error)
1361 {
1362         const struct rte_flow_item_tcp *mask = item->mask;
1363         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1364         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1365                                       MLX5_FLOW_LAYER_OUTER_L3;
1366         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1367                                       MLX5_FLOW_LAYER_OUTER_L4;
1368         int ret;
1369
1370         assert(flow_mask);
1371         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1372                 return rte_flow_error_set(error, EINVAL,
1373                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1374                                           "protocol filtering not compatible"
1375                                           " with TCP layer");
1376         if (!(item_flags & l3m))
1377                 return rte_flow_error_set(error, EINVAL,
1378                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1379                                           "L3 is mandatory to filter on L4");
1380         if (item_flags & l4m)
1381                 return rte_flow_error_set(error, EINVAL,
1382                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1383                                           "multiple L4 layers not supported");
1384         if (!mask)
1385                 mask = &rte_flow_item_tcp_mask;
1386         ret = mlx5_flow_item_acceptable
1387                 (item, (const uint8_t *)mask,
1388                  (const uint8_t *)flow_mask,
1389                  sizeof(struct rte_flow_item_tcp), error);
1390         if (ret < 0)
1391                 return ret;
1392         return 0;
1393 }
1394
1395 /**
1396  * Validate VXLAN item.
1397  *
1398  * @param[in] item
1399  *   Item specification.
1400  * @param[in] item_flags
1401  *   Bit-fields that holds the items detected until now.
1402  * @param[in] target_protocol
1403  *   The next protocol in the previous item.
1404  * @param[out] error
1405  *   Pointer to error structure.
1406  *
1407  * @return
1408  *   0 on success, a negative errno value otherwise and rte_errno is set.
1409  */
1410 int
1411 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1412                               uint64_t item_flags,
1413                               struct rte_flow_error *error)
1414 {
1415         const struct rte_flow_item_vxlan *spec = item->spec;
1416         const struct rte_flow_item_vxlan *mask = item->mask;
1417         int ret;
1418         union vni {
1419                 uint32_t vlan_id;
1420                 uint8_t vni[4];
1421         } id = { .vlan_id = 0, };
1422         uint32_t vlan_id = 0;
1423
1424
1425         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1426                 return rte_flow_error_set(error, ENOTSUP,
1427                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1428                                           "multiple tunnel layers not"
1429                                           " supported");
1430         /*
1431          * Verify only UDPv4 is present as defined in
1432          * https://tools.ietf.org/html/rfc7348
1433          */
1434         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1435                 return rte_flow_error_set(error, EINVAL,
1436                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1437                                           "no outer UDP layer found");
1438         if (!mask)
1439                 mask = &rte_flow_item_vxlan_mask;
1440         ret = mlx5_flow_item_acceptable
1441                 (item, (const uint8_t *)mask,
1442                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1443                  sizeof(struct rte_flow_item_vxlan),
1444                  error);
1445         if (ret < 0)
1446                 return ret;
1447         if (spec) {
1448                 memcpy(&id.vni[1], spec->vni, 3);
1449                 vlan_id = id.vlan_id;
1450                 memcpy(&id.vni[1], mask->vni, 3);
1451                 vlan_id &= id.vlan_id;
1452         }
1453         /*
1454          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1455          * only this layer is defined in the Verbs specification it is
1456          * interpreted as wildcard and all packets will match this
1457          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1458          * udp), all packets matching the layers before will also
1459          * match this rule.  To avoid such situation, VNI 0 is
1460          * currently refused.
1461          */
1462         if (!vlan_id)
1463                 return rte_flow_error_set(error, ENOTSUP,
1464                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1465                                           "VXLAN vni cannot be 0");
1466         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1467                 return rte_flow_error_set(error, ENOTSUP,
1468                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1469                                           "VXLAN tunnel must be fully defined");
1470         return 0;
1471 }
1472
1473 /**
1474  * Validate VXLAN_GPE item.
1475  *
1476  * @param[in] item
1477  *   Item specification.
1478  * @param[in] item_flags
1479  *   Bit-fields that holds the items detected until now.
1480  * @param[in] priv
1481  *   Pointer to the private data structure.
1482  * @param[in] target_protocol
1483  *   The next protocol in the previous item.
1484  * @param[out] error
1485  *   Pointer to error structure.
1486  *
1487  * @return
1488  *   0 on success, a negative errno value otherwise and rte_errno is set.
1489  */
1490 int
1491 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1492                                   uint64_t item_flags,
1493                                   struct rte_eth_dev *dev,
1494                                   struct rte_flow_error *error)
1495 {
1496         struct mlx5_priv *priv = dev->data->dev_private;
1497         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1498         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1499         int ret;
1500         union vni {
1501                 uint32_t vlan_id;
1502                 uint8_t vni[4];
1503         } id = { .vlan_id = 0, };
1504         uint32_t vlan_id = 0;
1505
1506         if (!priv->config.l3_vxlan_en)
1507                 return rte_flow_error_set(error, ENOTSUP,
1508                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1509                                           "L3 VXLAN is not enabled by device"
1510                                           " parameter and/or not configured in"
1511                                           " firmware");
1512         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1513                 return rte_flow_error_set(error, ENOTSUP,
1514                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1515                                           "multiple tunnel layers not"
1516                                           " supported");
1517         /*
1518          * Verify only UDPv4 is present as defined in
1519          * https://tools.ietf.org/html/rfc7348
1520          */
1521         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1522                 return rte_flow_error_set(error, EINVAL,
1523                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1524                                           "no outer UDP layer found");
1525         if (!mask)
1526                 mask = &rte_flow_item_vxlan_gpe_mask;
1527         ret = mlx5_flow_item_acceptable
1528                 (item, (const uint8_t *)mask,
1529                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1530                  sizeof(struct rte_flow_item_vxlan_gpe),
1531                  error);
1532         if (ret < 0)
1533                 return ret;
1534         if (spec) {
1535                 if (spec->protocol)
1536                         return rte_flow_error_set(error, ENOTSUP,
1537                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1538                                                   item,
1539                                                   "VxLAN-GPE protocol"
1540                                                   " not supported");
1541                 memcpy(&id.vni[1], spec->vni, 3);
1542                 vlan_id = id.vlan_id;
1543                 memcpy(&id.vni[1], mask->vni, 3);
1544                 vlan_id &= id.vlan_id;
1545         }
1546         /*
1547          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1548          * layer is defined in the Verbs specification it is interpreted as
1549          * wildcard and all packets will match this rule, if it follows a full
1550          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1551          * before will also match this rule.  To avoid such situation, VNI 0
1552          * is currently refused.
1553          */
1554         if (!vlan_id)
1555                 return rte_flow_error_set(error, ENOTSUP,
1556                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1557                                           "VXLAN-GPE vni cannot be 0");
1558         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1559                 return rte_flow_error_set(error, ENOTSUP,
1560                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1561                                           "VXLAN-GPE tunnel must be fully"
1562                                           " defined");
1563         return 0;
1564 }
1565
1566 /**
1567  * Validate GRE item.
1568  *
1569  * @param[in] item
1570  *   Item specification.
1571  * @param[in] item_flags
1572  *   Bit flags to mark detected items.
1573  * @param[in] target_protocol
1574  *   The next protocol in the previous item.
1575  * @param[out] error
1576  *   Pointer to error structure.
1577  *
1578  * @return
1579  *   0 on success, a negative errno value otherwise and rte_errno is set.
1580  */
1581 int
1582 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1583                             uint64_t item_flags,
1584                             uint8_t target_protocol,
1585                             struct rte_flow_error *error)
1586 {
1587         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1588         const struct rte_flow_item_gre *mask = item->mask;
1589         int ret;
1590
1591         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1592                 return rte_flow_error_set(error, EINVAL,
1593                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1594                                           "protocol filtering not compatible"
1595                                           " with this GRE layer");
1596         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1597                 return rte_flow_error_set(error, ENOTSUP,
1598                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1599                                           "multiple tunnel layers not"
1600                                           " supported");
1601         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1602                 return rte_flow_error_set(error, ENOTSUP,
1603                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1604                                           "L3 Layer is missing");
1605         if (!mask)
1606                 mask = &rte_flow_item_gre_mask;
1607         ret = mlx5_flow_item_acceptable
1608                 (item, (const uint8_t *)mask,
1609                  (const uint8_t *)&rte_flow_item_gre_mask,
1610                  sizeof(struct rte_flow_item_gre), error);
1611         if (ret < 0)
1612                 return ret;
1613 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1614         if (spec && (spec->protocol & mask->protocol))
1615                 return rte_flow_error_set(error, ENOTSUP,
1616                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1617                                           "without MPLS support the"
1618                                           " specification cannot be used for"
1619                                           " filtering");
1620 #endif
1621         return 0;
1622 }
1623
1624 /**
1625  * Validate MPLS item.
1626  *
1627  * @param[in] dev
1628  *   Pointer to the rte_eth_dev structure.
1629  * @param[in] item
1630  *   Item specification.
1631  * @param[in] item_flags
1632  *   Bit-fields that holds the items detected until now.
1633  * @param[in] prev_layer
1634  *   The protocol layer indicated in previous item.
1635  * @param[out] error
1636  *   Pointer to error structure.
1637  *
1638  * @return
1639  *   0 on success, a negative errno value otherwise and rte_errno is set.
1640  */
1641 int
1642 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1643                              const struct rte_flow_item *item __rte_unused,
1644                              uint64_t item_flags __rte_unused,
1645                              uint64_t prev_layer __rte_unused,
1646                              struct rte_flow_error *error)
1647 {
1648 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1649         const struct rte_flow_item_mpls *mask = item->mask;
1650         struct mlx5_priv *priv = dev->data->dev_private;
1651         int ret;
1652
1653         if (!priv->config.mpls_en)
1654                 return rte_flow_error_set(error, ENOTSUP,
1655                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1656                                           "MPLS not supported or"
1657                                           " disabled in firmware"
1658                                           " configuration.");
1659         /* MPLS over IP, UDP, GRE is allowed */
1660         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1661                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1662                             MLX5_FLOW_LAYER_GRE)))
1663                 return rte_flow_error_set(error, EINVAL,
1664                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1665                                           "protocol filtering not compatible"
1666                                           " with MPLS layer");
1667         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1668         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1669             !(item_flags & MLX5_FLOW_LAYER_GRE))
1670                 return rte_flow_error_set(error, ENOTSUP,
1671                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1672                                           "multiple tunnel layers not"
1673                                           " supported");
1674         if (!mask)
1675                 mask = &rte_flow_item_mpls_mask;
1676         ret = mlx5_flow_item_acceptable
1677                 (item, (const uint8_t *)mask,
1678                  (const uint8_t *)&rte_flow_item_mpls_mask,
1679                  sizeof(struct rte_flow_item_mpls), error);
1680         if (ret < 0)
1681                 return ret;
1682         return 0;
1683 #endif
1684         return rte_flow_error_set(error, ENOTSUP,
1685                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1686                                   "MPLS is not supported by Verbs, please"
1687                                   " update.");
1688 }
1689
1690 static int
1691 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1692                    const struct rte_flow_attr *attr __rte_unused,
1693                    const struct rte_flow_item items[] __rte_unused,
1694                    const struct rte_flow_action actions[] __rte_unused,
1695                    struct rte_flow_error *error)
1696 {
1697         return rte_flow_error_set(error, ENOTSUP,
1698                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1699 }
1700
1701 static struct mlx5_flow *
1702 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1703                   const struct rte_flow_item items[] __rte_unused,
1704                   const struct rte_flow_action actions[] __rte_unused,
1705                   struct rte_flow_error *error)
1706 {
1707         rte_flow_error_set(error, ENOTSUP,
1708                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1709         return NULL;
1710 }
1711
1712 static int
1713 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1714                     struct mlx5_flow *dev_flow __rte_unused,
1715                     const struct rte_flow_attr *attr __rte_unused,
1716                     const struct rte_flow_item items[] __rte_unused,
1717                     const struct rte_flow_action actions[] __rte_unused,
1718                     struct rte_flow_error *error)
1719 {
1720         return rte_flow_error_set(error, ENOTSUP,
1721                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1722 }
1723
1724 static int
1725 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1726                 struct rte_flow *flow __rte_unused,
1727                 struct rte_flow_error *error)
1728 {
1729         return rte_flow_error_set(error, ENOTSUP,
1730                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1731 }
1732
1733 static void
1734 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1735                  struct rte_flow *flow __rte_unused)
1736 {
1737 }
1738
1739 static void
1740 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1741                   struct rte_flow *flow __rte_unused)
1742 {
1743 }
1744
1745 static int
1746 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1747                 struct rte_flow *flow __rte_unused,
1748                 const struct rte_flow_action *actions __rte_unused,
1749                 void *data __rte_unused,
1750                 struct rte_flow_error *error)
1751 {
1752         return rte_flow_error_set(error, ENOTSUP,
1753                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1754 }
1755
1756 /* Void driver to protect from null pointer reference. */
1757 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1758         .validate = flow_null_validate,
1759         .prepare = flow_null_prepare,
1760         .translate = flow_null_translate,
1761         .apply = flow_null_apply,
1762         .remove = flow_null_remove,
1763         .destroy = flow_null_destroy,
1764         .query = flow_null_query,
1765 };
1766
1767 /**
1768  * Select flow driver type according to flow attributes and device
1769  * configuration.
1770  *
1771  * @param[in] dev
1772  *   Pointer to the dev structure.
1773  * @param[in] attr
1774  *   Pointer to the flow attributes.
1775  *
1776  * @return
1777  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1778  */
1779 static enum mlx5_flow_drv_type
1780 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1781 {
1782         struct mlx5_priv *priv = dev->data->dev_private;
1783         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1784
1785         if (attr->transfer && priv->config.dv_esw_en)
1786                 type = MLX5_FLOW_TYPE_DV;
1787         if (!attr->transfer)
1788                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1789                                                  MLX5_FLOW_TYPE_VERBS;
1790         return type;
1791 }
1792
1793 #define flow_get_drv_ops(type) flow_drv_ops[type]
1794
1795 /**
1796  * Flow driver validation API. This abstracts calling driver specific functions.
1797  * The type of flow driver is determined according to flow attributes.
1798  *
1799  * @param[in] dev
1800  *   Pointer to the dev structure.
1801  * @param[in] attr
1802  *   Pointer to the flow attributes.
1803  * @param[in] items
1804  *   Pointer to the list of items.
1805  * @param[in] actions
1806  *   Pointer to the list of actions.
1807  * @param[out] error
1808  *   Pointer to the error structure.
1809  *
1810  * @return
1811  *   0 on success, a negative errno value otherwise and rte_errno is set.
1812  */
1813 static inline int
1814 flow_drv_validate(struct rte_eth_dev *dev,
1815                   const struct rte_flow_attr *attr,
1816                   const struct rte_flow_item items[],
1817                   const struct rte_flow_action actions[],
1818                   struct rte_flow_error *error)
1819 {
1820         const struct mlx5_flow_driver_ops *fops;
1821         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1822
1823         fops = flow_get_drv_ops(type);
1824         return fops->validate(dev, attr, items, actions, error);
1825 }
1826
1827 /**
1828  * Flow driver preparation API. This abstracts calling driver specific
1829  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1830  * calculates the size of memory required for device flow, allocates the memory,
1831  * initializes the device flow and returns the pointer.
1832  *
1833  * @note
1834  *   This function initializes device flow structure such as dv or verbs in
1835  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1836  *   rest. For example, adding returning device flow to flow->dev_flow list and
1837  *   setting backward reference to the flow should be done out of this function.
1838  *   layers field is not filled either.
1839  *
1840  * @param[in] attr
1841  *   Pointer to the flow attributes.
1842  * @param[in] items
1843  *   Pointer to the list of items.
1844  * @param[in] actions
1845  *   Pointer to the list of actions.
1846  * @param[out] error
1847  *   Pointer to the error structure.
1848  *
1849  * @return
1850  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1851  */
1852 static inline struct mlx5_flow *
1853 flow_drv_prepare(const struct rte_flow *flow,
1854                  const struct rte_flow_attr *attr,
1855                  const struct rte_flow_item items[],
1856                  const struct rte_flow_action actions[],
1857                  struct rte_flow_error *error)
1858 {
1859         const struct mlx5_flow_driver_ops *fops;
1860         enum mlx5_flow_drv_type type = flow->drv_type;
1861
1862         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1863         fops = flow_get_drv_ops(type);
1864         return fops->prepare(attr, items, actions, error);
1865 }
1866
1867 /**
1868  * Flow driver translation API. This abstracts calling driver specific
1869  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1870  * translates a generic flow into a driver flow. flow_drv_prepare() must
1871  * precede.
1872  *
1873  * @note
1874  *   dev_flow->layers could be filled as a result of parsing during translation
1875  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1876  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1877  *   flow->actions could be overwritten even though all the expanded dev_flows
1878  *   have the same actions.
1879  *
1880  * @param[in] dev
1881  *   Pointer to the rte dev structure.
1882  * @param[in, out] dev_flow
1883  *   Pointer to the mlx5 flow.
1884  * @param[in] attr
1885  *   Pointer to the flow attributes.
1886  * @param[in] items
1887  *   Pointer to the list of items.
1888  * @param[in] actions
1889  *   Pointer to the list of actions.
1890  * @param[out] error
1891  *   Pointer to the error structure.
1892  *
1893  * @return
1894  *   0 on success, a negative errno value otherwise and rte_errno is set.
1895  */
1896 static inline int
1897 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1898                    const struct rte_flow_attr *attr,
1899                    const struct rte_flow_item items[],
1900                    const struct rte_flow_action actions[],
1901                    struct rte_flow_error *error)
1902 {
1903         const struct mlx5_flow_driver_ops *fops;
1904         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1905
1906         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1907         fops = flow_get_drv_ops(type);
1908         return fops->translate(dev, dev_flow, attr, items, actions, error);
1909 }
1910
1911 /**
1912  * Flow driver apply API. This abstracts calling driver specific functions.
1913  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1914  * translated driver flows on to device. flow_drv_translate() must precede.
1915  *
1916  * @param[in] dev
1917  *   Pointer to Ethernet device structure.
1918  * @param[in, out] flow
1919  *   Pointer to flow structure.
1920  * @param[out] error
1921  *   Pointer to error structure.
1922  *
1923  * @return
1924  *   0 on success, a negative errno value otherwise and rte_errno is set.
1925  */
1926 static inline int
1927 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1928                struct rte_flow_error *error)
1929 {
1930         const struct mlx5_flow_driver_ops *fops;
1931         enum mlx5_flow_drv_type type = flow->drv_type;
1932
1933         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1934         fops = flow_get_drv_ops(type);
1935         return fops->apply(dev, flow, error);
1936 }
1937
1938 /**
1939  * Flow driver remove API. This abstracts calling driver specific functions.
1940  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1941  * on device. All the resources of the flow should be freed by calling
1942  * flow_drv_destroy().
1943  *
1944  * @param[in] dev
1945  *   Pointer to Ethernet device.
1946  * @param[in, out] flow
1947  *   Pointer to flow structure.
1948  */
1949 static inline void
1950 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1951 {
1952         const struct mlx5_flow_driver_ops *fops;
1953         enum mlx5_flow_drv_type type = flow->drv_type;
1954
1955         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1956         fops = flow_get_drv_ops(type);
1957         fops->remove(dev, flow);
1958 }
1959
1960 /**
1961  * Flow driver destroy API. This abstracts calling driver specific functions.
1962  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1963  * on device and releases resources of the flow.
1964  *
1965  * @param[in] dev
1966  *   Pointer to Ethernet device.
1967  * @param[in, out] flow
1968  *   Pointer to flow structure.
1969  */
1970 static inline void
1971 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1972 {
1973         const struct mlx5_flow_driver_ops *fops;
1974         enum mlx5_flow_drv_type type = flow->drv_type;
1975
1976         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1977         fops = flow_get_drv_ops(type);
1978         fops->destroy(dev, flow);
1979 }
1980
1981 /**
1982  * Validate a flow supported by the NIC.
1983  *
1984  * @see rte_flow_validate()
1985  * @see rte_flow_ops
1986  */
1987 int
1988 mlx5_flow_validate(struct rte_eth_dev *dev,
1989                    const struct rte_flow_attr *attr,
1990                    const struct rte_flow_item items[],
1991                    const struct rte_flow_action actions[],
1992                    struct rte_flow_error *error)
1993 {
1994         int ret;
1995
1996         ret = flow_drv_validate(dev, attr, items, actions, error);
1997         if (ret < 0)
1998                 return ret;
1999         return 0;
2000 }
2001
2002 /**
2003  * Get RSS action from the action list.
2004  *
2005  * @param[in] actions
2006  *   Pointer to the list of actions.
2007  *
2008  * @return
2009  *   Pointer to the RSS action if exist, else return NULL.
2010  */
2011 static const struct rte_flow_action_rss*
2012 flow_get_rss_action(const struct rte_flow_action actions[])
2013 {
2014         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2015                 switch (actions->type) {
2016                 case RTE_FLOW_ACTION_TYPE_RSS:
2017                         return (const struct rte_flow_action_rss *)
2018                                actions->conf;
2019                 default:
2020                         break;
2021                 }
2022         }
2023         return NULL;
2024 }
2025
2026 static unsigned int
2027 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2028 {
2029         const struct rte_flow_item *item;
2030         unsigned int has_vlan = 0;
2031
2032         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2033                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2034                         has_vlan = 1;
2035                         break;
2036                 }
2037         }
2038         if (has_vlan)
2039                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2040                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2041         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2042                                MLX5_EXPANSION_ROOT_OUTER;
2043 }
2044
2045 /**
2046  * Create a flow and add it to @p list.
2047  *
2048  * @param dev
2049  *   Pointer to Ethernet device.
2050  * @param list
2051  *   Pointer to a TAILQ flow list.
2052  * @param[in] attr
2053  *   Flow rule attributes.
2054  * @param[in] items
2055  *   Pattern specification (list terminated by the END pattern item).
2056  * @param[in] actions
2057  *   Associated actions (list terminated by the END action).
2058  * @param[out] error
2059  *   Perform verbose error reporting if not NULL.
2060  *
2061  * @return
2062  *   A flow on success, NULL otherwise and rte_errno is set.
2063  */
2064 static struct rte_flow *
2065 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2066                  const struct rte_flow_attr *attr,
2067                  const struct rte_flow_item items[],
2068                  const struct rte_flow_action actions[],
2069                  struct rte_flow_error *error)
2070 {
2071         struct rte_flow *flow = NULL;
2072         struct mlx5_flow *dev_flow;
2073         const struct rte_flow_action_rss *rss;
2074         union {
2075                 struct rte_flow_expand_rss buf;
2076                 uint8_t buffer[2048];
2077         } expand_buffer;
2078         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2079         int ret;
2080         uint32_t i;
2081         uint32_t flow_size;
2082
2083         ret = flow_drv_validate(dev, attr, items, actions, error);
2084         if (ret < 0)
2085                 return NULL;
2086         flow_size = sizeof(struct rte_flow);
2087         rss = flow_get_rss_action(actions);
2088         if (rss)
2089                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2090                                             sizeof(void *));
2091         else
2092                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2093         flow = rte_calloc(__func__, 1, flow_size, 0);
2094         flow->drv_type = flow_get_drv_type(dev, attr);
2095         flow->ingress = attr->ingress;
2096         flow->transfer = attr->transfer;
2097         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2098                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2099         flow->queue = (void *)(flow + 1);
2100         LIST_INIT(&flow->dev_flows);
2101         if (rss && rss->types) {
2102                 unsigned int graph_root;
2103
2104                 graph_root = find_graph_root(items, rss->level);
2105                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2106                                           items, rss->types,
2107                                           mlx5_support_expansion,
2108                                           graph_root);
2109                 assert(ret > 0 &&
2110                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2111         } else {
2112                 buf->entries = 1;
2113                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2114         }
2115         for (i = 0; i < buf->entries; ++i) {
2116                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2117                                             actions, error);
2118                 if (!dev_flow)
2119                         goto error;
2120                 dev_flow->flow = flow;
2121                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2122                 ret = flow_drv_translate(dev, dev_flow, attr,
2123                                          buf->entry[i].pattern,
2124                                          actions, error);
2125                 if (ret < 0)
2126                         goto error;
2127         }
2128         if (dev->data->dev_started) {
2129                 ret = flow_drv_apply(dev, flow, error);
2130                 if (ret < 0)
2131                         goto error;
2132         }
2133         TAILQ_INSERT_TAIL(list, flow, next);
2134         flow_rxq_flags_set(dev, flow);
2135         return flow;
2136 error:
2137         ret = rte_errno; /* Save rte_errno before cleanup. */
2138         assert(flow);
2139         flow_drv_destroy(dev, flow);
2140         rte_free(flow);
2141         rte_errno = ret; /* Restore rte_errno. */
2142         return NULL;
2143 }
2144
2145 /**
2146  * Create a flow.
2147  *
2148  * @see rte_flow_create()
2149  * @see rte_flow_ops
2150  */
2151 struct rte_flow *
2152 mlx5_flow_create(struct rte_eth_dev *dev,
2153                  const struct rte_flow_attr *attr,
2154                  const struct rte_flow_item items[],
2155                  const struct rte_flow_action actions[],
2156                  struct rte_flow_error *error)
2157 {
2158         struct mlx5_priv *priv = dev->data->dev_private;
2159
2160         return flow_list_create(dev, &priv->flows,
2161                                 attr, items, actions, error);
2162 }
2163
2164 /**
2165  * Destroy a flow in a list.
2166  *
2167  * @param dev
2168  *   Pointer to Ethernet device.
2169  * @param list
2170  *   Pointer to a TAILQ flow list.
2171  * @param[in] flow
2172  *   Flow to destroy.
2173  */
2174 static void
2175 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2176                   struct rte_flow *flow)
2177 {
2178         /*
2179          * Update RX queue flags only if port is started, otherwise it is
2180          * already clean.
2181          */
2182         if (dev->data->dev_started)
2183                 flow_rxq_flags_trim(dev, flow);
2184         flow_drv_destroy(dev, flow);
2185         TAILQ_REMOVE(list, flow, next);
2186         rte_free(flow->fdir);
2187         rte_free(flow);
2188 }
2189
2190 /**
2191  * Destroy all flows.
2192  *
2193  * @param dev
2194  *   Pointer to Ethernet device.
2195  * @param list
2196  *   Pointer to a TAILQ flow list.
2197  */
2198 void
2199 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2200 {
2201         while (!TAILQ_EMPTY(list)) {
2202                 struct rte_flow *flow;
2203
2204                 flow = TAILQ_FIRST(list);
2205                 flow_list_destroy(dev, list, flow);
2206         }
2207 }
2208
2209 /**
2210  * Remove all flows.
2211  *
2212  * @param dev
2213  *   Pointer to Ethernet device.
2214  * @param list
2215  *   Pointer to a TAILQ flow list.
2216  */
2217 void
2218 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2219 {
2220         struct rte_flow *flow;
2221
2222         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2223                 flow_drv_remove(dev, flow);
2224         flow_rxq_flags_clear(dev);
2225 }
2226
2227 /**
2228  * Add all flows.
2229  *
2230  * @param dev
2231  *   Pointer to Ethernet device.
2232  * @param list
2233  *   Pointer to a TAILQ flow list.
2234  *
2235  * @return
2236  *   0 on success, a negative errno value otherwise and rte_errno is set.
2237  */
2238 int
2239 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2240 {
2241         struct rte_flow *flow;
2242         struct rte_flow_error error;
2243         int ret = 0;
2244
2245         TAILQ_FOREACH(flow, list, next) {
2246                 ret = flow_drv_apply(dev, flow, &error);
2247                 if (ret < 0)
2248                         goto error;
2249                 flow_rxq_flags_set(dev, flow);
2250         }
2251         return 0;
2252 error:
2253         ret = rte_errno; /* Save rte_errno before cleanup. */
2254         mlx5_flow_stop(dev, list);
2255         rte_errno = ret; /* Restore rte_errno. */
2256         return -rte_errno;
2257 }
2258
2259 /**
2260  * Verify the flow list is empty
2261  *
2262  * @param dev
2263  *  Pointer to Ethernet device.
2264  *
2265  * @return the number of flows not released.
2266  */
2267 int
2268 mlx5_flow_verify(struct rte_eth_dev *dev)
2269 {
2270         struct mlx5_priv *priv = dev->data->dev_private;
2271         struct rte_flow *flow;
2272         int ret = 0;
2273
2274         TAILQ_FOREACH(flow, &priv->flows, next) {
2275                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2276                         dev->data->port_id, (void *)flow);
2277                 ++ret;
2278         }
2279         return ret;
2280 }
2281
2282 /**
2283  * Enable a control flow configured from the control plane.
2284  *
2285  * @param dev
2286  *   Pointer to Ethernet device.
2287  * @param eth_spec
2288  *   An Ethernet flow spec to apply.
2289  * @param eth_mask
2290  *   An Ethernet flow mask to apply.
2291  * @param vlan_spec
2292  *   A VLAN flow spec to apply.
2293  * @param vlan_mask
2294  *   A VLAN flow mask to apply.
2295  *
2296  * @return
2297  *   0 on success, a negative errno value otherwise and rte_errno is set.
2298  */
2299 int
2300 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2301                     struct rte_flow_item_eth *eth_spec,
2302                     struct rte_flow_item_eth *eth_mask,
2303                     struct rte_flow_item_vlan *vlan_spec,
2304                     struct rte_flow_item_vlan *vlan_mask)
2305 {
2306         struct mlx5_priv *priv = dev->data->dev_private;
2307         const struct rte_flow_attr attr = {
2308                 .ingress = 1,
2309                 .priority = MLX5_FLOW_PRIO_RSVD,
2310         };
2311         struct rte_flow_item items[] = {
2312                 {
2313                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2314                         .spec = eth_spec,
2315                         .last = NULL,
2316                         .mask = eth_mask,
2317                 },
2318                 {
2319                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2320                                               RTE_FLOW_ITEM_TYPE_END,
2321                         .spec = vlan_spec,
2322                         .last = NULL,
2323                         .mask = vlan_mask,
2324                 },
2325                 {
2326                         .type = RTE_FLOW_ITEM_TYPE_END,
2327                 },
2328         };
2329         uint16_t queue[priv->reta_idx_n];
2330         struct rte_flow_action_rss action_rss = {
2331                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2332                 .level = 0,
2333                 .types = priv->rss_conf.rss_hf,
2334                 .key_len = priv->rss_conf.rss_key_len,
2335                 .queue_num = priv->reta_idx_n,
2336                 .key = priv->rss_conf.rss_key,
2337                 .queue = queue,
2338         };
2339         struct rte_flow_action actions[] = {
2340                 {
2341                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2342                         .conf = &action_rss,
2343                 },
2344                 {
2345                         .type = RTE_FLOW_ACTION_TYPE_END,
2346                 },
2347         };
2348         struct rte_flow *flow;
2349         struct rte_flow_error error;
2350         unsigned int i;
2351
2352         if (!priv->reta_idx_n || !priv->rxqs_n) {
2353                 return 0;
2354         }
2355         for (i = 0; i != priv->reta_idx_n; ++i)
2356                 queue[i] = (*priv->reta_idx)[i];
2357         flow = flow_list_create(dev, &priv->ctrl_flows,
2358                                 &attr, items, actions, &error);
2359         if (!flow)
2360                 return -rte_errno;
2361         return 0;
2362 }
2363
2364 /**
2365  * Enable a flow control configured from the control plane.
2366  *
2367  * @param dev
2368  *   Pointer to Ethernet device.
2369  * @param eth_spec
2370  *   An Ethernet flow spec to apply.
2371  * @param eth_mask
2372  *   An Ethernet flow mask to apply.
2373  *
2374  * @return
2375  *   0 on success, a negative errno value otherwise and rte_errno is set.
2376  */
2377 int
2378 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2379                struct rte_flow_item_eth *eth_spec,
2380                struct rte_flow_item_eth *eth_mask)
2381 {
2382         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2383 }
2384
2385 /**
2386  * Destroy a flow.
2387  *
2388  * @see rte_flow_destroy()
2389  * @see rte_flow_ops
2390  */
2391 int
2392 mlx5_flow_destroy(struct rte_eth_dev *dev,
2393                   struct rte_flow *flow,
2394                   struct rte_flow_error *error __rte_unused)
2395 {
2396         struct mlx5_priv *priv = dev->data->dev_private;
2397
2398         flow_list_destroy(dev, &priv->flows, flow);
2399         return 0;
2400 }
2401
2402 /**
2403  * Destroy all flows.
2404  *
2405  * @see rte_flow_flush()
2406  * @see rte_flow_ops
2407  */
2408 int
2409 mlx5_flow_flush(struct rte_eth_dev *dev,
2410                 struct rte_flow_error *error __rte_unused)
2411 {
2412         struct mlx5_priv *priv = dev->data->dev_private;
2413
2414         mlx5_flow_list_flush(dev, &priv->flows);
2415         return 0;
2416 }
2417
2418 /**
2419  * Isolated mode.
2420  *
2421  * @see rte_flow_isolate()
2422  * @see rte_flow_ops
2423  */
2424 int
2425 mlx5_flow_isolate(struct rte_eth_dev *dev,
2426                   int enable,
2427                   struct rte_flow_error *error)
2428 {
2429         struct mlx5_priv *priv = dev->data->dev_private;
2430
2431         if (dev->data->dev_started) {
2432                 rte_flow_error_set(error, EBUSY,
2433                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2434                                    NULL,
2435                                    "port must be stopped first");
2436                 return -rte_errno;
2437         }
2438         priv->isolated = !!enable;
2439         if (enable)
2440                 dev->dev_ops = &mlx5_dev_ops_isolate;
2441         else
2442                 dev->dev_ops = &mlx5_dev_ops;
2443         return 0;
2444 }
2445
2446 /**
2447  * Query a flow.
2448  *
2449  * @see rte_flow_query()
2450  * @see rte_flow_ops
2451  */
2452 static int
2453 flow_drv_query(struct rte_eth_dev *dev,
2454                struct rte_flow *flow,
2455                const struct rte_flow_action *actions,
2456                void *data,
2457                struct rte_flow_error *error)
2458 {
2459         const struct mlx5_flow_driver_ops *fops;
2460         enum mlx5_flow_drv_type ftype = flow->drv_type;
2461
2462         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2463         fops = flow_get_drv_ops(ftype);
2464
2465         return fops->query(dev, flow, actions, data, error);
2466 }
2467
2468 /**
2469  * Query a flow.
2470  *
2471  * @see rte_flow_query()
2472  * @see rte_flow_ops
2473  */
2474 int
2475 mlx5_flow_query(struct rte_eth_dev *dev,
2476                 struct rte_flow *flow,
2477                 const struct rte_flow_action *actions,
2478                 void *data,
2479                 struct rte_flow_error *error)
2480 {
2481         int ret;
2482
2483         ret = flow_drv_query(dev, flow, actions, data, error);
2484         if (ret < 0)
2485                 return ret;
2486         return 0;
2487 }
2488
2489 /**
2490  * Convert a flow director filter to a generic flow.
2491  *
2492  * @param dev
2493  *   Pointer to Ethernet device.
2494  * @param fdir_filter
2495  *   Flow director filter to add.
2496  * @param attributes
2497  *   Generic flow parameters structure.
2498  *
2499  * @return
2500  *   0 on success, a negative errno value otherwise and rte_errno is set.
2501  */
2502 static int
2503 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2504                          const struct rte_eth_fdir_filter *fdir_filter,
2505                          struct mlx5_fdir *attributes)
2506 {
2507         struct mlx5_priv *priv = dev->data->dev_private;
2508         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2509         const struct rte_eth_fdir_masks *mask =
2510                 &dev->data->dev_conf.fdir_conf.mask;
2511
2512         /* Validate queue number. */
2513         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2514                 DRV_LOG(ERR, "port %u invalid queue number %d",
2515                         dev->data->port_id, fdir_filter->action.rx_queue);
2516                 rte_errno = EINVAL;
2517                 return -rte_errno;
2518         }
2519         attributes->attr.ingress = 1;
2520         attributes->items[0] = (struct rte_flow_item) {
2521                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2522                 .spec = &attributes->l2,
2523                 .mask = &attributes->l2_mask,
2524         };
2525         switch (fdir_filter->action.behavior) {
2526         case RTE_ETH_FDIR_ACCEPT:
2527                 attributes->actions[0] = (struct rte_flow_action){
2528                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2529                         .conf = &attributes->queue,
2530                 };
2531                 break;
2532         case RTE_ETH_FDIR_REJECT:
2533                 attributes->actions[0] = (struct rte_flow_action){
2534                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2535                 };
2536                 break;
2537         default:
2538                 DRV_LOG(ERR, "port %u invalid behavior %d",
2539                         dev->data->port_id,
2540                         fdir_filter->action.behavior);
2541                 rte_errno = ENOTSUP;
2542                 return -rte_errno;
2543         }
2544         attributes->queue.index = fdir_filter->action.rx_queue;
2545         /* Handle L3. */
2546         switch (fdir_filter->input.flow_type) {
2547         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2548         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2549         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2550                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2551                         .src_addr = input->flow.ip4_flow.src_ip,
2552                         .dst_addr = input->flow.ip4_flow.dst_ip,
2553                         .time_to_live = input->flow.ip4_flow.ttl,
2554                         .type_of_service = input->flow.ip4_flow.tos,
2555                 };
2556                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2557                         .src_addr = mask->ipv4_mask.src_ip,
2558                         .dst_addr = mask->ipv4_mask.dst_ip,
2559                         .time_to_live = mask->ipv4_mask.ttl,
2560                         .type_of_service = mask->ipv4_mask.tos,
2561                         .next_proto_id = mask->ipv4_mask.proto,
2562                 };
2563                 attributes->items[1] = (struct rte_flow_item){
2564                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2565                         .spec = &attributes->l3,
2566                         .mask = &attributes->l3_mask,
2567                 };
2568                 break;
2569         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2570         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2571         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2572                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2573                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2574                         .proto = input->flow.ipv6_flow.proto,
2575                 };
2576
2577                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2578                        input->flow.ipv6_flow.src_ip,
2579                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2580                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2581                        input->flow.ipv6_flow.dst_ip,
2582                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2583                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2584                        mask->ipv6_mask.src_ip,
2585                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2586                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2587                        mask->ipv6_mask.dst_ip,
2588                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2589                 attributes->items[1] = (struct rte_flow_item){
2590                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2591                         .spec = &attributes->l3,
2592                         .mask = &attributes->l3_mask,
2593                 };
2594                 break;
2595         default:
2596                 DRV_LOG(ERR, "port %u invalid flow type%d",
2597                         dev->data->port_id, fdir_filter->input.flow_type);
2598                 rte_errno = ENOTSUP;
2599                 return -rte_errno;
2600         }
2601         /* Handle L4. */
2602         switch (fdir_filter->input.flow_type) {
2603         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2604                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2605                         .src_port = input->flow.udp4_flow.src_port,
2606                         .dst_port = input->flow.udp4_flow.dst_port,
2607                 };
2608                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2609                         .src_port = mask->src_port_mask,
2610                         .dst_port = mask->dst_port_mask,
2611                 };
2612                 attributes->items[2] = (struct rte_flow_item){
2613                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2614                         .spec = &attributes->l4,
2615                         .mask = &attributes->l4_mask,
2616                 };
2617                 break;
2618         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2619                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2620                         .src_port = input->flow.tcp4_flow.src_port,
2621                         .dst_port = input->flow.tcp4_flow.dst_port,
2622                 };
2623                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2624                         .src_port = mask->src_port_mask,
2625                         .dst_port = mask->dst_port_mask,
2626                 };
2627                 attributes->items[2] = (struct rte_flow_item){
2628                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2629                         .spec = &attributes->l4,
2630                         .mask = &attributes->l4_mask,
2631                 };
2632                 break;
2633         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2634                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2635                         .src_port = input->flow.udp6_flow.src_port,
2636                         .dst_port = input->flow.udp6_flow.dst_port,
2637                 };
2638                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2639                         .src_port = mask->src_port_mask,
2640                         .dst_port = mask->dst_port_mask,
2641                 };
2642                 attributes->items[2] = (struct rte_flow_item){
2643                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2644                         .spec = &attributes->l4,
2645                         .mask = &attributes->l4_mask,
2646                 };
2647                 break;
2648         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2649                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2650                         .src_port = input->flow.tcp6_flow.src_port,
2651                         .dst_port = input->flow.tcp6_flow.dst_port,
2652                 };
2653                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2654                         .src_port = mask->src_port_mask,
2655                         .dst_port = mask->dst_port_mask,
2656                 };
2657                 attributes->items[2] = (struct rte_flow_item){
2658                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2659                         .spec = &attributes->l4,
2660                         .mask = &attributes->l4_mask,
2661                 };
2662                 break;
2663         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2664         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2665                 break;
2666         default:
2667                 DRV_LOG(ERR, "port %u invalid flow type%d",
2668                         dev->data->port_id, fdir_filter->input.flow_type);
2669                 rte_errno = ENOTSUP;
2670                 return -rte_errno;
2671         }
2672         return 0;
2673 }
2674
2675 #define FLOW_FDIR_CMP(f1, f2, fld) \
2676         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2677
2678 /**
2679  * Compare two FDIR flows. If items and actions are identical, the two flows are
2680  * regarded as same.
2681  *
2682  * @param dev
2683  *   Pointer to Ethernet device.
2684  * @param f1
2685  *   FDIR flow to compare.
2686  * @param f2
2687  *   FDIR flow to compare.
2688  *
2689  * @return
2690  *   Zero on match, 1 otherwise.
2691  */
2692 static int
2693 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2694 {
2695         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2696             FLOW_FDIR_CMP(f1, f2, l2) ||
2697             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2698             FLOW_FDIR_CMP(f1, f2, l3) ||
2699             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2700             FLOW_FDIR_CMP(f1, f2, l4) ||
2701             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2702             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2703                 return 1;
2704         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2705             FLOW_FDIR_CMP(f1, f2, queue))
2706                 return 1;
2707         return 0;
2708 }
2709
2710 /**
2711  * Search device flow list to find out a matched FDIR flow.
2712  *
2713  * @param dev
2714  *   Pointer to Ethernet device.
2715  * @param fdir_flow
2716  *   FDIR flow to lookup.
2717  *
2718  * @return
2719  *   Pointer of flow if found, NULL otherwise.
2720  */
2721 static struct rte_flow *
2722 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2723 {
2724         struct mlx5_priv *priv = dev->data->dev_private;
2725         struct rte_flow *flow = NULL;
2726
2727         assert(fdir_flow);
2728         TAILQ_FOREACH(flow, &priv->flows, next) {
2729                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2730                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2731                                 dev->data->port_id, (void *)flow);
2732                         break;
2733                 }
2734         }
2735         return flow;
2736 }
2737
2738 /**
2739  * Add new flow director filter and store it in list.
2740  *
2741  * @param dev
2742  *   Pointer to Ethernet device.
2743  * @param fdir_filter
2744  *   Flow director filter to add.
2745  *
2746  * @return
2747  *   0 on success, a negative errno value otherwise and rte_errno is set.
2748  */
2749 static int
2750 flow_fdir_filter_add(struct rte_eth_dev *dev,
2751                      const struct rte_eth_fdir_filter *fdir_filter)
2752 {
2753         struct mlx5_priv *priv = dev->data->dev_private;
2754         struct mlx5_fdir *fdir_flow;
2755         struct rte_flow *flow;
2756         int ret;
2757
2758         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2759         if (!fdir_flow) {
2760                 rte_errno = ENOMEM;
2761                 return -rte_errno;
2762         }
2763         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2764         if (ret)
2765                 goto error;
2766         flow = flow_fdir_filter_lookup(dev, fdir_flow);
2767         if (flow) {
2768                 rte_errno = EEXIST;
2769                 goto error;
2770         }
2771         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2772                                 fdir_flow->items, fdir_flow->actions, NULL);
2773         if (!flow)
2774                 goto error;
2775         assert(!flow->fdir);
2776         flow->fdir = fdir_flow;
2777         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2778                 dev->data->port_id, (void *)flow);
2779         return 0;
2780 error:
2781         rte_free(fdir_flow);
2782         return -rte_errno;
2783 }
2784
2785 /**
2786  * Delete specific filter.
2787  *
2788  * @param dev
2789  *   Pointer to Ethernet device.
2790  * @param fdir_filter
2791  *   Filter to be deleted.
2792  *
2793  * @return
2794  *   0 on success, a negative errno value otherwise and rte_errno is set.
2795  */
2796 static int
2797 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2798                         const struct rte_eth_fdir_filter *fdir_filter)
2799 {
2800         struct mlx5_priv *priv = dev->data->dev_private;
2801         struct rte_flow *flow;
2802         struct mlx5_fdir fdir_flow = {
2803                 .attr.group = 0,
2804         };
2805         int ret;
2806
2807         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2808         if (ret)
2809                 return -rte_errno;
2810         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2811         if (!flow) {
2812                 rte_errno = ENOENT;
2813                 return -rte_errno;
2814         }
2815         flow_list_destroy(dev, &priv->flows, flow);
2816         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2817                 dev->data->port_id, (void *)flow);
2818         return 0;
2819 }
2820
2821 /**
2822  * Update queue for specific filter.
2823  *
2824  * @param dev
2825  *   Pointer to Ethernet device.
2826  * @param fdir_filter
2827  *   Filter to be updated.
2828  *
2829  * @return
2830  *   0 on success, a negative errno value otherwise and rte_errno is set.
2831  */
2832 static int
2833 flow_fdir_filter_update(struct rte_eth_dev *dev,
2834                         const struct rte_eth_fdir_filter *fdir_filter)
2835 {
2836         int ret;
2837
2838         ret = flow_fdir_filter_delete(dev, fdir_filter);
2839         if (ret)
2840                 return ret;
2841         return flow_fdir_filter_add(dev, fdir_filter);
2842 }
2843
2844 /**
2845  * Flush all filters.
2846  *
2847  * @param dev
2848  *   Pointer to Ethernet device.
2849  */
2850 static void
2851 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2852 {
2853         struct mlx5_priv *priv = dev->data->dev_private;
2854
2855         mlx5_flow_list_flush(dev, &priv->flows);
2856 }
2857
2858 /**
2859  * Get flow director information.
2860  *
2861  * @param dev
2862  *   Pointer to Ethernet device.
2863  * @param[out] fdir_info
2864  *   Resulting flow director information.
2865  */
2866 static void
2867 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2868 {
2869         struct rte_eth_fdir_masks *mask =
2870                 &dev->data->dev_conf.fdir_conf.mask;
2871
2872         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2873         fdir_info->guarant_spc = 0;
2874         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2875         fdir_info->max_flexpayload = 0;
2876         fdir_info->flow_types_mask[0] = 0;
2877         fdir_info->flex_payload_unit = 0;
2878         fdir_info->max_flex_payload_segment_num = 0;
2879         fdir_info->flex_payload_limit = 0;
2880         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2881 }
2882
2883 /**
2884  * Deal with flow director operations.
2885  *
2886  * @param dev
2887  *   Pointer to Ethernet device.
2888  * @param filter_op
2889  *   Operation to perform.
2890  * @param arg
2891  *   Pointer to operation-specific structure.
2892  *
2893  * @return
2894  *   0 on success, a negative errno value otherwise and rte_errno is set.
2895  */
2896 static int
2897 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2898                     void *arg)
2899 {
2900         enum rte_fdir_mode fdir_mode =
2901                 dev->data->dev_conf.fdir_conf.mode;
2902
2903         if (filter_op == RTE_ETH_FILTER_NOP)
2904                 return 0;
2905         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2906             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2907                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2908                         dev->data->port_id, fdir_mode);
2909                 rte_errno = EINVAL;
2910                 return -rte_errno;
2911         }
2912         switch (filter_op) {
2913         case RTE_ETH_FILTER_ADD:
2914                 return flow_fdir_filter_add(dev, arg);
2915         case RTE_ETH_FILTER_UPDATE:
2916                 return flow_fdir_filter_update(dev, arg);
2917         case RTE_ETH_FILTER_DELETE:
2918                 return flow_fdir_filter_delete(dev, arg);
2919         case RTE_ETH_FILTER_FLUSH:
2920                 flow_fdir_filter_flush(dev);
2921                 break;
2922         case RTE_ETH_FILTER_INFO:
2923                 flow_fdir_info_get(dev, arg);
2924                 break;
2925         default:
2926                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2927                         dev->data->port_id, filter_op);
2928                 rte_errno = EINVAL;
2929                 return -rte_errno;
2930         }
2931         return 0;
2932 }
2933
2934 /**
2935  * Manage filter operations.
2936  *
2937  * @param dev
2938  *   Pointer to Ethernet device structure.
2939  * @param filter_type
2940  *   Filter type.
2941  * @param filter_op
2942  *   Operation to perform.
2943  * @param arg
2944  *   Pointer to operation-specific structure.
2945  *
2946  * @return
2947  *   0 on success, a negative errno value otherwise and rte_errno is set.
2948  */
2949 int
2950 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2951                      enum rte_filter_type filter_type,
2952                      enum rte_filter_op filter_op,
2953                      void *arg)
2954 {
2955         switch (filter_type) {
2956         case RTE_ETH_FILTER_GENERIC:
2957                 if (filter_op != RTE_ETH_FILTER_GET) {
2958                         rte_errno = EINVAL;
2959                         return -rte_errno;
2960                 }
2961                 *(const void **)arg = &mlx5_flow_ops;
2962                 return 0;
2963         case RTE_ETH_FILTER_FDIR:
2964                 return flow_fdir_ctrl_func(dev, filter_op, arg);
2965         default:
2966                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2967                         dev->data->port_id, filter_type);
2968                 rte_errno = ENOTSUP;
2969                 return -rte_errno;
2970         }
2971         return 0;
2972 }