d7243a878bab2ac41ce8eca342571b6732afc3c5
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_eal_paging.h>
17 #include <rte_flow.h>
18 #include <rte_cycles.h>
19 #include <rte_flow_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_ip.h>
22
23 #include <mlx5_glue.h>
24 #include <mlx5_devx_cmds.h>
25 #include <mlx5_prm.h>
26 #include <mlx5_malloc.h>
27
28 #include "mlx5_defs.h"
29 #include "mlx5.h"
30 #include "mlx5_flow.h"
31 #include "mlx5_flow_os.h"
32 #include "mlx5_rxtx.h"
33 #include "mlx5_common_os.h"
34
35 /** Device flow drivers. */
36 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
37
38 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
39
40 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
41         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
44 #endif
45         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
46         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
47 };
48
49 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
50 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
51         (const int []){ \
52                 __VA_ARGS__, 0, \
53         }
54
55 /** Node object of input graph for mlx5_flow_expand_rss(). */
56 struct mlx5_flow_expand_node {
57         const int *const next;
58         /**<
59          * List of next node indexes. Index 0 is interpreted as a terminator.
60          */
61         const enum rte_flow_item_type type;
62         /**< Pattern item type of current node. */
63         uint64_t rss_types;
64         /**<
65          * RSS types bit-field associated with this node
66          * (see ETH_RSS_* definitions).
67          */
68 };
69
70 /** Object returned by mlx5_flow_expand_rss(). */
71 struct mlx5_flow_expand_rss {
72         uint32_t entries;
73         /**< Number of entries @p patterns and @p priorities. */
74         struct {
75                 struct rte_flow_item *pattern; /**< Expanded pattern array. */
76                 uint32_t priority; /**< Priority offset for each expansion. */
77         } entry[];
78 };
79
80 static enum rte_flow_item_type
81 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
82 {
83         enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
84         uint16_t ether_type = 0;
85         uint16_t ether_type_m;
86         uint8_t ip_next_proto = 0;
87         uint8_t ip_next_proto_m;
88
89         if (item == NULL || item->spec == NULL)
90                 return ret;
91         switch (item->type) {
92         case RTE_FLOW_ITEM_TYPE_ETH:
93                 if (item->mask)
94                         ether_type_m = ((const struct rte_flow_item_eth *)
95                                                 (item->mask))->type;
96                 else
97                         ether_type_m = rte_flow_item_eth_mask.type;
98                 if (ether_type_m != RTE_BE16(0xFFFF))
99                         break;
100                 ether_type = ((const struct rte_flow_item_eth *)
101                                 (item->spec))->type;
102                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
103                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
104                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
105                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
106                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
107                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
108                 else
109                         ret = RTE_FLOW_ITEM_TYPE_END;
110                 break;
111         case RTE_FLOW_ITEM_TYPE_VLAN:
112                 if (item->mask)
113                         ether_type_m = ((const struct rte_flow_item_vlan *)
114                                                 (item->mask))->inner_type;
115                 else
116                         ether_type_m = rte_flow_item_vlan_mask.inner_type;
117                 if (ether_type_m != RTE_BE16(0xFFFF))
118                         break;
119                 ether_type = ((const struct rte_flow_item_vlan *)
120                                 (item->spec))->inner_type;
121                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
122                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
123                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
124                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
125                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
126                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
127                 else
128                         ret = RTE_FLOW_ITEM_TYPE_END;
129                 break;
130         case RTE_FLOW_ITEM_TYPE_IPV4:
131                 if (item->mask)
132                         ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
133                                         (item->mask))->hdr.next_proto_id;
134                 else
135                         ip_next_proto_m =
136                                 rte_flow_item_ipv4_mask.hdr.next_proto_id;
137                 if (ip_next_proto_m != 0xFF)
138                         break;
139                 ip_next_proto = ((const struct rte_flow_item_ipv4 *)
140                                 (item->spec))->hdr.next_proto_id;
141                 if (ip_next_proto == IPPROTO_UDP)
142                         ret = RTE_FLOW_ITEM_TYPE_UDP;
143                 else if (ip_next_proto == IPPROTO_TCP)
144                         ret = RTE_FLOW_ITEM_TYPE_TCP;
145                 else if (ip_next_proto == IPPROTO_IP)
146                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
147                 else if (ip_next_proto == IPPROTO_IPV6)
148                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
149                 else
150                         ret = RTE_FLOW_ITEM_TYPE_END;
151                 break;
152         case RTE_FLOW_ITEM_TYPE_IPV6:
153                 if (item->mask)
154                         ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
155                                                 (item->mask))->hdr.proto;
156                 else
157                         ip_next_proto_m =
158                                 rte_flow_item_ipv6_mask.hdr.proto;
159                 if (ip_next_proto_m != 0xFF)
160                         break;
161                 ip_next_proto = ((const struct rte_flow_item_ipv6 *)
162                                 (item->spec))->hdr.proto;
163                 if (ip_next_proto == IPPROTO_UDP)
164                         ret = RTE_FLOW_ITEM_TYPE_UDP;
165                 else if (ip_next_proto == IPPROTO_TCP)
166                         ret = RTE_FLOW_ITEM_TYPE_TCP;
167                 else if (ip_next_proto == IPPROTO_IP)
168                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
169                 else if (ip_next_proto == IPPROTO_IPV6)
170                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
171                 else
172                         ret = RTE_FLOW_ITEM_TYPE_END;
173                 break;
174         default:
175                 ret = RTE_FLOW_ITEM_TYPE_VOID;
176                 break;
177         }
178         return ret;
179 }
180
181 /**
182  * Expand RSS flows into several possible flows according to the RSS hash
183  * fields requested and the driver capabilities.
184  *
185  * @param[out] buf
186  *   Buffer to store the result expansion.
187  * @param[in] size
188  *   Buffer size in bytes. If 0, @p buf can be NULL.
189  * @param[in] pattern
190  *   User flow pattern.
191  * @param[in] types
192  *   RSS types to expand (see ETH_RSS_* definitions).
193  * @param[in] graph
194  *   Input graph to expand @p pattern according to @p types.
195  * @param[in] graph_root_index
196  *   Index of root node in @p graph, typically 0.
197  *
198  * @return
199  *   A positive value representing the size of @p buf in bytes regardless of
200  *   @p size on success, a negative errno value otherwise and rte_errno is
201  *   set, the following errors are defined:
202  *
203  *   -E2BIG: graph-depth @p graph is too deep.
204  */
205 static int
206 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
207                      const struct rte_flow_item *pattern, uint64_t types,
208                      const struct mlx5_flow_expand_node graph[],
209                      int graph_root_index)
210 {
211         const int elt_n = 8;
212         const struct rte_flow_item *item;
213         const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
214         const int *next_node;
215         const int *stack[elt_n];
216         int stack_pos = 0;
217         struct rte_flow_item flow_items[elt_n];
218         unsigned int i;
219         size_t lsize;
220         size_t user_pattern_size = 0;
221         void *addr = NULL;
222         const struct mlx5_flow_expand_node *next = NULL;
223         struct rte_flow_item missed_item;
224         int missed = 0;
225         int elt = 0;
226         const struct rte_flow_item *last_item = NULL;
227
228         memset(&missed_item, 0, sizeof(missed_item));
229         lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
230                 elt_n * sizeof(buf->entry[0]);
231         if (lsize <= size) {
232                 buf->entry[0].priority = 0;
233                 buf->entry[0].pattern = (void *)&buf->entry[elt_n];
234                 buf->entries = 0;
235                 addr = buf->entry[0].pattern;
236         }
237         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
238                 if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
239                         last_item = item;
240                 for (i = 0; node->next && node->next[i]; ++i) {
241                         next = &graph[node->next[i]];
242                         if (next->type == item->type)
243                                 break;
244                 }
245                 if (next)
246                         node = next;
247                 user_pattern_size += sizeof(*item);
248         }
249         user_pattern_size += sizeof(*item); /* Handle END item. */
250         lsize += user_pattern_size;
251         /* Copy the user pattern in the first entry of the buffer. */
252         if (lsize <= size) {
253                 rte_memcpy(addr, pattern, user_pattern_size);
254                 addr = (void *)(((uintptr_t)addr) + user_pattern_size);
255                 buf->entries = 1;
256         }
257         /* Start expanding. */
258         memset(flow_items, 0, sizeof(flow_items));
259         user_pattern_size -= sizeof(*item);
260         /*
261          * Check if the last valid item has spec set, need complete pattern,
262          * and the pattern can be used for expansion.
263          */
264         missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
265         if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
266                 /* Item type END indicates expansion is not required. */
267                 return lsize;
268         }
269         if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
270                 next = NULL;
271                 missed = 1;
272                 for (i = 0; node->next && node->next[i]; ++i) {
273                         next = &graph[node->next[i]];
274                         if (next->type == missed_item.type) {
275                                 flow_items[0].type = missed_item.type;
276                                 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
277                                 break;
278                         }
279                         next = NULL;
280                 }
281         }
282         if (next && missed) {
283                 elt = 2; /* missed item + item end. */
284                 node = next;
285                 lsize += elt * sizeof(*item) + user_pattern_size;
286                 if ((node->rss_types & types) && lsize <= size) {
287                         buf->entry[buf->entries].priority = 1;
288                         buf->entry[buf->entries].pattern = addr;
289                         buf->entries++;
290                         rte_memcpy(addr, buf->entry[0].pattern,
291                                    user_pattern_size);
292                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
293                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
294                         addr = (void *)(((uintptr_t)addr) +
295                                         elt * sizeof(*item));
296                 }
297         }
298         memset(flow_items, 0, sizeof(flow_items));
299         next_node = node->next;
300         stack[stack_pos] = next_node;
301         node = next_node ? &graph[*next_node] : NULL;
302         while (node) {
303                 flow_items[stack_pos].type = node->type;
304                 if (node->rss_types & types) {
305                         /*
306                          * compute the number of items to copy from the
307                          * expansion and copy it.
308                          * When the stack_pos is 0, there are 1 element in it,
309                          * plus the addition END item.
310                          */
311                         elt = stack_pos + 2;
312                         flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
313                         lsize += elt * sizeof(*item) + user_pattern_size;
314                         if (lsize <= size) {
315                                 size_t n = elt * sizeof(*item);
316
317                                 buf->entry[buf->entries].priority =
318                                         stack_pos + 1 + missed;
319                                 buf->entry[buf->entries].pattern = addr;
320                                 buf->entries++;
321                                 rte_memcpy(addr, buf->entry[0].pattern,
322                                            user_pattern_size);
323                                 addr = (void *)(((uintptr_t)addr) +
324                                                 user_pattern_size);
325                                 rte_memcpy(addr, &missed_item,
326                                            missed * sizeof(*item));
327                                 addr = (void *)(((uintptr_t)addr) +
328                                         missed * sizeof(*item));
329                                 rte_memcpy(addr, flow_items, n);
330                                 addr = (void *)(((uintptr_t)addr) + n);
331                         }
332                 }
333                 /* Go deeper. */
334                 if (node->next) {
335                         next_node = node->next;
336                         if (stack_pos++ == elt_n) {
337                                 rte_errno = E2BIG;
338                                 return -rte_errno;
339                         }
340                         stack[stack_pos] = next_node;
341                 } else if (*(next_node + 1)) {
342                         /* Follow up with the next possibility. */
343                         ++next_node;
344                 } else {
345                         /* Move to the next path. */
346                         if (stack_pos)
347                                 next_node = stack[--stack_pos];
348                         next_node++;
349                         stack[stack_pos] = next_node;
350                 }
351                 node = *next_node ? &graph[*next_node] : NULL;
352         };
353         /* no expanded flows but we have missed item, create one rule for it */
354         if (buf->entries == 1 && missed != 0) {
355                 elt = 2;
356                 lsize += elt * sizeof(*item) + user_pattern_size;
357                 if (lsize <= size) {
358                         buf->entry[buf->entries].priority = 1;
359                         buf->entry[buf->entries].pattern = addr;
360                         buf->entries++;
361                         flow_items[0].type = missed_item.type;
362                         flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
363                         rte_memcpy(addr, buf->entry[0].pattern,
364                                    user_pattern_size);
365                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
366                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
367                         addr = (void *)(((uintptr_t)addr) +
368                                         elt * sizeof(*item));
369                 }
370         }
371         return lsize;
372 }
373
374 enum mlx5_expansion {
375         MLX5_EXPANSION_ROOT,
376         MLX5_EXPANSION_ROOT_OUTER,
377         MLX5_EXPANSION_ROOT_ETH_VLAN,
378         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
379         MLX5_EXPANSION_OUTER_ETH,
380         MLX5_EXPANSION_OUTER_ETH_VLAN,
381         MLX5_EXPANSION_OUTER_VLAN,
382         MLX5_EXPANSION_OUTER_IPV4,
383         MLX5_EXPANSION_OUTER_IPV4_UDP,
384         MLX5_EXPANSION_OUTER_IPV4_TCP,
385         MLX5_EXPANSION_OUTER_IPV6,
386         MLX5_EXPANSION_OUTER_IPV6_UDP,
387         MLX5_EXPANSION_OUTER_IPV6_TCP,
388         MLX5_EXPANSION_VXLAN,
389         MLX5_EXPANSION_VXLAN_GPE,
390         MLX5_EXPANSION_GRE,
391         MLX5_EXPANSION_MPLS,
392         MLX5_EXPANSION_ETH,
393         MLX5_EXPANSION_ETH_VLAN,
394         MLX5_EXPANSION_VLAN,
395         MLX5_EXPANSION_IPV4,
396         MLX5_EXPANSION_IPV4_UDP,
397         MLX5_EXPANSION_IPV4_TCP,
398         MLX5_EXPANSION_IPV6,
399         MLX5_EXPANSION_IPV6_UDP,
400         MLX5_EXPANSION_IPV6_TCP,
401 };
402
403 /** Supported expansion of items. */
404 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
405         [MLX5_EXPANSION_ROOT] = {
406                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
407                                                   MLX5_EXPANSION_IPV4,
408                                                   MLX5_EXPANSION_IPV6),
409                 .type = RTE_FLOW_ITEM_TYPE_END,
410         },
411         [MLX5_EXPANSION_ROOT_OUTER] = {
412                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
413                                                   MLX5_EXPANSION_OUTER_IPV4,
414                                                   MLX5_EXPANSION_OUTER_IPV6),
415                 .type = RTE_FLOW_ITEM_TYPE_END,
416         },
417         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
418                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
419                 .type = RTE_FLOW_ITEM_TYPE_END,
420         },
421         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
422                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
423                                                 (MLX5_EXPANSION_OUTER_ETH_VLAN),
424                 .type = RTE_FLOW_ITEM_TYPE_END,
425         },
426         [MLX5_EXPANSION_OUTER_ETH] = {
427                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
428                                                   MLX5_EXPANSION_OUTER_IPV6,
429                                                   MLX5_EXPANSION_MPLS),
430                 .type = RTE_FLOW_ITEM_TYPE_ETH,
431                 .rss_types = 0,
432         },
433         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
434                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
435                 .type = RTE_FLOW_ITEM_TYPE_ETH,
436                 .rss_types = 0,
437         },
438         [MLX5_EXPANSION_OUTER_VLAN] = {
439                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
440                                                   MLX5_EXPANSION_OUTER_IPV6),
441                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
442         },
443         [MLX5_EXPANSION_OUTER_IPV4] = {
444                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
445                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
446                          MLX5_EXPANSION_OUTER_IPV4_TCP,
447                          MLX5_EXPANSION_GRE,
448                          MLX5_EXPANSION_IPV4,
449                          MLX5_EXPANSION_IPV6),
450                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
451                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
452                         ETH_RSS_NONFRAG_IPV4_OTHER,
453         },
454         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
455                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
456                                                   MLX5_EXPANSION_VXLAN_GPE),
457                 .type = RTE_FLOW_ITEM_TYPE_UDP,
458                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
459         },
460         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
461                 .type = RTE_FLOW_ITEM_TYPE_TCP,
462                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
463         },
464         [MLX5_EXPANSION_OUTER_IPV6] = {
465                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
466                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
467                          MLX5_EXPANSION_OUTER_IPV6_TCP,
468                          MLX5_EXPANSION_IPV4,
469                          MLX5_EXPANSION_IPV6),
470                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
471                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
472                         ETH_RSS_NONFRAG_IPV6_OTHER,
473         },
474         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
475                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
476                                                   MLX5_EXPANSION_VXLAN_GPE),
477                 .type = RTE_FLOW_ITEM_TYPE_UDP,
478                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
479         },
480         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
481                 .type = RTE_FLOW_ITEM_TYPE_TCP,
482                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
483         },
484         [MLX5_EXPANSION_VXLAN] = {
485                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
486                                                   MLX5_EXPANSION_IPV4,
487                                                   MLX5_EXPANSION_IPV6),
488                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
489         },
490         [MLX5_EXPANSION_VXLAN_GPE] = {
491                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
492                                                   MLX5_EXPANSION_IPV4,
493                                                   MLX5_EXPANSION_IPV6),
494                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
495         },
496         [MLX5_EXPANSION_GRE] = {
497                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
498                 .type = RTE_FLOW_ITEM_TYPE_GRE,
499         },
500         [MLX5_EXPANSION_MPLS] = {
501                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
502                                                   MLX5_EXPANSION_IPV6),
503                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
504         },
505         [MLX5_EXPANSION_ETH] = {
506                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
507                                                   MLX5_EXPANSION_IPV6),
508                 .type = RTE_FLOW_ITEM_TYPE_ETH,
509         },
510         [MLX5_EXPANSION_ETH_VLAN] = {
511                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
512                 .type = RTE_FLOW_ITEM_TYPE_ETH,
513         },
514         [MLX5_EXPANSION_VLAN] = {
515                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
516                                                   MLX5_EXPANSION_IPV6),
517                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
518         },
519         [MLX5_EXPANSION_IPV4] = {
520                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
521                                                   MLX5_EXPANSION_IPV4_TCP),
522                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
523                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
524                         ETH_RSS_NONFRAG_IPV4_OTHER,
525         },
526         [MLX5_EXPANSION_IPV4_UDP] = {
527                 .type = RTE_FLOW_ITEM_TYPE_UDP,
528                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
529         },
530         [MLX5_EXPANSION_IPV4_TCP] = {
531                 .type = RTE_FLOW_ITEM_TYPE_TCP,
532                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
533         },
534         [MLX5_EXPANSION_IPV6] = {
535                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
536                                                   MLX5_EXPANSION_IPV6_TCP),
537                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
538                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
539                         ETH_RSS_NONFRAG_IPV6_OTHER,
540         },
541         [MLX5_EXPANSION_IPV6_UDP] = {
542                 .type = RTE_FLOW_ITEM_TYPE_UDP,
543                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
544         },
545         [MLX5_EXPANSION_IPV6_TCP] = {
546                 .type = RTE_FLOW_ITEM_TYPE_TCP,
547                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
548         },
549 };
550
551 static const struct rte_flow_ops mlx5_flow_ops = {
552         .validate = mlx5_flow_validate,
553         .create = mlx5_flow_create,
554         .destroy = mlx5_flow_destroy,
555         .flush = mlx5_flow_flush,
556         .isolate = mlx5_flow_isolate,
557         .query = mlx5_flow_query,
558         .dev_dump = mlx5_flow_dev_dump,
559         .get_aged_flows = mlx5_flow_get_aged_flows,
560 };
561
562 /* Convert FDIR request to Generic flow. */
563 struct mlx5_fdir {
564         struct rte_flow_attr attr;
565         struct rte_flow_item items[4];
566         struct rte_flow_item_eth l2;
567         struct rte_flow_item_eth l2_mask;
568         union {
569                 struct rte_flow_item_ipv4 ipv4;
570                 struct rte_flow_item_ipv6 ipv6;
571         } l3;
572         union {
573                 struct rte_flow_item_ipv4 ipv4;
574                 struct rte_flow_item_ipv6 ipv6;
575         } l3_mask;
576         union {
577                 struct rte_flow_item_udp udp;
578                 struct rte_flow_item_tcp tcp;
579         } l4;
580         union {
581                 struct rte_flow_item_udp udp;
582                 struct rte_flow_item_tcp tcp;
583         } l4_mask;
584         struct rte_flow_action actions[2];
585         struct rte_flow_action_queue queue;
586 };
587
588 /* Tunnel information. */
589 struct mlx5_flow_tunnel_info {
590         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
591         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
592 };
593
594 static struct mlx5_flow_tunnel_info tunnels_info[] = {
595         {
596                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
597                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
598         },
599         {
600                 .tunnel = MLX5_FLOW_LAYER_GENEVE,
601                 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
602         },
603         {
604                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
605                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
606         },
607         {
608                 .tunnel = MLX5_FLOW_LAYER_GRE,
609                 .ptype = RTE_PTYPE_TUNNEL_GRE,
610         },
611         {
612                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
613                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
614         },
615         {
616                 .tunnel = MLX5_FLOW_LAYER_MPLS,
617                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
618         },
619         {
620                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
621                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
622         },
623         {
624                 .tunnel = MLX5_FLOW_LAYER_IPIP,
625                 .ptype = RTE_PTYPE_TUNNEL_IP,
626         },
627         {
628                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
629                 .ptype = RTE_PTYPE_TUNNEL_IP,
630         },
631         {
632                 .tunnel = MLX5_FLOW_LAYER_GTP,
633                 .ptype = RTE_PTYPE_TUNNEL_GTPU,
634         },
635 };
636
637 /**
638  * Translate tag ID to register.
639  *
640  * @param[in] dev
641  *   Pointer to the Ethernet device structure.
642  * @param[in] feature
643  *   The feature that request the register.
644  * @param[in] id
645  *   The request register ID.
646  * @param[out] error
647  *   Error description in case of any.
648  *
649  * @return
650  *   The request register on success, a negative errno
651  *   value otherwise and rte_errno is set.
652  */
653 int
654 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
655                      enum mlx5_feature_name feature,
656                      uint32_t id,
657                      struct rte_flow_error *error)
658 {
659         struct mlx5_priv *priv = dev->data->dev_private;
660         struct mlx5_dev_config *config = &priv->config;
661         enum modify_reg start_reg;
662         bool skip_mtr_reg = false;
663
664         switch (feature) {
665         case MLX5_HAIRPIN_RX:
666                 return REG_B;
667         case MLX5_HAIRPIN_TX:
668                 return REG_A;
669         case MLX5_METADATA_RX:
670                 switch (config->dv_xmeta_en) {
671                 case MLX5_XMETA_MODE_LEGACY:
672                         return REG_B;
673                 case MLX5_XMETA_MODE_META16:
674                         return REG_C_0;
675                 case MLX5_XMETA_MODE_META32:
676                         return REG_C_1;
677                 }
678                 break;
679         case MLX5_METADATA_TX:
680                 return REG_A;
681         case MLX5_METADATA_FDB:
682                 switch (config->dv_xmeta_en) {
683                 case MLX5_XMETA_MODE_LEGACY:
684                         return REG_NON;
685                 case MLX5_XMETA_MODE_META16:
686                         return REG_C_0;
687                 case MLX5_XMETA_MODE_META32:
688                         return REG_C_1;
689                 }
690                 break;
691         case MLX5_FLOW_MARK:
692                 switch (config->dv_xmeta_en) {
693                 case MLX5_XMETA_MODE_LEGACY:
694                         return REG_NON;
695                 case MLX5_XMETA_MODE_META16:
696                         return REG_C_1;
697                 case MLX5_XMETA_MODE_META32:
698                         return REG_C_0;
699                 }
700                 break;
701         case MLX5_MTR_SFX:
702                 /*
703                  * If meter color and flow match share one register, flow match
704                  * should use the meter color register for match.
705                  */
706                 if (priv->mtr_reg_share)
707                         return priv->mtr_color_reg;
708                 else
709                         return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
710                                REG_C_3;
711         case MLX5_MTR_COLOR:
712                 MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
713                 return priv->mtr_color_reg;
714         case MLX5_COPY_MARK:
715                 /*
716                  * Metadata COPY_MARK register using is in meter suffix sub
717                  * flow while with meter. It's safe to share the same register.
718                  */
719                 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
720         case MLX5_APP_TAG:
721                 /*
722                  * If meter is enable, it will engage the register for color
723                  * match and flow match. If meter color match is not using the
724                  * REG_C_2, need to skip the REG_C_x be used by meter color
725                  * match.
726                  * If meter is disable, free to use all available registers.
727                  */
728                 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
729                             (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
730                 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
731                 if (id > (REG_C_7 - start_reg))
732                         return rte_flow_error_set(error, EINVAL,
733                                                   RTE_FLOW_ERROR_TYPE_ITEM,
734                                                   NULL, "invalid tag id");
735                 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
736                         return rte_flow_error_set(error, ENOTSUP,
737                                                   RTE_FLOW_ERROR_TYPE_ITEM,
738                                                   NULL, "unsupported tag id");
739                 /*
740                  * This case means meter is using the REG_C_x great than 2.
741                  * Take care not to conflict with meter color REG_C_x.
742                  * If the available index REG_C_y >= REG_C_x, skip the
743                  * color register.
744                  */
745                 if (skip_mtr_reg && config->flow_mreg_c
746                     [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
747                         if (id >= (REG_C_7 - start_reg))
748                                 return rte_flow_error_set(error, EINVAL,
749                                                        RTE_FLOW_ERROR_TYPE_ITEM,
750                                                         NULL, "invalid tag id");
751                         if (config->flow_mreg_c
752                             [id + 1 + start_reg - REG_C_0] != REG_NON)
753                                 return config->flow_mreg_c
754                                                [id + 1 + start_reg - REG_C_0];
755                         return rte_flow_error_set(error, ENOTSUP,
756                                                   RTE_FLOW_ERROR_TYPE_ITEM,
757                                                   NULL, "unsupported tag id");
758                 }
759                 return config->flow_mreg_c[id + start_reg - REG_C_0];
760         }
761         MLX5_ASSERT(false);
762         return rte_flow_error_set(error, EINVAL,
763                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
764                                   NULL, "invalid feature name");
765 }
766
767 /**
768  * Check extensive flow metadata register support.
769  *
770  * @param dev
771  *   Pointer to rte_eth_dev structure.
772  *
773  * @return
774  *   True if device supports extensive flow metadata register, otherwise false.
775  */
776 bool
777 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
778 {
779         struct mlx5_priv *priv = dev->data->dev_private;
780         struct mlx5_dev_config *config = &priv->config;
781
782         /*
783          * Having available reg_c can be regarded inclusively as supporting
784          * extensive flow metadata register, which could mean,
785          * - metadata register copy action by modify header.
786          * - 16 modify header actions is supported.
787          * - reg_c's are preserved across different domain (FDB and NIC) on
788          *   packet loopback by flow lookup miss.
789          */
790         return config->flow_mreg_c[2] != REG_NON;
791 }
792
793 /**
794  * Verify the @p item specifications (spec, last, mask) are compatible with the
795  * NIC capabilities.
796  *
797  * @param[in] item
798  *   Item specification.
799  * @param[in] mask
800  *   @p item->mask or flow default bit-masks.
801  * @param[in] nic_mask
802  *   Bit-masks covering supported fields by the NIC to compare with user mask.
803  * @param[in] size
804  *   Bit-masks size in bytes.
805  * @param[in] range_accepted
806  *   True if range of values is accepted for specific fields, false otherwise.
807  * @param[out] error
808  *   Pointer to error structure.
809  *
810  * @return
811  *   0 on success, a negative errno value otherwise and rte_errno is set.
812  */
813 int
814 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
815                           const uint8_t *mask,
816                           const uint8_t *nic_mask,
817                           unsigned int size,
818                           bool range_accepted,
819                           struct rte_flow_error *error)
820 {
821         unsigned int i;
822
823         MLX5_ASSERT(nic_mask);
824         for (i = 0; i < size; ++i)
825                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
826                         return rte_flow_error_set(error, ENOTSUP,
827                                                   RTE_FLOW_ERROR_TYPE_ITEM,
828                                                   item,
829                                                   "mask enables non supported"
830                                                   " bits");
831         if (!item->spec && (item->mask || item->last))
832                 return rte_flow_error_set(error, EINVAL,
833                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
834                                           "mask/last without a spec is not"
835                                           " supported");
836         if (item->spec && item->last && !range_accepted) {
837                 uint8_t spec[size];
838                 uint8_t last[size];
839                 unsigned int i;
840                 int ret;
841
842                 for (i = 0; i < size; ++i) {
843                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
844                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
845                 }
846                 ret = memcmp(spec, last, size);
847                 if (ret != 0)
848                         return rte_flow_error_set(error, EINVAL,
849                                                   RTE_FLOW_ERROR_TYPE_ITEM,
850                                                   item,
851                                                   "range is not valid");
852         }
853         return 0;
854 }
855
856 /**
857  * Adjust the hash fields according to the @p flow information.
858  *
859  * @param[in] dev_flow.
860  *   Pointer to the mlx5_flow.
861  * @param[in] tunnel
862  *   1 when the hash field is for a tunnel item.
863  * @param[in] layer_types
864  *   ETH_RSS_* types.
865  * @param[in] hash_fields
866  *   Item hash fields.
867  *
868  * @return
869  *   The hash fields that should be used.
870  */
871 uint64_t
872 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
873                             int tunnel __rte_unused, uint64_t layer_types,
874                             uint64_t hash_fields)
875 {
876 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
877         int rss_request_inner = rss_desc->level >= 2;
878
879         /* Check RSS hash level for tunnel. */
880         if (tunnel && rss_request_inner)
881                 hash_fields |= IBV_RX_HASH_INNER;
882         else if (tunnel || rss_request_inner)
883                 return 0;
884 #endif
885         /* Check if requested layer matches RSS hash fields. */
886         if (!(rss_desc->types & layer_types))
887                 return 0;
888         return hash_fields;
889 }
890
891 /**
892  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
893  * if several tunnel rules are used on this queue, the tunnel ptype will be
894  * cleared.
895  *
896  * @param rxq_ctrl
897  *   Rx queue to update.
898  */
899 static void
900 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
901 {
902         unsigned int i;
903         uint32_t tunnel_ptype = 0;
904
905         /* Look up for the ptype to use. */
906         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
907                 if (!rxq_ctrl->flow_tunnels_n[i])
908                         continue;
909                 if (!tunnel_ptype) {
910                         tunnel_ptype = tunnels_info[i].ptype;
911                 } else {
912                         tunnel_ptype = 0;
913                         break;
914                 }
915         }
916         rxq_ctrl->rxq.tunnel = tunnel_ptype;
917 }
918
919 /**
920  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
921  * flow.
922  *
923  * @param[in] dev
924  *   Pointer to the Ethernet device structure.
925  * @param[in] dev_handle
926  *   Pointer to device flow handle structure.
927  */
928 static void
929 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
930                        struct mlx5_flow_handle *dev_handle)
931 {
932         struct mlx5_priv *priv = dev->data->dev_private;
933         const int mark = dev_handle->mark;
934         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
935         struct mlx5_hrxq *hrxq;
936         unsigned int i;
937
938         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
939                 return;
940         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
941                               dev_handle->rix_hrxq);
942         if (!hrxq)
943                 return;
944         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
945                 int idx = hrxq->ind_table->queues[i];
946                 struct mlx5_rxq_ctrl *rxq_ctrl =
947                         container_of((*priv->rxqs)[idx],
948                                      struct mlx5_rxq_ctrl, rxq);
949
950                 /*
951                  * To support metadata register copy on Tx loopback,
952                  * this must be always enabled (metadata may arive
953                  * from other port - not from local flows only.
954                  */
955                 if (priv->config.dv_flow_en &&
956                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
957                     mlx5_flow_ext_mreg_supported(dev)) {
958                         rxq_ctrl->rxq.mark = 1;
959                         rxq_ctrl->flow_mark_n = 1;
960                 } else if (mark) {
961                         rxq_ctrl->rxq.mark = 1;
962                         rxq_ctrl->flow_mark_n++;
963                 }
964                 if (tunnel) {
965                         unsigned int j;
966
967                         /* Increase the counter matching the flow. */
968                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
969                                 if ((tunnels_info[j].tunnel &
970                                      dev_handle->layers) ==
971                                     tunnels_info[j].tunnel) {
972                                         rxq_ctrl->flow_tunnels_n[j]++;
973                                         break;
974                                 }
975                         }
976                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
977                 }
978         }
979 }
980
981 /**
982  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
983  *
984  * @param[in] dev
985  *   Pointer to the Ethernet device structure.
986  * @param[in] flow
987  *   Pointer to flow structure.
988  */
989 static void
990 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
991 {
992         struct mlx5_priv *priv = dev->data->dev_private;
993         uint32_t handle_idx;
994         struct mlx5_flow_handle *dev_handle;
995
996         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
997                        handle_idx, dev_handle, next)
998                 flow_drv_rxq_flags_set(dev, dev_handle);
999 }
1000
1001 /**
1002  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1003  * device flow if no other flow uses it with the same kind of request.
1004  *
1005  * @param dev
1006  *   Pointer to Ethernet device.
1007  * @param[in] dev_handle
1008  *   Pointer to the device flow handle structure.
1009  */
1010 static void
1011 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1012                         struct mlx5_flow_handle *dev_handle)
1013 {
1014         struct mlx5_priv *priv = dev->data->dev_private;
1015         const int mark = dev_handle->mark;
1016         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1017         struct mlx5_hrxq *hrxq;
1018         unsigned int i;
1019
1020         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1021                 return;
1022         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1023                               dev_handle->rix_hrxq);
1024         if (!hrxq)
1025                 return;
1026         MLX5_ASSERT(dev->data->dev_started);
1027         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1028                 int idx = hrxq->ind_table->queues[i];
1029                 struct mlx5_rxq_ctrl *rxq_ctrl =
1030                         container_of((*priv->rxqs)[idx],
1031                                      struct mlx5_rxq_ctrl, rxq);
1032
1033                 if (priv->config.dv_flow_en &&
1034                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1035                     mlx5_flow_ext_mreg_supported(dev)) {
1036                         rxq_ctrl->rxq.mark = 1;
1037                         rxq_ctrl->flow_mark_n = 1;
1038                 } else if (mark) {
1039                         rxq_ctrl->flow_mark_n--;
1040                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1041                 }
1042                 if (tunnel) {
1043                         unsigned int j;
1044
1045                         /* Decrease the counter matching the flow. */
1046                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1047                                 if ((tunnels_info[j].tunnel &
1048                                      dev_handle->layers) ==
1049                                     tunnels_info[j].tunnel) {
1050                                         rxq_ctrl->flow_tunnels_n[j]--;
1051                                         break;
1052                                 }
1053                         }
1054                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
1055                 }
1056         }
1057 }
1058
1059 /**
1060  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1061  * @p flow if no other flow uses it with the same kind of request.
1062  *
1063  * @param dev
1064  *   Pointer to Ethernet device.
1065  * @param[in] flow
1066  *   Pointer to the flow.
1067  */
1068 static void
1069 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1070 {
1071         struct mlx5_priv *priv = dev->data->dev_private;
1072         uint32_t handle_idx;
1073         struct mlx5_flow_handle *dev_handle;
1074
1075         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1076                        handle_idx, dev_handle, next)
1077                 flow_drv_rxq_flags_trim(dev, dev_handle);
1078 }
1079
1080 /**
1081  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1082  *
1083  * @param dev
1084  *   Pointer to Ethernet device.
1085  */
1086 static void
1087 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1088 {
1089         struct mlx5_priv *priv = dev->data->dev_private;
1090         unsigned int i;
1091
1092         for (i = 0; i != priv->rxqs_n; ++i) {
1093                 struct mlx5_rxq_ctrl *rxq_ctrl;
1094                 unsigned int j;
1095
1096                 if (!(*priv->rxqs)[i])
1097                         continue;
1098                 rxq_ctrl = container_of((*priv->rxqs)[i],
1099                                         struct mlx5_rxq_ctrl, rxq);
1100                 rxq_ctrl->flow_mark_n = 0;
1101                 rxq_ctrl->rxq.mark = 0;
1102                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1103                         rxq_ctrl->flow_tunnels_n[j] = 0;
1104                 rxq_ctrl->rxq.tunnel = 0;
1105         }
1106 }
1107
1108 /**
1109  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1110  *
1111  * @param[in] dev
1112  *   Pointer to the Ethernet device structure.
1113  */
1114 void
1115 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1116 {
1117         struct mlx5_priv *priv = dev->data->dev_private;
1118         struct mlx5_rxq_data *data;
1119         unsigned int i;
1120
1121         for (i = 0; i != priv->rxqs_n; ++i) {
1122                 if (!(*priv->rxqs)[i])
1123                         continue;
1124                 data = (*priv->rxqs)[i];
1125                 if (!rte_flow_dynf_metadata_avail()) {
1126                         data->dynf_meta = 0;
1127                         data->flow_meta_mask = 0;
1128                         data->flow_meta_offset = -1;
1129                 } else {
1130                         data->dynf_meta = 1;
1131                         data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1132                         data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1133                 }
1134         }
1135 }
1136
1137 /*
1138  * return a pointer to the desired action in the list of actions.
1139  *
1140  * @param[in] actions
1141  *   The list of actions to search the action in.
1142  * @param[in] action
1143  *   The action to find.
1144  *
1145  * @return
1146  *   Pointer to the action in the list, if found. NULL otherwise.
1147  */
1148 const struct rte_flow_action *
1149 mlx5_flow_find_action(const struct rte_flow_action *actions,
1150                       enum rte_flow_action_type action)
1151 {
1152         if (actions == NULL)
1153                 return NULL;
1154         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1155                 if (actions->type == action)
1156                         return actions;
1157         return NULL;
1158 }
1159
1160 /*
1161  * Validate the flag action.
1162  *
1163  * @param[in] action_flags
1164  *   Bit-fields that holds the actions detected until now.
1165  * @param[in] attr
1166  *   Attributes of flow that includes this action.
1167  * @param[out] error
1168  *   Pointer to error structure.
1169  *
1170  * @return
1171  *   0 on success, a negative errno value otherwise and rte_errno is set.
1172  */
1173 int
1174 mlx5_flow_validate_action_flag(uint64_t action_flags,
1175                                const struct rte_flow_attr *attr,
1176                                struct rte_flow_error *error)
1177 {
1178         if (action_flags & MLX5_FLOW_ACTION_MARK)
1179                 return rte_flow_error_set(error, EINVAL,
1180                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1181                                           "can't mark and flag in same flow");
1182         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1183                 return rte_flow_error_set(error, EINVAL,
1184                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1185                                           "can't have 2 flag"
1186                                           " actions in same flow");
1187         if (attr->egress)
1188                 return rte_flow_error_set(error, ENOTSUP,
1189                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1190                                           "flag action not supported for "
1191                                           "egress");
1192         return 0;
1193 }
1194
1195 /*
1196  * Validate the mark action.
1197  *
1198  * @param[in] action
1199  *   Pointer to the queue action.
1200  * @param[in] action_flags
1201  *   Bit-fields that holds the actions detected until now.
1202  * @param[in] attr
1203  *   Attributes of flow that includes this action.
1204  * @param[out] error
1205  *   Pointer to error structure.
1206  *
1207  * @return
1208  *   0 on success, a negative errno value otherwise and rte_errno is set.
1209  */
1210 int
1211 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1212                                uint64_t action_flags,
1213                                const struct rte_flow_attr *attr,
1214                                struct rte_flow_error *error)
1215 {
1216         const struct rte_flow_action_mark *mark = action->conf;
1217
1218         if (!mark)
1219                 return rte_flow_error_set(error, EINVAL,
1220                                           RTE_FLOW_ERROR_TYPE_ACTION,
1221                                           action,
1222                                           "configuration cannot be null");
1223         if (mark->id >= MLX5_FLOW_MARK_MAX)
1224                 return rte_flow_error_set(error, EINVAL,
1225                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1226                                           &mark->id,
1227                                           "mark id must in 0 <= id < "
1228                                           RTE_STR(MLX5_FLOW_MARK_MAX));
1229         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1230                 return rte_flow_error_set(error, EINVAL,
1231                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1232                                           "can't flag and mark in same flow");
1233         if (action_flags & MLX5_FLOW_ACTION_MARK)
1234                 return rte_flow_error_set(error, EINVAL,
1235                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1236                                           "can't have 2 mark actions in same"
1237                                           " flow");
1238         if (attr->egress)
1239                 return rte_flow_error_set(error, ENOTSUP,
1240                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1241                                           "mark action not supported for "
1242                                           "egress");
1243         return 0;
1244 }
1245
1246 /*
1247  * Validate the drop action.
1248  *
1249  * @param[in] action_flags
1250  *   Bit-fields that holds the actions detected until now.
1251  * @param[in] attr
1252  *   Attributes of flow that includes this action.
1253  * @param[out] error
1254  *   Pointer to error structure.
1255  *
1256  * @return
1257  *   0 on success, a negative errno value otherwise and rte_errno is set.
1258  */
1259 int
1260 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1261                                const struct rte_flow_attr *attr,
1262                                struct rte_flow_error *error)
1263 {
1264         if (attr->egress)
1265                 return rte_flow_error_set(error, ENOTSUP,
1266                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1267                                           "drop action not supported for "
1268                                           "egress");
1269         return 0;
1270 }
1271
1272 /*
1273  * Validate the queue action.
1274  *
1275  * @param[in] action
1276  *   Pointer to the queue action.
1277  * @param[in] action_flags
1278  *   Bit-fields that holds the actions detected until now.
1279  * @param[in] dev
1280  *   Pointer to the Ethernet device structure.
1281  * @param[in] attr
1282  *   Attributes of flow that includes this action.
1283  * @param[out] error
1284  *   Pointer to error structure.
1285  *
1286  * @return
1287  *   0 on success, a negative errno value otherwise and rte_errno is set.
1288  */
1289 int
1290 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1291                                 uint64_t action_flags,
1292                                 struct rte_eth_dev *dev,
1293                                 const struct rte_flow_attr *attr,
1294                                 struct rte_flow_error *error)
1295 {
1296         struct mlx5_priv *priv = dev->data->dev_private;
1297         const struct rte_flow_action_queue *queue = action->conf;
1298
1299         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1300                 return rte_flow_error_set(error, EINVAL,
1301                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1302                                           "can't have 2 fate actions in"
1303                                           " same flow");
1304         if (!priv->rxqs_n)
1305                 return rte_flow_error_set(error, EINVAL,
1306                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1307                                           NULL, "No Rx queues configured");
1308         if (queue->index >= priv->rxqs_n)
1309                 return rte_flow_error_set(error, EINVAL,
1310                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1311                                           &queue->index,
1312                                           "queue index out of range");
1313         if (!(*priv->rxqs)[queue->index])
1314                 return rte_flow_error_set(error, EINVAL,
1315                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1316                                           &queue->index,
1317                                           "queue is not configured");
1318         if (attr->egress)
1319                 return rte_flow_error_set(error, ENOTSUP,
1320                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1321                                           "queue action not supported for "
1322                                           "egress");
1323         return 0;
1324 }
1325
1326 /*
1327  * Validate the rss action.
1328  *
1329  * @param[in] action
1330  *   Pointer to the queue action.
1331  * @param[in] action_flags
1332  *   Bit-fields that holds the actions detected until now.
1333  * @param[in] dev
1334  *   Pointer to the Ethernet device structure.
1335  * @param[in] attr
1336  *   Attributes of flow that includes this action.
1337  * @param[in] item_flags
1338  *   Items that were detected.
1339  * @param[out] error
1340  *   Pointer to error structure.
1341  *
1342  * @return
1343  *   0 on success, a negative errno value otherwise and rte_errno is set.
1344  */
1345 int
1346 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1347                               uint64_t action_flags,
1348                               struct rte_eth_dev *dev,
1349                               const struct rte_flow_attr *attr,
1350                               uint64_t item_flags,
1351                               struct rte_flow_error *error)
1352 {
1353         struct mlx5_priv *priv = dev->data->dev_private;
1354         const struct rte_flow_action_rss *rss = action->conf;
1355         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1356         unsigned int i;
1357
1358         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1359                 return rte_flow_error_set(error, EINVAL,
1360                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1361                                           "can't have 2 fate actions"
1362                                           " in same flow");
1363         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1364             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1365                 return rte_flow_error_set(error, ENOTSUP,
1366                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1367                                           &rss->func,
1368                                           "RSS hash function not supported");
1369 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1370         if (rss->level > 2)
1371 #else
1372         if (rss->level > 1)
1373 #endif
1374                 return rte_flow_error_set(error, ENOTSUP,
1375                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1376                                           &rss->level,
1377                                           "tunnel RSS is not supported");
1378         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
1379         if (rss->key_len == 0 && rss->key != NULL)
1380                 return rte_flow_error_set(error, ENOTSUP,
1381                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1382                                           &rss->key_len,
1383                                           "RSS hash key length 0");
1384         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1385                 return rte_flow_error_set(error, ENOTSUP,
1386                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1387                                           &rss->key_len,
1388                                           "RSS hash key too small");
1389         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1390                 return rte_flow_error_set(error, ENOTSUP,
1391                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1392                                           &rss->key_len,
1393                                           "RSS hash key too large");
1394         if (rss->queue_num > priv->config.ind_table_max_size)
1395                 return rte_flow_error_set(error, ENOTSUP,
1396                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1397                                           &rss->queue_num,
1398                                           "number of queues too large");
1399         if (rss->types & MLX5_RSS_HF_MASK)
1400                 return rte_flow_error_set(error, ENOTSUP,
1401                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1402                                           &rss->types,
1403                                           "some RSS protocols are not"
1404                                           " supported");
1405         if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1406             !(rss->types & ETH_RSS_IP))
1407                 return rte_flow_error_set(error, EINVAL,
1408                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1409                                           "L3 partial RSS requested but L3 RSS"
1410                                           " type not specified");
1411         if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1412             !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1413                 return rte_flow_error_set(error, EINVAL,
1414                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1415                                           "L4 partial RSS requested but L4 RSS"
1416                                           " type not specified");
1417         if (!priv->rxqs_n)
1418                 return rte_flow_error_set(error, EINVAL,
1419                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1420                                           NULL, "No Rx queues configured");
1421         if (!rss->queue_num)
1422                 return rte_flow_error_set(error, EINVAL,
1423                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1424                                           NULL, "No queues configured");
1425         for (i = 0; i != rss->queue_num; ++i) {
1426                 if (rss->queue[i] >= priv->rxqs_n)
1427                         return rte_flow_error_set
1428                                 (error, EINVAL,
1429                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1430                                  &rss->queue[i], "queue index out of range");
1431                 if (!(*priv->rxqs)[rss->queue[i]])
1432                         return rte_flow_error_set
1433                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1434                                  &rss->queue[i], "queue is not configured");
1435         }
1436         if (attr->egress)
1437                 return rte_flow_error_set(error, ENOTSUP,
1438                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1439                                           "rss action not supported for "
1440                                           "egress");
1441         if (rss->level > 1 && !tunnel)
1442                 return rte_flow_error_set(error, EINVAL,
1443                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1444                                           "inner RSS is not supported for "
1445                                           "non-tunnel flows");
1446         if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1447             !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1448                 return rte_flow_error_set(error, EINVAL,
1449                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1450                                           "RSS on eCPRI is not supported now");
1451         }
1452         return 0;
1453 }
1454
1455 /*
1456  * Validate the default miss action.
1457  *
1458  * @param[in] action_flags
1459  *   Bit-fields that holds the actions detected until now.
1460  * @param[out] error
1461  *   Pointer to error structure.
1462  *
1463  * @return
1464  *   0 on success, a negative errno value otherwise and rte_errno is set.
1465  */
1466 int
1467 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1468                                 const struct rte_flow_attr *attr,
1469                                 struct rte_flow_error *error)
1470 {
1471         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1472                 return rte_flow_error_set(error, EINVAL,
1473                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1474                                           "can't have 2 fate actions in"
1475                                           " same flow");
1476         if (attr->egress)
1477                 return rte_flow_error_set(error, ENOTSUP,
1478                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1479                                           "default miss action not supported "
1480                                           "for egress");
1481         if (attr->group)
1482                 return rte_flow_error_set(error, ENOTSUP,
1483                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1484                                           "only group 0 is supported");
1485         if (attr->transfer)
1486                 return rte_flow_error_set(error, ENOTSUP,
1487                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1488                                           NULL, "transfer is not supported");
1489         return 0;
1490 }
1491
1492 /*
1493  * Validate the count action.
1494  *
1495  * @param[in] dev
1496  *   Pointer to the Ethernet device structure.
1497  * @param[in] attr
1498  *   Attributes of flow that includes this action.
1499  * @param[out] error
1500  *   Pointer to error structure.
1501  *
1502  * @return
1503  *   0 on success, a negative errno value otherwise and rte_errno is set.
1504  */
1505 int
1506 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1507                                 const struct rte_flow_attr *attr,
1508                                 struct rte_flow_error *error)
1509 {
1510         if (attr->egress)
1511                 return rte_flow_error_set(error, ENOTSUP,
1512                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1513                                           "count action not supported for "
1514                                           "egress");
1515         return 0;
1516 }
1517
1518 /**
1519  * Verify the @p attributes will be correctly understood by the NIC and store
1520  * them in the @p flow if everything is correct.
1521  *
1522  * @param[in] dev
1523  *   Pointer to the Ethernet device structure.
1524  * @param[in] attributes
1525  *   Pointer to flow attributes
1526  * @param[out] error
1527  *   Pointer to error structure.
1528  *
1529  * @return
1530  *   0 on success, a negative errno value otherwise and rte_errno is set.
1531  */
1532 int
1533 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1534                               const struct rte_flow_attr *attributes,
1535                               struct rte_flow_error *error)
1536 {
1537         struct mlx5_priv *priv = dev->data->dev_private;
1538         uint32_t priority_max = priv->config.flow_prio - 1;
1539
1540         if (attributes->group)
1541                 return rte_flow_error_set(error, ENOTSUP,
1542                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1543                                           NULL, "groups is not supported");
1544         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1545             attributes->priority >= priority_max)
1546                 return rte_flow_error_set(error, ENOTSUP,
1547                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1548                                           NULL, "priority out of range");
1549         if (attributes->egress)
1550                 return rte_flow_error_set(error, ENOTSUP,
1551                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1552                                           "egress is not supported");
1553         if (attributes->transfer && !priv->config.dv_esw_en)
1554                 return rte_flow_error_set(error, ENOTSUP,
1555                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1556                                           NULL, "transfer is not supported");
1557         if (!attributes->ingress)
1558                 return rte_flow_error_set(error, EINVAL,
1559                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1560                                           NULL,
1561                                           "ingress attribute is mandatory");
1562         return 0;
1563 }
1564
1565 /**
1566  * Validate ICMP6 item.
1567  *
1568  * @param[in] item
1569  *   Item specification.
1570  * @param[in] item_flags
1571  *   Bit-fields that holds the items detected until now.
1572  * @param[out] error
1573  *   Pointer to error structure.
1574  *
1575  * @return
1576  *   0 on success, a negative errno value otherwise and rte_errno is set.
1577  */
1578 int
1579 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1580                                uint64_t item_flags,
1581                                uint8_t target_protocol,
1582                                struct rte_flow_error *error)
1583 {
1584         const struct rte_flow_item_icmp6 *mask = item->mask;
1585         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1586         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1587                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1588         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1589                                       MLX5_FLOW_LAYER_OUTER_L4;
1590         int ret;
1591
1592         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1593                 return rte_flow_error_set(error, EINVAL,
1594                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1595                                           "protocol filtering not compatible"
1596                                           " with ICMP6 layer");
1597         if (!(item_flags & l3m))
1598                 return rte_flow_error_set(error, EINVAL,
1599                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1600                                           "IPv6 is mandatory to filter on"
1601                                           " ICMP6");
1602         if (item_flags & l4m)
1603                 return rte_flow_error_set(error, EINVAL,
1604                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1605                                           "multiple L4 layers not supported");
1606         if (!mask)
1607                 mask = &rte_flow_item_icmp6_mask;
1608         ret = mlx5_flow_item_acceptable
1609                 (item, (const uint8_t *)mask,
1610                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1611                  sizeof(struct rte_flow_item_icmp6),
1612                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1613         if (ret < 0)
1614                 return ret;
1615         return 0;
1616 }
1617
1618 /**
1619  * Validate ICMP item.
1620  *
1621  * @param[in] item
1622  *   Item specification.
1623  * @param[in] item_flags
1624  *   Bit-fields that holds the items detected until now.
1625  * @param[out] error
1626  *   Pointer to error structure.
1627  *
1628  * @return
1629  *   0 on success, a negative errno value otherwise and rte_errno is set.
1630  */
1631 int
1632 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1633                              uint64_t item_flags,
1634                              uint8_t target_protocol,
1635                              struct rte_flow_error *error)
1636 {
1637         const struct rte_flow_item_icmp *mask = item->mask;
1638         const struct rte_flow_item_icmp nic_mask = {
1639                 .hdr.icmp_type = 0xff,
1640                 .hdr.icmp_code = 0xff,
1641                 .hdr.icmp_ident = RTE_BE16(0xffff),
1642                 .hdr.icmp_seq_nb = RTE_BE16(0xffff),
1643         };
1644         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1645         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1646                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1647         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1648                                       MLX5_FLOW_LAYER_OUTER_L4;
1649         int ret;
1650
1651         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1652                 return rte_flow_error_set(error, EINVAL,
1653                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1654                                           "protocol filtering not compatible"
1655                                           " with ICMP layer");
1656         if (!(item_flags & l3m))
1657                 return rte_flow_error_set(error, EINVAL,
1658                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1659                                           "IPv4 is mandatory to filter"
1660                                           " on ICMP");
1661         if (item_flags & l4m)
1662                 return rte_flow_error_set(error, EINVAL,
1663                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1664                                           "multiple L4 layers not supported");
1665         if (!mask)
1666                 mask = &nic_mask;
1667         ret = mlx5_flow_item_acceptable
1668                 (item, (const uint8_t *)mask,
1669                  (const uint8_t *)&nic_mask,
1670                  sizeof(struct rte_flow_item_icmp),
1671                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1672         if (ret < 0)
1673                 return ret;
1674         return 0;
1675 }
1676
1677 /**
1678  * Validate Ethernet item.
1679  *
1680  * @param[in] item
1681  *   Item specification.
1682  * @param[in] item_flags
1683  *   Bit-fields that holds the items detected until now.
1684  * @param[out] error
1685  *   Pointer to error structure.
1686  *
1687  * @return
1688  *   0 on success, a negative errno value otherwise and rte_errno is set.
1689  */
1690 int
1691 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1692                             uint64_t item_flags,
1693                             struct rte_flow_error *error)
1694 {
1695         const struct rte_flow_item_eth *mask = item->mask;
1696         const struct rte_flow_item_eth nic_mask = {
1697                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1698                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1699                 .type = RTE_BE16(0xffff),
1700         };
1701         int ret;
1702         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1703         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1704                                        MLX5_FLOW_LAYER_OUTER_L2;
1705
1706         if (item_flags & ethm)
1707                 return rte_flow_error_set(error, ENOTSUP,
1708                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1709                                           "multiple L2 layers not supported");
1710         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1711             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1712                 return rte_flow_error_set(error, EINVAL,
1713                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1714                                           "L2 layer should not follow "
1715                                           "L3 layers");
1716         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1717             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1718                 return rte_flow_error_set(error, EINVAL,
1719                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1720                                           "L2 layer should not follow VLAN");
1721         if (!mask)
1722                 mask = &rte_flow_item_eth_mask;
1723         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1724                                         (const uint8_t *)&nic_mask,
1725                                         sizeof(struct rte_flow_item_eth),
1726                                         MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1727         return ret;
1728 }
1729
1730 /**
1731  * Validate VLAN item.
1732  *
1733  * @param[in] item
1734  *   Item specification.
1735  * @param[in] item_flags
1736  *   Bit-fields that holds the items detected until now.
1737  * @param[in] dev
1738  *   Ethernet device flow is being created on.
1739  * @param[out] error
1740  *   Pointer to error structure.
1741  *
1742  * @return
1743  *   0 on success, a negative errno value otherwise and rte_errno is set.
1744  */
1745 int
1746 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1747                              uint64_t item_flags,
1748                              struct rte_eth_dev *dev,
1749                              struct rte_flow_error *error)
1750 {
1751         const struct rte_flow_item_vlan *spec = item->spec;
1752         const struct rte_flow_item_vlan *mask = item->mask;
1753         const struct rte_flow_item_vlan nic_mask = {
1754                 .tci = RTE_BE16(UINT16_MAX),
1755                 .inner_type = RTE_BE16(UINT16_MAX),
1756         };
1757         uint16_t vlan_tag = 0;
1758         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1759         int ret;
1760         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1761                                         MLX5_FLOW_LAYER_INNER_L4) :
1762                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1763                                         MLX5_FLOW_LAYER_OUTER_L4);
1764         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1765                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1766
1767         if (item_flags & vlanm)
1768                 return rte_flow_error_set(error, EINVAL,
1769                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1770                                           "multiple VLAN layers not supported");
1771         else if ((item_flags & l34m) != 0)
1772                 return rte_flow_error_set(error, EINVAL,
1773                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1774                                           "VLAN cannot follow L3/L4 layer");
1775         if (!mask)
1776                 mask = &rte_flow_item_vlan_mask;
1777         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1778                                         (const uint8_t *)&nic_mask,
1779                                         sizeof(struct rte_flow_item_vlan),
1780                                         MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1781         if (ret)
1782                 return ret;
1783         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1784                 struct mlx5_priv *priv = dev->data->dev_private;
1785
1786                 if (priv->vmwa_context) {
1787                         /*
1788                          * Non-NULL context means we have a virtual machine
1789                          * and SR-IOV enabled, we have to create VLAN interface
1790                          * to make hypervisor to setup E-Switch vport
1791                          * context correctly. We avoid creating the multiple
1792                          * VLAN interfaces, so we cannot support VLAN tag mask.
1793                          */
1794                         return rte_flow_error_set(error, EINVAL,
1795                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1796                                                   item,
1797                                                   "VLAN tag mask is not"
1798                                                   " supported in virtual"
1799                                                   " environment");
1800                 }
1801         }
1802         if (spec) {
1803                 vlan_tag = spec->tci;
1804                 vlan_tag &= mask->tci;
1805         }
1806         /*
1807          * From verbs perspective an empty VLAN is equivalent
1808          * to a packet without VLAN layer.
1809          */
1810         if (!vlan_tag)
1811                 return rte_flow_error_set(error, EINVAL,
1812                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1813                                           item->spec,
1814                                           "VLAN cannot be empty");
1815         return 0;
1816 }
1817
1818 /**
1819  * Validate IPV4 item.
1820  *
1821  * @param[in] item
1822  *   Item specification.
1823  * @param[in] item_flags
1824  *   Bit-fields that holds the items detected until now.
1825  * @param[in] last_item
1826  *   Previous validated item in the pattern items.
1827  * @param[in] ether_type
1828  *   Type in the ethernet layer header (including dot1q).
1829  * @param[in] acc_mask
1830  *   Acceptable mask, if NULL default internal default mask
1831  *   will be used to check whether item fields are supported.
1832  * @param[in] range_accepted
1833  *   True if range of values is accepted for specific fields, false otherwise.
1834  * @param[out] error
1835  *   Pointer to error structure.
1836  *
1837  * @return
1838  *   0 on success, a negative errno value otherwise and rte_errno is set.
1839  */
1840 int
1841 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1842                              uint64_t item_flags,
1843                              uint64_t last_item,
1844                              uint16_t ether_type,
1845                              const struct rte_flow_item_ipv4 *acc_mask,
1846                              bool range_accepted,
1847                              struct rte_flow_error *error)
1848 {
1849         const struct rte_flow_item_ipv4 *mask = item->mask;
1850         const struct rte_flow_item_ipv4 *spec = item->spec;
1851         const struct rte_flow_item_ipv4 nic_mask = {
1852                 .hdr = {
1853                         .src_addr = RTE_BE32(0xffffffff),
1854                         .dst_addr = RTE_BE32(0xffffffff),
1855                         .type_of_service = 0xff,
1856                         .next_proto_id = 0xff,
1857                 },
1858         };
1859         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1860         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1861                                       MLX5_FLOW_LAYER_OUTER_L3;
1862         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1863                                       MLX5_FLOW_LAYER_OUTER_L4;
1864         int ret;
1865         uint8_t next_proto = 0xFF;
1866         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1867                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1868                                   MLX5_FLOW_LAYER_INNER_VLAN);
1869
1870         if ((last_item & l2_vlan) && ether_type &&
1871             ether_type != RTE_ETHER_TYPE_IPV4)
1872                 return rte_flow_error_set(error, EINVAL,
1873                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1874                                           "IPv4 cannot follow L2/VLAN layer "
1875                                           "which ether type is not IPv4");
1876         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1877                 if (mask && spec)
1878                         next_proto = mask->hdr.next_proto_id &
1879                                      spec->hdr.next_proto_id;
1880                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1881                         return rte_flow_error_set(error, EINVAL,
1882                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1883                                                   item,
1884                                                   "multiple tunnel "
1885                                                   "not supported");
1886         }
1887         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1888                 return rte_flow_error_set(error, EINVAL,
1889                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1890                                           "wrong tunnel type - IPv6 specified "
1891                                           "but IPv4 item provided");
1892         if (item_flags & l3m)
1893                 return rte_flow_error_set(error, ENOTSUP,
1894                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1895                                           "multiple L3 layers not supported");
1896         else if (item_flags & l4m)
1897                 return rte_flow_error_set(error, EINVAL,
1898                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1899                                           "L3 cannot follow an L4 layer.");
1900         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1901                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1902                 return rte_flow_error_set(error, EINVAL,
1903                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1904                                           "L3 cannot follow an NVGRE layer.");
1905         if (!mask)
1906                 mask = &rte_flow_item_ipv4_mask;
1907         else if (mask->hdr.next_proto_id != 0 &&
1908                  mask->hdr.next_proto_id != 0xff)
1909                 return rte_flow_error_set(error, EINVAL,
1910                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1911                                           "partial mask is not supported"
1912                                           " for protocol");
1913         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1914                                         acc_mask ? (const uint8_t *)acc_mask
1915                                                  : (const uint8_t *)&nic_mask,
1916                                         sizeof(struct rte_flow_item_ipv4),
1917                                         range_accepted, error);
1918         if (ret < 0)
1919                 return ret;
1920         return 0;
1921 }
1922
1923 /**
1924  * Validate IPV6 item.
1925  *
1926  * @param[in] item
1927  *   Item specification.
1928  * @param[in] item_flags
1929  *   Bit-fields that holds the items detected until now.
1930  * @param[in] last_item
1931  *   Previous validated item in the pattern items.
1932  * @param[in] ether_type
1933  *   Type in the ethernet layer header (including dot1q).
1934  * @param[in] acc_mask
1935  *   Acceptable mask, if NULL default internal default mask
1936  *   will be used to check whether item fields are supported.
1937  * @param[out] error
1938  *   Pointer to error structure.
1939  *
1940  * @return
1941  *   0 on success, a negative errno value otherwise and rte_errno is set.
1942  */
1943 int
1944 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1945                              uint64_t item_flags,
1946                              uint64_t last_item,
1947                              uint16_t ether_type,
1948                              const struct rte_flow_item_ipv6 *acc_mask,
1949                              struct rte_flow_error *error)
1950 {
1951         const struct rte_flow_item_ipv6 *mask = item->mask;
1952         const struct rte_flow_item_ipv6 *spec = item->spec;
1953         const struct rte_flow_item_ipv6 nic_mask = {
1954                 .hdr = {
1955                         .src_addr =
1956                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1957                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1958                         .dst_addr =
1959                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1960                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1961                         .vtc_flow = RTE_BE32(0xffffffff),
1962                         .proto = 0xff,
1963                 },
1964         };
1965         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1966         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1967                                       MLX5_FLOW_LAYER_OUTER_L3;
1968         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1969                                       MLX5_FLOW_LAYER_OUTER_L4;
1970         int ret;
1971         uint8_t next_proto = 0xFF;
1972         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1973                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1974                                   MLX5_FLOW_LAYER_INNER_VLAN);
1975
1976         if ((last_item & l2_vlan) && ether_type &&
1977             ether_type != RTE_ETHER_TYPE_IPV6)
1978                 return rte_flow_error_set(error, EINVAL,
1979                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1980                                           "IPv6 cannot follow L2/VLAN layer "
1981                                           "which ether type is not IPv6");
1982         if (mask && mask->hdr.proto == UINT8_MAX && spec)
1983                 next_proto = spec->hdr.proto;
1984         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1985                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1986                         return rte_flow_error_set(error, EINVAL,
1987                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1988                                                   item,
1989                                                   "multiple tunnel "
1990                                                   "not supported");
1991         }
1992         if (next_proto == IPPROTO_HOPOPTS  ||
1993             next_proto == IPPROTO_ROUTING  ||
1994             next_proto == IPPROTO_FRAGMENT ||
1995             next_proto == IPPROTO_ESP      ||
1996             next_proto == IPPROTO_AH       ||
1997             next_proto == IPPROTO_DSTOPTS)
1998                 return rte_flow_error_set(error, EINVAL,
1999                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2000                                           "IPv6 proto (next header) should "
2001                                           "not be set as extension header");
2002         if (item_flags & MLX5_FLOW_LAYER_IPIP)
2003                 return rte_flow_error_set(error, EINVAL,
2004                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2005                                           "wrong tunnel type - IPv4 specified "
2006                                           "but IPv6 item provided");
2007         if (item_flags & l3m)
2008                 return rte_flow_error_set(error, ENOTSUP,
2009                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2010                                           "multiple L3 layers not supported");
2011         else if (item_flags & l4m)
2012                 return rte_flow_error_set(error, EINVAL,
2013                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2014                                           "L3 cannot follow an L4 layer.");
2015         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2016                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2017                 return rte_flow_error_set(error, EINVAL,
2018                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2019                                           "L3 cannot follow an NVGRE layer.");
2020         if (!mask)
2021                 mask = &rte_flow_item_ipv6_mask;
2022         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2023                                         acc_mask ? (const uint8_t *)acc_mask
2024                                                  : (const uint8_t *)&nic_mask,
2025                                         sizeof(struct rte_flow_item_ipv6),
2026                                         MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2027         if (ret < 0)
2028                 return ret;
2029         return 0;
2030 }
2031
2032 /**
2033  * Validate UDP item.
2034  *
2035  * @param[in] item
2036  *   Item specification.
2037  * @param[in] item_flags
2038  *   Bit-fields that holds the items detected until now.
2039  * @param[in] target_protocol
2040  *   The next protocol in the previous item.
2041  * @param[in] flow_mask
2042  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2043  * @param[out] error
2044  *   Pointer to error structure.
2045  *
2046  * @return
2047  *   0 on success, a negative errno value otherwise and rte_errno is set.
2048  */
2049 int
2050 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2051                             uint64_t item_flags,
2052                             uint8_t target_protocol,
2053                             struct rte_flow_error *error)
2054 {
2055         const struct rte_flow_item_udp *mask = item->mask;
2056         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2057         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2058                                       MLX5_FLOW_LAYER_OUTER_L3;
2059         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2060                                       MLX5_FLOW_LAYER_OUTER_L4;
2061         int ret;
2062
2063         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2064                 return rte_flow_error_set(error, EINVAL,
2065                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2066                                           "protocol filtering not compatible"
2067                                           " with UDP layer");
2068         if (!(item_flags & l3m))
2069                 return rte_flow_error_set(error, EINVAL,
2070                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2071                                           "L3 is mandatory to filter on L4");
2072         if (item_flags & l4m)
2073                 return rte_flow_error_set(error, EINVAL,
2074                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2075                                           "multiple L4 layers not supported");
2076         if (!mask)
2077                 mask = &rte_flow_item_udp_mask;
2078         ret = mlx5_flow_item_acceptable
2079                 (item, (const uint8_t *)mask,
2080                  (const uint8_t *)&rte_flow_item_udp_mask,
2081                  sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2082                  error);
2083         if (ret < 0)
2084                 return ret;
2085         return 0;
2086 }
2087
2088 /**
2089  * Validate TCP item.
2090  *
2091  * @param[in] item
2092  *   Item specification.
2093  * @param[in] item_flags
2094  *   Bit-fields that holds the items detected until now.
2095  * @param[in] target_protocol
2096  *   The next protocol in the previous item.
2097  * @param[out] error
2098  *   Pointer to error structure.
2099  *
2100  * @return
2101  *   0 on success, a negative errno value otherwise and rte_errno is set.
2102  */
2103 int
2104 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2105                             uint64_t item_flags,
2106                             uint8_t target_protocol,
2107                             const struct rte_flow_item_tcp *flow_mask,
2108                             struct rte_flow_error *error)
2109 {
2110         const struct rte_flow_item_tcp *mask = item->mask;
2111         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2112         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2113                                       MLX5_FLOW_LAYER_OUTER_L3;
2114         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2115                                       MLX5_FLOW_LAYER_OUTER_L4;
2116         int ret;
2117
2118         MLX5_ASSERT(flow_mask);
2119         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2120                 return rte_flow_error_set(error, EINVAL,
2121                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2122                                           "protocol filtering not compatible"
2123                                           " with TCP layer");
2124         if (!(item_flags & l3m))
2125                 return rte_flow_error_set(error, EINVAL,
2126                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2127                                           "L3 is mandatory to filter on L4");
2128         if (item_flags & l4m)
2129                 return rte_flow_error_set(error, EINVAL,
2130                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2131                                           "multiple L4 layers not supported");
2132         if (!mask)
2133                 mask = &rte_flow_item_tcp_mask;
2134         ret = mlx5_flow_item_acceptable
2135                 (item, (const uint8_t *)mask,
2136                  (const uint8_t *)flow_mask,
2137                  sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2138                  error);
2139         if (ret < 0)
2140                 return ret;
2141         return 0;
2142 }
2143
2144 /**
2145  * Validate VXLAN item.
2146  *
2147  * @param[in] item
2148  *   Item specification.
2149  * @param[in] item_flags
2150  *   Bit-fields that holds the items detected until now.
2151  * @param[in] target_protocol
2152  *   The next protocol in the previous item.
2153  * @param[out] error
2154  *   Pointer to error structure.
2155  *
2156  * @return
2157  *   0 on success, a negative errno value otherwise and rte_errno is set.
2158  */
2159 int
2160 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2161                               uint64_t item_flags,
2162                               struct rte_flow_error *error)
2163 {
2164         const struct rte_flow_item_vxlan *spec = item->spec;
2165         const struct rte_flow_item_vxlan *mask = item->mask;
2166         int ret;
2167         union vni {
2168                 uint32_t vlan_id;
2169                 uint8_t vni[4];
2170         } id = { .vlan_id = 0, };
2171
2172
2173         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2174                 return rte_flow_error_set(error, ENOTSUP,
2175                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2176                                           "multiple tunnel layers not"
2177                                           " supported");
2178         /*
2179          * Verify only UDPv4 is present as defined in
2180          * https://tools.ietf.org/html/rfc7348
2181          */
2182         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2183                 return rte_flow_error_set(error, EINVAL,
2184                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2185                                           "no outer UDP layer found");
2186         if (!mask)
2187                 mask = &rte_flow_item_vxlan_mask;
2188         ret = mlx5_flow_item_acceptable
2189                 (item, (const uint8_t *)mask,
2190                  (const uint8_t *)&rte_flow_item_vxlan_mask,
2191                  sizeof(struct rte_flow_item_vxlan),
2192                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2193         if (ret < 0)
2194                 return ret;
2195         if (spec) {
2196                 memcpy(&id.vni[1], spec->vni, 3);
2197                 memcpy(&id.vni[1], mask->vni, 3);
2198         }
2199         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2200                 return rte_flow_error_set(error, ENOTSUP,
2201                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2202                                           "VXLAN tunnel must be fully defined");
2203         return 0;
2204 }
2205
2206 /**
2207  * Validate VXLAN_GPE item.
2208  *
2209  * @param[in] item
2210  *   Item specification.
2211  * @param[in] item_flags
2212  *   Bit-fields that holds the items detected until now.
2213  * @param[in] priv
2214  *   Pointer to the private data structure.
2215  * @param[in] target_protocol
2216  *   The next protocol in the previous item.
2217  * @param[out] error
2218  *   Pointer to error structure.
2219  *
2220  * @return
2221  *   0 on success, a negative errno value otherwise and rte_errno is set.
2222  */
2223 int
2224 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2225                                   uint64_t item_flags,
2226                                   struct rte_eth_dev *dev,
2227                                   struct rte_flow_error *error)
2228 {
2229         struct mlx5_priv *priv = dev->data->dev_private;
2230         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2231         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2232         int ret;
2233         union vni {
2234                 uint32_t vlan_id;
2235                 uint8_t vni[4];
2236         } id = { .vlan_id = 0, };
2237
2238         if (!priv->config.l3_vxlan_en)
2239                 return rte_flow_error_set(error, ENOTSUP,
2240                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2241                                           "L3 VXLAN is not enabled by device"
2242                                           " parameter and/or not configured in"
2243                                           " firmware");
2244         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2245                 return rte_flow_error_set(error, ENOTSUP,
2246                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2247                                           "multiple tunnel layers not"
2248                                           " supported");
2249         /*
2250          * Verify only UDPv4 is present as defined in
2251          * https://tools.ietf.org/html/rfc7348
2252          */
2253         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2254                 return rte_flow_error_set(error, EINVAL,
2255                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2256                                           "no outer UDP layer found");
2257         if (!mask)
2258                 mask = &rte_flow_item_vxlan_gpe_mask;
2259         ret = mlx5_flow_item_acceptable
2260                 (item, (const uint8_t *)mask,
2261                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2262                  sizeof(struct rte_flow_item_vxlan_gpe),
2263                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2264         if (ret < 0)
2265                 return ret;
2266         if (spec) {
2267                 if (spec->protocol)
2268                         return rte_flow_error_set(error, ENOTSUP,
2269                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2270                                                   item,
2271                                                   "VxLAN-GPE protocol"
2272                                                   " not supported");
2273                 memcpy(&id.vni[1], spec->vni, 3);
2274                 memcpy(&id.vni[1], mask->vni, 3);
2275         }
2276         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2277                 return rte_flow_error_set(error, ENOTSUP,
2278                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2279                                           "VXLAN-GPE tunnel must be fully"
2280                                           " defined");
2281         return 0;
2282 }
2283 /**
2284  * Validate GRE Key item.
2285  *
2286  * @param[in] item
2287  *   Item specification.
2288  * @param[in] item_flags
2289  *   Bit flags to mark detected items.
2290  * @param[in] gre_item
2291  *   Pointer to gre_item
2292  * @param[out] error
2293  *   Pointer to error structure.
2294  *
2295  * @return
2296  *   0 on success, a negative errno value otherwise and rte_errno is set.
2297  */
2298 int
2299 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2300                                 uint64_t item_flags,
2301                                 const struct rte_flow_item *gre_item,
2302                                 struct rte_flow_error *error)
2303 {
2304         const rte_be32_t *mask = item->mask;
2305         int ret = 0;
2306         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2307         const struct rte_flow_item_gre *gre_spec;
2308         const struct rte_flow_item_gre *gre_mask;
2309
2310         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2311                 return rte_flow_error_set(error, ENOTSUP,
2312                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2313                                           "Multiple GRE key not support");
2314         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2315                 return rte_flow_error_set(error, ENOTSUP,
2316                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2317                                           "No preceding GRE header");
2318         if (item_flags & MLX5_FLOW_LAYER_INNER)
2319                 return rte_flow_error_set(error, ENOTSUP,
2320                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2321                                           "GRE key following a wrong item");
2322         gre_mask = gre_item->mask;
2323         if (!gre_mask)
2324                 gre_mask = &rte_flow_item_gre_mask;
2325         gre_spec = gre_item->spec;
2326         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2327                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2328                 return rte_flow_error_set(error, EINVAL,
2329                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2330                                           "Key bit must be on");
2331
2332         if (!mask)
2333                 mask = &gre_key_default_mask;
2334         ret = mlx5_flow_item_acceptable
2335                 (item, (const uint8_t *)mask,
2336                  (const uint8_t *)&gre_key_default_mask,
2337                  sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2338         return ret;
2339 }
2340
2341 /**
2342  * Validate GRE item.
2343  *
2344  * @param[in] item
2345  *   Item specification.
2346  * @param[in] item_flags
2347  *   Bit flags to mark detected items.
2348  * @param[in] target_protocol
2349  *   The next protocol in the previous item.
2350  * @param[out] error
2351  *   Pointer to error structure.
2352  *
2353  * @return
2354  *   0 on success, a negative errno value otherwise and rte_errno is set.
2355  */
2356 int
2357 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2358                             uint64_t item_flags,
2359                             uint8_t target_protocol,
2360                             struct rte_flow_error *error)
2361 {
2362         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2363         const struct rte_flow_item_gre *mask = item->mask;
2364         int ret;
2365         const struct rte_flow_item_gre nic_mask = {
2366                 .c_rsvd0_ver = RTE_BE16(0xB000),
2367                 .protocol = RTE_BE16(UINT16_MAX),
2368         };
2369
2370         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2371                 return rte_flow_error_set(error, EINVAL,
2372                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2373                                           "protocol filtering not compatible"
2374                                           " with this GRE layer");
2375         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2376                 return rte_flow_error_set(error, ENOTSUP,
2377                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2378                                           "multiple tunnel layers not"
2379                                           " supported");
2380         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2381                 return rte_flow_error_set(error, ENOTSUP,
2382                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2383                                           "L3 Layer is missing");
2384         if (!mask)
2385                 mask = &rte_flow_item_gre_mask;
2386         ret = mlx5_flow_item_acceptable
2387                 (item, (const uint8_t *)mask,
2388                  (const uint8_t *)&nic_mask,
2389                  sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2390                  error);
2391         if (ret < 0)
2392                 return ret;
2393 #ifndef HAVE_MLX5DV_DR
2394 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2395         if (spec && (spec->protocol & mask->protocol))
2396                 return rte_flow_error_set(error, ENOTSUP,
2397                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2398                                           "without MPLS support the"
2399                                           " specification cannot be used for"
2400                                           " filtering");
2401 #endif
2402 #endif
2403         return 0;
2404 }
2405
2406 /**
2407  * Validate Geneve item.
2408  *
2409  * @param[in] item
2410  *   Item specification.
2411  * @param[in] itemFlags
2412  *   Bit-fields that holds the items detected until now.
2413  * @param[in] enPriv
2414  *   Pointer to the private data structure.
2415  * @param[out] error
2416  *   Pointer to error structure.
2417  *
2418  * @return
2419  *   0 on success, a negative errno value otherwise and rte_errno is set.
2420  */
2421
2422 int
2423 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2424                                uint64_t item_flags,
2425                                struct rte_eth_dev *dev,
2426                                struct rte_flow_error *error)
2427 {
2428         struct mlx5_priv *priv = dev->data->dev_private;
2429         const struct rte_flow_item_geneve *spec = item->spec;
2430         const struct rte_flow_item_geneve *mask = item->mask;
2431         int ret;
2432         uint16_t gbhdr;
2433         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2434                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2435         const struct rte_flow_item_geneve nic_mask = {
2436                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2437                 .vni = "\xff\xff\xff",
2438                 .protocol = RTE_BE16(UINT16_MAX),
2439         };
2440
2441         if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2442                 return rte_flow_error_set(error, ENOTSUP,
2443                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2444                                           "L3 Geneve is not enabled by device"
2445                                           " parameter and/or not configured in"
2446                                           " firmware");
2447         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2448                 return rte_flow_error_set(error, ENOTSUP,
2449                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2450                                           "multiple tunnel layers not"
2451                                           " supported");
2452         /*
2453          * Verify only UDPv4 is present as defined in
2454          * https://tools.ietf.org/html/rfc7348
2455          */
2456         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2457                 return rte_flow_error_set(error, EINVAL,
2458                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2459                                           "no outer UDP layer found");
2460         if (!mask)
2461                 mask = &rte_flow_item_geneve_mask;
2462         ret = mlx5_flow_item_acceptable
2463                                   (item, (const uint8_t *)mask,
2464                                    (const uint8_t *)&nic_mask,
2465                                    sizeof(struct rte_flow_item_geneve),
2466                                    MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2467         if (ret)
2468                 return ret;
2469         if (spec) {
2470                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2471                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2472                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2473                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2474                         return rte_flow_error_set(error, ENOTSUP,
2475                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2476                                                   item,
2477                                                   "Geneve protocol unsupported"
2478                                                   " fields are being used");
2479                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2480                         return rte_flow_error_set
2481                                         (error, ENOTSUP,
2482                                          RTE_FLOW_ERROR_TYPE_ITEM,
2483                                          item,
2484                                          "Unsupported Geneve options length");
2485         }
2486         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2487                 return rte_flow_error_set
2488                                     (error, ENOTSUP,
2489                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2490                                      "Geneve tunnel must be fully defined");
2491         return 0;
2492 }
2493
2494 /**
2495  * Validate MPLS item.
2496  *
2497  * @param[in] dev
2498  *   Pointer to the rte_eth_dev structure.
2499  * @param[in] item
2500  *   Item specification.
2501  * @param[in] item_flags
2502  *   Bit-fields that holds the items detected until now.
2503  * @param[in] prev_layer
2504  *   The protocol layer indicated in previous item.
2505  * @param[out] error
2506  *   Pointer to error structure.
2507  *
2508  * @return
2509  *   0 on success, a negative errno value otherwise and rte_errno is set.
2510  */
2511 int
2512 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2513                              const struct rte_flow_item *item __rte_unused,
2514                              uint64_t item_flags __rte_unused,
2515                              uint64_t prev_layer __rte_unused,
2516                              struct rte_flow_error *error)
2517 {
2518 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2519         const struct rte_flow_item_mpls *mask = item->mask;
2520         struct mlx5_priv *priv = dev->data->dev_private;
2521         int ret;
2522
2523         if (!priv->config.mpls_en)
2524                 return rte_flow_error_set(error, ENOTSUP,
2525                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2526                                           "MPLS not supported or"
2527                                           " disabled in firmware"
2528                                           " configuration.");
2529         /* MPLS over IP, UDP, GRE is allowed */
2530         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2531                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2532                             MLX5_FLOW_LAYER_GRE)))
2533                 return rte_flow_error_set(error, EINVAL,
2534                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2535                                           "protocol filtering not compatible"
2536                                           " with MPLS layer");
2537         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2538         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2539             !(item_flags & MLX5_FLOW_LAYER_GRE))
2540                 return rte_flow_error_set(error, ENOTSUP,
2541                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2542                                           "multiple tunnel layers not"
2543                                           " supported");
2544         if (!mask)
2545                 mask = &rte_flow_item_mpls_mask;
2546         ret = mlx5_flow_item_acceptable
2547                 (item, (const uint8_t *)mask,
2548                  (const uint8_t *)&rte_flow_item_mpls_mask,
2549                  sizeof(struct rte_flow_item_mpls),
2550                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2551         if (ret < 0)
2552                 return ret;
2553         return 0;
2554 #else
2555         return rte_flow_error_set(error, ENOTSUP,
2556                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2557                                   "MPLS is not supported by Verbs, please"
2558                                   " update.");
2559 #endif
2560 }
2561
2562 /**
2563  * Validate NVGRE item.
2564  *
2565  * @param[in] item
2566  *   Item specification.
2567  * @param[in] item_flags
2568  *   Bit flags to mark detected items.
2569  * @param[in] target_protocol
2570  *   The next protocol in the previous item.
2571  * @param[out] error
2572  *   Pointer to error structure.
2573  *
2574  * @return
2575  *   0 on success, a negative errno value otherwise and rte_errno is set.
2576  */
2577 int
2578 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2579                               uint64_t item_flags,
2580                               uint8_t target_protocol,
2581                               struct rte_flow_error *error)
2582 {
2583         const struct rte_flow_item_nvgre *mask = item->mask;
2584         int ret;
2585
2586         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2587                 return rte_flow_error_set(error, EINVAL,
2588                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2589                                           "protocol filtering not compatible"
2590                                           " with this GRE layer");
2591         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2592                 return rte_flow_error_set(error, ENOTSUP,
2593                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2594                                           "multiple tunnel layers not"
2595                                           " supported");
2596         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2597                 return rte_flow_error_set(error, ENOTSUP,
2598                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2599                                           "L3 Layer is missing");
2600         if (!mask)
2601                 mask = &rte_flow_item_nvgre_mask;
2602         ret = mlx5_flow_item_acceptable
2603                 (item, (const uint8_t *)mask,
2604                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2605                  sizeof(struct rte_flow_item_nvgre),
2606                  MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2607         if (ret < 0)
2608                 return ret;
2609         return 0;
2610 }
2611
2612 /**
2613  * Validate eCPRI item.
2614  *
2615  * @param[in] item
2616  *   Item specification.
2617  * @param[in] item_flags
2618  *   Bit-fields that holds the items detected until now.
2619  * @param[in] last_item
2620  *   Previous validated item in the pattern items.
2621  * @param[in] ether_type
2622  *   Type in the ethernet layer header (including dot1q).
2623  * @param[in] acc_mask
2624  *   Acceptable mask, if NULL default internal default mask
2625  *   will be used to check whether item fields are supported.
2626  * @param[out] error
2627  *   Pointer to error structure.
2628  *
2629  * @return
2630  *   0 on success, a negative errno value otherwise and rte_errno is set.
2631  */
2632 int
2633 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2634                               uint64_t item_flags,
2635                               uint64_t last_item,
2636                               uint16_t ether_type,
2637                               const struct rte_flow_item_ecpri *acc_mask,
2638                               struct rte_flow_error *error)
2639 {
2640         const struct rte_flow_item_ecpri *mask = item->mask;
2641         const struct rte_flow_item_ecpri nic_mask = {
2642                 .hdr = {
2643                         .common = {
2644                                 .u32 =
2645                                 RTE_BE32(((const struct rte_ecpri_common_hdr) {
2646                                         .type = 0xFF,
2647                                         }).u32),
2648                         },
2649                         .dummy[0] = 0xFFFFFFFF,
2650                 },
2651         };
2652         const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2653                                         MLX5_FLOW_LAYER_OUTER_VLAN);
2654         struct rte_flow_item_ecpri mask_lo;
2655
2656         if ((last_item & outer_l2_vlan) && ether_type &&
2657             ether_type != RTE_ETHER_TYPE_ECPRI)
2658                 return rte_flow_error_set(error, EINVAL,
2659                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2660                                           "eCPRI cannot follow L2/VLAN layer "
2661                                           "which ether type is not 0xAEFE.");
2662         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2663                 return rte_flow_error_set(error, EINVAL,
2664                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2665                                           "eCPRI with tunnel is not supported "
2666                                           "right now.");
2667         if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2668                 return rte_flow_error_set(error, ENOTSUP,
2669                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2670                                           "multiple L3 layers not supported");
2671         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2672                 return rte_flow_error_set(error, EINVAL,
2673                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2674                                           "eCPRI cannot follow a TCP layer.");
2675         /* In specification, eCPRI could be over UDP layer. */
2676         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2677                 return rte_flow_error_set(error, EINVAL,
2678                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2679                                           "eCPRI over UDP layer is not yet "
2680                                           "supported right now.");
2681         /* Mask for type field in common header could be zero. */
2682         if (!mask)
2683                 mask = &rte_flow_item_ecpri_mask;
2684         mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2685         /* Input mask is in big-endian format. */
2686         if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2687                 return rte_flow_error_set(error, EINVAL,
2688                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2689                                           "partial mask is not supported "
2690                                           "for protocol");
2691         else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2692                 return rte_flow_error_set(error, EINVAL,
2693                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2694                                           "message header mask must be after "
2695                                           "a type mask");
2696         return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2697                                          acc_mask ? (const uint8_t *)acc_mask
2698                                                   : (const uint8_t *)&nic_mask,
2699                                          sizeof(struct rte_flow_item_ecpri),
2700                                          MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2701 }
2702
2703 /* Allocate unique ID for the split Q/RSS subflows. */
2704 static uint32_t
2705 flow_qrss_get_id(struct rte_eth_dev *dev)
2706 {
2707         struct mlx5_priv *priv = dev->data->dev_private;
2708         uint32_t qrss_id, ret;
2709
2710         ret = mlx5_flow_id_get(priv->qrss_id_pool, &qrss_id);
2711         if (ret)
2712                 return 0;
2713         MLX5_ASSERT(qrss_id);
2714         return qrss_id;
2715 }
2716
2717 /* Free unique ID for the split Q/RSS subflows. */
2718 static void
2719 flow_qrss_free_id(struct rte_eth_dev *dev,  uint32_t qrss_id)
2720 {
2721         struct mlx5_priv *priv = dev->data->dev_private;
2722
2723         if (qrss_id)
2724                 mlx5_flow_id_release(priv->qrss_id_pool, qrss_id);
2725 }
2726
2727 /**
2728  * Release resource related QUEUE/RSS action split.
2729  *
2730  * @param dev
2731  *   Pointer to Ethernet device.
2732  * @param flow
2733  *   Flow to release id's from.
2734  */
2735 static void
2736 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2737                              struct rte_flow *flow)
2738 {
2739         struct mlx5_priv *priv = dev->data->dev_private;
2740         uint32_t handle_idx;
2741         struct mlx5_flow_handle *dev_handle;
2742
2743         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2744                        handle_idx, dev_handle, next)
2745                 if (dev_handle->split_flow_id)
2746                         flow_qrss_free_id(dev, dev_handle->split_flow_id);
2747 }
2748
2749 static int
2750 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2751                    const struct rte_flow_attr *attr __rte_unused,
2752                    const struct rte_flow_item items[] __rte_unused,
2753                    const struct rte_flow_action actions[] __rte_unused,
2754                    bool external __rte_unused,
2755                    int hairpin __rte_unused,
2756                    struct rte_flow_error *error)
2757 {
2758         return rte_flow_error_set(error, ENOTSUP,
2759                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2760 }
2761
2762 static struct mlx5_flow *
2763 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2764                   const struct rte_flow_attr *attr __rte_unused,
2765                   const struct rte_flow_item items[] __rte_unused,
2766                   const struct rte_flow_action actions[] __rte_unused,
2767                   struct rte_flow_error *error)
2768 {
2769         rte_flow_error_set(error, ENOTSUP,
2770                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2771         return NULL;
2772 }
2773
2774 static int
2775 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2776                     struct mlx5_flow *dev_flow __rte_unused,
2777                     const struct rte_flow_attr *attr __rte_unused,
2778                     const struct rte_flow_item items[] __rte_unused,
2779                     const struct rte_flow_action actions[] __rte_unused,
2780                     struct rte_flow_error *error)
2781 {
2782         return rte_flow_error_set(error, ENOTSUP,
2783                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2784 }
2785
2786 static int
2787 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2788                 struct rte_flow *flow __rte_unused,
2789                 struct rte_flow_error *error)
2790 {
2791         return rte_flow_error_set(error, ENOTSUP,
2792                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2793 }
2794
2795 static void
2796 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2797                  struct rte_flow *flow __rte_unused)
2798 {
2799 }
2800
2801 static void
2802 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2803                   struct rte_flow *flow __rte_unused)
2804 {
2805 }
2806
2807 static int
2808 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2809                 struct rte_flow *flow __rte_unused,
2810                 const struct rte_flow_action *actions __rte_unused,
2811                 void *data __rte_unused,
2812                 struct rte_flow_error *error)
2813 {
2814         return rte_flow_error_set(error, ENOTSUP,
2815                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2816 }
2817
2818 /* Void driver to protect from null pointer reference. */
2819 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2820         .validate = flow_null_validate,
2821         .prepare = flow_null_prepare,
2822         .translate = flow_null_translate,
2823         .apply = flow_null_apply,
2824         .remove = flow_null_remove,
2825         .destroy = flow_null_destroy,
2826         .query = flow_null_query,
2827 };
2828
2829 /**
2830  * Select flow driver type according to flow attributes and device
2831  * configuration.
2832  *
2833  * @param[in] dev
2834  *   Pointer to the dev structure.
2835  * @param[in] attr
2836  *   Pointer to the flow attributes.
2837  *
2838  * @return
2839  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2840  */
2841 static enum mlx5_flow_drv_type
2842 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2843 {
2844         struct mlx5_priv *priv = dev->data->dev_private;
2845         /* The OS can determine first a specific flow type (DV, VERBS) */
2846         enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2847
2848         if (type != MLX5_FLOW_TYPE_MAX)
2849                 return type;
2850         /* If no OS specific type - continue with DV/VERBS selection */
2851         if (attr->transfer && priv->config.dv_esw_en)
2852                 type = MLX5_FLOW_TYPE_DV;
2853         if (!attr->transfer)
2854                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2855                                                  MLX5_FLOW_TYPE_VERBS;
2856         return type;
2857 }
2858
2859 #define flow_get_drv_ops(type) flow_drv_ops[type]
2860
2861 /**
2862  * Flow driver validation API. This abstracts calling driver specific functions.
2863  * The type of flow driver is determined according to flow attributes.
2864  *
2865  * @param[in] dev
2866  *   Pointer to the dev structure.
2867  * @param[in] attr
2868  *   Pointer to the flow attributes.
2869  * @param[in] items
2870  *   Pointer to the list of items.
2871  * @param[in] actions
2872  *   Pointer to the list of actions.
2873  * @param[in] external
2874  *   This flow rule is created by request external to PMD.
2875  * @param[in] hairpin
2876  *   Number of hairpin TX actions, 0 means classic flow.
2877  * @param[out] error
2878  *   Pointer to the error structure.
2879  *
2880  * @return
2881  *   0 on success, a negative errno value otherwise and rte_errno is set.
2882  */
2883 static inline int
2884 flow_drv_validate(struct rte_eth_dev *dev,
2885                   const struct rte_flow_attr *attr,
2886                   const struct rte_flow_item items[],
2887                   const struct rte_flow_action actions[],
2888                   bool external, int hairpin, struct rte_flow_error *error)
2889 {
2890         const struct mlx5_flow_driver_ops *fops;
2891         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2892
2893         fops = flow_get_drv_ops(type);
2894         return fops->validate(dev, attr, items, actions, external,
2895                               hairpin, error);
2896 }
2897
2898 /**
2899  * Flow driver preparation API. This abstracts calling driver specific
2900  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2901  * calculates the size of memory required for device flow, allocates the memory,
2902  * initializes the device flow and returns the pointer.
2903  *
2904  * @note
2905  *   This function initializes device flow structure such as dv or verbs in
2906  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2907  *   rest. For example, adding returning device flow to flow->dev_flow list and
2908  *   setting backward reference to the flow should be done out of this function.
2909  *   layers field is not filled either.
2910  *
2911  * @param[in] dev
2912  *   Pointer to the dev structure.
2913  * @param[in] attr
2914  *   Pointer to the flow attributes.
2915  * @param[in] items
2916  *   Pointer to the list of items.
2917  * @param[in] actions
2918  *   Pointer to the list of actions.
2919  * @param[in] flow_idx
2920  *   This memory pool index to the flow.
2921  * @param[out] error
2922  *   Pointer to the error structure.
2923  *
2924  * @return
2925  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2926  */
2927 static inline struct mlx5_flow *
2928 flow_drv_prepare(struct rte_eth_dev *dev,
2929                  const struct rte_flow *flow,
2930                  const struct rte_flow_attr *attr,
2931                  const struct rte_flow_item items[],
2932                  const struct rte_flow_action actions[],
2933                  uint32_t flow_idx,
2934                  struct rte_flow_error *error)
2935 {
2936         const struct mlx5_flow_driver_ops *fops;
2937         enum mlx5_flow_drv_type type = flow->drv_type;
2938         struct mlx5_flow *mlx5_flow = NULL;
2939
2940         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2941         fops = flow_get_drv_ops(type);
2942         mlx5_flow = fops->prepare(dev, attr, items, actions, error);
2943         if (mlx5_flow)
2944                 mlx5_flow->flow_idx = flow_idx;
2945         return mlx5_flow;
2946 }
2947
2948 /**
2949  * Flow driver translation API. This abstracts calling driver specific
2950  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2951  * translates a generic flow into a driver flow. flow_drv_prepare() must
2952  * precede.
2953  *
2954  * @note
2955  *   dev_flow->layers could be filled as a result of parsing during translation
2956  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2957  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2958  *   flow->actions could be overwritten even though all the expanded dev_flows
2959  *   have the same actions.
2960  *
2961  * @param[in] dev
2962  *   Pointer to the rte dev structure.
2963  * @param[in, out] dev_flow
2964  *   Pointer to the mlx5 flow.
2965  * @param[in] attr
2966  *   Pointer to the flow attributes.
2967  * @param[in] items
2968  *   Pointer to the list of items.
2969  * @param[in] actions
2970  *   Pointer to the list of actions.
2971  * @param[out] error
2972  *   Pointer to the error structure.
2973  *
2974  * @return
2975  *   0 on success, a negative errno value otherwise and rte_errno is set.
2976  */
2977 static inline int
2978 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2979                    const struct rte_flow_attr *attr,
2980                    const struct rte_flow_item items[],
2981                    const struct rte_flow_action actions[],
2982                    struct rte_flow_error *error)
2983 {
2984         const struct mlx5_flow_driver_ops *fops;
2985         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2986
2987         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2988         fops = flow_get_drv_ops(type);
2989         return fops->translate(dev, dev_flow, attr, items, actions, error);
2990 }
2991
2992 /**
2993  * Flow driver apply API. This abstracts calling driver specific functions.
2994  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2995  * translated driver flows on to device. flow_drv_translate() must precede.
2996  *
2997  * @param[in] dev
2998  *   Pointer to Ethernet device structure.
2999  * @param[in, out] flow
3000  *   Pointer to flow structure.
3001  * @param[out] error
3002  *   Pointer to error structure.
3003  *
3004  * @return
3005  *   0 on success, a negative errno value otherwise and rte_errno is set.
3006  */
3007 static inline int
3008 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3009                struct rte_flow_error *error)
3010 {
3011         const struct mlx5_flow_driver_ops *fops;
3012         enum mlx5_flow_drv_type type = flow->drv_type;
3013
3014         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3015         fops = flow_get_drv_ops(type);
3016         return fops->apply(dev, flow, error);
3017 }
3018
3019 /**
3020  * Flow driver remove API. This abstracts calling driver specific functions.
3021  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3022  * on device. All the resources of the flow should be freed by calling
3023  * flow_drv_destroy().
3024  *
3025  * @param[in] dev
3026  *   Pointer to Ethernet device.
3027  * @param[in, out] flow
3028  *   Pointer to flow structure.
3029  */
3030 static inline void
3031 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
3032 {
3033         const struct mlx5_flow_driver_ops *fops;
3034         enum mlx5_flow_drv_type type = flow->drv_type;
3035
3036         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3037         fops = flow_get_drv_ops(type);
3038         fops->remove(dev, flow);
3039 }
3040
3041 /**
3042  * Flow driver destroy API. This abstracts calling driver specific functions.
3043  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3044  * on device and releases resources of the flow.
3045  *
3046  * @param[in] dev
3047  *   Pointer to Ethernet device.
3048  * @param[in, out] flow
3049  *   Pointer to flow structure.
3050  */
3051 static inline void
3052 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3053 {
3054         const struct mlx5_flow_driver_ops *fops;
3055         enum mlx5_flow_drv_type type = flow->drv_type;
3056
3057         flow_mreg_split_qrss_release(dev, flow);
3058         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3059         fops = flow_get_drv_ops(type);
3060         fops->destroy(dev, flow);
3061 }
3062
3063 /**
3064  * Get RSS action from the action list.
3065  *
3066  * @param[in] actions
3067  *   Pointer to the list of actions.
3068  *
3069  * @return
3070  *   Pointer to the RSS action if exist, else return NULL.
3071  */
3072 static const struct rte_flow_action_rss*
3073 flow_get_rss_action(const struct rte_flow_action actions[])
3074 {
3075         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3076                 switch (actions->type) {
3077                 case RTE_FLOW_ACTION_TYPE_RSS:
3078                         return (const struct rte_flow_action_rss *)
3079                                actions->conf;
3080                 default:
3081                         break;
3082                 }
3083         }
3084         return NULL;
3085 }
3086
3087 static unsigned int
3088 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3089 {
3090         const struct rte_flow_item *item;
3091         unsigned int has_vlan = 0;
3092
3093         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3094                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3095                         has_vlan = 1;
3096                         break;
3097                 }
3098         }
3099         if (has_vlan)
3100                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3101                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3102         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3103                                MLX5_EXPANSION_ROOT_OUTER;
3104 }
3105
3106 /**
3107  *  Get layer flags from the prefix flow.
3108  *
3109  *  Some flows may be split to several subflows, the prefix subflow gets the
3110  *  match items and the suffix sub flow gets the actions.
3111  *  Some actions need the user defined match item flags to get the detail for
3112  *  the action.
3113  *  This function helps the suffix flow to get the item layer flags from prefix
3114  *  subflow.
3115  *
3116  * @param[in] dev_flow
3117  *   Pointer the created preifx subflow.
3118  *
3119  * @return
3120  *   The layers get from prefix subflow.
3121  */
3122 static inline uint64_t
3123 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3124 {
3125         uint64_t layers = 0;
3126
3127         /*
3128          * Layers bits could be localization, but usually the compiler will
3129          * help to do the optimization work for source code.
3130          * If no decap actions, use the layers directly.
3131          */
3132         if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3133                 return dev_flow->handle->layers;
3134         /* Convert L3 layers with decap action. */
3135         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3136                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3137         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3138                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3139         /* Convert L4 layers with decap action.  */
3140         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3141                 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3142         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3143                 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3144         return layers;
3145 }
3146
3147 /**
3148  * Get metadata split action information.
3149  *
3150  * @param[in] actions
3151  *   Pointer to the list of actions.
3152  * @param[out] qrss
3153  *   Pointer to the return pointer.
3154  * @param[out] qrss_type
3155  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3156  *   if no QUEUE/RSS is found.
3157  * @param[out] encap_idx
3158  *   Pointer to the index of the encap action if exists, otherwise the last
3159  *   action index.
3160  *
3161  * @return
3162  *   Total number of actions.
3163  */
3164 static int
3165 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3166                                        const struct rte_flow_action **qrss,
3167                                        int *encap_idx)
3168 {
3169         const struct rte_flow_action_raw_encap *raw_encap;
3170         int actions_n = 0;
3171         int raw_decap_idx = -1;
3172
3173         *encap_idx = -1;
3174         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3175                 switch (actions->type) {
3176                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3177                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3178                         *encap_idx = actions_n;
3179                         break;
3180                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3181                         raw_decap_idx = actions_n;
3182                         break;
3183                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3184                         raw_encap = actions->conf;
3185                         if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3186                                 *encap_idx = raw_decap_idx != -1 ?
3187                                                       raw_decap_idx : actions_n;
3188                         break;
3189                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3190                 case RTE_FLOW_ACTION_TYPE_RSS:
3191                         *qrss = actions;
3192                         break;
3193                 default:
3194                         break;
3195                 }
3196                 actions_n++;
3197         }
3198         if (*encap_idx == -1)
3199                 *encap_idx = actions_n;
3200         /* Count RTE_FLOW_ACTION_TYPE_END. */
3201         return actions_n + 1;
3202 }
3203
3204 /**
3205  * Check meter action from the action list.
3206  *
3207  * @param[in] actions
3208  *   Pointer to the list of actions.
3209  * @param[out] mtr
3210  *   Pointer to the meter exist flag.
3211  *
3212  * @return
3213  *   Total number of actions.
3214  */
3215 static int
3216 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3217 {
3218         int actions_n = 0;
3219
3220         MLX5_ASSERT(mtr);
3221         *mtr = 0;
3222         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3223                 switch (actions->type) {
3224                 case RTE_FLOW_ACTION_TYPE_METER:
3225                         *mtr = 1;
3226                         break;
3227                 default:
3228                         break;
3229                 }
3230                 actions_n++;
3231         }
3232         /* Count RTE_FLOW_ACTION_TYPE_END. */
3233         return actions_n + 1;
3234 }
3235
3236 /**
3237  * Check if the flow should be split due to hairpin.
3238  * The reason for the split is that in current HW we can't
3239  * support encap and push-vlan on Rx, so if a flow contains
3240  * these actions we move it to Tx.
3241  *
3242  * @param dev
3243  *   Pointer to Ethernet device.
3244  * @param[in] attr
3245  *   Flow rule attributes.
3246  * @param[in] actions
3247  *   Associated actions (list terminated by the END action).
3248  *
3249  * @return
3250  *   > 0 the number of actions and the flow should be split,
3251  *   0 when no split required.
3252  */
3253 static int
3254 flow_check_hairpin_split(struct rte_eth_dev *dev,
3255                          const struct rte_flow_attr *attr,
3256                          const struct rte_flow_action actions[])
3257 {
3258         int queue_action = 0;
3259         int action_n = 0;
3260         int split = 0;
3261         const struct rte_flow_action_queue *queue;
3262         const struct rte_flow_action_rss *rss;
3263         const struct rte_flow_action_raw_encap *raw_encap;
3264
3265         if (!attr->ingress)
3266                 return 0;
3267         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3268                 switch (actions->type) {
3269                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3270                         queue = actions->conf;
3271                         if (queue == NULL)
3272                                 return 0;
3273                         if (mlx5_rxq_get_type(dev, queue->index) !=
3274                             MLX5_RXQ_TYPE_HAIRPIN)
3275                                 return 0;
3276                         queue_action = 1;
3277                         action_n++;
3278                         break;
3279                 case RTE_FLOW_ACTION_TYPE_RSS:
3280                         rss = actions->conf;
3281                         if (rss == NULL || rss->queue_num == 0)
3282                                 return 0;
3283                         if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
3284                             MLX5_RXQ_TYPE_HAIRPIN)
3285                                 return 0;
3286                         queue_action = 1;
3287                         action_n++;
3288                         break;
3289                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3290                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3291                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3292                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3293                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3294                         split++;
3295                         action_n++;
3296                         break;
3297                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3298                         raw_encap = actions->conf;
3299                         if (raw_encap->size >
3300                             (sizeof(struct rte_flow_item_eth) +
3301                              sizeof(struct rte_flow_item_ipv4)))
3302                                 split++;
3303                         action_n++;
3304                         break;
3305                 default:
3306                         action_n++;
3307                         break;
3308                 }
3309         }
3310         if (split && queue_action)
3311                 return action_n;
3312         return 0;
3313 }
3314
3315 /* Declare flow create/destroy prototype in advance. */
3316 static uint32_t
3317 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3318                  const struct rte_flow_attr *attr,
3319                  const struct rte_flow_item items[],
3320                  const struct rte_flow_action actions[],
3321                  bool external, struct rte_flow_error *error);
3322
3323 static void
3324 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3325                   uint32_t flow_idx);
3326
3327 /**
3328  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3329  *
3330  * As mark_id is unique, if there's already a registered flow for the mark_id,
3331  * return by increasing the reference counter of the resource. Otherwise, create
3332  * the resource (mcp_res) and flow.
3333  *
3334  * Flow looks like,
3335  *   - If ingress port is ANY and reg_c[1] is mark_id,
3336  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3337  *
3338  * For default flow (zero mark_id), flow is like,
3339  *   - If ingress port is ANY,
3340  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3341  *
3342  * @param dev
3343  *   Pointer to Ethernet device.
3344  * @param mark_id
3345  *   ID of MARK action, zero means default flow for META.
3346  * @param[out] error
3347  *   Perform verbose error reporting if not NULL.
3348  *
3349  * @return
3350  *   Associated resource on success, NULL otherwise and rte_errno is set.
3351  */
3352 static struct mlx5_flow_mreg_copy_resource *
3353 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3354                           struct rte_flow_error *error)
3355 {
3356         struct mlx5_priv *priv = dev->data->dev_private;
3357         struct rte_flow_attr attr = {
3358                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3359                 .ingress = 1,
3360         };
3361         struct mlx5_rte_flow_item_tag tag_spec = {
3362                 .data = mark_id,
3363         };
3364         struct rte_flow_item items[] = {
3365                 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3366         };
3367         struct rte_flow_action_mark ftag = {
3368                 .id = mark_id,
3369         };
3370         struct mlx5_flow_action_copy_mreg cp_mreg = {
3371                 .dst = REG_B,
3372                 .src = REG_NON,
3373         };
3374         struct rte_flow_action_jump jump = {
3375                 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3376         };
3377         struct rte_flow_action actions[] = {
3378                 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3379         };
3380         struct mlx5_flow_mreg_copy_resource *mcp_res;
3381         uint32_t idx = 0;
3382         int ret;
3383
3384         /* Fill the register fileds in the flow. */
3385         ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3386         if (ret < 0)
3387                 return NULL;
3388         tag_spec.id = ret;
3389         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3390         if (ret < 0)
3391                 return NULL;
3392         cp_mreg.src = ret;
3393         /* Check if already registered. */
3394         MLX5_ASSERT(priv->mreg_cp_tbl);
3395         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id);
3396         if (mcp_res) {
3397                 /* For non-default rule. */
3398                 if (mark_id != MLX5_DEFAULT_COPY_ID)
3399                         mcp_res->refcnt++;
3400                 MLX5_ASSERT(mark_id != MLX5_DEFAULT_COPY_ID ||
3401                             mcp_res->refcnt == 1);
3402                 return mcp_res;
3403         }
3404         /* Provide the full width of FLAG specific value. */
3405         if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3406                 tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3407         /* Build a new flow. */
3408         if (mark_id != MLX5_DEFAULT_COPY_ID) {
3409                 items[0] = (struct rte_flow_item){
3410                         .type = (enum rte_flow_item_type)
3411                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3412                         .spec = &tag_spec,
3413                 };
3414                 items[1] = (struct rte_flow_item){
3415                         .type = RTE_FLOW_ITEM_TYPE_END,
3416                 };
3417                 actions[0] = (struct rte_flow_action){
3418                         .type = (enum rte_flow_action_type)
3419                                 MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3420                         .conf = &ftag,
3421                 };
3422                 actions[1] = (struct rte_flow_action){
3423                         .type = (enum rte_flow_action_type)
3424                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3425                         .conf = &cp_mreg,
3426                 };
3427                 actions[2] = (struct rte_flow_action){
3428                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3429                         .conf = &jump,
3430                 };
3431                 actions[3] = (struct rte_flow_action){
3432                         .type = RTE_FLOW_ACTION_TYPE_END,
3433                 };
3434         } else {
3435                 /* Default rule, wildcard match. */
3436                 attr.priority = MLX5_FLOW_PRIO_RSVD;
3437                 items[0] = (struct rte_flow_item){
3438                         .type = RTE_FLOW_ITEM_TYPE_END,
3439                 };
3440                 actions[0] = (struct rte_flow_action){
3441                         .type = (enum rte_flow_action_type)
3442                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3443                         .conf = &cp_mreg,
3444                 };
3445                 actions[1] = (struct rte_flow_action){
3446                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3447                         .conf = &jump,
3448                 };
3449                 actions[2] = (struct rte_flow_action){
3450                         .type = RTE_FLOW_ACTION_TYPE_END,
3451                 };
3452         }
3453         /* Build a new entry. */
3454         mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3455         if (!mcp_res) {
3456                 rte_errno = ENOMEM;
3457                 return NULL;
3458         }
3459         mcp_res->idx = idx;
3460         /*
3461          * The copy Flows are not included in any list. There
3462          * ones are referenced from other Flows and can not
3463          * be applied, removed, deleted in ardbitrary order
3464          * by list traversing.
3465          */
3466         mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3467                                          actions, false, error);
3468         if (!mcp_res->rix_flow)
3469                 goto error;
3470         mcp_res->refcnt++;
3471         mcp_res->hlist_ent.key = mark_id;
3472         ret = mlx5_hlist_insert(priv->mreg_cp_tbl,
3473                                 &mcp_res->hlist_ent);
3474         MLX5_ASSERT(!ret);
3475         if (ret)
3476                 goto error;
3477         return mcp_res;
3478 error:
3479         if (mcp_res->rix_flow)
3480                 flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3481         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3482         return NULL;
3483 }
3484
3485 /**
3486  * Release flow in RX_CP_TBL.
3487  *
3488  * @param dev
3489  *   Pointer to Ethernet device.
3490  * @flow
3491  *   Parent flow for wich copying is provided.
3492  */
3493 static void
3494 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3495                           struct rte_flow *flow)
3496 {
3497         struct mlx5_flow_mreg_copy_resource *mcp_res;
3498         struct mlx5_priv *priv = dev->data->dev_private;
3499
3500         if (!flow->rix_mreg_copy)
3501                 return;
3502         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3503                                  flow->rix_mreg_copy);
3504         if (!mcp_res || !priv->mreg_cp_tbl)
3505                 return;
3506         if (flow->copy_applied) {
3507                 MLX5_ASSERT(mcp_res->appcnt);
3508                 flow->copy_applied = 0;
3509                 --mcp_res->appcnt;
3510                 if (!mcp_res->appcnt) {
3511                         struct rte_flow *mcp_flow = mlx5_ipool_get
3512                                         (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3513                                         mcp_res->rix_flow);
3514
3515                         if (mcp_flow)
3516                                 flow_drv_remove(dev, mcp_flow);
3517                 }
3518         }
3519         /*
3520          * We do not check availability of metadata registers here,
3521          * because copy resources are not allocated in this case.
3522          */
3523         if (--mcp_res->refcnt)
3524                 return;
3525         MLX5_ASSERT(mcp_res->rix_flow);
3526         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3527         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3528         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3529         flow->rix_mreg_copy = 0;
3530 }
3531
3532 /**
3533  * Start flow in RX_CP_TBL.
3534  *
3535  * @param dev
3536  *   Pointer to Ethernet device.
3537  * @flow
3538  *   Parent flow for wich copying is provided.
3539  *
3540  * @return
3541  *   0 on success, a negative errno value otherwise and rte_errno is set.
3542  */
3543 static int
3544 flow_mreg_start_copy_action(struct rte_eth_dev *dev,
3545                             struct rte_flow *flow)
3546 {
3547         struct mlx5_flow_mreg_copy_resource *mcp_res;
3548         struct mlx5_priv *priv = dev->data->dev_private;
3549         int ret;
3550
3551         if (!flow->rix_mreg_copy || flow->copy_applied)
3552                 return 0;
3553         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3554                                  flow->rix_mreg_copy);
3555         if (!mcp_res)
3556                 return 0;
3557         if (!mcp_res->appcnt) {
3558                 struct rte_flow *mcp_flow = mlx5_ipool_get
3559                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3560                                 mcp_res->rix_flow);
3561
3562                 if (mcp_flow) {
3563                         ret = flow_drv_apply(dev, mcp_flow, NULL);
3564                         if (ret)
3565                                 return ret;
3566                 }
3567         }
3568         ++mcp_res->appcnt;
3569         flow->copy_applied = 1;
3570         return 0;
3571 }
3572
3573 /**
3574  * Stop flow in RX_CP_TBL.
3575  *
3576  * @param dev
3577  *   Pointer to Ethernet device.
3578  * @flow
3579  *   Parent flow for wich copying is provided.
3580  */
3581 static void
3582 flow_mreg_stop_copy_action(struct rte_eth_dev *dev,
3583                            struct rte_flow *flow)
3584 {
3585         struct mlx5_flow_mreg_copy_resource *mcp_res;
3586         struct mlx5_priv *priv = dev->data->dev_private;
3587
3588         if (!flow->rix_mreg_copy || !flow->copy_applied)
3589                 return;
3590         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3591                                  flow->rix_mreg_copy);
3592         if (!mcp_res)
3593                 return;
3594         MLX5_ASSERT(mcp_res->appcnt);
3595         --mcp_res->appcnt;
3596         flow->copy_applied = 0;
3597         if (!mcp_res->appcnt) {
3598                 struct rte_flow *mcp_flow = mlx5_ipool_get
3599                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3600                                 mcp_res->rix_flow);
3601
3602                 if (mcp_flow)
3603                         flow_drv_remove(dev, mcp_flow);
3604         }
3605 }
3606
3607 /**
3608  * Remove the default copy action from RX_CP_TBL.
3609  *
3610  * @param dev
3611  *   Pointer to Ethernet device.
3612  */
3613 static void
3614 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3615 {
3616         struct mlx5_flow_mreg_copy_resource *mcp_res;
3617         struct mlx5_priv *priv = dev->data->dev_private;
3618
3619         /* Check if default flow is registered. */
3620         if (!priv->mreg_cp_tbl)
3621                 return;
3622         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl,
3623                                             MLX5_DEFAULT_COPY_ID);
3624         if (!mcp_res)
3625                 return;
3626         MLX5_ASSERT(mcp_res->rix_flow);
3627         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3628         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3629         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3630 }
3631
3632 /**
3633  * Add the default copy action in in RX_CP_TBL.
3634  *
3635  * @param dev
3636  *   Pointer to Ethernet device.
3637  * @param[out] error
3638  *   Perform verbose error reporting if not NULL.
3639  *
3640  * @return
3641  *   0 for success, negative value otherwise and rte_errno is set.
3642  */
3643 static int
3644 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3645                                   struct rte_flow_error *error)
3646 {
3647         struct mlx5_priv *priv = dev->data->dev_private;
3648         struct mlx5_flow_mreg_copy_resource *mcp_res;
3649
3650         /* Check whether extensive metadata feature is engaged. */
3651         if (!priv->config.dv_flow_en ||
3652             priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3653             !mlx5_flow_ext_mreg_supported(dev) ||
3654             !priv->sh->dv_regc0_mask)
3655                 return 0;
3656         mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3657         if (!mcp_res)
3658                 return -rte_errno;
3659         return 0;
3660 }
3661
3662 /**
3663  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3664  *
3665  * All the flow having Q/RSS action should be split by
3666  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3667  * performs the following,
3668  *   - CQE->flow_tag := reg_c[1] (MARK)
3669  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3670  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3671  * but there should be a flow per each MARK ID set by MARK action.
3672  *
3673  * For the aforementioned reason, if there's a MARK action in flow's action
3674  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3675  * the MARK ID to CQE's flow_tag like,
3676  *   - If reg_c[1] is mark_id,
3677  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3678  *
3679  * For SET_META action which stores value in reg_c[0], as the destination is
3680  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3681  * MARK ID means the default flow. The default flow looks like,
3682  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3683  *
3684  * @param dev
3685  *   Pointer to Ethernet device.
3686  * @param flow
3687  *   Pointer to flow structure.
3688  * @param[in] actions
3689  *   Pointer to the list of actions.
3690  * @param[out] error
3691  *   Perform verbose error reporting if not NULL.
3692  *
3693  * @return
3694  *   0 on success, negative value otherwise and rte_errno is set.
3695  */
3696 static int
3697 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3698                             struct rte_flow *flow,
3699                             const struct rte_flow_action *actions,
3700                             struct rte_flow_error *error)
3701 {
3702         struct mlx5_priv *priv = dev->data->dev_private;
3703         struct mlx5_dev_config *config = &priv->config;
3704         struct mlx5_flow_mreg_copy_resource *mcp_res;
3705         const struct rte_flow_action_mark *mark;
3706
3707         /* Check whether extensive metadata feature is engaged. */
3708         if (!config->dv_flow_en ||
3709             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3710             !mlx5_flow_ext_mreg_supported(dev) ||
3711             !priv->sh->dv_regc0_mask)
3712                 return 0;
3713         /* Find MARK action. */
3714         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3715                 switch (actions->type) {
3716                 case RTE_FLOW_ACTION_TYPE_FLAG:
3717                         mcp_res = flow_mreg_add_copy_action
3718                                 (dev, MLX5_FLOW_MARK_DEFAULT, error);
3719                         if (!mcp_res)
3720                                 return -rte_errno;
3721                         flow->rix_mreg_copy = mcp_res->idx;
3722                         if (dev->data->dev_started) {
3723                                 mcp_res->appcnt++;
3724                                 flow->copy_applied = 1;
3725                         }
3726                         return 0;
3727                 case RTE_FLOW_ACTION_TYPE_MARK:
3728                         mark = (const struct rte_flow_action_mark *)
3729                                 actions->conf;
3730                         mcp_res =
3731                                 flow_mreg_add_copy_action(dev, mark->id, error);
3732                         if (!mcp_res)
3733                                 return -rte_errno;
3734                         flow->rix_mreg_copy = mcp_res->idx;
3735                         if (dev->data->dev_started) {
3736                                 mcp_res->appcnt++;
3737                                 flow->copy_applied = 1;
3738                         }
3739                         return 0;
3740                 default:
3741                         break;
3742                 }
3743         }
3744         return 0;
3745 }
3746
3747 #define MLX5_MAX_SPLIT_ACTIONS 24
3748 #define MLX5_MAX_SPLIT_ITEMS 24
3749
3750 /**
3751  * Split the hairpin flow.
3752  * Since HW can't support encap and push-vlan on Rx, we move these
3753  * actions to Tx.
3754  * If the count action is after the encap then we also
3755  * move the count action. in this case the count will also measure
3756  * the outer bytes.
3757  *
3758  * @param dev
3759  *   Pointer to Ethernet device.
3760  * @param[in] actions
3761  *   Associated actions (list terminated by the END action).
3762  * @param[out] actions_rx
3763  *   Rx flow actions.
3764  * @param[out] actions_tx
3765  *   Tx flow actions..
3766  * @param[out] pattern_tx
3767  *   The pattern items for the Tx flow.
3768  * @param[out] flow_id
3769  *   The flow ID connected to this flow.
3770  *
3771  * @return
3772  *   0 on success.
3773  */
3774 static int
3775 flow_hairpin_split(struct rte_eth_dev *dev,
3776                    const struct rte_flow_action actions[],
3777                    struct rte_flow_action actions_rx[],
3778                    struct rte_flow_action actions_tx[],
3779                    struct rte_flow_item pattern_tx[],
3780                    uint32_t *flow_id)
3781 {
3782         struct mlx5_priv *priv = dev->data->dev_private;
3783         const struct rte_flow_action_raw_encap *raw_encap;
3784         const struct rte_flow_action_raw_decap *raw_decap;
3785         struct mlx5_rte_flow_action_set_tag *set_tag;
3786         struct rte_flow_action *tag_action;
3787         struct mlx5_rte_flow_item_tag *tag_item;
3788         struct rte_flow_item *item;
3789         char *addr;
3790         int encap = 0;
3791
3792         mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
3793         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3794                 switch (actions->type) {
3795                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3796                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3797                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3798                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3799                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3800                         rte_memcpy(actions_tx, actions,
3801                                sizeof(struct rte_flow_action));
3802                         actions_tx++;
3803                         break;
3804                 case RTE_FLOW_ACTION_TYPE_COUNT:
3805                         if (encap) {
3806                                 rte_memcpy(actions_tx, actions,
3807                                            sizeof(struct rte_flow_action));
3808                                 actions_tx++;
3809                         } else {
3810                                 rte_memcpy(actions_rx, actions,
3811                                            sizeof(struct rte_flow_action));
3812                                 actions_rx++;
3813                         }
3814                         break;
3815                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3816                         raw_encap = actions->conf;
3817                         if (raw_encap->size >
3818                             (sizeof(struct rte_flow_item_eth) +
3819                              sizeof(struct rte_flow_item_ipv4))) {
3820                                 memcpy(actions_tx, actions,
3821                                        sizeof(struct rte_flow_action));
3822                                 actions_tx++;
3823                                 encap = 1;
3824                         } else {
3825                                 rte_memcpy(actions_rx, actions,
3826                                            sizeof(struct rte_flow_action));
3827                                 actions_rx++;
3828                         }
3829                         break;
3830                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3831                         raw_decap = actions->conf;
3832                         if (raw_decap->size <
3833                             (sizeof(struct rte_flow_item_eth) +
3834                              sizeof(struct rte_flow_item_ipv4))) {
3835                                 memcpy(actions_tx, actions,
3836                                        sizeof(struct rte_flow_action));
3837                                 actions_tx++;
3838                         } else {
3839                                 rte_memcpy(actions_rx, actions,
3840                                            sizeof(struct rte_flow_action));
3841                                 actions_rx++;
3842                         }
3843                         break;
3844                 default:
3845                         rte_memcpy(actions_rx, actions,
3846                                    sizeof(struct rte_flow_action));
3847                         actions_rx++;
3848                         break;
3849                 }
3850         }
3851         /* Add set meta action and end action for the Rx flow. */
3852         tag_action = actions_rx;
3853         tag_action->type = (enum rte_flow_action_type)
3854                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
3855         actions_rx++;
3856         rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
3857         actions_rx++;
3858         set_tag = (void *)actions_rx;
3859         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
3860         MLX5_ASSERT(set_tag->id > REG_NON);
3861         set_tag->data = *flow_id;
3862         tag_action->conf = set_tag;
3863         /* Create Tx item list. */
3864         rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
3865         addr = (void *)&pattern_tx[2];
3866         item = pattern_tx;
3867         item->type = (enum rte_flow_item_type)
3868                      MLX5_RTE_FLOW_ITEM_TYPE_TAG;
3869         tag_item = (void *)addr;
3870         tag_item->data = *flow_id;
3871         tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
3872         MLX5_ASSERT(set_tag->id > REG_NON);
3873         item->spec = tag_item;
3874         addr += sizeof(struct mlx5_rte_flow_item_tag);
3875         tag_item = (void *)addr;
3876         tag_item->data = UINT32_MAX;
3877         tag_item->id = UINT16_MAX;
3878         item->mask = tag_item;
3879         item->last = NULL;
3880         item++;
3881         item->type = RTE_FLOW_ITEM_TYPE_END;
3882         return 0;
3883 }
3884
3885 /**
3886  * The last stage of splitting chain, just creates the subflow
3887  * without any modification.
3888  *
3889  * @param[in] dev
3890  *   Pointer to Ethernet device.
3891  * @param[in] flow
3892  *   Parent flow structure pointer.
3893  * @param[in, out] sub_flow
3894  *   Pointer to return the created subflow, may be NULL.
3895  * @param[in] prefix_layers
3896  *   Prefix subflow layers, may be 0.
3897  * @param[in] prefix_mark
3898  *   Prefix subflow mark flag, may be 0.
3899  * @param[in] attr
3900  *   Flow rule attributes.
3901  * @param[in] items
3902  *   Pattern specification (list terminated by the END pattern item).
3903  * @param[in] actions
3904  *   Associated actions (list terminated by the END action).
3905  * @param[in] external
3906  *   This flow rule is created by request external to PMD.
3907  * @param[in] flow_idx
3908  *   This memory pool index to the flow.
3909  * @param[out] error
3910  *   Perform verbose error reporting if not NULL.
3911  * @return
3912  *   0 on success, negative value otherwise
3913  */
3914 static int
3915 flow_create_split_inner(struct rte_eth_dev *dev,
3916                         struct rte_flow *flow,
3917                         struct mlx5_flow **sub_flow,
3918                         uint64_t prefix_layers,
3919                         uint32_t prefix_mark,
3920                         const struct rte_flow_attr *attr,
3921                         const struct rte_flow_item items[],
3922                         const struct rte_flow_action actions[],
3923                         bool external, uint32_t flow_idx,
3924                         struct rte_flow_error *error)
3925 {
3926         struct mlx5_flow *dev_flow;
3927
3928         dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
3929                 flow_idx, error);
3930         if (!dev_flow)
3931                 return -rte_errno;
3932         dev_flow->flow = flow;
3933         dev_flow->external = external;
3934         /* Subflow object was created, we must include one in the list. */
3935         SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
3936                       dev_flow->handle, next);
3937         /*
3938          * If dev_flow is as one of the suffix flow, some actions in suffix
3939          * flow may need some user defined item layer flags, and pass the
3940          * Metadate rxq mark flag to suffix flow as well.
3941          */
3942         if (prefix_layers)
3943                 dev_flow->handle->layers = prefix_layers;
3944         if (prefix_mark)
3945                 dev_flow->handle->mark = 1;
3946         if (sub_flow)
3947                 *sub_flow = dev_flow;
3948         return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
3949 }
3950
3951 /**
3952  * Split the meter flow.
3953  *
3954  * As meter flow will split to three sub flow, other than meter
3955  * action, the other actions make sense to only meter accepts
3956  * the packet. If it need to be dropped, no other additional
3957  * actions should be take.
3958  *
3959  * One kind of special action which decapsulates the L3 tunnel
3960  * header will be in the prefix sub flow, as not to take the
3961  * L3 tunnel header into account.
3962  *
3963  * @param dev
3964  *   Pointer to Ethernet device.
3965  * @param[in] items
3966  *   Pattern specification (list terminated by the END pattern item).
3967  * @param[out] sfx_items
3968  *   Suffix flow match items (list terminated by the END pattern item).
3969  * @param[in] actions
3970  *   Associated actions (list terminated by the END action).
3971  * @param[out] actions_sfx
3972  *   Suffix flow actions.
3973  * @param[out] actions_pre
3974  *   Prefix flow actions.
3975  * @param[out] pattern_sfx
3976  *   The pattern items for the suffix flow.
3977  * @param[out] tag_sfx
3978  *   Pointer to suffix flow tag.
3979  *
3980  * @return
3981  *   0 on success.
3982  */
3983 static int
3984 flow_meter_split_prep(struct rte_eth_dev *dev,
3985                  const struct rte_flow_item items[],
3986                  struct rte_flow_item sfx_items[],
3987                  const struct rte_flow_action actions[],
3988                  struct rte_flow_action actions_sfx[],
3989                  struct rte_flow_action actions_pre[])
3990 {
3991         struct rte_flow_action *tag_action = NULL;
3992         struct rte_flow_item *tag_item;
3993         struct mlx5_rte_flow_action_set_tag *set_tag;
3994         struct rte_flow_error error;
3995         const struct rte_flow_action_raw_encap *raw_encap;
3996         const struct rte_flow_action_raw_decap *raw_decap;
3997         struct mlx5_rte_flow_item_tag *tag_spec;
3998         struct mlx5_rte_flow_item_tag *tag_mask;
3999         uint32_t tag_id;
4000         bool copy_vlan = false;
4001
4002         /* Prepare the actions for prefix and suffix flow. */
4003         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4004                 struct rte_flow_action **action_cur = NULL;
4005
4006                 switch (actions->type) {
4007                 case RTE_FLOW_ACTION_TYPE_METER:
4008                         /* Add the extra tag action first. */
4009                         tag_action = actions_pre;
4010                         tag_action->type = (enum rte_flow_action_type)
4011                                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4012                         actions_pre++;
4013                         action_cur = &actions_pre;
4014                         break;
4015                 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4016                 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4017                         action_cur = &actions_pre;
4018                         break;
4019                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4020                         raw_encap = actions->conf;
4021                         if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4022                                 action_cur = &actions_pre;
4023                         break;
4024                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4025                         raw_decap = actions->conf;
4026                         if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4027                                 action_cur = &actions_pre;
4028                         break;
4029                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4030                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4031                         copy_vlan = true;
4032                         break;
4033                 default:
4034                         break;
4035                 }
4036                 if (!action_cur)
4037                         action_cur = &actions_sfx;
4038                 memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4039                 (*action_cur)++;
4040         }
4041         /* Add end action to the actions. */
4042         actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4043         actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4044         actions_pre++;
4045         /* Set the tag. */
4046         set_tag = (void *)actions_pre;
4047         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4048         /*
4049          * Get the id from the qrss_pool to make qrss share the id with meter.
4050          */
4051         tag_id = flow_qrss_get_id(dev);
4052         set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4053         assert(tag_action);
4054         tag_action->conf = set_tag;
4055         /* Prepare the suffix subflow items. */
4056         tag_item = sfx_items++;
4057         for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4058                 int item_type = items->type;
4059
4060                 switch (item_type) {
4061                 case RTE_FLOW_ITEM_TYPE_PORT_ID:
4062                         memcpy(sfx_items, items, sizeof(*sfx_items));
4063                         sfx_items++;
4064                         break;
4065                 case RTE_FLOW_ITEM_TYPE_VLAN:
4066                         if (copy_vlan) {
4067                                 memcpy(sfx_items, items, sizeof(*sfx_items));
4068                                 /*
4069                                  * Convert to internal match item, it is used
4070                                  * for vlan push and set vid.
4071                                  */
4072                                 sfx_items->type = (enum rte_flow_item_type)
4073                                                   MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4074                                 sfx_items++;
4075                         }
4076                         break;
4077                 default:
4078                         break;
4079                 }
4080         }
4081         sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4082         sfx_items++;
4083         tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4084         tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4085         tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4086         tag_mask = tag_spec + 1;
4087         tag_mask->data = 0xffffff00;
4088         tag_item->type = (enum rte_flow_item_type)
4089                          MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4090         tag_item->spec = tag_spec;
4091         tag_item->last = NULL;
4092         tag_item->mask = tag_mask;
4093         return tag_id;
4094 }
4095
4096 /**
4097  * Split action list having QUEUE/RSS for metadata register copy.
4098  *
4099  * Once Q/RSS action is detected in user's action list, the flow action
4100  * should be split in order to copy metadata registers, which will happen in
4101  * RX_CP_TBL like,
4102  *   - CQE->flow_tag := reg_c[1] (MARK)
4103  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4104  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4105  * This is because the last action of each flow must be a terminal action
4106  * (QUEUE, RSS or DROP).
4107  *
4108  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4109  * stored and kept in the mlx5_flow structure per each sub_flow.
4110  *
4111  * The Q/RSS action is replaced with,
4112  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4113  * And the following JUMP action is added at the end,
4114  *   - JUMP, to RX_CP_TBL.
4115  *
4116  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4117  * flow_create_split_metadata() routine. The flow will look like,
4118  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4119  *
4120  * @param dev
4121  *   Pointer to Ethernet device.
4122  * @param[out] split_actions
4123  *   Pointer to store split actions to jump to CP_TBL.
4124  * @param[in] actions
4125  *   Pointer to the list of original flow actions.
4126  * @param[in] qrss
4127  *   Pointer to the Q/RSS action.
4128  * @param[in] actions_n
4129  *   Number of original actions.
4130  * @param[out] error
4131  *   Perform verbose error reporting if not NULL.
4132  *
4133  * @return
4134  *   non-zero unique flow_id on success, otherwise 0 and
4135  *   error/rte_error are set.
4136  */
4137 static uint32_t
4138 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4139                           struct rte_flow_action *split_actions,
4140                           const struct rte_flow_action *actions,
4141                           const struct rte_flow_action *qrss,
4142                           int actions_n, struct rte_flow_error *error)
4143 {
4144         struct mlx5_rte_flow_action_set_tag *set_tag;
4145         struct rte_flow_action_jump *jump;
4146         const int qrss_idx = qrss - actions;
4147         uint32_t flow_id = 0;
4148         int ret = 0;
4149
4150         /*
4151          * Given actions will be split
4152          * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4153          * - Add jump to mreg CP_TBL.
4154          * As a result, there will be one more action.
4155          */
4156         ++actions_n;
4157         memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4158         set_tag = (void *)(split_actions + actions_n);
4159         /*
4160          * If tag action is not set to void(it means we are not the meter
4161          * suffix flow), add the tag action. Since meter suffix flow already
4162          * has the tag added.
4163          */
4164         if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4165                 /*
4166                  * Allocate the new subflow ID. This one is unique within
4167                  * device and not shared with representors. Otherwise,
4168                  * we would have to resolve multi-thread access synch
4169                  * issue. Each flow on the shared device is appended
4170                  * with source vport identifier, so the resulting
4171                  * flows will be unique in the shared (by master and
4172                  * representors) domain even if they have coinciding
4173                  * IDs.
4174                  */
4175                 flow_id = flow_qrss_get_id(dev);
4176                 if (!flow_id)
4177                         return rte_flow_error_set(error, ENOMEM,
4178                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4179                                                   NULL, "can't allocate id "
4180                                                   "for split Q/RSS subflow");
4181                 /* Internal SET_TAG action to set flow ID. */
4182                 *set_tag = (struct mlx5_rte_flow_action_set_tag){
4183                         .data = flow_id,
4184                 };
4185                 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4186                 if (ret < 0)
4187                         return ret;
4188                 set_tag->id = ret;
4189                 /* Construct new actions array. */
4190                 /* Replace QUEUE/RSS action. */
4191                 split_actions[qrss_idx] = (struct rte_flow_action){
4192                         .type = (enum rte_flow_action_type)
4193                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4194                         .conf = set_tag,
4195                 };
4196         }
4197         /* JUMP action to jump to mreg copy table (CP_TBL). */
4198         jump = (void *)(set_tag + 1);
4199         *jump = (struct rte_flow_action_jump){
4200                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4201         };
4202         split_actions[actions_n - 2] = (struct rte_flow_action){
4203                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
4204                 .conf = jump,
4205         };
4206         split_actions[actions_n - 1] = (struct rte_flow_action){
4207                 .type = RTE_FLOW_ACTION_TYPE_END,
4208         };
4209         return flow_id;
4210 }
4211
4212 /**
4213  * Extend the given action list for Tx metadata copy.
4214  *
4215  * Copy the given action list to the ext_actions and add flow metadata register
4216  * copy action in order to copy reg_a set by WQE to reg_c[0].
4217  *
4218  * @param[out] ext_actions
4219  *   Pointer to the extended action list.
4220  * @param[in] actions
4221  *   Pointer to the list of actions.
4222  * @param[in] actions_n
4223  *   Number of actions in the list.
4224  * @param[out] error
4225  *   Perform verbose error reporting if not NULL.
4226  * @param[in] encap_idx
4227  *   The encap action inndex.
4228  *
4229  * @return
4230  *   0 on success, negative value otherwise
4231  */
4232 static int
4233 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4234                        struct rte_flow_action *ext_actions,
4235                        const struct rte_flow_action *actions,
4236                        int actions_n, struct rte_flow_error *error,
4237                        int encap_idx)
4238 {
4239         struct mlx5_flow_action_copy_mreg *cp_mreg =
4240                 (struct mlx5_flow_action_copy_mreg *)
4241                         (ext_actions + actions_n + 1);
4242         int ret;
4243
4244         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4245         if (ret < 0)
4246                 return ret;
4247         cp_mreg->dst = ret;
4248         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4249         if (ret < 0)
4250                 return ret;
4251         cp_mreg->src = ret;
4252         if (encap_idx != 0)
4253                 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4254         if (encap_idx == actions_n - 1) {
4255                 ext_actions[actions_n - 1] = (struct rte_flow_action){
4256                         .type = (enum rte_flow_action_type)
4257                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4258                         .conf = cp_mreg,
4259                 };
4260                 ext_actions[actions_n] = (struct rte_flow_action){
4261                         .type = RTE_FLOW_ACTION_TYPE_END,
4262                 };
4263         } else {
4264                 ext_actions[encap_idx] = (struct rte_flow_action){
4265                         .type = (enum rte_flow_action_type)
4266                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4267                         .conf = cp_mreg,
4268                 };
4269                 memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4270                                 sizeof(*ext_actions) * (actions_n - encap_idx));
4271         }
4272         return 0;
4273 }
4274
4275 /**
4276  * Check the match action from the action list.
4277  *
4278  * @param[in] actions
4279  *   Pointer to the list of actions.
4280  * @param[in] attr
4281  *   Flow rule attributes.
4282  * @param[in] action
4283  *   The action to be check if exist.
4284  * @param[out] match_action_pos
4285  *   Pointer to the position of the matched action if exists, otherwise is -1.
4286  * @param[out] qrss_action_pos
4287  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
4288  *
4289  * @return
4290  *   > 0 the total number of actions.
4291  *   0 if not found match action in action list.
4292  */
4293 static int
4294 flow_check_match_action(const struct rte_flow_action actions[],
4295                         const struct rte_flow_attr *attr,
4296                         enum rte_flow_action_type action,
4297                         int *match_action_pos, int *qrss_action_pos)
4298 {
4299         const struct rte_flow_action_sample *sample;
4300         int actions_n = 0;
4301         int jump_flag = 0;
4302         uint32_t ratio = 0;
4303         int sub_type = 0;
4304         int flag = 0;
4305
4306         *match_action_pos = -1;
4307         *qrss_action_pos = -1;
4308         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4309                 if (actions->type == action) {
4310                         flag = 1;
4311                         *match_action_pos = actions_n;
4312                 }
4313                 if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE ||
4314                     actions->type == RTE_FLOW_ACTION_TYPE_RSS)
4315                         *qrss_action_pos = actions_n;
4316                 if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP)
4317                         jump_flag = 1;
4318                 if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) {
4319                         sample = actions->conf;
4320                         ratio = sample->ratio;
4321                         sub_type = ((const struct rte_flow_action *)
4322                                         (sample->actions))->type;
4323                 }
4324                 actions_n++;
4325         }
4326         if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) {
4327                 if (ratio == 1) {
4328                         /* JUMP Action not support for Mirroring;
4329                          * Mirroring support multi-destination;
4330                          */
4331                         if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END)
4332                                 flag = 0;
4333                 }
4334         }
4335         /* Count RTE_FLOW_ACTION_TYPE_END. */
4336         return flag ? actions_n + 1 : 0;
4337 }
4338
4339 #define SAMPLE_SUFFIX_ITEM 2
4340
4341 /**
4342  * Split the sample flow.
4343  *
4344  * As sample flow will split to two sub flow, sample flow with
4345  * sample action, the other actions will move to new suffix flow.
4346  *
4347  * Also add unique tag id with tag action in the sample flow,
4348  * the same tag id will be as match in the suffix flow.
4349  *
4350  * @param dev
4351  *   Pointer to Ethernet device.
4352  * @param[in] fdb_tx
4353  *   FDB egress flow flag.
4354  * @param[out] sfx_items
4355  *   Suffix flow match items (list terminated by the END pattern item).
4356  * @param[in] actions
4357  *   Associated actions (list terminated by the END action).
4358  * @param[out] actions_sfx
4359  *   Suffix flow actions.
4360  * @param[out] actions_pre
4361  *   Prefix flow actions.
4362  * @param[in] actions_n
4363  *  The total number of actions.
4364  * @param[in] sample_action_pos
4365  *   The sample action position.
4366  * @param[in] qrss_action_pos
4367  *   The Queue/RSS action position.
4368  * @param[out] error
4369  *   Perform verbose error reporting if not NULL.
4370  *
4371  * @return
4372  *   0 on success, or unique flow_id, a negative errno value
4373  *   otherwise and rte_errno is set.
4374  */
4375 static int
4376 flow_sample_split_prep(struct rte_eth_dev *dev,
4377                        uint32_t fdb_tx,
4378                        struct rte_flow_item sfx_items[],
4379                        const struct rte_flow_action actions[],
4380                        struct rte_flow_action actions_sfx[],
4381                        struct rte_flow_action actions_pre[],
4382                        int actions_n,
4383                        int sample_action_pos,
4384                        int qrss_action_pos,
4385                        struct rte_flow_error *error)
4386 {
4387         struct mlx5_rte_flow_action_set_tag *set_tag;
4388         struct mlx5_rte_flow_item_tag *tag_spec;
4389         struct mlx5_rte_flow_item_tag *tag_mask;
4390         uint32_t tag_id = 0;
4391         int index;
4392         int ret;
4393
4394         if (sample_action_pos < 0)
4395                 return rte_flow_error_set(error, EINVAL,
4396                                           RTE_FLOW_ERROR_TYPE_ACTION,
4397                                           NULL, "invalid position of sample "
4398                                           "action in list");
4399         if (!fdb_tx) {
4400                 /* Prepare the prefix tag action. */
4401                 set_tag = (void *)(actions_pre + actions_n + 1);
4402                 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
4403                 if (ret < 0)
4404                         return ret;
4405                 set_tag->id = ret;
4406                 tag_id = flow_qrss_get_id(dev);
4407                 set_tag->data = tag_id;
4408                 /* Prepare the suffix subflow items. */
4409                 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
4410                 tag_spec->data = tag_id;
4411                 tag_spec->id = set_tag->id;
4412                 tag_mask = tag_spec + 1;
4413                 tag_mask->data = UINT32_MAX;
4414                 sfx_items[0] = (struct rte_flow_item){
4415                         .type = (enum rte_flow_item_type)
4416                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4417                         .spec = tag_spec,
4418                         .last = NULL,
4419                         .mask = tag_mask,
4420                 };
4421                 sfx_items[1] = (struct rte_flow_item){
4422                         .type = (enum rte_flow_item_type)
4423                                 RTE_FLOW_ITEM_TYPE_END,
4424                 };
4425         }
4426         /* Prepare the actions for prefix and suffix flow. */
4427         if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
4428                 index = qrss_action_pos;
4429                 /* Put the preceding the Queue/RSS action into prefix flow. */
4430                 if (index != 0)
4431                         memcpy(actions_pre, actions,
4432                                sizeof(struct rte_flow_action) * index);
4433                 /* Put others preceding the sample action into prefix flow. */
4434                 if (sample_action_pos > index + 1)
4435                         memcpy(actions_pre + index, actions + index + 1,
4436                                sizeof(struct rte_flow_action) *
4437                                (sample_action_pos - index - 1));
4438                 index = sample_action_pos - 1;
4439                 /* Put Queue/RSS action into Suffix flow. */
4440                 memcpy(actions_sfx, actions + qrss_action_pos,
4441                        sizeof(struct rte_flow_action));
4442                 actions_sfx++;
4443         } else {
4444                 index = sample_action_pos;
4445                 if (index != 0)
4446                         memcpy(actions_pre, actions,
4447                                sizeof(struct rte_flow_action) * index);
4448         }
4449         /* Add the extra tag action for NIC-RX and E-Switch ingress. */
4450         if (!fdb_tx) {
4451                 actions_pre[index++] =
4452                         (struct rte_flow_action){
4453                         .type = (enum rte_flow_action_type)
4454                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4455                         .conf = set_tag,
4456                 };
4457         }
4458         memcpy(actions_pre + index, actions + sample_action_pos,
4459                sizeof(struct rte_flow_action));
4460         index += 1;
4461         actions_pre[index] = (struct rte_flow_action){
4462                 .type = (enum rte_flow_action_type)
4463                         RTE_FLOW_ACTION_TYPE_END,
4464         };
4465         /* Put the actions after sample into Suffix flow. */
4466         memcpy(actions_sfx, actions + sample_action_pos + 1,
4467                sizeof(struct rte_flow_action) *
4468                (actions_n - sample_action_pos - 1));
4469         return tag_id;
4470 }
4471
4472 /**
4473  * The splitting for metadata feature.
4474  *
4475  * - Q/RSS action on NIC Rx should be split in order to pass by
4476  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4477  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4478  *
4479  * - All the actions on NIC Tx should have a mreg copy action to
4480  *   copy reg_a from WQE to reg_c[0].
4481  *
4482  * @param dev
4483  *   Pointer to Ethernet device.
4484  * @param[in] flow
4485  *   Parent flow structure pointer.
4486  * @param[in] prefix_layers
4487  *   Prefix flow layer flags.
4488  * @param[in] prefix_mark
4489  *   Prefix subflow mark flag, may be 0.
4490  * @param[in] attr
4491  *   Flow rule attributes.
4492  * @param[in] items
4493  *   Pattern specification (list terminated by the END pattern item).
4494  * @param[in] actions
4495  *   Associated actions (list terminated by the END action).
4496  * @param[in] external
4497  *   This flow rule is created by request external to PMD.
4498  * @param[in] flow_idx
4499  *   This memory pool index to the flow.
4500  * @param[out] error
4501  *   Perform verbose error reporting if not NULL.
4502  * @return
4503  *   0 on success, negative value otherwise
4504  */
4505 static int
4506 flow_create_split_metadata(struct rte_eth_dev *dev,
4507                            struct rte_flow *flow,
4508                            uint64_t prefix_layers,
4509                            uint32_t prefix_mark,
4510                            const struct rte_flow_attr *attr,
4511                            const struct rte_flow_item items[],
4512                            const struct rte_flow_action actions[],
4513                            bool external, uint32_t flow_idx,
4514                            struct rte_flow_error *error)
4515 {
4516         struct mlx5_priv *priv = dev->data->dev_private;
4517         struct mlx5_dev_config *config = &priv->config;
4518         const struct rte_flow_action *qrss = NULL;
4519         struct rte_flow_action *ext_actions = NULL;
4520         struct mlx5_flow *dev_flow = NULL;
4521         uint32_t qrss_id = 0;
4522         int mtr_sfx = 0;
4523         size_t act_size;
4524         int actions_n;
4525         int encap_idx;
4526         int ret;
4527
4528         /* Check whether extensive metadata feature is engaged. */
4529         if (!config->dv_flow_en ||
4530             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4531             !mlx5_flow_ext_mreg_supported(dev))
4532                 return flow_create_split_inner(dev, flow, NULL, prefix_layers,
4533                                                prefix_mark, attr, items,
4534                                                actions, external, flow_idx,
4535                                                error);
4536         actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4537                                                            &encap_idx);
4538         if (qrss) {
4539                 /* Exclude hairpin flows from splitting. */
4540                 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4541                         const struct rte_flow_action_queue *queue;
4542
4543                         queue = qrss->conf;
4544                         if (mlx5_rxq_get_type(dev, queue->index) ==
4545                             MLX5_RXQ_TYPE_HAIRPIN)
4546                                 qrss = NULL;
4547                 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4548                         const struct rte_flow_action_rss *rss;
4549
4550                         rss = qrss->conf;
4551                         if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4552                             MLX5_RXQ_TYPE_HAIRPIN)
4553                                 qrss = NULL;
4554                 }
4555         }
4556         if (qrss) {
4557                 /* Check if it is in meter suffix table. */
4558                 mtr_sfx = attr->group == (attr->transfer ?
4559                           (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4560                           MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4561                 /*
4562                  * Q/RSS action on NIC Rx should be split in order to pass by
4563                  * the mreg copy table (RX_CP_TBL) and then it jumps to the
4564                  * action table (RX_ACT_TBL) which has the split Q/RSS action.
4565                  */
4566                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4567                            sizeof(struct rte_flow_action_set_tag) +
4568                            sizeof(struct rte_flow_action_jump);
4569                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4570                                           SOCKET_ID_ANY);
4571                 if (!ext_actions)
4572                         return rte_flow_error_set(error, ENOMEM,
4573                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4574                                                   NULL, "no memory to split "
4575                                                   "metadata flow");
4576                 /*
4577                  * If we are the suffix flow of meter, tag already exist.
4578                  * Set the tag action to void.
4579                  */
4580                 if (mtr_sfx)
4581                         ext_actions[qrss - actions].type =
4582                                                 RTE_FLOW_ACTION_TYPE_VOID;
4583                 else
4584                         ext_actions[qrss - actions].type =
4585                                                 (enum rte_flow_action_type)
4586                                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4587                 /*
4588                  * Create the new actions list with removed Q/RSS action
4589                  * and appended set tag and jump to register copy table
4590                  * (RX_CP_TBL). We should preallocate unique tag ID here
4591                  * in advance, because it is needed for set tag action.
4592                  */
4593                 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4594                                                     qrss, actions_n, error);
4595                 if (!mtr_sfx && !qrss_id) {
4596                         ret = -rte_errno;
4597                         goto exit;
4598                 }
4599         } else if (attr->egress && !attr->transfer) {
4600                 /*
4601                  * All the actions on NIC Tx should have a metadata register
4602                  * copy action to copy reg_a from WQE to reg_c[meta]
4603                  */
4604                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4605                            sizeof(struct mlx5_flow_action_copy_mreg);
4606                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4607                                           SOCKET_ID_ANY);
4608                 if (!ext_actions)
4609                         return rte_flow_error_set(error, ENOMEM,
4610                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4611                                                   NULL, "no memory to split "
4612                                                   "metadata flow");
4613                 /* Create the action list appended with copy register. */
4614                 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4615                                              actions_n, error, encap_idx);
4616                 if (ret < 0)
4617                         goto exit;
4618         }
4619         /* Add the unmodified original or prefix subflow. */
4620         ret = flow_create_split_inner(dev, flow, &dev_flow, prefix_layers,
4621                                       prefix_mark, attr,
4622                                       items, ext_actions ? ext_actions :
4623                                       actions, external, flow_idx, error);
4624         if (ret < 0)
4625                 goto exit;
4626         MLX5_ASSERT(dev_flow);
4627         if (qrss) {
4628                 const struct rte_flow_attr q_attr = {
4629                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4630                         .ingress = 1,
4631                 };
4632                 /* Internal PMD action to set register. */
4633                 struct mlx5_rte_flow_item_tag q_tag_spec = {
4634                         .data = qrss_id,
4635                         .id = REG_NON,
4636                 };
4637                 struct rte_flow_item q_items[] = {
4638                         {
4639                                 .type = (enum rte_flow_item_type)
4640                                         MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4641                                 .spec = &q_tag_spec,
4642                                 .last = NULL,
4643                                 .mask = NULL,
4644                         },
4645                         {
4646                                 .type = RTE_FLOW_ITEM_TYPE_END,
4647                         },
4648                 };
4649                 struct rte_flow_action q_actions[] = {
4650                         {
4651                                 .type = qrss->type,
4652                                 .conf = qrss->conf,
4653                         },
4654                         {
4655                                 .type = RTE_FLOW_ACTION_TYPE_END,
4656                         },
4657                 };
4658                 uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4659
4660                 /*
4661                  * Configure the tag item only if there is no meter subflow.
4662                  * Since tag is already marked in the meter suffix subflow
4663                  * we can just use the meter suffix items as is.
4664                  */
4665                 if (qrss_id) {
4666                         /* Not meter subflow. */
4667                         MLX5_ASSERT(!mtr_sfx);
4668                         /*
4669                          * Put unique id in prefix flow due to it is destroyed
4670                          * after suffix flow and id will be freed after there
4671                          * is no actual flows with this id and identifier
4672                          * reallocation becomes possible (for example, for
4673                          * other flows in other threads).
4674                          */
4675                         dev_flow->handle->split_flow_id = qrss_id;
4676                         ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4677                                                    error);
4678                         if (ret < 0)
4679                                 goto exit;
4680                         q_tag_spec.id = ret;
4681                 }
4682                 dev_flow = NULL;
4683                 /* Add suffix subflow to execute Q/RSS. */
4684                 ret = flow_create_split_inner(dev, flow, &dev_flow, layers, 0,
4685                                               &q_attr, mtr_sfx ? items :
4686                                               q_items, q_actions,
4687                                               external, flow_idx, error);
4688                 if (ret < 0)
4689                         goto exit;
4690                 /* qrss ID should be freed if failed. */
4691                 qrss_id = 0;
4692                 MLX5_ASSERT(dev_flow);
4693         }
4694
4695 exit:
4696         /*
4697          * We do not destroy the partially created sub_flows in case of error.
4698          * These ones are included into parent flow list and will be destroyed
4699          * by flow_drv_destroy.
4700          */
4701         flow_qrss_free_id(dev, qrss_id);
4702         mlx5_free(ext_actions);
4703         return ret;
4704 }
4705
4706 /**
4707  * The splitting for meter feature.
4708  *
4709  * - The meter flow will be split to two flows as prefix and
4710  *   suffix flow. The packets make sense only it pass the prefix
4711  *   meter action.
4712  *
4713  * - Reg_C_5 is used for the packet to match betweend prefix and
4714  *   suffix flow.
4715  *
4716  * @param dev
4717  *   Pointer to Ethernet device.
4718  * @param[in] flow
4719  *   Parent flow structure pointer.
4720  * @param[in] prefix_layers
4721  *   Prefix subflow layers, may be 0.
4722  * @param[in] prefix_mark
4723  *   Prefix subflow mark flag, may be 0.
4724  * @param[in] attr
4725  *   Flow rule attributes.
4726  * @param[in] items
4727  *   Pattern specification (list terminated by the END pattern item).
4728  * @param[in] actions
4729  *   Associated actions (list terminated by the END action).
4730  * @param[in] external
4731  *   This flow rule is created by request external to PMD.
4732  * @param[in] flow_idx
4733  *   This memory pool index to the flow.
4734  * @param[out] error
4735  *   Perform verbose error reporting if not NULL.
4736  * @return
4737  *   0 on success, negative value otherwise
4738  */
4739 static int
4740 flow_create_split_meter(struct rte_eth_dev *dev,
4741                         struct rte_flow *flow,
4742                         uint64_t prefix_layers,
4743                         uint32_t prefix_mark,
4744                         const struct rte_flow_attr *attr,
4745                         const struct rte_flow_item items[],
4746                         const struct rte_flow_action actions[],
4747                         bool external, uint32_t flow_idx,
4748                         struct rte_flow_error *error)
4749 {
4750         struct mlx5_priv *priv = dev->data->dev_private;
4751         struct rte_flow_action *sfx_actions = NULL;
4752         struct rte_flow_action *pre_actions = NULL;
4753         struct rte_flow_item *sfx_items = NULL;
4754         struct mlx5_flow *dev_flow = NULL;
4755         struct rte_flow_attr sfx_attr = *attr;
4756         uint32_t mtr = 0;
4757         uint32_t mtr_tag_id = 0;
4758         size_t act_size;
4759         size_t item_size;
4760         int actions_n = 0;
4761         int ret;
4762
4763         if (priv->mtr_en)
4764                 actions_n = flow_check_meter_action(actions, &mtr);
4765         if (mtr) {
4766                 /* The five prefix actions: meter, decap, encap, tag, end. */
4767                 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4768                            sizeof(struct mlx5_rte_flow_action_set_tag);
4769                 /* tag, vlan, port id, end. */
4770 #define METER_SUFFIX_ITEM 4
4771                 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4772                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
4773                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4774                                           0, SOCKET_ID_ANY);
4775                 if (!sfx_actions)
4776                         return rte_flow_error_set(error, ENOMEM,
4777                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4778                                                   NULL, "no memory to split "
4779                                                   "meter flow");
4780                 sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4781                              act_size);
4782                 pre_actions = sfx_actions + actions_n;
4783                 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4784                                                    actions, sfx_actions,
4785                                                    pre_actions);
4786                 if (!mtr_tag_id) {
4787                         ret = -rte_errno;
4788                         goto exit;
4789                 }
4790                 /* Add the prefix subflow. */
4791                 ret = flow_create_split_inner(dev, flow, &dev_flow,
4792                                               prefix_layers, 0,
4793                                               attr, items,
4794                                               pre_actions, external,
4795                                               flow_idx, error);
4796                 if (ret) {
4797                         ret = -rte_errno;
4798                         goto exit;
4799                 }
4800                 dev_flow->handle->split_flow_id = mtr_tag_id;
4801                 /* Setting the sfx group atrr. */
4802                 sfx_attr.group = sfx_attr.transfer ?
4803                                 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4804                                  MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4805         }
4806         /* Add the prefix subflow. */
4807         ret = flow_create_split_metadata(dev, flow, dev_flow ?
4808                                          flow_get_prefix_layer_flags(dev_flow) :
4809                                          prefix_layers, dev_flow ?
4810                                          dev_flow->handle->mark : prefix_mark,
4811                                          &sfx_attr, sfx_items ?
4812                                          sfx_items : items,
4813                                          sfx_actions ? sfx_actions : actions,
4814                                          external, flow_idx, error);
4815 exit:
4816         if (sfx_actions)
4817                 mlx5_free(sfx_actions);
4818         return ret;
4819 }
4820
4821 /**
4822  * The splitting for sample feature.
4823  *
4824  * Once Sample action is detected in the action list, the flow actions should
4825  * be split into prefix sub flow and suffix sub flow.
4826  *
4827  * The original items remain in the prefix sub flow, all actions preceding the
4828  * sample action and the sample action itself will be copied to the prefix
4829  * sub flow, the actions following the sample action will be copied to the
4830  * suffix sub flow, Queue action always be located in the suffix sub flow.
4831  *
4832  * In order to make the packet from prefix sub flow matches with suffix sub
4833  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
4834  * flow uses tag item with the unique flow id.
4835  *
4836  * @param dev
4837  *   Pointer to Ethernet device.
4838  * @param[in] flow
4839  *   Parent flow structure pointer.
4840  * @param[in] attr
4841  *   Flow rule attributes.
4842  * @param[in] items
4843  *   Pattern specification (list terminated by the END pattern item).
4844  * @param[in] actions
4845  *   Associated actions (list terminated by the END action).
4846  * @param[in] external
4847  *   This flow rule is created by request external to PMD.
4848  * @param[in] flow_idx
4849  *   This memory pool index to the flow.
4850  * @param[out] error
4851  *   Perform verbose error reporting if not NULL.
4852  * @return
4853  *   0 on success, negative value otherwise
4854  */
4855 static int
4856 flow_create_split_sample(struct rte_eth_dev *dev,
4857                          struct rte_flow *flow,
4858                          const struct rte_flow_attr *attr,
4859                          const struct rte_flow_item items[],
4860                          const struct rte_flow_action actions[],
4861                          bool external, uint32_t flow_idx,
4862                          struct rte_flow_error *error)
4863 {
4864         struct mlx5_priv *priv = dev->data->dev_private;
4865         struct rte_flow_action *sfx_actions = NULL;
4866         struct rte_flow_action *pre_actions = NULL;
4867         struct rte_flow_item *sfx_items = NULL;
4868         struct mlx5_flow *dev_flow = NULL;
4869         struct rte_flow_attr sfx_attr = *attr;
4870 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4871         struct mlx5_flow_dv_sample_resource *sample_res;
4872         struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
4873         struct mlx5_flow_tbl_resource *sfx_tbl;
4874         union mlx5_flow_tbl_key sfx_table_key;
4875 #endif
4876         size_t act_size;
4877         size_t item_size;
4878         uint32_t fdb_tx = 0;
4879         int32_t tag_id = 0;
4880         int actions_n = 0;
4881         int sample_action_pos;
4882         int qrss_action_pos;
4883         int ret = 0;
4884
4885         if (priv->sampler_en)
4886                 actions_n = flow_check_match_action(actions, attr,
4887                                         RTE_FLOW_ACTION_TYPE_SAMPLE,
4888                                         &sample_action_pos, &qrss_action_pos);
4889         if (actions_n) {
4890                 /* The prefix actions must includes sample, tag, end. */
4891                 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
4892                            + sizeof(struct mlx5_rte_flow_action_set_tag);
4893                 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
4894                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
4895                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
4896                                           item_size), 0, SOCKET_ID_ANY);
4897                 if (!sfx_actions)
4898                         return rte_flow_error_set(error, ENOMEM,
4899                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4900                                                   NULL, "no memory to split "
4901                                                   "sample flow");
4902                 /* The representor_id is -1 for uplink. */
4903                 fdb_tx = (attr->transfer && priv->representor_id != -1);
4904                 if (!fdb_tx)
4905                         sfx_items = (struct rte_flow_item *)((char *)sfx_actions
4906                                         + act_size);
4907                 pre_actions = sfx_actions + actions_n;
4908                 tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items,
4909                                                 actions, sfx_actions,
4910                                                 pre_actions, actions_n,
4911                                                 sample_action_pos,
4912                                                 qrss_action_pos, error);
4913                 if (tag_id < 0 || (!fdb_tx && !tag_id)) {
4914                         ret = -rte_errno;
4915                         goto exit;
4916                 }
4917                 /* Add the prefix subflow. */
4918                 ret = flow_create_split_inner(dev, flow, &dev_flow, 0, 0, attr,
4919                                               items, pre_actions, external,
4920                                               flow_idx, error);
4921                 if (ret) {
4922                         ret = -rte_errno;
4923                         goto exit;
4924                 }
4925                 dev_flow->handle->split_flow_id = tag_id;
4926 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4927                 /* Set the sfx group attr. */
4928                 sample_res = (struct mlx5_flow_dv_sample_resource *)
4929                                         dev_flow->dv.sample_res;
4930                 sfx_tbl = (struct mlx5_flow_tbl_resource *)
4931                                         sample_res->normal_path_tbl;
4932                 sfx_tbl_data = container_of(sfx_tbl,
4933                                         struct mlx5_flow_tbl_data_entry, tbl);
4934                 sfx_table_key.v64 = sfx_tbl_data->entry.key;
4935                 sfx_attr.group = sfx_attr.transfer ?
4936                                         (sfx_table_key.table_id - 1) :
4937                                          sfx_table_key.table_id;
4938 #endif
4939         }
4940         /* Add the suffix subflow. */
4941         ret = flow_create_split_meter(dev, flow, dev_flow ?
4942                                  flow_get_prefix_layer_flags(dev_flow) : 0,
4943                                  dev_flow ? dev_flow->handle->mark : 0,
4944                                  &sfx_attr, sfx_items ? sfx_items : items,
4945                                  sfx_actions ? sfx_actions : actions,
4946                                  external, flow_idx, error);
4947 exit:
4948         if (sfx_actions)
4949                 mlx5_free(sfx_actions);
4950         return ret;
4951 }
4952
4953 /**
4954  * Split the flow to subflow set. The splitters might be linked
4955  * in the chain, like this:
4956  * flow_create_split_outer() calls:
4957  *   flow_create_split_meter() calls:
4958  *     flow_create_split_metadata(meter_subflow_0) calls:
4959  *       flow_create_split_inner(metadata_subflow_0)
4960  *       flow_create_split_inner(metadata_subflow_1)
4961  *       flow_create_split_inner(metadata_subflow_2)
4962  *     flow_create_split_metadata(meter_subflow_1) calls:
4963  *       flow_create_split_inner(metadata_subflow_0)
4964  *       flow_create_split_inner(metadata_subflow_1)
4965  *       flow_create_split_inner(metadata_subflow_2)
4966  *
4967  * This provide flexible way to add new levels of flow splitting.
4968  * The all of successfully created subflows are included to the
4969  * parent flow dev_flow list.
4970  *
4971  * @param dev
4972  *   Pointer to Ethernet device.
4973  * @param[in] flow
4974  *   Parent flow structure pointer.
4975  * @param[in] attr
4976  *   Flow rule attributes.
4977  * @param[in] items
4978  *   Pattern specification (list terminated by the END pattern item).
4979  * @param[in] actions
4980  *   Associated actions (list terminated by the END action).
4981  * @param[in] external
4982  *   This flow rule is created by request external to PMD.
4983  * @param[in] flow_idx
4984  *   This memory pool index to the flow.
4985  * @param[out] error
4986  *   Perform verbose error reporting if not NULL.
4987  * @return
4988  *   0 on success, negative value otherwise
4989  */
4990 static int
4991 flow_create_split_outer(struct rte_eth_dev *dev,
4992                         struct rte_flow *flow,
4993                         const struct rte_flow_attr *attr,
4994                         const struct rte_flow_item items[],
4995                         const struct rte_flow_action actions[],
4996                         bool external, uint32_t flow_idx,
4997                         struct rte_flow_error *error)
4998 {
4999         int ret;
5000
5001         ret = flow_create_split_sample(dev, flow, attr, items,
5002                                        actions, external, flow_idx, error);
5003         MLX5_ASSERT(ret <= 0);
5004         return ret;
5005 }
5006
5007 /**
5008  * Create a flow and add it to @p list.
5009  *
5010  * @param dev
5011  *   Pointer to Ethernet device.
5012  * @param list
5013  *   Pointer to a TAILQ flow list. If this parameter NULL,
5014  *   no list insertion occurred, flow is just created,
5015  *   this is caller's responsibility to track the
5016  *   created flow.
5017  * @param[in] attr
5018  *   Flow rule attributes.
5019  * @param[in] items
5020  *   Pattern specification (list terminated by the END pattern item).
5021  * @param[in] actions
5022  *   Associated actions (list terminated by the END action).
5023  * @param[in] external
5024  *   This flow rule is created by request external to PMD.
5025  * @param[out] error
5026  *   Perform verbose error reporting if not NULL.
5027  *
5028  * @return
5029  *   A flow index on success, 0 otherwise and rte_errno is set.
5030  */
5031 static uint32_t
5032 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
5033                  const struct rte_flow_attr *attr,
5034                  const struct rte_flow_item items[],
5035                  const struct rte_flow_action actions[],
5036                  bool external, struct rte_flow_error *error)
5037 {
5038         struct mlx5_priv *priv = dev->data->dev_private;
5039         struct rte_flow *flow = NULL;
5040         struct mlx5_flow *dev_flow;
5041         const struct rte_flow_action_rss *rss;
5042         union {
5043                 struct mlx5_flow_expand_rss buf;
5044                 uint8_t buffer[2048];
5045         } expand_buffer;
5046         union {
5047                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5048                 uint8_t buffer[2048];
5049         } actions_rx;
5050         union {
5051                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5052                 uint8_t buffer[2048];
5053         } actions_hairpin_tx;
5054         union {
5055                 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
5056                 uint8_t buffer[2048];
5057         } items_tx;
5058         struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
5059         struct mlx5_flow_rss_desc *rss_desc = &((struct mlx5_flow_rss_desc *)
5060                                               priv->rss_desc)[!!priv->flow_idx];
5061         const struct rte_flow_action *p_actions_rx = actions;
5062         uint32_t i;
5063         uint32_t idx = 0;
5064         int hairpin_flow;
5065         uint32_t hairpin_id = 0;
5066         struct rte_flow_attr attr_tx = { .priority = 0 };
5067         struct rte_flow_attr attr_factor = {0};
5068         int ret;
5069
5070         memcpy((void *)&attr_factor, (const void *)attr, sizeof(*attr));
5071         if (external)
5072                 attr_factor.group *= MLX5_FLOW_TABLE_FACTOR;
5073         hairpin_flow = flow_check_hairpin_split(dev, &attr_factor, actions);
5074         ret = flow_drv_validate(dev, &attr_factor, items, p_actions_rx,
5075                                 external, hairpin_flow, error);
5076         if (ret < 0)
5077                 return 0;
5078         if (hairpin_flow > 0) {
5079                 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
5080                         rte_errno = EINVAL;
5081                         return 0;
5082                 }
5083                 flow_hairpin_split(dev, actions, actions_rx.actions,
5084                                    actions_hairpin_tx.actions, items_tx.items,
5085                                    &hairpin_id);
5086                 p_actions_rx = actions_rx.actions;
5087         }
5088         flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
5089         if (!flow) {
5090                 rte_errno = ENOMEM;
5091                 goto error_before_flow;
5092         }
5093         flow->drv_type = flow_get_drv_type(dev, &attr_factor);
5094         if (hairpin_id != 0)
5095                 flow->hairpin_flow_id = hairpin_id;
5096         MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
5097                     flow->drv_type < MLX5_FLOW_TYPE_MAX);
5098         memset(rss_desc, 0, sizeof(*rss_desc));
5099         rss = flow_get_rss_action(p_actions_rx);
5100         if (rss) {
5101                 /*
5102                  * The following information is required by
5103                  * mlx5_flow_hashfields_adjust() in advance.
5104                  */
5105                 rss_desc->level = rss->level;
5106                 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
5107                 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
5108         }
5109         flow->dev_handles = 0;
5110         if (rss && rss->types) {
5111                 unsigned int graph_root;
5112
5113                 graph_root = find_graph_root(items, rss->level);
5114                 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
5115                                            items, rss->types,
5116                                            mlx5_support_expansion, graph_root);
5117                 MLX5_ASSERT(ret > 0 &&
5118                        (unsigned int)ret < sizeof(expand_buffer.buffer));
5119         } else {
5120                 buf->entries = 1;
5121                 buf->entry[0].pattern = (void *)(uintptr_t)items;
5122         }
5123         /*
5124          * Record the start index when there is a nested call. All sub-flows
5125          * need to be translated before another calling.
5126          * No need to use ping-pong buffer to save memory here.
5127          */
5128         if (priv->flow_idx) {
5129                 MLX5_ASSERT(!priv->flow_nested_idx);
5130                 priv->flow_nested_idx = priv->flow_idx;
5131         }
5132         for (i = 0; i < buf->entries; ++i) {
5133                 /*
5134                  * The splitter may create multiple dev_flows,
5135                  * depending on configuration. In the simplest
5136                  * case it just creates unmodified original flow.
5137                  */
5138                 ret = flow_create_split_outer(dev, flow, &attr_factor,
5139                                               buf->entry[i].pattern,
5140                                               p_actions_rx, external, idx,
5141                                               error);
5142                 if (ret < 0)
5143                         goto error;
5144         }
5145         /* Create the tx flow. */
5146         if (hairpin_flow) {
5147                 attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
5148                 attr_tx.ingress = 0;
5149                 attr_tx.egress = 1;
5150                 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
5151                                          actions_hairpin_tx.actions,
5152                                          idx, error);
5153                 if (!dev_flow)
5154                         goto error;
5155                 dev_flow->flow = flow;
5156                 dev_flow->external = 0;
5157                 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5158                               dev_flow->handle, next);
5159                 ret = flow_drv_translate(dev, dev_flow, &attr_tx,
5160                                          items_tx.items,
5161                                          actions_hairpin_tx.actions, error);
5162                 if (ret < 0)
5163                         goto error;
5164         }
5165         /*
5166          * Update the metadata register copy table. If extensive
5167          * metadata feature is enabled and registers are supported
5168          * we might create the extra rte_flow for each unique
5169          * MARK/FLAG action ID.
5170          *
5171          * The table is updated for ingress Flows only, because
5172          * the egress Flows belong to the different device and
5173          * copy table should be updated in peer NIC Rx domain.
5174          */
5175         if (attr_factor.ingress &&
5176             (external || attr_factor.group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
5177                 ret = flow_mreg_update_copy_table(dev, flow, actions, error);
5178                 if (ret)
5179                         goto error;
5180         }
5181         /*
5182          * If the flow is external (from application) OR device is started, then
5183          * the flow will be applied immediately.
5184          */
5185         if (external || dev->data->dev_started) {
5186                 ret = flow_drv_apply(dev, flow, error);
5187                 if (ret < 0)
5188                         goto error;
5189         }
5190         if (list)
5191                 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
5192                              flow, next);
5193         flow_rxq_flags_set(dev, flow);
5194         /* Nested flow creation index recovery. */
5195         priv->flow_idx = priv->flow_nested_idx;
5196         if (priv->flow_nested_idx)
5197                 priv->flow_nested_idx = 0;
5198         return idx;
5199 error:
5200         MLX5_ASSERT(flow);
5201         ret = rte_errno; /* Save rte_errno before cleanup. */
5202         flow_mreg_del_copy_action(dev, flow);
5203         flow_drv_destroy(dev, flow);
5204         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
5205         rte_errno = ret; /* Restore rte_errno. */
5206 error_before_flow:
5207         ret = rte_errno;
5208         if (hairpin_id)
5209                 mlx5_flow_id_release(priv->sh->flow_id_pool,
5210                                      hairpin_id);
5211         rte_errno = ret;
5212         priv->flow_idx = priv->flow_nested_idx;
5213         if (priv->flow_nested_idx)
5214                 priv->flow_nested_idx = 0;
5215         return 0;
5216 }
5217
5218 /**
5219  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
5220  * incoming packets to table 1.
5221  *
5222  * Other flow rules, requested for group n, will be created in
5223  * e-switch table n+1.
5224  * Jump action to e-switch group n will be created to group n+1.
5225  *
5226  * Used when working in switchdev mode, to utilise advantages of table 1
5227  * and above.
5228  *
5229  * @param dev
5230  *   Pointer to Ethernet device.
5231  *
5232  * @return
5233  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
5234  */
5235 struct rte_flow *
5236 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
5237 {
5238         const struct rte_flow_attr attr = {
5239                 .group = 0,
5240                 .priority = 0,
5241                 .ingress = 1,
5242                 .egress = 0,
5243                 .transfer = 1,
5244         };
5245         const struct rte_flow_item pattern = {
5246                 .type = RTE_FLOW_ITEM_TYPE_END,
5247         };
5248         struct rte_flow_action_jump jump = {
5249                 .group = 1,
5250         };
5251         const struct rte_flow_action actions[] = {
5252                 {
5253                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
5254                         .conf = &jump,
5255                 },
5256                 {
5257                         .type = RTE_FLOW_ACTION_TYPE_END,
5258                 },
5259         };
5260         struct mlx5_priv *priv = dev->data->dev_private;
5261         struct rte_flow_error error;
5262
5263         return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
5264                                                    &attr, &pattern,
5265                                                    actions, false, &error);
5266 }
5267
5268 /**
5269  * Validate a flow supported by the NIC.
5270  *
5271  * @see rte_flow_validate()
5272  * @see rte_flow_ops
5273  */
5274 int
5275 mlx5_flow_validate(struct rte_eth_dev *dev,
5276                    const struct rte_flow_attr *attr,
5277                    const struct rte_flow_item items[],
5278                    const struct rte_flow_action actions[],
5279                    struct rte_flow_error *error)
5280 {
5281         int hairpin_flow;
5282
5283         hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5284         return flow_drv_validate(dev, attr, items, actions,
5285                                 true, hairpin_flow, error);
5286 }
5287
5288 /**
5289  * Create a flow.
5290  *
5291  * @see rte_flow_create()
5292  * @see rte_flow_ops
5293  */
5294 struct rte_flow *
5295 mlx5_flow_create(struct rte_eth_dev *dev,
5296                  const struct rte_flow_attr *attr,
5297                  const struct rte_flow_item items[],
5298                  const struct rte_flow_action actions[],
5299                  struct rte_flow_error *error)
5300 {
5301         struct mlx5_priv *priv = dev->data->dev_private;
5302
5303         /*
5304          * If the device is not started yet, it is not allowed to created a
5305          * flow from application. PMD default flows and traffic control flows
5306          * are not affected.
5307          */
5308         if (unlikely(!dev->data->dev_started)) {
5309                 DRV_LOG(DEBUG, "port %u is not started when "
5310                         "inserting a flow", dev->data->port_id);
5311                 rte_flow_error_set(error, ENODEV,
5312                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5313                                    NULL,
5314                                    "port not started");
5315                 return NULL;
5316         }
5317         return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
5318                                   attr, items, actions, true, error);
5319 }
5320
5321 /**
5322  * Destroy a flow in a list.
5323  *
5324  * @param dev
5325  *   Pointer to Ethernet device.
5326  * @param list
5327  *   Pointer to the Indexed flow list. If this parameter NULL,
5328  *   there is no flow removal from the list. Be noted that as
5329  *   flow is add to the indexed list, memory of the indexed
5330  *   list points to maybe changed as flow destroyed.
5331  * @param[in] flow_idx
5332  *   Index of flow to destroy.
5333  */
5334 static void
5335 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
5336                   uint32_t flow_idx)
5337 {
5338         struct mlx5_priv *priv = dev->data->dev_private;
5339         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5340         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5341                                                [MLX5_IPOOL_RTE_FLOW], flow_idx);
5342
5343         if (!flow)
5344                 return;
5345         /*
5346          * Update RX queue flags only if port is started, otherwise it is
5347          * already clean.
5348          */
5349         if (dev->data->dev_started)
5350                 flow_rxq_flags_trim(dev, flow);
5351         if (flow->hairpin_flow_id)
5352                 mlx5_flow_id_release(priv->sh->flow_id_pool,
5353                                      flow->hairpin_flow_id);
5354         flow_drv_destroy(dev, flow);
5355         if (list)
5356                 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
5357                              flow_idx, flow, next);
5358         flow_mreg_del_copy_action(dev, flow);
5359         if (flow->fdir) {
5360                 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
5361                         if (priv_fdir_flow->rix_flow == flow_idx)
5362                                 break;
5363                 }
5364                 if (priv_fdir_flow) {
5365                         LIST_REMOVE(priv_fdir_flow, next);
5366                         mlx5_free(priv_fdir_flow->fdir);
5367                         mlx5_free(priv_fdir_flow);
5368                 }
5369         }
5370         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5371 }
5372
5373 /**
5374  * Destroy all flows.
5375  *
5376  * @param dev
5377  *   Pointer to Ethernet device.
5378  * @param list
5379  *   Pointer to the Indexed flow list.
5380  * @param active
5381  *   If flushing is called avtively.
5382  */
5383 void
5384 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5385 {
5386         uint32_t num_flushed = 0;
5387
5388         while (*list) {
5389                 flow_list_destroy(dev, list, *list);
5390                 num_flushed++;
5391         }
5392         if (active) {
5393                 DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5394                         dev->data->port_id, num_flushed);
5395         }
5396 }
5397
5398 /**
5399  * Remove all flows.
5400  *
5401  * @param dev
5402  *   Pointer to Ethernet device.
5403  * @param list
5404  *   Pointer to the Indexed flow list.
5405  */
5406 void
5407 mlx5_flow_stop(struct rte_eth_dev *dev, uint32_t *list)
5408 {
5409         struct mlx5_priv *priv = dev->data->dev_private;
5410         struct rte_flow *flow = NULL;
5411         uint32_t idx;
5412
5413         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5414                       flow, next) {
5415                 flow_drv_remove(dev, flow);
5416                 flow_mreg_stop_copy_action(dev, flow);
5417         }
5418         flow_mreg_del_default_copy_action(dev);
5419         flow_rxq_flags_clear(dev);
5420 }
5421
5422 /**
5423  * Add all flows.
5424  *
5425  * @param dev
5426  *   Pointer to Ethernet device.
5427  * @param list
5428  *   Pointer to the Indexed flow list.
5429  *
5430  * @return
5431  *   0 on success, a negative errno value otherwise and rte_errno is set.
5432  */
5433 int
5434 mlx5_flow_start(struct rte_eth_dev *dev, uint32_t *list)
5435 {
5436         struct mlx5_priv *priv = dev->data->dev_private;
5437         struct rte_flow *flow = NULL;
5438         struct rte_flow_error error;
5439         uint32_t idx;
5440         int ret = 0;
5441
5442         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5443         ret = flow_mreg_add_default_copy_action(dev, &error);
5444         if (ret < 0)
5445                 return -rte_errno;
5446         /* Apply Flows created by application. */
5447         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5448                       flow, next) {
5449                 ret = flow_mreg_start_copy_action(dev, flow);
5450                 if (ret < 0)
5451                         goto error;
5452                 ret = flow_drv_apply(dev, flow, &error);
5453                 if (ret < 0)
5454                         goto error;
5455                 flow_rxq_flags_set(dev, flow);
5456         }
5457         return 0;
5458 error:
5459         ret = rte_errno; /* Save rte_errno before cleanup. */
5460         mlx5_flow_stop(dev, list);
5461         rte_errno = ret; /* Restore rte_errno. */
5462         return -rte_errno;
5463 }
5464
5465 /**
5466  * Stop all default actions for flows.
5467  *
5468  * @param dev
5469  *   Pointer to Ethernet device.
5470  */
5471 void
5472 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5473 {
5474         flow_mreg_del_default_copy_action(dev);
5475         flow_rxq_flags_clear(dev);
5476 }
5477
5478 /**
5479  * Start all default actions for flows.
5480  *
5481  * @param dev
5482  *   Pointer to Ethernet device.
5483  * @return
5484  *   0 on success, a negative errno value otherwise and rte_errno is set.
5485  */
5486 int
5487 mlx5_flow_start_default(struct rte_eth_dev *dev)
5488 {
5489         struct rte_flow_error error;
5490
5491         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5492         return flow_mreg_add_default_copy_action(dev, &error);
5493 }
5494
5495 /**
5496  * Allocate intermediate resources for flow creation.
5497  *
5498  * @param dev
5499  *   Pointer to Ethernet device.
5500  */
5501 void
5502 mlx5_flow_alloc_intermediate(struct rte_eth_dev *dev)
5503 {
5504         struct mlx5_priv *priv = dev->data->dev_private;
5505
5506         if (!priv->inter_flows) {
5507                 priv->inter_flows = mlx5_malloc(MLX5_MEM_ZERO,
5508                                     MLX5_NUM_MAX_DEV_FLOWS *
5509                                     sizeof(struct mlx5_flow) +
5510                                     (sizeof(struct mlx5_flow_rss_desc) +
5511                                     sizeof(uint16_t) * UINT16_MAX) * 2, 0,
5512                                     SOCKET_ID_ANY);
5513                 if (!priv->inter_flows) {
5514                         DRV_LOG(ERR, "can't allocate intermediate memory.");
5515                         return;
5516                 }
5517         }
5518         priv->rss_desc = &((struct mlx5_flow *)priv->inter_flows)
5519                          [MLX5_NUM_MAX_DEV_FLOWS];
5520         /* Reset the index. */
5521         priv->flow_idx = 0;
5522         priv->flow_nested_idx = 0;
5523 }
5524
5525 /**
5526  * Free intermediate resources for flows.
5527  *
5528  * @param dev
5529  *   Pointer to Ethernet device.
5530  */
5531 void
5532 mlx5_flow_free_intermediate(struct rte_eth_dev *dev)
5533 {
5534         struct mlx5_priv *priv = dev->data->dev_private;
5535
5536         mlx5_free(priv->inter_flows);
5537         priv->inter_flows = NULL;
5538 }
5539
5540 /**
5541  * Verify the flow list is empty
5542  *
5543  * @param dev
5544  *  Pointer to Ethernet device.
5545  *
5546  * @return the number of flows not released.
5547  */
5548 int
5549 mlx5_flow_verify(struct rte_eth_dev *dev)
5550 {
5551         struct mlx5_priv *priv = dev->data->dev_private;
5552         struct rte_flow *flow;
5553         uint32_t idx;
5554         int ret = 0;
5555
5556         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5557                       flow, next) {
5558                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
5559                         dev->data->port_id, (void *)flow);
5560                 ++ret;
5561         }
5562         return ret;
5563 }
5564
5565 /**
5566  * Enable default hairpin egress flow.
5567  *
5568  * @param dev
5569  *   Pointer to Ethernet device.
5570  * @param queue
5571  *   The queue index.
5572  *
5573  * @return
5574  *   0 on success, a negative errno value otherwise and rte_errno is set.
5575  */
5576 int
5577 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5578                             uint32_t queue)
5579 {
5580         struct mlx5_priv *priv = dev->data->dev_private;
5581         const struct rte_flow_attr attr = {
5582                 .egress = 1,
5583                 .priority = 0,
5584         };
5585         struct mlx5_rte_flow_item_tx_queue queue_spec = {
5586                 .queue = queue,
5587         };
5588         struct mlx5_rte_flow_item_tx_queue queue_mask = {
5589                 .queue = UINT32_MAX,
5590         };
5591         struct rte_flow_item items[] = {
5592                 {
5593                         .type = (enum rte_flow_item_type)
5594                                 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5595                         .spec = &queue_spec,
5596                         .last = NULL,
5597                         .mask = &queue_mask,
5598                 },
5599                 {
5600                         .type = RTE_FLOW_ITEM_TYPE_END,
5601                 },
5602         };
5603         struct rte_flow_action_jump jump = {
5604                 .group = MLX5_HAIRPIN_TX_TABLE,
5605         };
5606         struct rte_flow_action actions[2];
5607         uint32_t flow_idx;
5608         struct rte_flow_error error;
5609
5610         actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5611         actions[0].conf = &jump;
5612         actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5613         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5614                                 &attr, items, actions, false, &error);
5615         if (!flow_idx) {
5616                 DRV_LOG(DEBUG,
5617                         "Failed to create ctrl flow: rte_errno(%d),"
5618                         " type(%d), message(%s)",
5619                         rte_errno, error.type,
5620                         error.message ? error.message : " (no stated reason)");
5621                 return -rte_errno;
5622         }
5623         return 0;
5624 }
5625
5626 /**
5627  * Enable a control flow configured from the control plane.
5628  *
5629  * @param dev
5630  *   Pointer to Ethernet device.
5631  * @param eth_spec
5632  *   An Ethernet flow spec to apply.
5633  * @param eth_mask
5634  *   An Ethernet flow mask to apply.
5635  * @param vlan_spec
5636  *   A VLAN flow spec to apply.
5637  * @param vlan_mask
5638  *   A VLAN flow mask to apply.
5639  *
5640  * @return
5641  *   0 on success, a negative errno value otherwise and rte_errno is set.
5642  */
5643 int
5644 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5645                     struct rte_flow_item_eth *eth_spec,
5646                     struct rte_flow_item_eth *eth_mask,
5647                     struct rte_flow_item_vlan *vlan_spec,
5648                     struct rte_flow_item_vlan *vlan_mask)
5649 {
5650         struct mlx5_priv *priv = dev->data->dev_private;
5651         const struct rte_flow_attr attr = {
5652                 .ingress = 1,
5653                 .priority = MLX5_FLOW_PRIO_RSVD,
5654         };
5655         struct rte_flow_item items[] = {
5656                 {
5657                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5658                         .spec = eth_spec,
5659                         .last = NULL,
5660                         .mask = eth_mask,
5661                 },
5662                 {
5663                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5664                                               RTE_FLOW_ITEM_TYPE_END,
5665                         .spec = vlan_spec,
5666                         .last = NULL,
5667                         .mask = vlan_mask,
5668                 },
5669                 {
5670                         .type = RTE_FLOW_ITEM_TYPE_END,
5671                 },
5672         };
5673         uint16_t queue[priv->reta_idx_n];
5674         struct rte_flow_action_rss action_rss = {
5675                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5676                 .level = 0,
5677                 .types = priv->rss_conf.rss_hf,
5678                 .key_len = priv->rss_conf.rss_key_len,
5679                 .queue_num = priv->reta_idx_n,
5680                 .key = priv->rss_conf.rss_key,
5681                 .queue = queue,
5682         };
5683         struct rte_flow_action actions[] = {
5684                 {
5685                         .type = RTE_FLOW_ACTION_TYPE_RSS,
5686                         .conf = &action_rss,
5687                 },
5688                 {
5689                         .type = RTE_FLOW_ACTION_TYPE_END,
5690                 },
5691         };
5692         uint32_t flow_idx;
5693         struct rte_flow_error error;
5694         unsigned int i;
5695
5696         if (!priv->reta_idx_n || !priv->rxqs_n) {
5697                 return 0;
5698         }
5699         if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
5700                 action_rss.types = 0;
5701         for (i = 0; i != priv->reta_idx_n; ++i)
5702                 queue[i] = (*priv->reta_idx)[i];
5703         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5704                                 &attr, items, actions, false, &error);
5705         if (!flow_idx)
5706                 return -rte_errno;
5707         return 0;
5708 }
5709
5710 /**
5711  * Enable a flow control configured from the control plane.
5712  *
5713  * @param dev
5714  *   Pointer to Ethernet device.
5715  * @param eth_spec
5716  *   An Ethernet flow spec to apply.
5717  * @param eth_mask
5718  *   An Ethernet flow mask to apply.
5719  *
5720  * @return
5721  *   0 on success, a negative errno value otherwise and rte_errno is set.
5722  */
5723 int
5724 mlx5_ctrl_flow(struct rte_eth_dev *dev,
5725                struct rte_flow_item_eth *eth_spec,
5726                struct rte_flow_item_eth *eth_mask)
5727 {
5728         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
5729 }
5730
5731 /**
5732  * Create default miss flow rule matching lacp traffic
5733  *
5734  * @param dev
5735  *   Pointer to Ethernet device.
5736  * @param eth_spec
5737  *   An Ethernet flow spec to apply.
5738  *
5739  * @return
5740  *   0 on success, a negative errno value otherwise and rte_errno is set.
5741  */
5742 int
5743 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
5744 {
5745         struct mlx5_priv *priv = dev->data->dev_private;
5746         /*
5747          * The LACP matching is done by only using ether type since using
5748          * a multicast dst mac causes kernel to give low priority to this flow.
5749          */
5750         static const struct rte_flow_item_eth lacp_spec = {
5751                 .type = RTE_BE16(0x8809),
5752         };
5753         static const struct rte_flow_item_eth lacp_mask = {
5754                 .type = 0xffff,
5755         };
5756         const struct rte_flow_attr attr = {
5757                 .ingress = 1,
5758         };
5759         struct rte_flow_item items[] = {
5760                 {
5761                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5762                         .spec = &lacp_spec,
5763                         .mask = &lacp_mask,
5764                 },
5765                 {
5766                         .type = RTE_FLOW_ITEM_TYPE_END,
5767                 },
5768         };
5769         struct rte_flow_action actions[] = {
5770                 {
5771                         .type = (enum rte_flow_action_type)
5772                                 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
5773                 },
5774                 {
5775                         .type = RTE_FLOW_ACTION_TYPE_END,
5776                 },
5777         };
5778         struct rte_flow_error error;
5779         uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5780                                 &attr, items, actions, false, &error);
5781
5782         if (!flow_idx)
5783                 return -rte_errno;
5784         return 0;
5785 }
5786
5787 /**
5788  * Destroy a flow.
5789  *
5790  * @see rte_flow_destroy()
5791  * @see rte_flow_ops
5792  */
5793 int
5794 mlx5_flow_destroy(struct rte_eth_dev *dev,
5795                   struct rte_flow *flow,
5796                   struct rte_flow_error *error __rte_unused)
5797 {
5798         struct mlx5_priv *priv = dev->data->dev_private;
5799
5800         flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
5801         return 0;
5802 }
5803
5804 /**
5805  * Destroy all flows.
5806  *
5807  * @see rte_flow_flush()
5808  * @see rte_flow_ops
5809  */
5810 int
5811 mlx5_flow_flush(struct rte_eth_dev *dev,
5812                 struct rte_flow_error *error __rte_unused)
5813 {
5814         struct mlx5_priv *priv = dev->data->dev_private;
5815
5816         mlx5_flow_list_flush(dev, &priv->flows, false);
5817         return 0;
5818 }
5819
5820 /**
5821  * Isolated mode.
5822  *
5823  * @see rte_flow_isolate()
5824  * @see rte_flow_ops
5825  */
5826 int
5827 mlx5_flow_isolate(struct rte_eth_dev *dev,
5828                   int enable,
5829                   struct rte_flow_error *error)
5830 {
5831         struct mlx5_priv *priv = dev->data->dev_private;
5832
5833         if (dev->data->dev_started) {
5834                 rte_flow_error_set(error, EBUSY,
5835                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5836                                    NULL,
5837                                    "port must be stopped first");
5838                 return -rte_errno;
5839         }
5840         priv->isolated = !!enable;
5841         if (enable)
5842                 dev->dev_ops = &mlx5_os_dev_ops_isolate;
5843         else
5844                 dev->dev_ops = &mlx5_os_dev_ops;
5845
5846         dev->rx_descriptor_status = mlx5_rx_descriptor_status;
5847         dev->tx_descriptor_status = mlx5_tx_descriptor_status;
5848
5849         return 0;
5850 }
5851
5852 /**
5853  * Query a flow.
5854  *
5855  * @see rte_flow_query()
5856  * @see rte_flow_ops
5857  */
5858 static int
5859 flow_drv_query(struct rte_eth_dev *dev,
5860                uint32_t flow_idx,
5861                const struct rte_flow_action *actions,
5862                void *data,
5863                struct rte_flow_error *error)
5864 {
5865         struct mlx5_priv *priv = dev->data->dev_private;
5866         const struct mlx5_flow_driver_ops *fops;
5867         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5868                                                [MLX5_IPOOL_RTE_FLOW],
5869                                                flow_idx);
5870         enum mlx5_flow_drv_type ftype;
5871
5872         if (!flow) {
5873                 return rte_flow_error_set(error, ENOENT,
5874                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5875                           NULL,
5876                           "invalid flow handle");
5877         }
5878         ftype = flow->drv_type;
5879         MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
5880         fops = flow_get_drv_ops(ftype);
5881
5882         return fops->query(dev, flow, actions, data, error);
5883 }
5884
5885 /**
5886  * Query a flow.
5887  *
5888  * @see rte_flow_query()
5889  * @see rte_flow_ops
5890  */
5891 int
5892 mlx5_flow_query(struct rte_eth_dev *dev,
5893                 struct rte_flow *flow,
5894                 const struct rte_flow_action *actions,
5895                 void *data,
5896                 struct rte_flow_error *error)
5897 {
5898         int ret;
5899
5900         ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
5901                              error);
5902         if (ret < 0)
5903                 return ret;
5904         return 0;
5905 }
5906
5907 /**
5908  * Convert a flow director filter to a generic flow.
5909  *
5910  * @param dev
5911  *   Pointer to Ethernet device.
5912  * @param fdir_filter
5913  *   Flow director filter to add.
5914  * @param attributes
5915  *   Generic flow parameters structure.
5916  *
5917  * @return
5918  *   0 on success, a negative errno value otherwise and rte_errno is set.
5919  */
5920 static int
5921 flow_fdir_filter_convert(struct rte_eth_dev *dev,
5922                          const struct rte_eth_fdir_filter *fdir_filter,
5923                          struct mlx5_fdir *attributes)
5924 {
5925         struct mlx5_priv *priv = dev->data->dev_private;
5926         const struct rte_eth_fdir_input *input = &fdir_filter->input;
5927         const struct rte_eth_fdir_masks *mask =
5928                 &dev->data->dev_conf.fdir_conf.mask;
5929
5930         /* Validate queue number. */
5931         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
5932                 DRV_LOG(ERR, "port %u invalid queue number %d",
5933                         dev->data->port_id, fdir_filter->action.rx_queue);
5934                 rte_errno = EINVAL;
5935                 return -rte_errno;
5936         }
5937         attributes->attr.ingress = 1;
5938         attributes->items[0] = (struct rte_flow_item) {
5939                 .type = RTE_FLOW_ITEM_TYPE_ETH,
5940                 .spec = &attributes->l2,
5941                 .mask = &attributes->l2_mask,
5942         };
5943         switch (fdir_filter->action.behavior) {
5944         case RTE_ETH_FDIR_ACCEPT:
5945                 attributes->actions[0] = (struct rte_flow_action){
5946                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
5947                         .conf = &attributes->queue,
5948                 };
5949                 break;
5950         case RTE_ETH_FDIR_REJECT:
5951                 attributes->actions[0] = (struct rte_flow_action){
5952                         .type = RTE_FLOW_ACTION_TYPE_DROP,
5953                 };
5954                 break;
5955         default:
5956                 DRV_LOG(ERR, "port %u invalid behavior %d",
5957                         dev->data->port_id,
5958                         fdir_filter->action.behavior);
5959                 rte_errno = ENOTSUP;
5960                 return -rte_errno;
5961         }
5962         attributes->queue.index = fdir_filter->action.rx_queue;
5963         /* Handle L3. */
5964         switch (fdir_filter->input.flow_type) {
5965         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
5966         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
5967         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
5968                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
5969                         .src_addr = input->flow.ip4_flow.src_ip,
5970                         .dst_addr = input->flow.ip4_flow.dst_ip,
5971                         .time_to_live = input->flow.ip4_flow.ttl,
5972                         .type_of_service = input->flow.ip4_flow.tos,
5973                 };
5974                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
5975                         .src_addr = mask->ipv4_mask.src_ip,
5976                         .dst_addr = mask->ipv4_mask.dst_ip,
5977                         .time_to_live = mask->ipv4_mask.ttl,
5978                         .type_of_service = mask->ipv4_mask.tos,
5979                         .next_proto_id = mask->ipv4_mask.proto,
5980                 };
5981                 attributes->items[1] = (struct rte_flow_item){
5982                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
5983                         .spec = &attributes->l3,
5984                         .mask = &attributes->l3_mask,
5985                 };
5986                 break;
5987         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
5988         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
5989         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
5990                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
5991                         .hop_limits = input->flow.ipv6_flow.hop_limits,
5992                         .proto = input->flow.ipv6_flow.proto,
5993                 };
5994
5995                 memcpy(attributes->l3.ipv6.hdr.src_addr,
5996                        input->flow.ipv6_flow.src_ip,
5997                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
5998                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
5999                        input->flow.ipv6_flow.dst_ip,
6000                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
6001                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
6002                        mask->ipv6_mask.src_ip,
6003                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
6004                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
6005                        mask->ipv6_mask.dst_ip,
6006                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
6007                 attributes->items[1] = (struct rte_flow_item){
6008                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
6009                         .spec = &attributes->l3,
6010                         .mask = &attributes->l3_mask,
6011                 };
6012                 break;
6013         default:
6014                 DRV_LOG(ERR, "port %u invalid flow type%d",
6015                         dev->data->port_id, fdir_filter->input.flow_type);
6016                 rte_errno = ENOTSUP;
6017                 return -rte_errno;
6018         }
6019         /* Handle L4. */
6020         switch (fdir_filter->input.flow_type) {
6021         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
6022                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
6023                         .src_port = input->flow.udp4_flow.src_port,
6024                         .dst_port = input->flow.udp4_flow.dst_port,
6025                 };
6026                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
6027                         .src_port = mask->src_port_mask,
6028                         .dst_port = mask->dst_port_mask,
6029                 };
6030                 attributes->items[2] = (struct rte_flow_item){
6031                         .type = RTE_FLOW_ITEM_TYPE_UDP,
6032                         .spec = &attributes->l4,
6033                         .mask = &attributes->l4_mask,
6034                 };
6035                 break;
6036         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
6037                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
6038                         .src_port = input->flow.tcp4_flow.src_port,
6039                         .dst_port = input->flow.tcp4_flow.dst_port,
6040                 };
6041                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
6042                         .src_port = mask->src_port_mask,
6043                         .dst_port = mask->dst_port_mask,
6044                 };
6045                 attributes->items[2] = (struct rte_flow_item){
6046                         .type = RTE_FLOW_ITEM_TYPE_TCP,
6047                         .spec = &attributes->l4,
6048                         .mask = &attributes->l4_mask,
6049                 };
6050                 break;
6051         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
6052                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
6053                         .src_port = input->flow.udp6_flow.src_port,
6054                         .dst_port = input->flow.udp6_flow.dst_port,
6055                 };
6056                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
6057                         .src_port = mask->src_port_mask,
6058                         .dst_port = mask->dst_port_mask,
6059                 };
6060                 attributes->items[2] = (struct rte_flow_item){
6061                         .type = RTE_FLOW_ITEM_TYPE_UDP,
6062                         .spec = &attributes->l4,
6063                         .mask = &attributes->l4_mask,
6064                 };
6065                 break;
6066         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
6067                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
6068                         .src_port = input->flow.tcp6_flow.src_port,
6069                         .dst_port = input->flow.tcp6_flow.dst_port,
6070                 };
6071                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
6072                         .src_port = mask->src_port_mask,
6073                         .dst_port = mask->dst_port_mask,
6074                 };
6075                 attributes->items[2] = (struct rte_flow_item){
6076                         .type = RTE_FLOW_ITEM_TYPE_TCP,
6077                         .spec = &attributes->l4,
6078                         .mask = &attributes->l4_mask,
6079                 };
6080                 break;
6081         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
6082         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
6083                 break;
6084         default:
6085                 DRV_LOG(ERR, "port %u invalid flow type%d",
6086                         dev->data->port_id, fdir_filter->input.flow_type);
6087                 rte_errno = ENOTSUP;
6088                 return -rte_errno;
6089         }
6090         return 0;
6091 }
6092
6093 #define FLOW_FDIR_CMP(f1, f2, fld) \
6094         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
6095
6096 /**
6097  * Compare two FDIR flows. If items and actions are identical, the two flows are
6098  * regarded as same.
6099  *
6100  * @param dev
6101  *   Pointer to Ethernet device.
6102  * @param f1
6103  *   FDIR flow to compare.
6104  * @param f2
6105  *   FDIR flow to compare.
6106  *
6107  * @return
6108  *   Zero on match, 1 otherwise.
6109  */
6110 static int
6111 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
6112 {
6113         if (FLOW_FDIR_CMP(f1, f2, attr) ||
6114             FLOW_FDIR_CMP(f1, f2, l2) ||
6115             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
6116             FLOW_FDIR_CMP(f1, f2, l3) ||
6117             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
6118             FLOW_FDIR_CMP(f1, f2, l4) ||
6119             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
6120             FLOW_FDIR_CMP(f1, f2, actions[0].type))
6121                 return 1;
6122         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
6123             FLOW_FDIR_CMP(f1, f2, queue))
6124                 return 1;
6125         return 0;
6126 }
6127
6128 /**
6129  * Search device flow list to find out a matched FDIR flow.
6130  *
6131  * @param dev
6132  *   Pointer to Ethernet device.
6133  * @param fdir_flow
6134  *   FDIR flow to lookup.
6135  *
6136  * @return
6137  *   Index of flow if found, 0 otherwise.
6138  */
6139 static uint32_t
6140 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
6141 {
6142         struct mlx5_priv *priv = dev->data->dev_private;
6143         uint32_t flow_idx = 0;
6144         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6145
6146         MLX5_ASSERT(fdir_flow);
6147         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
6148                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, fdir_flow)) {
6149                         DRV_LOG(DEBUG, "port %u found FDIR flow %u",
6150                                 dev->data->port_id, flow_idx);
6151                         flow_idx = priv_fdir_flow->rix_flow;
6152                         break;
6153                 }
6154         }
6155         return flow_idx;
6156 }
6157
6158 /**
6159  * Add new flow director filter and store it in list.
6160  *
6161  * @param dev
6162  *   Pointer to Ethernet device.
6163  * @param fdir_filter
6164  *   Flow director filter to add.
6165  *
6166  * @return
6167  *   0 on success, a negative errno value otherwise and rte_errno is set.
6168  */
6169 static int
6170 flow_fdir_filter_add(struct rte_eth_dev *dev,
6171                      const struct rte_eth_fdir_filter *fdir_filter)
6172 {
6173         struct mlx5_priv *priv = dev->data->dev_private;
6174         struct mlx5_fdir *fdir_flow;
6175         struct rte_flow *flow;
6176         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6177         uint32_t flow_idx;
6178         int ret;
6179
6180         fdir_flow = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*fdir_flow), 0,
6181                                 SOCKET_ID_ANY);
6182         if (!fdir_flow) {
6183                 rte_errno = ENOMEM;
6184                 return -rte_errno;
6185         }
6186         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
6187         if (ret)
6188                 goto error;
6189         flow_idx = flow_fdir_filter_lookup(dev, fdir_flow);
6190         if (flow_idx) {
6191                 rte_errno = EEXIST;
6192                 goto error;
6193         }
6194         priv_fdir_flow = mlx5_malloc(MLX5_MEM_ZERO,
6195                                      sizeof(struct mlx5_fdir_flow),
6196                                      0, SOCKET_ID_ANY);
6197         if (!priv_fdir_flow) {
6198                 rte_errno = ENOMEM;
6199                 goto error;
6200         }
6201         flow_idx = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
6202                                     fdir_flow->items, fdir_flow->actions, true,
6203                                     NULL);
6204         flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
6205         if (!flow)
6206                 goto error;
6207         flow->fdir = 1;
6208         priv_fdir_flow->fdir = fdir_flow;
6209         priv_fdir_flow->rix_flow = flow_idx;
6210         LIST_INSERT_HEAD(&priv->fdir_flows, priv_fdir_flow, next);
6211         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
6212                 dev->data->port_id, (void *)flow);
6213         return 0;
6214 error:
6215         mlx5_free(priv_fdir_flow);
6216         mlx5_free(fdir_flow);
6217         return -rte_errno;
6218 }
6219
6220 /**
6221  * Delete specific filter.
6222  *
6223  * @param dev
6224  *   Pointer to Ethernet device.
6225  * @param fdir_filter
6226  *   Filter to be deleted.
6227  *
6228  * @return
6229  *   0 on success, a negative errno value otherwise and rte_errno is set.
6230  */
6231 static int
6232 flow_fdir_filter_delete(struct rte_eth_dev *dev,
6233                         const struct rte_eth_fdir_filter *fdir_filter)
6234 {
6235         struct mlx5_priv *priv = dev->data->dev_private;
6236         uint32_t flow_idx;
6237         struct mlx5_fdir fdir_flow = {
6238                 .attr.group = 0,
6239         };
6240         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6241         int ret;
6242
6243         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
6244         if (ret)
6245                 return -rte_errno;
6246         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
6247                 /* Find the fdir in priv list */
6248                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, &fdir_flow))
6249                         break;
6250         }
6251         if (!priv_fdir_flow)
6252                 return 0;
6253         LIST_REMOVE(priv_fdir_flow, next);
6254         flow_idx = priv_fdir_flow->rix_flow;
6255         flow_list_destroy(dev, &priv->flows, flow_idx);
6256         mlx5_free(priv_fdir_flow->fdir);
6257         mlx5_free(priv_fdir_flow);
6258         DRV_LOG(DEBUG, "port %u deleted FDIR flow %u",
6259                 dev->data->port_id, flow_idx);
6260         return 0;
6261 }
6262
6263 /**
6264  * Update queue for specific filter.
6265  *
6266  * @param dev
6267  *   Pointer to Ethernet device.
6268  * @param fdir_filter
6269  *   Filter to be updated.
6270  *
6271  * @return
6272  *   0 on success, a negative errno value otherwise and rte_errno is set.
6273  */
6274 static int
6275 flow_fdir_filter_update(struct rte_eth_dev *dev,
6276                         const struct rte_eth_fdir_filter *fdir_filter)
6277 {
6278         int ret;
6279
6280         ret = flow_fdir_filter_delete(dev, fdir_filter);
6281         if (ret)
6282                 return ret;
6283         return flow_fdir_filter_add(dev, fdir_filter);
6284 }
6285
6286 /**
6287  * Flush all filters.
6288  *
6289  * @param dev
6290  *   Pointer to Ethernet device.
6291  */
6292 static void
6293 flow_fdir_filter_flush(struct rte_eth_dev *dev)
6294 {
6295         struct mlx5_priv *priv = dev->data->dev_private;
6296         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
6297
6298         while (!LIST_EMPTY(&priv->fdir_flows)) {
6299                 priv_fdir_flow = LIST_FIRST(&priv->fdir_flows);
6300                 LIST_REMOVE(priv_fdir_flow, next);
6301                 flow_list_destroy(dev, &priv->flows, priv_fdir_flow->rix_flow);
6302                 mlx5_free(priv_fdir_flow->fdir);
6303                 mlx5_free(priv_fdir_flow);
6304         }
6305 }
6306
6307 /**
6308  * Get flow director information.
6309  *
6310  * @param dev
6311  *   Pointer to Ethernet device.
6312  * @param[out] fdir_info
6313  *   Resulting flow director information.
6314  */
6315 static void
6316 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
6317 {
6318         struct rte_eth_fdir_masks *mask =
6319                 &dev->data->dev_conf.fdir_conf.mask;
6320
6321         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
6322         fdir_info->guarant_spc = 0;
6323         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
6324         fdir_info->max_flexpayload = 0;
6325         fdir_info->flow_types_mask[0] = 0;
6326         fdir_info->flex_payload_unit = 0;
6327         fdir_info->max_flex_payload_segment_num = 0;
6328         fdir_info->flex_payload_limit = 0;
6329         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
6330 }
6331
6332 /**
6333  * Deal with flow director operations.
6334  *
6335  * @param dev
6336  *   Pointer to Ethernet device.
6337  * @param filter_op
6338  *   Operation to perform.
6339  * @param arg
6340  *   Pointer to operation-specific structure.
6341  *
6342  * @return
6343  *   0 on success, a negative errno value otherwise and rte_errno is set.
6344  */
6345 static int
6346 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
6347                     void *arg)
6348 {
6349         enum rte_fdir_mode fdir_mode =
6350                 dev->data->dev_conf.fdir_conf.mode;
6351
6352         if (filter_op == RTE_ETH_FILTER_NOP)
6353                 return 0;
6354         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
6355             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
6356                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
6357                         dev->data->port_id, fdir_mode);
6358                 rte_errno = EINVAL;
6359                 return -rte_errno;
6360         }
6361         switch (filter_op) {
6362         case RTE_ETH_FILTER_ADD:
6363                 return flow_fdir_filter_add(dev, arg);
6364         case RTE_ETH_FILTER_UPDATE:
6365                 return flow_fdir_filter_update(dev, arg);
6366         case RTE_ETH_FILTER_DELETE:
6367                 return flow_fdir_filter_delete(dev, arg);
6368         case RTE_ETH_FILTER_FLUSH:
6369                 flow_fdir_filter_flush(dev);
6370                 break;
6371         case RTE_ETH_FILTER_INFO:
6372                 flow_fdir_info_get(dev, arg);
6373                 break;
6374         default:
6375                 DRV_LOG(DEBUG, "port %u unknown operation %u",
6376                         dev->data->port_id, filter_op);
6377                 rte_errno = EINVAL;
6378                 return -rte_errno;
6379         }
6380         return 0;
6381 }
6382
6383 /**
6384  * Manage filter operations.
6385  *
6386  * @param dev
6387  *   Pointer to Ethernet device structure.
6388  * @param filter_type
6389  *   Filter type.
6390  * @param filter_op
6391  *   Operation to perform.
6392  * @param arg
6393  *   Pointer to operation-specific structure.
6394  *
6395  * @return
6396  *   0 on success, a negative errno value otherwise and rte_errno is set.
6397  */
6398 int
6399 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6400                      enum rte_filter_type filter_type,
6401                      enum rte_filter_op filter_op,
6402                      void *arg)
6403 {
6404         switch (filter_type) {
6405         case RTE_ETH_FILTER_GENERIC:
6406                 if (filter_op != RTE_ETH_FILTER_GET) {
6407                         rte_errno = EINVAL;
6408                         return -rte_errno;
6409                 }
6410                 *(const void **)arg = &mlx5_flow_ops;
6411                 return 0;
6412         case RTE_ETH_FILTER_FDIR:
6413                 return flow_fdir_ctrl_func(dev, filter_op, arg);
6414         default:
6415                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
6416                         dev->data->port_id, filter_type);
6417                 rte_errno = ENOTSUP;
6418                 return -rte_errno;
6419         }
6420         return 0;
6421 }
6422
6423 /**
6424  * Create the needed meter and suffix tables.
6425  *
6426  * @param[in] dev
6427  *   Pointer to Ethernet device.
6428  * @param[in] fm
6429  *   Pointer to the flow meter.
6430  *
6431  * @return
6432  *   Pointer to table set on success, NULL otherwise.
6433  */
6434 struct mlx5_meter_domains_infos *
6435 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6436                           const struct mlx5_flow_meter *fm)
6437 {
6438         const struct mlx5_flow_driver_ops *fops;
6439
6440         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6441         return fops->create_mtr_tbls(dev, fm);
6442 }
6443
6444 /**
6445  * Destroy the meter table set.
6446  *
6447  * @param[in] dev
6448  *   Pointer to Ethernet device.
6449  * @param[in] tbl
6450  *   Pointer to the meter table set.
6451  *
6452  * @return
6453  *   0 on success.
6454  */
6455 int
6456 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6457                            struct mlx5_meter_domains_infos *tbls)
6458 {
6459         const struct mlx5_flow_driver_ops *fops;
6460
6461         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6462         return fops->destroy_mtr_tbls(dev, tbls);
6463 }
6464
6465 /**
6466  * Create policer rules.
6467  *
6468  * @param[in] dev
6469  *   Pointer to Ethernet device.
6470  * @param[in] fm
6471  *   Pointer to flow meter structure.
6472  * @param[in] attr
6473  *   Pointer to flow attributes.
6474  *
6475  * @return
6476  *   0 on success, -1 otherwise.
6477  */
6478 int
6479 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6480                                struct mlx5_flow_meter *fm,
6481                                const struct rte_flow_attr *attr)
6482 {
6483         const struct mlx5_flow_driver_ops *fops;
6484
6485         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6486         return fops->create_policer_rules(dev, fm, attr);
6487 }
6488
6489 /**
6490  * Destroy policer rules.
6491  *
6492  * @param[in] fm
6493  *   Pointer to flow meter structure.
6494  * @param[in] attr
6495  *   Pointer to flow attributes.
6496  *
6497  * @return
6498  *   0 on success, -1 otherwise.
6499  */
6500 int
6501 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6502                                 struct mlx5_flow_meter *fm,
6503                                 const struct rte_flow_attr *attr)
6504 {
6505         const struct mlx5_flow_driver_ops *fops;
6506
6507         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6508         return fops->destroy_policer_rules(dev, fm, attr);
6509 }
6510
6511 /**
6512  * Allocate a counter.
6513  *
6514  * @param[in] dev
6515  *   Pointer to Ethernet device structure.
6516  *
6517  * @return
6518  *   Index to allocated counter  on success, 0 otherwise.
6519  */
6520 uint32_t
6521 mlx5_counter_alloc(struct rte_eth_dev *dev)
6522 {
6523         const struct mlx5_flow_driver_ops *fops;
6524         struct rte_flow_attr attr = { .transfer = 0 };
6525
6526         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6527                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6528                 return fops->counter_alloc(dev);
6529         }
6530         DRV_LOG(ERR,
6531                 "port %u counter allocate is not supported.",
6532                  dev->data->port_id);
6533         return 0;
6534 }
6535
6536 /**
6537  * Free a counter.
6538  *
6539  * @param[in] dev
6540  *   Pointer to Ethernet device structure.
6541  * @param[in] cnt
6542  *   Index to counter to be free.
6543  */
6544 void
6545 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6546 {
6547         const struct mlx5_flow_driver_ops *fops;
6548         struct rte_flow_attr attr = { .transfer = 0 };
6549
6550         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6551                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6552                 fops->counter_free(dev, cnt);
6553                 return;
6554         }
6555         DRV_LOG(ERR,
6556                 "port %u counter free is not supported.",
6557                  dev->data->port_id);
6558 }
6559
6560 /**
6561  * Query counter statistics.
6562  *
6563  * @param[in] dev
6564  *   Pointer to Ethernet device structure.
6565  * @param[in] cnt
6566  *   Index to counter to query.
6567  * @param[in] clear
6568  *   Set to clear counter statistics.
6569  * @param[out] pkts
6570  *   The counter hits packets number to save.
6571  * @param[out] bytes
6572  *   The counter hits bytes number to save.
6573  *
6574  * @return
6575  *   0 on success, a negative errno value otherwise.
6576  */
6577 int
6578 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6579                    bool clear, uint64_t *pkts, uint64_t *bytes)
6580 {
6581         const struct mlx5_flow_driver_ops *fops;
6582         struct rte_flow_attr attr = { .transfer = 0 };
6583
6584         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6585                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6586                 return fops->counter_query(dev, cnt, clear, pkts, bytes);
6587         }
6588         DRV_LOG(ERR,
6589                 "port %u counter query is not supported.",
6590                  dev->data->port_id);
6591         return -ENOTSUP;
6592 }
6593
6594 /**
6595  * Allocate a new memory for the counter values wrapped by all the needed
6596  * management.
6597  *
6598  * @param[in] sh
6599  *   Pointer to mlx5_dev_ctx_shared object.
6600  *
6601  * @return
6602  *   0 on success, a negative errno value otherwise.
6603  */
6604 static int
6605 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
6606 {
6607         struct mlx5_devx_mkey_attr mkey_attr;
6608         struct mlx5_counter_stats_mem_mng *mem_mng;
6609         volatile struct flow_counter_stats *raw_data;
6610         int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
6611         int size = (sizeof(struct flow_counter_stats) *
6612                         MLX5_COUNTERS_PER_POOL +
6613                         sizeof(struct mlx5_counter_stats_raw)) * raws_n +
6614                         sizeof(struct mlx5_counter_stats_mem_mng);
6615         size_t pgsize = rte_mem_page_size();
6616         uint8_t *mem;
6617         int i;
6618
6619         if (pgsize == (size_t)-1) {
6620                 DRV_LOG(ERR, "Failed to get mem page size");
6621                 rte_errno = ENOMEM;
6622                 return -ENOMEM;
6623         }
6624         mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
6625         if (!mem) {
6626                 rte_errno = ENOMEM;
6627                 return -ENOMEM;
6628         }
6629         mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
6630         size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
6631         mem_mng->umem = mlx5_glue->devx_umem_reg(sh->ctx, mem, size,
6632                                                  IBV_ACCESS_LOCAL_WRITE);
6633         if (!mem_mng->umem) {
6634                 rte_errno = errno;
6635                 mlx5_free(mem);
6636                 return -rte_errno;
6637         }
6638         mkey_attr.addr = (uintptr_t)mem;
6639         mkey_attr.size = size;
6640         mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
6641         mkey_attr.pd = sh->pdn;
6642         mkey_attr.log_entity_size = 0;
6643         mkey_attr.pg_access = 0;
6644         mkey_attr.klm_array = NULL;
6645         mkey_attr.klm_num = 0;
6646         mkey_attr.relaxed_ordering = sh->cmng.relaxed_ordering;
6647         mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
6648         if (!mem_mng->dm) {
6649                 mlx5_glue->devx_umem_dereg(mem_mng->umem);
6650                 rte_errno = errno;
6651                 mlx5_free(mem);
6652                 return -rte_errno;
6653         }
6654         mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
6655         raw_data = (volatile struct flow_counter_stats *)mem;
6656         for (i = 0; i < raws_n; ++i) {
6657                 mem_mng->raws[i].mem_mng = mem_mng;
6658                 mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
6659         }
6660         for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
6661                 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
6662                                  mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
6663                                  next);
6664         LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
6665         sh->cmng.mem_mng = mem_mng;
6666         return 0;
6667 }
6668
6669 /**
6670  * Set the statistic memory to the new counter pool.
6671  *
6672  * @param[in] sh
6673  *   Pointer to mlx5_dev_ctx_shared object.
6674  * @param[in] pool
6675  *   Pointer to the pool to set the statistic memory.
6676  *
6677  * @return
6678  *   0 on success, a negative errno value otherwise.
6679  */
6680 static int
6681 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
6682                                struct mlx5_flow_counter_pool *pool)
6683 {
6684         struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6685         /* Resize statistic memory once used out. */
6686         if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
6687             mlx5_flow_create_counter_stat_mem_mng(sh)) {
6688                 DRV_LOG(ERR, "Cannot resize counter stat mem.");
6689                 return -1;
6690         }
6691         rte_spinlock_lock(&pool->sl);
6692         pool->raw = cmng->mem_mng->raws + pool->index %
6693                     MLX5_CNT_CONTAINER_RESIZE;
6694         rte_spinlock_unlock(&pool->sl);
6695         pool->raw_hw = NULL;
6696         return 0;
6697 }
6698
6699 #define MLX5_POOL_QUERY_FREQ_US 1000000
6700
6701 /**
6702  * Set the periodic procedure for triggering asynchronous batch queries for all
6703  * the counter pools.
6704  *
6705  * @param[in] sh
6706  *   Pointer to mlx5_dev_ctx_shared object.
6707  */
6708 void
6709 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6710 {
6711         uint32_t pools_n, us;
6712
6713         pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
6714         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6715         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6716         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6717                 sh->cmng.query_thread_on = 0;
6718                 DRV_LOG(ERR, "Cannot reinitialize query alarm");
6719         } else {
6720                 sh->cmng.query_thread_on = 1;
6721         }
6722 }
6723
6724 /**
6725  * The periodic procedure for triggering asynchronous batch queries for all the
6726  * counter pools. This function is probably called by the host thread.
6727  *
6728  * @param[in] arg
6729  *   The parameter for the alarm process.
6730  */
6731 void
6732 mlx5_flow_query_alarm(void *arg)
6733 {
6734         struct mlx5_dev_ctx_shared *sh = arg;
6735         int ret;
6736         uint16_t pool_index = sh->cmng.pool_index;
6737         struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6738         struct mlx5_flow_counter_pool *pool;
6739         uint16_t n_valid;
6740
6741         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6742                 goto set_alarm;
6743         rte_spinlock_lock(&cmng->pool_update_sl);
6744         pool = cmng->pools[pool_index];
6745         n_valid = cmng->n_valid;
6746         rte_spinlock_unlock(&cmng->pool_update_sl);
6747         /* Set the statistic memory to the new created pool. */
6748         if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
6749                 goto set_alarm;
6750         if (pool->raw_hw)
6751                 /* There is a pool query in progress. */
6752                 goto set_alarm;
6753         pool->raw_hw =
6754                 LIST_FIRST(&sh->cmng.free_stat_raws);
6755         if (!pool->raw_hw)
6756                 /* No free counter statistics raw memory. */
6757                 goto set_alarm;
6758         /*
6759          * Identify the counters released between query trigger and query
6760          * handle more efficiently. The counter released in this gap period
6761          * should wait for a new round of query as the new arrived packets
6762          * will not be taken into account.
6763          */
6764         pool->query_gen++;
6765         ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
6766                                                MLX5_COUNTERS_PER_POOL,
6767                                                NULL, NULL,
6768                                                pool->raw_hw->mem_mng->dm->id,
6769                                                (void *)(uintptr_t)
6770                                                pool->raw_hw->data,
6771                                                sh->devx_comp,
6772                                                (uint64_t)(uintptr_t)pool);
6773         if (ret) {
6774                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6775                         " %d", pool->min_dcs->id);
6776                 pool->raw_hw = NULL;
6777                 goto set_alarm;
6778         }
6779         LIST_REMOVE(pool->raw_hw, next);
6780         sh->cmng.pending_queries++;
6781         pool_index++;
6782         if (pool_index >= n_valid)
6783                 pool_index = 0;
6784 set_alarm:
6785         sh->cmng.pool_index = pool_index;
6786         mlx5_set_query_alarm(sh);
6787 }
6788
6789 /**
6790  * Check and callback event for new aged flow in the counter pool
6791  *
6792  * @param[in] sh
6793  *   Pointer to mlx5_dev_ctx_shared object.
6794  * @param[in] pool
6795  *   Pointer to Current counter pool.
6796  */
6797 static void
6798 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
6799                    struct mlx5_flow_counter_pool *pool)
6800 {
6801         struct mlx5_priv *priv;
6802         struct mlx5_flow_counter *cnt;
6803         struct mlx5_age_info *age_info;
6804         struct mlx5_age_param *age_param;
6805         struct mlx5_counter_stats_raw *cur = pool->raw_hw;
6806         struct mlx5_counter_stats_raw *prev = pool->raw;
6807         const uint64_t curr_time = MLX5_CURR_TIME_SEC;
6808         const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
6809         uint16_t expected = AGE_CANDIDATE;
6810         uint32_t i;
6811
6812         pool->time_of_last_age_check = curr_time;
6813         for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
6814                 cnt = MLX5_POOL_GET_CNT(pool, i);
6815                 age_param = MLX5_CNT_TO_AGE(cnt);
6816                 if (__atomic_load_n(&age_param->state,
6817                                     __ATOMIC_RELAXED) != AGE_CANDIDATE)
6818                         continue;
6819                 if (cur->data[i].hits != prev->data[i].hits) {
6820                         __atomic_store_n(&age_param->sec_since_last_hit, 0,
6821                                          __ATOMIC_RELAXED);
6822                         continue;
6823                 }
6824                 if (__atomic_add_fetch(&age_param->sec_since_last_hit,
6825                                        time_delta,
6826                                        __ATOMIC_RELAXED) <= age_param->timeout)
6827                         continue;
6828                 /**
6829                  * Hold the lock first, or if between the
6830                  * state AGE_TMOUT and tailq operation the
6831                  * release happened, the release procedure
6832                  * may delete a non-existent tailq node.
6833                  */
6834                 priv = rte_eth_devices[age_param->port_id].data->dev_private;
6835                 age_info = GET_PORT_AGE_INFO(priv);
6836                 rte_spinlock_lock(&age_info->aged_sl);
6837                 if (__atomic_compare_exchange_n(&age_param->state, &expected,
6838                                                 AGE_TMOUT, false,
6839                                                 __ATOMIC_RELAXED,
6840                                                 __ATOMIC_RELAXED)) {
6841                         TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
6842                         MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
6843                 }
6844                 rte_spinlock_unlock(&age_info->aged_sl);
6845         }
6846         for (i = 0; i < sh->max_port; i++) {
6847                 age_info = &sh->port[i].age_info;
6848                 if (!MLX5_AGE_GET(age_info, MLX5_AGE_EVENT_NEW))
6849                         continue;
6850                 if (MLX5_AGE_GET(age_info, MLX5_AGE_TRIGGER))
6851                         rte_eth_dev_callback_process
6852                                 (&rte_eth_devices[sh->port[i].devx_ih_port_id],
6853                                 RTE_ETH_EVENT_FLOW_AGED, NULL);
6854                 age_info->flags = 0;
6855         }
6856 }
6857
6858 /**
6859  * Handler for the HW respond about ready values from an asynchronous batch
6860  * query. This function is probably called by the host thread.
6861  *
6862  * @param[in] sh
6863  *   The pointer to the shared device context.
6864  * @param[in] async_id
6865  *   The Devx async ID.
6866  * @param[in] status
6867  *   The status of the completion.
6868  */
6869 void
6870 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
6871                                   uint64_t async_id, int status)
6872 {
6873         struct mlx5_flow_counter_pool *pool =
6874                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
6875         struct mlx5_counter_stats_raw *raw_to_free;
6876         uint8_t query_gen = pool->query_gen ^ 1;
6877         struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6878         enum mlx5_counter_type cnt_type =
6879                 pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
6880                                 MLX5_COUNTER_TYPE_ORIGIN;
6881
6882         if (unlikely(status)) {
6883                 raw_to_free = pool->raw_hw;
6884         } else {
6885                 raw_to_free = pool->raw;
6886                 if (pool->is_aged)
6887                         mlx5_flow_aging_check(sh, pool);
6888                 rte_spinlock_lock(&pool->sl);
6889                 pool->raw = pool->raw_hw;
6890                 rte_spinlock_unlock(&pool->sl);
6891                 /* Be sure the new raw counters data is updated in memory. */
6892                 rte_io_wmb();
6893                 if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
6894                         rte_spinlock_lock(&cmng->csl[cnt_type]);
6895                         TAILQ_CONCAT(&cmng->counters[cnt_type],
6896                                      &pool->counters[query_gen], next);
6897                         rte_spinlock_unlock(&cmng->csl[cnt_type]);
6898                 }
6899         }
6900         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
6901         pool->raw_hw = NULL;
6902         sh->cmng.pending_queries--;
6903 }
6904
6905 /**
6906  * Translate the rte_flow group index to HW table value.
6907  *
6908  * @param[in] attributes
6909  *   Pointer to flow attributes
6910  * @param[in] external
6911  *   Value is part of flow rule created by request external to PMD.
6912  * @param[in] group
6913  *   rte_flow group index value.
6914  * @param[out] fdb_def_rule
6915  *   Whether fdb jump to table 1 is configured.
6916  * @param[out] table
6917  *   HW table value.
6918  * @param[out] error
6919  *   Pointer to error structure.
6920  *
6921  * @return
6922  *   0 on success, a negative errno value otherwise and rte_errno is set.
6923  */
6924 int
6925 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
6926                          uint32_t group, bool fdb_def_rule, uint32_t *table,
6927                          struct rte_flow_error *error)
6928 {
6929         if (attributes->transfer && external && fdb_def_rule) {
6930                 if (group == UINT32_MAX)
6931                         return rte_flow_error_set
6932                                                 (error, EINVAL,
6933                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
6934                                                  NULL,
6935                                                  "group index not supported");
6936                 *table = group + 1;
6937         } else {
6938                 *table = group;
6939         }
6940         return 0;
6941 }
6942
6943 /**
6944  * Discover availability of metadata reg_c's.
6945  *
6946  * Iteratively use test flows to check availability.
6947  *
6948  * @param[in] dev
6949  *   Pointer to the Ethernet device structure.
6950  *
6951  * @return
6952  *   0 on success, a negative errno value otherwise and rte_errno is set.
6953  */
6954 int
6955 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
6956 {
6957         struct mlx5_priv *priv = dev->data->dev_private;
6958         struct mlx5_dev_config *config = &priv->config;
6959         enum modify_reg idx;
6960         int n = 0;
6961
6962         /* reg_c[0] and reg_c[1] are reserved. */
6963         config->flow_mreg_c[n++] = REG_C_0;
6964         config->flow_mreg_c[n++] = REG_C_1;
6965         /* Discover availability of other reg_c's. */
6966         for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
6967                 struct rte_flow_attr attr = {
6968                         .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
6969                         .priority = MLX5_FLOW_PRIO_RSVD,
6970                         .ingress = 1,
6971                 };
6972                 struct rte_flow_item items[] = {
6973                         [0] = {
6974                                 .type = RTE_FLOW_ITEM_TYPE_END,
6975                         },
6976                 };
6977                 struct rte_flow_action actions[] = {
6978                         [0] = {
6979                                 .type = (enum rte_flow_action_type)
6980                                         MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
6981                                 .conf = &(struct mlx5_flow_action_copy_mreg){
6982                                         .src = REG_C_1,
6983                                         .dst = idx,
6984                                 },
6985                         },
6986                         [1] = {
6987                                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
6988                                 .conf = &(struct rte_flow_action_jump){
6989                                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6990                                 },
6991                         },
6992                         [2] = {
6993                                 .type = RTE_FLOW_ACTION_TYPE_END,
6994                         },
6995                 };
6996                 uint32_t flow_idx;
6997                 struct rte_flow *flow;
6998                 struct rte_flow_error error;
6999
7000                 if (!config->dv_flow_en)
7001                         break;
7002                 /* Create internal flow, validation skips copy action. */
7003                 flow_idx = flow_list_create(dev, NULL, &attr, items,
7004                                             actions, false, &error);
7005                 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
7006                                       flow_idx);
7007                 if (!flow)
7008                         continue;
7009                 if (dev->data->dev_started || !flow_drv_apply(dev, flow, NULL))
7010                         config->flow_mreg_c[n++] = idx;
7011                 flow_list_destroy(dev, NULL, flow_idx);
7012         }
7013         for (; n < MLX5_MREG_C_NUM; ++n)
7014                 config->flow_mreg_c[n] = REG_NON;
7015         return 0;
7016 }
7017
7018 /**
7019  * Dump flow raw hw data to file
7020  *
7021  * @param[in] dev
7022  *    The pointer to Ethernet device.
7023  * @param[in] file
7024  *   A pointer to a file for output.
7025  * @param[out] error
7026  *   Perform verbose error reporting if not NULL. PMDs initialize this
7027  *   structure in case of error only.
7028  * @return
7029  *   0 on success, a nagative value otherwise.
7030  */
7031 int
7032 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
7033                    FILE *file,
7034                    struct rte_flow_error *error __rte_unused)
7035 {
7036         struct mlx5_priv *priv = dev->data->dev_private;
7037         struct mlx5_dev_ctx_shared *sh = priv->sh;
7038
7039         if (!priv->config.dv_flow_en) {
7040                 if (fputs("device dv flow disabled\n", file) <= 0)
7041                         return -errno;
7042                 return -ENOTSUP;
7043         }
7044         return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
7045                                        sh->tx_domain, file);
7046 }
7047
7048 /**
7049  * Get aged-out flows.
7050  *
7051  * @param[in] dev
7052  *   Pointer to the Ethernet device structure.
7053  * @param[in] context
7054  *   The address of an array of pointers to the aged-out flows contexts.
7055  * @param[in] nb_countexts
7056  *   The length of context array pointers.
7057  * @param[out] error
7058  *   Perform verbose error reporting if not NULL. Initialized in case of
7059  *   error only.
7060  *
7061  * @return
7062  *   how many contexts get in success, otherwise negative errno value.
7063  *   if nb_contexts is 0, return the amount of all aged contexts.
7064  *   if nb_contexts is not 0 , return the amount of aged flows reported
7065  *   in the context array.
7066  */
7067 int
7068 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
7069                         uint32_t nb_contexts, struct rte_flow_error *error)
7070 {
7071         const struct mlx5_flow_driver_ops *fops;
7072         struct rte_flow_attr attr = { .transfer = 0 };
7073
7074         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7075                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7076                 return fops->get_aged_flows(dev, contexts, nb_contexts,
7077                                                     error);
7078         }
7079         DRV_LOG(ERR,
7080                 "port %u get aged flows is not supported.",
7081                  dev->data->port_id);
7082         return -ENOTSUP;
7083 }