net/mlx5: allow flow rule with attribute egress
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55         [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59
60 enum mlx5_expansion {
61         MLX5_EXPANSION_ROOT,
62         MLX5_EXPANSION_ROOT_OUTER,
63         MLX5_EXPANSION_ROOT_ETH_VLAN,
64         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_ETH,
66         MLX5_EXPANSION_OUTER_ETH_VLAN,
67         MLX5_EXPANSION_OUTER_VLAN,
68         MLX5_EXPANSION_OUTER_IPV4,
69         MLX5_EXPANSION_OUTER_IPV4_UDP,
70         MLX5_EXPANSION_OUTER_IPV4_TCP,
71         MLX5_EXPANSION_OUTER_IPV6,
72         MLX5_EXPANSION_OUTER_IPV6_UDP,
73         MLX5_EXPANSION_OUTER_IPV6_TCP,
74         MLX5_EXPANSION_VXLAN,
75         MLX5_EXPANSION_VXLAN_GPE,
76         MLX5_EXPANSION_GRE,
77         MLX5_EXPANSION_MPLS,
78         MLX5_EXPANSION_ETH,
79         MLX5_EXPANSION_ETH_VLAN,
80         MLX5_EXPANSION_VLAN,
81         MLX5_EXPANSION_IPV4,
82         MLX5_EXPANSION_IPV4_UDP,
83         MLX5_EXPANSION_IPV4_TCP,
84         MLX5_EXPANSION_IPV6,
85         MLX5_EXPANSION_IPV6_UDP,
86         MLX5_EXPANSION_IPV6_TCP,
87 };
88
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91         [MLX5_EXPANSION_ROOT] = {
92                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93                                                  MLX5_EXPANSION_IPV4,
94                                                  MLX5_EXPANSION_IPV6),
95                 .type = RTE_FLOW_ITEM_TYPE_END,
96         },
97         [MLX5_EXPANSION_ROOT_OUTER] = {
98                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99                                                  MLX5_EXPANSION_OUTER_IPV4,
100                                                  MLX5_EXPANSION_OUTER_IPV6),
101                 .type = RTE_FLOW_ITEM_TYPE_END,
102         },
103         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105                 .type = RTE_FLOW_ITEM_TYPE_END,
106         },
107         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109                 .type = RTE_FLOW_ITEM_TYPE_END,
110         },
111         [MLX5_EXPANSION_OUTER_ETH] = {
112                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113                                                  MLX5_EXPANSION_OUTER_IPV6,
114                                                  MLX5_EXPANSION_MPLS),
115                 .type = RTE_FLOW_ITEM_TYPE_ETH,
116                 .rss_types = 0,
117         },
118         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120                 .type = RTE_FLOW_ITEM_TYPE_ETH,
121                 .rss_types = 0,
122         },
123         [MLX5_EXPANSION_OUTER_VLAN] = {
124                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125                                                  MLX5_EXPANSION_OUTER_IPV6),
126                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
127         },
128         [MLX5_EXPANSION_OUTER_IPV4] = {
129                 .next = RTE_FLOW_EXPAND_RSS_NEXT
130                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
131                          MLX5_EXPANSION_OUTER_IPV4_TCP,
132                          MLX5_EXPANSION_GRE),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP),
151                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
152                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153                         ETH_RSS_NONFRAG_IPV6_OTHER,
154         },
155         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157                                                  MLX5_EXPANSION_VXLAN_GPE),
158                 .type = RTE_FLOW_ITEM_TYPE_UDP,
159                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160         },
161         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162                 .type = RTE_FLOW_ITEM_TYPE_TCP,
163                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164         },
165         [MLX5_EXPANSION_VXLAN] = {
166                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
168         },
169         [MLX5_EXPANSION_VXLAN_GPE] = {
170                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171                                                  MLX5_EXPANSION_IPV4,
172                                                  MLX5_EXPANSION_IPV6),
173                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174         },
175         [MLX5_EXPANSION_GRE] = {
176                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177                 .type = RTE_FLOW_ITEM_TYPE_GRE,
178         },
179         [MLX5_EXPANSION_MPLS] = {
180                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181                                                  MLX5_EXPANSION_IPV6),
182                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
183         },
184         [MLX5_EXPANSION_ETH] = {
185                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186                                                  MLX5_EXPANSION_IPV6),
187                 .type = RTE_FLOW_ITEM_TYPE_ETH,
188         },
189         [MLX5_EXPANSION_ETH_VLAN] = {
190                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191                 .type = RTE_FLOW_ITEM_TYPE_ETH,
192         },
193         [MLX5_EXPANSION_VLAN] = {
194                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195                                                  MLX5_EXPANSION_IPV6),
196                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
197         },
198         [MLX5_EXPANSION_IPV4] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200                                                  MLX5_EXPANSION_IPV4_TCP),
201                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
202                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203                         ETH_RSS_NONFRAG_IPV4_OTHER,
204         },
205         [MLX5_EXPANSION_IPV4_UDP] = {
206                 .type = RTE_FLOW_ITEM_TYPE_UDP,
207                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208         },
209         [MLX5_EXPANSION_IPV4_TCP] = {
210                 .type = RTE_FLOW_ITEM_TYPE_TCP,
211                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212         },
213         [MLX5_EXPANSION_IPV6] = {
214                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215                                                  MLX5_EXPANSION_IPV6_TCP),
216                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
217                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218                         ETH_RSS_NONFRAG_IPV6_OTHER,
219         },
220         [MLX5_EXPANSION_IPV6_UDP] = {
221                 .type = RTE_FLOW_ITEM_TYPE_UDP,
222                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223         },
224         [MLX5_EXPANSION_IPV6_TCP] = {
225                 .type = RTE_FLOW_ITEM_TYPE_TCP,
226                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227         },
228 };
229
230 static const struct rte_flow_ops mlx5_flow_ops = {
231         .validate = mlx5_flow_validate,
232         .create = mlx5_flow_create,
233         .destroy = mlx5_flow_destroy,
234         .flush = mlx5_flow_flush,
235         .isolate = mlx5_flow_isolate,
236         .query = mlx5_flow_query,
237 };
238
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241         struct rte_flow_attr attr;
242         struct rte_flow_action actions[2];
243         struct rte_flow_item items[4];
244         struct rte_flow_item_eth l2;
245         struct rte_flow_item_eth l2_mask;
246         union {
247                 struct rte_flow_item_ipv4 ipv4;
248                 struct rte_flow_item_ipv6 ipv6;
249         } l3;
250         union {
251                 struct rte_flow_item_ipv4 ipv4;
252                 struct rte_flow_item_ipv6 ipv6;
253         } l3_mask;
254         union {
255                 struct rte_flow_item_udp udp;
256                 struct rte_flow_item_tcp tcp;
257         } l4;
258         union {
259                 struct rte_flow_item_udp udp;
260                 struct rte_flow_item_tcp tcp;
261         } l4_mask;
262         struct rte_flow_action_queue queue;
263 };
264
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273         { 9, 10, 11 }, { 12, 13, 14 },
274 };
275
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278         uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283         {
284                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
285                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286         },
287         {
288                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290         },
291         {
292                 .tunnel = MLX5_FLOW_LAYER_GRE,
293                 .ptype = RTE_PTYPE_TUNNEL_GRE,
294         },
295         {
296                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
298         },
299         {
300                 .tunnel = MLX5_FLOW_LAYER_MPLS,
301                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302         },
303 };
304
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318         struct {
319                 struct ibv_flow_attr attr;
320                 struct ibv_flow_spec_eth eth;
321                 struct ibv_flow_spec_action_drop drop;
322         } flow_attr = {
323                 .attr = {
324                         .num_of_specs = 2,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         switch (priority) {
354         case 8:
355                 priority = RTE_DIM(priority_map_3);
356                 break;
357         case 16:
358                 priority = RTE_DIM(priority_map_5);
359                 break;
360         default:
361                 rte_errno = ENOTSUP;
362                 DRV_LOG(ERR,
363                         "port %u verbs maximum priority: %d expected 8/16",
364                         dev->data->port_id, vprio[i]);
365                 return -rte_errno;
366         }
367         mlx5_hrxq_drop_release(dev);
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 static int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint32_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 mlx5_flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the flow.
529  *
530  * @param[in] dev
531  *   Pointer to the Ethernet device structure.
532  * @param[in] flow
533  *   Pointer to flow structure.
534  */
535 static void
536 mlx5_flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
537 {
538         struct priv *priv = dev->data->dev_private;
539         const int mark = !!(flow->actions &
540                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
541         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
542         unsigned int i;
543
544         for (i = 0; i != flow->rss.queue_num; ++i) {
545                 int idx = (*flow->queue)[i];
546                 struct mlx5_rxq_ctrl *rxq_ctrl =
547                         container_of((*priv->rxqs)[idx],
548                                      struct mlx5_rxq_ctrl, rxq);
549
550                 if (mark) {
551                         rxq_ctrl->rxq.mark = 1;
552                         rxq_ctrl->flow_mark_n++;
553                 }
554                 if (tunnel) {
555                         unsigned int j;
556
557                         /* Increase the counter matching the flow. */
558                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
559                                 if ((tunnels_info[j].tunnel & flow->layers) ==
560                                     tunnels_info[j].tunnel) {
561                                         rxq_ctrl->flow_tunnels_n[j]++;
562                                         break;
563                                 }
564                         }
565                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
566                 }
567         }
568 }
569
570 /**
571  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
572  * @p flow if no other flow uses it with the same kind of request.
573  *
574  * @param dev
575  *   Pointer to Ethernet device.
576  * @param[in] flow
577  *   Pointer to the flow.
578  */
579 static void
580 mlx5_flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
581 {
582         struct priv *priv = dev->data->dev_private;
583         const int mark = !!(flow->actions &
584                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
585         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
586         unsigned int i;
587
588         assert(dev->data->dev_started);
589         for (i = 0; i != flow->rss.queue_num; ++i) {
590                 int idx = (*flow->queue)[i];
591                 struct mlx5_rxq_ctrl *rxq_ctrl =
592                         container_of((*priv->rxqs)[idx],
593                                      struct mlx5_rxq_ctrl, rxq);
594
595                 if (mark) {
596                         rxq_ctrl->flow_mark_n--;
597                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
598                 }
599                 if (tunnel) {
600                         unsigned int j;
601
602                         /* Decrease the counter matching the flow. */
603                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
604                                 if ((tunnels_info[j].tunnel & flow->layers) ==
605                                     tunnels_info[j].tunnel) {
606                                         rxq_ctrl->flow_tunnels_n[j]--;
607                                         break;
608                                 }
609                         }
610                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
611                 }
612         }
613 }
614
615 /**
616  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
617  *
618  * @param dev
619  *   Pointer to Ethernet device.
620  */
621 static void
622 mlx5_flow_rxq_flags_clear(struct rte_eth_dev *dev)
623 {
624         struct priv *priv = dev->data->dev_private;
625         unsigned int i;
626
627         for (i = 0; i != priv->rxqs_n; ++i) {
628                 struct mlx5_rxq_ctrl *rxq_ctrl;
629                 unsigned int j;
630
631                 if (!(*priv->rxqs)[i])
632                         continue;
633                 rxq_ctrl = container_of((*priv->rxqs)[i],
634                                         struct mlx5_rxq_ctrl, rxq);
635                 rxq_ctrl->flow_mark_n = 0;
636                 rxq_ctrl->rxq.mark = 0;
637                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
638                         rxq_ctrl->flow_tunnels_n[j] = 0;
639                 rxq_ctrl->rxq.tunnel = 0;
640         }
641 }
642
643 /*
644  * Validate the flag action.
645  *
646  * @param[in] action_flags
647  *   Bit-fields that holds the actions detected until now.
648  * @param[in] attr
649  *   Attributes of flow that includes this action.
650  * @param[out] error
651  *   Pointer to error structure.
652  *
653  * @return
654  *   0 on success, a negative errno value otherwise and rte_errno is set.
655  */
656 int
657 mlx5_flow_validate_action_flag(uint64_t action_flags,
658                                const struct rte_flow_attr *attr,
659                                struct rte_flow_error *error)
660 {
661
662         if (action_flags & MLX5_FLOW_ACTION_DROP)
663                 return rte_flow_error_set(error, EINVAL,
664                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
665                                           "can't drop and flag in same flow");
666         if (action_flags & MLX5_FLOW_ACTION_MARK)
667                 return rte_flow_error_set(error, EINVAL,
668                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
669                                           "can't mark and flag in same flow");
670         if (action_flags & MLX5_FLOW_ACTION_FLAG)
671                 return rte_flow_error_set(error, EINVAL,
672                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
673                                           "can't have 2 flag"
674                                           " actions in same flow");
675         if (attr->egress)
676                 return rte_flow_error_set(error, ENOTSUP,
677                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
678                                           "flag action not supported for "
679                                           "egress");
680         return 0;
681 }
682
683 /*
684  * Validate the mark action.
685  *
686  * @param[in] action
687  *   Pointer to the queue action.
688  * @param[in] action_flags
689  *   Bit-fields that holds the actions detected until now.
690  * @param[in] attr
691  *   Attributes of flow that includes this action.
692  * @param[out] error
693  *   Pointer to error structure.
694  *
695  * @return
696  *   0 on success, a negative errno value otherwise and rte_errno is set.
697  */
698 int
699 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
700                                uint64_t action_flags,
701                                const struct rte_flow_attr *attr,
702                                struct rte_flow_error *error)
703 {
704         const struct rte_flow_action_mark *mark = action->conf;
705
706         if (!mark)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION,
709                                           action,
710                                           "configuration cannot be null");
711         if (mark->id >= MLX5_FLOW_MARK_MAX)
712                 return rte_flow_error_set(error, EINVAL,
713                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
714                                           &mark->id,
715                                           "mark id must in 0 <= id < "
716                                           RTE_STR(MLX5_FLOW_MARK_MAX));
717         if (action_flags & MLX5_FLOW_ACTION_DROP)
718                 return rte_flow_error_set(error, EINVAL,
719                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
720                                           "can't drop and mark in same flow");
721         if (action_flags & MLX5_FLOW_ACTION_FLAG)
722                 return rte_flow_error_set(error, EINVAL,
723                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
724                                           "can't flag and mark in same flow");
725         if (action_flags & MLX5_FLOW_ACTION_MARK)
726                 return rte_flow_error_set(error, EINVAL,
727                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
728                                           "can't have 2 mark actions in same"
729                                           " flow");
730         if (attr->egress)
731                 return rte_flow_error_set(error, ENOTSUP,
732                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
733                                           "mark action not supported for "
734                                           "egress");
735         return 0;
736 }
737
738 /*
739  * Validate the drop action.
740  *
741  * @param[in] action_flags
742  *   Bit-fields that holds the actions detected until now.
743  * @param[in] attr
744  *   Attributes of flow that includes this action.
745  * @param[out] error
746  *   Pointer to error structure.
747  *
748  * @return
749  *   0 on success, a negative errno value otherwise and rte_ernno is set.
750  */
751 int
752 mlx5_flow_validate_action_drop(uint64_t action_flags,
753                                const struct rte_flow_attr *attr,
754                                struct rte_flow_error *error)
755 {
756         if (action_flags & MLX5_FLOW_ACTION_FLAG)
757                 return rte_flow_error_set(error, EINVAL,
758                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
759                                           "can't drop and flag in same flow");
760         if (action_flags & MLX5_FLOW_ACTION_MARK)
761                 return rte_flow_error_set(error, EINVAL,
762                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
763                                           "can't drop and mark in same flow");
764         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
765                 return rte_flow_error_set(error, EINVAL,
766                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
767                                           "can't have 2 fate actions in"
768                                           " same flow");
769         if (attr->egress)
770                 return rte_flow_error_set(error, ENOTSUP,
771                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
772                                           "drop action not supported for "
773                                           "egress");
774         return 0;
775 }
776
777 /*
778  * Validate the queue action.
779  *
780  * @param[in] action
781  *   Pointer to the queue action.
782  * @param[in] action_flags
783  *   Bit-fields that holds the actions detected until now.
784  * @param[in] dev
785  *   Pointer to the Ethernet device structure.
786  * @param[in] attr
787  *   Attributes of flow that includes this action.
788  * @param[out] error
789  *   Pointer to error structure.
790  *
791  * @return
792  *   0 on success, a negative errno value otherwise and rte_ernno is set.
793  */
794 int
795 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
796                                 uint64_t action_flags,
797                                 struct rte_eth_dev *dev,
798                                 const struct rte_flow_attr *attr,
799                                 struct rte_flow_error *error)
800 {
801         struct priv *priv = dev->data->dev_private;
802         const struct rte_flow_action_queue *queue = action->conf;
803
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (queue->index >= priv->rxqs_n)
810                 return rte_flow_error_set(error, EINVAL,
811                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
812                                           &queue->index,
813                                           "queue index out of range");
814         if (!(*priv->rxqs)[queue->index])
815                 return rte_flow_error_set(error, EINVAL,
816                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
817                                           &queue->index,
818                                           "queue is not configured");
819         if (attr->egress)
820                 return rte_flow_error_set(error, ENOTSUP,
821                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
822                                           "queue action not supported for "
823                                           "egress");
824         return 0;
825 }
826
827 /*
828  * Validate the rss action.
829  *
830  * @param[in] action
831  *   Pointer to the queue action.
832  * @param[in] action_flags
833  *   Bit-fields that holds the actions detected until now.
834  * @param[in] dev
835  *   Pointer to the Ethernet device structure.
836  * @param[in] attr
837  *   Attributes of flow that includes this action.
838  * @param[out] error
839  *   Pointer to error structure.
840  *
841  * @return
842  *   0 on success, a negative errno value otherwise and rte_ernno is set.
843  */
844 int
845 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
846                               uint64_t action_flags,
847                               struct rte_eth_dev *dev,
848                               const struct rte_flow_attr *attr,
849                               struct rte_flow_error *error)
850 {
851         struct priv *priv = dev->data->dev_private;
852         const struct rte_flow_action_rss *rss = action->conf;
853         unsigned int i;
854
855         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
856                 return rte_flow_error_set(error, EINVAL,
857                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
858                                           "can't have 2 fate actions"
859                                           " in same flow");
860         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
861             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
862                 return rte_flow_error_set(error, ENOTSUP,
863                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
864                                           &rss->func,
865                                           "RSS hash function not supported");
866 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
867         if (rss->level > 2)
868 #else
869         if (rss->level > 1)
870 #endif
871                 return rte_flow_error_set(error, ENOTSUP,
872                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
873                                           &rss->level,
874                                           "tunnel RSS is not supported");
875         if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
876                 return rte_flow_error_set(error, ENOTSUP,
877                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
878                                           &rss->key_len,
879                                           "RSS hash key too small");
880         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
881                 return rte_flow_error_set(error, ENOTSUP,
882                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
883                                           &rss->key_len,
884                                           "RSS hash key too large");
885         if (rss->queue_num > priv->config.ind_table_max_size)
886                 return rte_flow_error_set(error, ENOTSUP,
887                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
888                                           &rss->queue_num,
889                                           "number of queues too large");
890         if (rss->types & MLX5_RSS_HF_MASK)
891                 return rte_flow_error_set(error, ENOTSUP,
892                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
893                                           &rss->types,
894                                           "some RSS protocols are not"
895                                           " supported");
896         for (i = 0; i != rss->queue_num; ++i) {
897                 if (!(*priv->rxqs)[rss->queue[i]])
898                         return rte_flow_error_set
899                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
900                                  &rss->queue[i], "queue is not configured");
901         }
902         if (attr->egress)
903                 return rte_flow_error_set(error, ENOTSUP,
904                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
905                                           "rss action not supported for "
906                                           "egress");
907         return 0;
908 }
909
910 /*
911  * Validate the count action.
912  *
913  * @param[in] dev
914  *   Pointer to the Ethernet device structure.
915  * @param[in] attr
916  *   Attributes of flow that includes this action.
917  * @param[out] error
918  *   Pointer to error structure.
919  *
920  * @return
921  *   0 on success, a negative errno value otherwise and rte_ernno is set.
922  */
923 int
924 mlx5_flow_validate_action_count(struct rte_eth_dev *dev,
925                                 const struct rte_flow_attr *attr,
926                                 struct rte_flow_error *error)
927 {
928         struct priv *priv = dev->data->dev_private;
929
930         if (!priv->config.flow_counter_en)
931                 return rte_flow_error_set(error, ENOTSUP,
932                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
933                                           "flow counters are not supported.");
934         if (attr->egress)
935                 return rte_flow_error_set(error, ENOTSUP,
936                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
937                                           "count action not supported for "
938                                           "egress");
939         return 0;
940 }
941
942 /**
943  * Verify the @p attributes will be correctly understood by the NIC and store
944  * them in the @p flow if everything is correct.
945  *
946  * @param[in] dev
947  *   Pointer to the Ethernet device structure.
948  * @param[in] attributes
949  *   Pointer to flow attributes
950  * @param[out] error
951  *   Pointer to error structure.
952  *
953  * @return
954  *   0 on success, a negative errno value otherwise and rte_errno is set.
955  */
956 int
957 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
958                               const struct rte_flow_attr *attributes,
959                               struct rte_flow_error *error)
960 {
961         struct priv *priv = dev->data->dev_private;
962         uint32_t priority_max = priv->config.flow_prio - 1;
963
964         if (attributes->group)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
967                                           NULL, "groups is not supported");
968         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
969             attributes->priority >= priority_max)
970                 return rte_flow_error_set(error, ENOTSUP,
971                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
972                                           NULL, "priority out of range");
973         if (attributes->egress)
974                 return rte_flow_error_set(error, ENOTSUP,
975                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
976                                           "egress is not supported");
977         if (attributes->transfer)
978                 return rte_flow_error_set(error, ENOTSUP,
979                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
980                                           NULL, "transfer is not supported");
981         if (!attributes->ingress)
982                 return rte_flow_error_set(error, EINVAL,
983                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
984                                           NULL,
985                                           "ingress attribute is mandatory");
986         return 0;
987 }
988
989 /**
990  * Validate Ethernet item.
991  *
992  * @param[in] item
993  *   Item specification.
994  * @param[in] item_flags
995  *   Bit-fields that holds the items detected until now.
996  * @param[out] error
997  *   Pointer to error structure.
998  *
999  * @return
1000  *   0 on success, a negative errno value otherwise and rte_errno is set.
1001  */
1002 int
1003 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1004                             uint64_t item_flags,
1005                             struct rte_flow_error *error)
1006 {
1007         const struct rte_flow_item_eth *mask = item->mask;
1008         const struct rte_flow_item_eth nic_mask = {
1009                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1010                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1011                 .type = RTE_BE16(0xffff),
1012         };
1013         int ret;
1014         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1015
1016         if (item_flags & MLX5_FLOW_LAYER_OUTER_L2)
1017                 return rte_flow_error_set(error, ENOTSUP,
1018                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1019                                           "3 levels of l2 are not supported");
1020         if ((item_flags & MLX5_FLOW_LAYER_INNER_L2) && !tunnel)
1021                 return rte_flow_error_set(error, ENOTSUP,
1022                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1023                                           "2 L2 without tunnel are not supported");
1024         if (!mask)
1025                 mask = &rte_flow_item_eth_mask;
1026         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1027                                         (const uint8_t *)&nic_mask,
1028                                         sizeof(struct rte_flow_item_eth),
1029                                         error);
1030         return ret;
1031 }
1032
1033 /**
1034  * Validate VLAN item.
1035  *
1036  * @param[in] item
1037  *   Item specification.
1038  * @param[in] item_flags
1039  *   Bit-fields that holds the items detected until now.
1040  * @param[out] error
1041  *   Pointer to error structure.
1042  *
1043  * @return
1044  *   0 on success, a negative errno value otherwise and rte_errno is set.
1045  */
1046 int
1047 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1048                              int64_t item_flags,
1049                              struct rte_flow_error *error)
1050 {
1051         const struct rte_flow_item_vlan *spec = item->spec;
1052         const struct rte_flow_item_vlan *mask = item->mask;
1053         const struct rte_flow_item_vlan nic_mask = {
1054                 .tci = RTE_BE16(0x0fff),
1055                 .inner_type = RTE_BE16(0xffff),
1056         };
1057         uint16_t vlan_tag = 0;
1058         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1059         int ret;
1060         const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1061                                         MLX5_FLOW_LAYER_INNER_L4) :
1062                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1063                                         MLX5_FLOW_LAYER_OUTER_L4);
1064         const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1065                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1066
1067         if (item_flags & vlanm)
1068                 return rte_flow_error_set(error, EINVAL,
1069                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1070                                           "VLAN layer already configured");
1071         else if ((item_flags & l34m) != 0)
1072                 return rte_flow_error_set(error, EINVAL,
1073                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1074                                           "L2 layer cannot follow L3/L4 layer");
1075         if (!mask)
1076                 mask = &rte_flow_item_vlan_mask;
1077         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1078                                         (const uint8_t *)&nic_mask,
1079                                         sizeof(struct rte_flow_item_vlan),
1080                                         error);
1081         if (ret)
1082                 return ret;
1083         if (spec) {
1084                 vlan_tag = spec->tci;
1085                 vlan_tag &= mask->tci;
1086         }
1087         /*
1088          * From verbs perspective an empty VLAN is equivalent
1089          * to a packet without VLAN layer.
1090          */
1091         if (!vlan_tag)
1092                 return rte_flow_error_set(error, EINVAL,
1093                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1094                                           item->spec,
1095                                           "VLAN cannot be empty");
1096         return 0;
1097 }
1098
1099 /**
1100  * Validate IPV4 item.
1101  *
1102  * @param[in] item
1103  *   Item specification.
1104  * @param[in] item_flags
1105  *   Bit-fields that holds the items detected until now.
1106  * @param[out] error
1107  *   Pointer to error structure.
1108  *
1109  * @return
1110  *   0 on success, a negative errno value otherwise and rte_errno is set.
1111  */
1112 int
1113 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1114                              int64_t item_flags,
1115                              struct rte_flow_error *error)
1116 {
1117         const struct rte_flow_item_ipv4 *mask = item->mask;
1118         const struct rte_flow_item_ipv4 nic_mask = {
1119                 .hdr = {
1120                         .src_addr = RTE_BE32(0xffffffff),
1121                         .dst_addr = RTE_BE32(0xffffffff),
1122                         .type_of_service = 0xff,
1123                         .next_proto_id = 0xff,
1124                 },
1125         };
1126         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1127         int ret;
1128
1129         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1130                                    MLX5_FLOW_LAYER_OUTER_L3))
1131                 return rte_flow_error_set(error, ENOTSUP,
1132                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1133                                           "multiple L3 layers not supported");
1134         else if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1135                                         MLX5_FLOW_LAYER_OUTER_L4))
1136                 return rte_flow_error_set(error, EINVAL,
1137                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1138                                           "L3 cannot follow an L4 layer.");
1139         if (!mask)
1140                 mask = &rte_flow_item_ipv4_mask;
1141         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1142                                         (const uint8_t *)&nic_mask,
1143                                         sizeof(struct rte_flow_item_ipv4),
1144                                         error);
1145         if (ret < 0)
1146                 return ret;
1147         return 0;
1148 }
1149
1150 /**
1151  * Validate IPV6 item.
1152  *
1153  * @param[in] item
1154  *   Item specification.
1155  * @param[in] item_flags
1156  *   Bit-fields that holds the items detected until now.
1157  * @param[out] error
1158  *   Pointer to error structure.
1159  *
1160  * @return
1161  *   0 on success, a negative errno value otherwise and rte_errno is set.
1162  */
1163 int
1164 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1165                              uint64_t item_flags,
1166                              struct rte_flow_error *error)
1167 {
1168         const struct rte_flow_item_ipv6 *mask = item->mask;
1169         const struct rte_flow_item_ipv6 nic_mask = {
1170                 .hdr = {
1171                         .src_addr =
1172                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1173                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1174                         .dst_addr =
1175                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1176                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1177                         .vtc_flow = RTE_BE32(0xffffffff),
1178                         .proto = 0xff,
1179                         .hop_limits = 0xff,
1180                 },
1181         };
1182         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1183         int ret;
1184
1185         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1186                                    MLX5_FLOW_LAYER_OUTER_L3))
1187                 return rte_flow_error_set(error, ENOTSUP,
1188                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1189                                           "multiple L3 layers not supported");
1190         else if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1191                                         MLX5_FLOW_LAYER_OUTER_L4))
1192                 return rte_flow_error_set(error, EINVAL,
1193                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1194                                           "L3 cannot follow an L4 layer.");
1195         /*
1196          * IPv6 is not recognised by the NIC inside a GRE tunnel.
1197          * Such support has to be disabled as the rule will be
1198          * accepted.  Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
1199          * Mellanox OFED 4.4-1.0.0.0.
1200          */
1201         if (tunnel && item_flags & MLX5_FLOW_LAYER_GRE)
1202                 return rte_flow_error_set(error, ENOTSUP,
1203                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1204                                           "IPv6 inside a GRE tunnel is"
1205                                           " not recognised.");
1206         if (!mask)
1207                 mask = &rte_flow_item_ipv6_mask;
1208         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1209                                         (const uint8_t *)&nic_mask,
1210                                         sizeof(struct rte_flow_item_ipv6),
1211                                         error);
1212         if (ret < 0)
1213                 return ret;
1214         return 0;
1215 }
1216
1217 /**
1218  * Validate UDP item.
1219  *
1220  * @param[in] item
1221  *   Item specification.
1222  * @param[in] item_flags
1223  *   Bit-fields that holds the items detected until now.
1224  * @param[in] target_protocol
1225  *   The next protocol in the previous item.
1226  * @param[out] error
1227  *   Pointer to error structure.
1228  *
1229  * @return
1230  *   0 on success, a negative errno value otherwise and rte_errno is set.
1231  */
1232 int
1233 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1234                             uint64_t item_flags,
1235                             uint8_t target_protocol,
1236                             struct rte_flow_error *error)
1237 {
1238         const struct rte_flow_item_udp *mask = item->mask;
1239         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1240         int ret;
1241
1242         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1243                 return rte_flow_error_set(error, EINVAL,
1244                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1245                                           "protocol filtering not compatible"
1246                                           " with UDP layer");
1247         if (!(item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1248                                      MLX5_FLOW_LAYER_OUTER_L3)))
1249                 return rte_flow_error_set(error, EINVAL,
1250                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1251                                           "L3 is mandatory to filter on L4");
1252         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1253                                    MLX5_FLOW_LAYER_OUTER_L4))
1254                 return rte_flow_error_set(error, EINVAL,
1255                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1256                                           "L4 layer is already present");
1257         if (!mask)
1258                 mask = &rte_flow_item_udp_mask;
1259         ret = mlx5_flow_item_acceptable
1260                 (item, (const uint8_t *)mask,
1261                  (const uint8_t *)&rte_flow_item_udp_mask,
1262                  sizeof(struct rte_flow_item_udp), error);
1263         if (ret < 0)
1264                 return ret;
1265         return 0;
1266 }
1267
1268 /**
1269  * Validate TCP item.
1270  *
1271  * @param[in] item
1272  *   Item specification.
1273  * @param[in] item_flags
1274  *   Bit-fields that holds the items detected until now.
1275  * @param[in] target_protocol
1276  *   The next protocol in the previous item.
1277  * @param[out] error
1278  *   Pointer to error structure.
1279  *
1280  * @return
1281  *   0 on success, a negative errno value otherwise and rte_errno is set.
1282  */
1283 int
1284 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1285                             uint64_t item_flags,
1286                             uint8_t target_protocol,
1287                             struct rte_flow_error *error)
1288 {
1289         const struct rte_flow_item_tcp *mask = item->mask;
1290         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1291         int ret;
1292
1293         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1294                 return rte_flow_error_set(error, EINVAL,
1295                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1296                                           "protocol filtering not compatible"
1297                                           " with TCP layer");
1298         if (!(item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1299                                      MLX5_FLOW_LAYER_OUTER_L3)))
1300                 return rte_flow_error_set(error, EINVAL,
1301                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1302                                           "L3 is mandatory to filter on L4");
1303         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1304                                    MLX5_FLOW_LAYER_OUTER_L4))
1305                 return rte_flow_error_set(error, EINVAL,
1306                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1307                                           "L4 layer is already present");
1308         if (!mask)
1309                 mask = &rte_flow_item_tcp_mask;
1310         ret = mlx5_flow_item_acceptable
1311                 (item, (const uint8_t *)mask,
1312                  (const uint8_t *)&rte_flow_item_tcp_mask,
1313                  sizeof(struct rte_flow_item_tcp), error);
1314         if (ret < 0)
1315                 return ret;
1316         return 0;
1317 }
1318
1319 /**
1320  * Validate VXLAN item.
1321  *
1322  * @param[in] item
1323  *   Item specification.
1324  * @param[in] item_flags
1325  *   Bit-fields that holds the items detected until now.
1326  * @param[in] target_protocol
1327  *   The next protocol in the previous item.
1328  * @param[out] error
1329  *   Pointer to error structure.
1330  *
1331  * @return
1332  *   0 on success, a negative errno value otherwise and rte_errno is set.
1333  */
1334 int
1335 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1336                               uint64_t item_flags,
1337                               struct rte_flow_error *error)
1338 {
1339         const struct rte_flow_item_vxlan *spec = item->spec;
1340         const struct rte_flow_item_vxlan *mask = item->mask;
1341         int ret;
1342         union vni {
1343                 uint32_t vlan_id;
1344                 uint8_t vni[4];
1345         } id = { .vlan_id = 0, };
1346         uint32_t vlan_id = 0;
1347
1348
1349         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1350                 return rte_flow_error_set(error, ENOTSUP,
1351                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1352                                           "a tunnel is already present");
1353         /*
1354          * Verify only UDPv4 is present as defined in
1355          * https://tools.ietf.org/html/rfc7348
1356          */
1357         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1358                 return rte_flow_error_set(error, EINVAL,
1359                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1360                                           "no outer UDP layer found");
1361         if (!mask)
1362                 mask = &rte_flow_item_vxlan_mask;
1363         ret = mlx5_flow_item_acceptable
1364                 (item, (const uint8_t *)mask,
1365                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1366                  sizeof(struct rte_flow_item_vxlan),
1367                  error);
1368         if (ret < 0)
1369                 return ret;
1370         if (spec) {
1371                 memcpy(&id.vni[1], spec->vni, 3);
1372                 vlan_id = id.vlan_id;
1373                 memcpy(&id.vni[1], mask->vni, 3);
1374                 vlan_id &= id.vlan_id;
1375         }
1376         /*
1377          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1378          * only this layer is defined in the Verbs specification it is
1379          * interpreted as wildcard and all packets will match this
1380          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1381          * udp), all packets matching the layers before will also
1382          * match this rule.  To avoid such situation, VNI 0 is
1383          * currently refused.
1384          */
1385         if (!vlan_id)
1386                 return rte_flow_error_set(error, ENOTSUP,
1387                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1388                                           "VXLAN vni cannot be 0");
1389         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1390                 return rte_flow_error_set(error, ENOTSUP,
1391                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1392                                           "VXLAN tunnel must be fully defined");
1393         return 0;
1394 }
1395
1396 /**
1397  * Validate VXLAN_GPE item.
1398  *
1399  * @param[in] item
1400  *   Item specification.
1401  * @param[in] item_flags
1402  *   Bit-fields that holds the items detected until now.
1403  * @param[in] priv
1404  *   Pointer to the private data structure.
1405  * @param[in] target_protocol
1406  *   The next protocol in the previous item.
1407  * @param[out] error
1408  *   Pointer to error structure.
1409  *
1410  * @return
1411  *   0 on success, a negative errno value otherwise and rte_errno is set.
1412  */
1413 int
1414 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1415                                   uint64_t item_flags,
1416                                   struct rte_eth_dev *dev,
1417                                   struct rte_flow_error *error)
1418 {
1419         struct priv *priv = dev->data->dev_private;
1420         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1421         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1422         int ret;
1423         union vni {
1424                 uint32_t vlan_id;
1425                 uint8_t vni[4];
1426         } id = { .vlan_id = 0, };
1427         uint32_t vlan_id = 0;
1428
1429         if (!priv->config.l3_vxlan_en)
1430                 return rte_flow_error_set(error, ENOTSUP,
1431                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1432                                           "L3 VXLAN is not enabled by device"
1433                                           " parameter and/or not configured in"
1434                                           " firmware");
1435         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1436                 return rte_flow_error_set(error, ENOTSUP,
1437                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1438                                           "a tunnel is already present");
1439         /*
1440          * Verify only UDPv4 is present as defined in
1441          * https://tools.ietf.org/html/rfc7348
1442          */
1443         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1444                 return rte_flow_error_set(error, EINVAL,
1445                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1446                                           "no outer UDP layer found");
1447         if (!mask)
1448                 mask = &rte_flow_item_vxlan_gpe_mask;
1449         ret = mlx5_flow_item_acceptable
1450                 (item, (const uint8_t *)mask,
1451                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1452                  sizeof(struct rte_flow_item_vxlan_gpe),
1453                  error);
1454         if (ret < 0)
1455                 return ret;
1456         if (spec) {
1457                 if (spec->protocol)
1458                         return rte_flow_error_set(error, ENOTSUP,
1459                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1460                                                   item,
1461                                                   "VxLAN-GPE protocol"
1462                                                   " not supported");
1463                 memcpy(&id.vni[1], spec->vni, 3);
1464                 vlan_id = id.vlan_id;
1465                 memcpy(&id.vni[1], mask->vni, 3);
1466                 vlan_id &= id.vlan_id;
1467         }
1468         /*
1469          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1470          * layer is defined in the Verbs specification it is interpreted as
1471          * wildcard and all packets will match this rule, if it follows a full
1472          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1473          * before will also match this rule.  To avoid such situation, VNI 0
1474          * is currently refused.
1475          */
1476         if (!vlan_id)
1477                 return rte_flow_error_set(error, ENOTSUP,
1478                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1479                                           "VXLAN-GPE vni cannot be 0");
1480         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1481                 return rte_flow_error_set(error, ENOTSUP,
1482                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1483                                           "VXLAN-GPE tunnel must be fully"
1484                                           " defined");
1485         return 0;
1486 }
1487
1488 /**
1489  * Validate GRE item.
1490  *
1491  * @param[in] item
1492  *   Item specification.
1493  * @param[in] item_flags
1494  *   Bit flags to mark detected items.
1495  * @param[in] target_protocol
1496  *   The next protocol in the previous item.
1497  * @param[out] error
1498  *   Pointer to error structure.
1499  *
1500  * @return
1501  *   0 on success, a negative errno value otherwise and rte_errno is set.
1502  */
1503 int
1504 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1505                             uint64_t item_flags,
1506                             uint8_t target_protocol,
1507                             struct rte_flow_error *error)
1508 {
1509         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1510         const struct rte_flow_item_gre *mask = item->mask;
1511         int ret;
1512
1513         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1514                 return rte_flow_error_set(error, EINVAL,
1515                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1516                                           "protocol filtering not compatible"
1517                                           " with this GRE layer");
1518         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1519                 return rte_flow_error_set(error, ENOTSUP,
1520                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1521                                           "a tunnel is already present");
1522         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1523                 return rte_flow_error_set(error, ENOTSUP,
1524                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1525                                           "L3 Layer is missing");
1526         if (!mask)
1527                 mask = &rte_flow_item_gre_mask;
1528         ret = mlx5_flow_item_acceptable
1529                 (item, (const uint8_t *)mask,
1530                  (const uint8_t *)&rte_flow_item_gre_mask,
1531                  sizeof(struct rte_flow_item_gre), error);
1532         if (ret < 0)
1533                 return ret;
1534 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1535         if (spec && (spec->protocol & mask->protocol))
1536                 return rte_flow_error_set(error, ENOTSUP,
1537                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1538                                           "without MPLS support the"
1539                                           " specification cannot be used for"
1540                                           " filtering");
1541 #endif
1542         return 0;
1543 }
1544
1545 /**
1546  * Validate MPLS item.
1547  *
1548  * @param[in] item
1549  *   Item specification.
1550  * @param[in] item_flags
1551  *   Bit-fields that holds the items detected until now.
1552  * @param[in] target_protocol
1553  *   The next protocol in the previous item.
1554  * @param[out] error
1555  *   Pointer to error structure.
1556  *
1557  * @return
1558  *   0 on success, a negative errno value otherwise and rte_errno is set.
1559  */
1560 int
1561 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused,
1562                              uint64_t item_flags __rte_unused,
1563                              uint8_t target_protocol __rte_unused,
1564                              struct rte_flow_error *error)
1565 {
1566 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1567         const struct rte_flow_item_mpls *mask = item->mask;
1568         int ret;
1569
1570         if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS)
1571                 return rte_flow_error_set(error, EINVAL,
1572                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1573                                           "protocol filtering not compatible"
1574                                           " with MPLS layer");
1575         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1576                 return rte_flow_error_set(error, ENOTSUP,
1577                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1578                                           "a tunnel is already"
1579                                           " present");
1580         if (!mask)
1581                 mask = &rte_flow_item_mpls_mask;
1582         ret = mlx5_flow_item_acceptable
1583                 (item, (const uint8_t *)mask,
1584                  (const uint8_t *)&rte_flow_item_mpls_mask,
1585                  sizeof(struct rte_flow_item_mpls), error);
1586         if (ret < 0)
1587                 return ret;
1588         return 0;
1589 #endif
1590         return rte_flow_error_set(error, ENOTSUP,
1591                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1592                                   "MPLS is not supported by Verbs, please"
1593                                   " update.");
1594 }
1595
1596 static int
1597 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1598                    const struct rte_flow_attr *attr __rte_unused,
1599                    const struct rte_flow_item items[] __rte_unused,
1600                    const struct rte_flow_action actions[] __rte_unused,
1601                    struct rte_flow_error *error __rte_unused)
1602 {
1603         rte_errno = ENOTSUP;
1604         return -rte_errno;
1605 }
1606
1607 static struct mlx5_flow *
1608 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1609                   const struct rte_flow_item items[] __rte_unused,
1610                   const struct rte_flow_action actions[] __rte_unused,
1611                   uint64_t *item_flags __rte_unused,
1612                   uint64_t *action_flags __rte_unused,
1613                   struct rte_flow_error *error __rte_unused)
1614 {
1615         rte_errno = ENOTSUP;
1616         return NULL;
1617 }
1618
1619 static int
1620 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1621                     struct mlx5_flow *dev_flow __rte_unused,
1622                     const struct rte_flow_attr *attr __rte_unused,
1623                     const struct rte_flow_item items[] __rte_unused,
1624                     const struct rte_flow_action actions[] __rte_unused,
1625                     struct rte_flow_error *error __rte_unused)
1626 {
1627         rte_errno = ENOTSUP;
1628         return -rte_errno;
1629 }
1630
1631 static int
1632 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1633                 struct rte_flow *flow __rte_unused,
1634                 struct rte_flow_error *error __rte_unused)
1635 {
1636         rte_errno = ENOTSUP;
1637         return -rte_errno;
1638 }
1639
1640 static void
1641 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1642                  struct rte_flow *flow __rte_unused)
1643 {
1644 }
1645
1646 static void
1647 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1648                   struct rte_flow *flow __rte_unused)
1649 {
1650 }
1651
1652 /* Void driver to protect from null pointer reference. */
1653 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1654         .validate = flow_null_validate,
1655         .prepare = flow_null_prepare,
1656         .translate = flow_null_translate,
1657         .apply = flow_null_apply,
1658         .remove = flow_null_remove,
1659         .destroy = flow_null_destroy,
1660 };
1661
1662 /**
1663  * Select flow driver type according to flow attributes and device
1664  * configuration.
1665  *
1666  * @param[in] dev
1667  *   Pointer to the dev structure.
1668  * @param[in] attr
1669  *   Pointer to the flow attributes.
1670  *
1671  * @return
1672  *   flow driver type if supported, MLX5_FLOW_TYPE_MAX otherwise.
1673  */
1674 static enum mlx5_flow_drv_type
1675 flow_get_drv_type(struct rte_eth_dev *dev __rte_unused,
1676                   const struct rte_flow_attr *attr)
1677 {
1678         struct priv *priv __rte_unused = dev->data->dev_private;
1679         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1680
1681         if (attr->transfer) {
1682                 type = MLX5_FLOW_TYPE_TCF;
1683         } else {
1684 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
1685                 type = priv->config.dv_flow_en ?  MLX5_FLOW_TYPE_DV :
1686                                                   MLX5_FLOW_TYPE_VERBS;
1687 #else
1688                 type = MLX5_FLOW_TYPE_VERBS;
1689 #endif
1690         }
1691         return type;
1692 }
1693
1694 #define flow_get_drv_ops(type) flow_drv_ops[type]
1695
1696 /**
1697  * Flow driver validation API. This abstracts calling driver specific functions.
1698  * The type of flow driver is determined according to flow attributes.
1699  *
1700  * @param[in] dev
1701  *   Pointer to the dev structure.
1702  * @param[in] attr
1703  *   Pointer to the flow attributes.
1704  * @param[in] items
1705  *   Pointer to the list of items.
1706  * @param[in] actions
1707  *   Pointer to the list of actions.
1708  * @param[out] error
1709  *   Pointer to the error structure.
1710  *
1711  * @return
1712  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1713  */
1714 static inline int
1715 flow_drv_validate(struct rte_eth_dev *dev,
1716                   const struct rte_flow_attr *attr,
1717                   const struct rte_flow_item items[],
1718                   const struct rte_flow_action actions[],
1719                   struct rte_flow_error *error)
1720 {
1721         const struct mlx5_flow_driver_ops *fops;
1722         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1723
1724         fops = flow_get_drv_ops(type);
1725         return fops->validate(dev, attr, items, actions, error);
1726 }
1727
1728 /**
1729  * Flow driver preparation API. This abstracts calling driver specific
1730  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1731  * calculates the size of memory required for device flow, allocates the memory,
1732  * initializes the device flow and returns the pointer.
1733  *
1734  * @param[in] attr
1735  *   Pointer to the flow attributes.
1736  * @param[in] items
1737  *   Pointer to the list of items.
1738  * @param[in] actions
1739  *   Pointer to the list of actions.
1740  * @param[out] item_flags
1741  *   Pointer to bit mask of all items detected.
1742  * @param[out] action_flags
1743  *   Pointer to bit mask of all actions detected.
1744  * @param[out] error
1745  *   Pointer to the error structure.
1746  *
1747  * @return
1748  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1749  */
1750 static inline struct mlx5_flow *
1751 flow_drv_prepare(struct rte_flow *flow,
1752                  const struct rte_flow_attr *attr,
1753                  const struct rte_flow_item items[],
1754                  const struct rte_flow_action actions[],
1755                  uint64_t *item_flags,
1756                  uint64_t *action_flags,
1757                  struct rte_flow_error *error)
1758 {
1759         const struct mlx5_flow_driver_ops *fops;
1760         enum mlx5_flow_drv_type type = flow->drv_type;
1761
1762         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1763         fops = flow_get_drv_ops(type);
1764         return fops->prepare(attr, items, actions, item_flags, action_flags,
1765                              error);
1766 }
1767
1768 /**
1769  * Flow driver translation API. This abstracts calling driver specific
1770  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1771  * translates a generic flow into a driver flow. flow_drv_prepare() must
1772  * precede.
1773  *
1774  *
1775  * @param[in] dev
1776  *   Pointer to the rte dev structure.
1777  * @param[in, out] dev_flow
1778  *   Pointer to the mlx5 flow.
1779  * @param[in] attr
1780  *   Pointer to the flow attributes.
1781  * @param[in] items
1782  *   Pointer to the list of items.
1783  * @param[in] actions
1784  *   Pointer to the list of actions.
1785  * @param[out] error
1786  *   Pointer to the error structure.
1787  *
1788  * @return
1789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1790  */
1791 static inline int
1792 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1793                    const struct rte_flow_attr *attr,
1794                    const struct rte_flow_item items[],
1795                    const struct rte_flow_action actions[],
1796                    struct rte_flow_error *error)
1797 {
1798         const struct mlx5_flow_driver_ops *fops;
1799         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1800
1801         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1802         fops = flow_get_drv_ops(type);
1803         return fops->translate(dev, dev_flow, attr, items, actions, error);
1804 }
1805
1806 /**
1807  * Flow driver apply API. This abstracts calling driver specific functions.
1808  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1809  * translated driver flows on to device. flow_drv_translate() must precede.
1810  *
1811  * @param[in] dev
1812  *   Pointer to Ethernet device structure.
1813  * @param[in, out] flow
1814  *   Pointer to flow structure.
1815  * @param[out] error
1816  *   Pointer to error structure.
1817  *
1818  * @return
1819  *   0 on success, a negative errno value otherwise and rte_errno is set.
1820  */
1821 static inline int
1822 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1823                struct rte_flow_error *error)
1824 {
1825         const struct mlx5_flow_driver_ops *fops;
1826         enum mlx5_flow_drv_type type = flow->drv_type;
1827
1828         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1829         fops = flow_get_drv_ops(type);
1830         return fops->apply(dev, flow, error);
1831 }
1832
1833 /**
1834  * Flow driver remove API. This abstracts calling driver specific functions.
1835  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1836  * on device. All the resources of the flow should be freed by calling
1837  * flow_dv_destroy().
1838  *
1839  * @param[in] dev
1840  *   Pointer to Ethernet device.
1841  * @param[in, out] flow
1842  *   Pointer to flow structure.
1843  */
1844 static inline void
1845 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1846 {
1847         const struct mlx5_flow_driver_ops *fops;
1848         enum mlx5_flow_drv_type type = flow->drv_type;
1849
1850         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1851         fops = flow_get_drv_ops(type);
1852         fops->remove(dev, flow);
1853 }
1854
1855 /**
1856  * Flow driver destroy API. This abstracts calling driver specific functions.
1857  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1858  * on device and releases resources of the flow.
1859  *
1860  * @param[in] dev
1861  *   Pointer to Ethernet device.
1862  * @param[in, out] flow
1863  *   Pointer to flow structure.
1864  */
1865 static inline void
1866 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1867 {
1868         const struct mlx5_flow_driver_ops *fops;
1869         enum mlx5_flow_drv_type type = flow->drv_type;
1870
1871         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1872         fops = flow_get_drv_ops(type);
1873         fops->destroy(dev, flow);
1874 }
1875
1876 /**
1877  * Validate a flow supported by the NIC.
1878  *
1879  * @see rte_flow_validate()
1880  * @see rte_flow_ops
1881  */
1882 int
1883 mlx5_flow_validate(struct rte_eth_dev *dev,
1884                    const struct rte_flow_attr *attr,
1885                    const struct rte_flow_item items[],
1886                    const struct rte_flow_action actions[],
1887                    struct rte_flow_error *error)
1888 {
1889         int ret;
1890
1891         ret = flow_drv_validate(dev, attr, items, actions, error);
1892         if (ret < 0)
1893                 return ret;
1894         return 0;
1895 }
1896
1897 /**
1898  * Get RSS action from the action list.
1899  *
1900  * @param[in] actions
1901  *   Pointer to the list of actions.
1902  *
1903  * @return
1904  *   Pointer to the RSS action if exist, else return NULL.
1905  */
1906 static const struct rte_flow_action_rss*
1907 mlx5_flow_get_rss_action(const struct rte_flow_action actions[])
1908 {
1909         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1910                 switch (actions->type) {
1911                 case RTE_FLOW_ACTION_TYPE_RSS:
1912                         return (const struct rte_flow_action_rss *)
1913                                actions->conf;
1914                 default:
1915                         break;
1916                 }
1917         }
1918         return NULL;
1919 }
1920
1921 static unsigned int
1922 mlx5_find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1923 {
1924         const struct rte_flow_item *item;
1925         unsigned int has_vlan = 0;
1926
1927         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
1928                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
1929                         has_vlan = 1;
1930                         break;
1931                 }
1932         }
1933         if (has_vlan)
1934                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
1935                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
1936         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
1937                                MLX5_EXPANSION_ROOT_OUTER;
1938 }
1939
1940 /**
1941  * Create a flow and add it to @p list.
1942  *
1943  * @param dev
1944  *   Pointer to Ethernet device.
1945  * @param list
1946  *   Pointer to a TAILQ flow list.
1947  * @param[in] attr
1948  *   Flow rule attributes.
1949  * @param[in] items
1950  *   Pattern specification (list terminated by the END pattern item).
1951  * @param[in] actions
1952  *   Associated actions (list terminated by the END action).
1953  * @param[out] error
1954  *   Perform verbose error reporting if not NULL.
1955  *
1956  * @return
1957  *   A flow on success, NULL otherwise and rte_errno is set.
1958  */
1959 static struct rte_flow *
1960 mlx5_flow_list_create(struct rte_eth_dev *dev,
1961                       struct mlx5_flows *list,
1962                       const struct rte_flow_attr *attr,
1963                       const struct rte_flow_item items[],
1964                       const struct rte_flow_action actions[],
1965                       struct rte_flow_error *error)
1966 {
1967         struct rte_flow *flow = NULL;
1968         struct mlx5_flow *dev_flow;
1969         uint64_t action_flags = 0;
1970         uint64_t item_flags = 0;
1971         const struct rte_flow_action_rss *rss;
1972         union {
1973                 struct rte_flow_expand_rss buf;
1974                 uint8_t buffer[2048];
1975         } expand_buffer;
1976         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
1977         int ret;
1978         uint32_t i;
1979         uint32_t flow_size;
1980
1981         ret = flow_drv_validate(dev, attr, items, actions, error);
1982         if (ret < 0)
1983                 return NULL;
1984         flow_size = sizeof(struct rte_flow);
1985         rss = mlx5_flow_get_rss_action(actions);
1986         if (rss)
1987                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
1988                                             sizeof(void *));
1989         else
1990                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
1991         flow = rte_calloc(__func__, 1, flow_size, 0);
1992         flow->drv_type = flow_get_drv_type(dev, attr);
1993         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
1994                flow->drv_type < MLX5_FLOW_TYPE_MAX);
1995         flow->queue = (void *)(flow + 1);
1996         LIST_INIT(&flow->dev_flows);
1997         if (rss && rss->types) {
1998                 unsigned int graph_root;
1999
2000                 graph_root = mlx5_find_graph_root(items, rss->level);
2001                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2002                                           items, rss->types,
2003                                           mlx5_support_expansion,
2004                                           graph_root);
2005                 assert(ret > 0 &&
2006                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2007         } else {
2008                 buf->entries = 1;
2009                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2010         }
2011         for (i = 0; i < buf->entries; ++i) {
2012                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2013                                             actions, &item_flags, &action_flags,
2014                                             error);
2015                 if (!dev_flow)
2016                         goto error;
2017                 dev_flow->flow = flow;
2018                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2019                 ret = flow_drv_translate(dev, dev_flow, attr,
2020                                          buf->entry[i].pattern,
2021                                          actions, error);
2022                 if (ret < 0)
2023                         goto error;
2024         }
2025         if (dev->data->dev_started) {
2026                 ret = flow_drv_apply(dev, flow, error);
2027                 if (ret < 0)
2028                         goto error;
2029         }
2030         TAILQ_INSERT_TAIL(list, flow, next);
2031         mlx5_flow_rxq_flags_set(dev, flow);
2032         return flow;
2033 error:
2034         ret = rte_errno; /* Save rte_errno before cleanup. */
2035         assert(flow);
2036         flow_drv_destroy(dev, flow);
2037         rte_free(flow);
2038         rte_errno = ret; /* Restore rte_errno. */
2039         return NULL;
2040 }
2041
2042 /**
2043  * Create a flow.
2044  *
2045  * @see rte_flow_create()
2046  * @see rte_flow_ops
2047  */
2048 struct rte_flow *
2049 mlx5_flow_create(struct rte_eth_dev *dev,
2050                  const struct rte_flow_attr *attr,
2051                  const struct rte_flow_item items[],
2052                  const struct rte_flow_action actions[],
2053                  struct rte_flow_error *error)
2054 {
2055         return mlx5_flow_list_create
2056                 (dev, &((struct priv *)dev->data->dev_private)->flows,
2057                  attr, items, actions, error);
2058 }
2059
2060 /**
2061  * Destroy a flow in a list.
2062  *
2063  * @param dev
2064  *   Pointer to Ethernet device.
2065  * @param list
2066  *   Pointer to a TAILQ flow list.
2067  * @param[in] flow
2068  *   Flow to destroy.
2069  */
2070 static void
2071 mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2072                        struct rte_flow *flow)
2073 {
2074         flow_drv_destroy(dev, flow);
2075         TAILQ_REMOVE(list, flow, next);
2076         /*
2077          * Update RX queue flags only if port is started, otherwise it is
2078          * already clean.
2079          */
2080         if (dev->data->dev_started)
2081                 mlx5_flow_rxq_flags_trim(dev, flow);
2082         rte_free(flow);
2083 }
2084
2085 /**
2086  * Destroy all flows.
2087  *
2088  * @param dev
2089  *   Pointer to Ethernet device.
2090  * @param list
2091  *   Pointer to a TAILQ flow list.
2092  */
2093 void
2094 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2095 {
2096         while (!TAILQ_EMPTY(list)) {
2097                 struct rte_flow *flow;
2098
2099                 flow = TAILQ_FIRST(list);
2100                 mlx5_flow_list_destroy(dev, list, flow);
2101         }
2102 }
2103
2104 /**
2105  * Remove all flows.
2106  *
2107  * @param dev
2108  *   Pointer to Ethernet device.
2109  * @param list
2110  *   Pointer to a TAILQ flow list.
2111  */
2112 void
2113 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2114 {
2115         struct rte_flow *flow;
2116
2117         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2118                 flow_drv_remove(dev, flow);
2119         mlx5_flow_rxq_flags_clear(dev);
2120 }
2121
2122 /**
2123  * Add all flows.
2124  *
2125  * @param dev
2126  *   Pointer to Ethernet device.
2127  * @param list
2128  *   Pointer to a TAILQ flow list.
2129  *
2130  * @return
2131  *   0 on success, a negative errno value otherwise and rte_errno is set.
2132  */
2133 int
2134 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2135 {
2136         struct rte_flow *flow;
2137         struct rte_flow_error error;
2138         int ret = 0;
2139
2140         TAILQ_FOREACH(flow, list, next) {
2141                 ret = flow_drv_apply(dev, flow, &error);
2142                 if (ret < 0)
2143                         goto error;
2144                 mlx5_flow_rxq_flags_set(dev, flow);
2145         }
2146         return 0;
2147 error:
2148         ret = rte_errno; /* Save rte_errno before cleanup. */
2149         mlx5_flow_stop(dev, list);
2150         rte_errno = ret; /* Restore rte_errno. */
2151         return -rte_errno;
2152 }
2153
2154 /**
2155  * Verify the flow list is empty
2156  *
2157  * @param dev
2158  *  Pointer to Ethernet device.
2159  *
2160  * @return the number of flows not released.
2161  */
2162 int
2163 mlx5_flow_verify(struct rte_eth_dev *dev)
2164 {
2165         struct priv *priv = dev->data->dev_private;
2166         struct rte_flow *flow;
2167         int ret = 0;
2168
2169         TAILQ_FOREACH(flow, &priv->flows, next) {
2170                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2171                         dev->data->port_id, (void *)flow);
2172                 ++ret;
2173         }
2174         return ret;
2175 }
2176
2177 /**
2178  * Enable a control flow configured from the control plane.
2179  *
2180  * @param dev
2181  *   Pointer to Ethernet device.
2182  * @param eth_spec
2183  *   An Ethernet flow spec to apply.
2184  * @param eth_mask
2185  *   An Ethernet flow mask to apply.
2186  * @param vlan_spec
2187  *   A VLAN flow spec to apply.
2188  * @param vlan_mask
2189  *   A VLAN flow mask to apply.
2190  *
2191  * @return
2192  *   0 on success, a negative errno value otherwise and rte_errno is set.
2193  */
2194 int
2195 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2196                     struct rte_flow_item_eth *eth_spec,
2197                     struct rte_flow_item_eth *eth_mask,
2198                     struct rte_flow_item_vlan *vlan_spec,
2199                     struct rte_flow_item_vlan *vlan_mask)
2200 {
2201         struct priv *priv = dev->data->dev_private;
2202         const struct rte_flow_attr attr = {
2203                 .ingress = 1,
2204                 .priority = MLX5_FLOW_PRIO_RSVD,
2205         };
2206         struct rte_flow_item items[] = {
2207                 {
2208                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2209                         .spec = eth_spec,
2210                         .last = NULL,
2211                         .mask = eth_mask,
2212                 },
2213                 {
2214                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2215                                               RTE_FLOW_ITEM_TYPE_END,
2216                         .spec = vlan_spec,
2217                         .last = NULL,
2218                         .mask = vlan_mask,
2219                 },
2220                 {
2221                         .type = RTE_FLOW_ITEM_TYPE_END,
2222                 },
2223         };
2224         uint16_t queue[priv->reta_idx_n];
2225         struct rte_flow_action_rss action_rss = {
2226                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2227                 .level = 0,
2228                 .types = priv->rss_conf.rss_hf,
2229                 .key_len = priv->rss_conf.rss_key_len,
2230                 .queue_num = priv->reta_idx_n,
2231                 .key = priv->rss_conf.rss_key,
2232                 .queue = queue,
2233         };
2234         struct rte_flow_action actions[] = {
2235                 {
2236                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2237                         .conf = &action_rss,
2238                 },
2239                 {
2240                         .type = RTE_FLOW_ACTION_TYPE_END,
2241                 },
2242         };
2243         struct rte_flow *flow;
2244         struct rte_flow_error error;
2245         unsigned int i;
2246
2247         if (!priv->reta_idx_n) {
2248                 rte_errno = EINVAL;
2249                 return -rte_errno;
2250         }
2251         for (i = 0; i != priv->reta_idx_n; ++i)
2252                 queue[i] = (*priv->reta_idx)[i];
2253         flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items,
2254                                      actions, &error);
2255         if (!flow)
2256                 return -rte_errno;
2257         return 0;
2258 }
2259
2260 /**
2261  * Enable a flow control configured from the control plane.
2262  *
2263  * @param dev
2264  *   Pointer to Ethernet device.
2265  * @param eth_spec
2266  *   An Ethernet flow spec to apply.
2267  * @param eth_mask
2268  *   An Ethernet flow mask to apply.
2269  *
2270  * @return
2271  *   0 on success, a negative errno value otherwise and rte_errno is set.
2272  */
2273 int
2274 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2275                struct rte_flow_item_eth *eth_spec,
2276                struct rte_flow_item_eth *eth_mask)
2277 {
2278         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2279 }
2280
2281 /**
2282  * Destroy a flow.
2283  *
2284  * @see rte_flow_destroy()
2285  * @see rte_flow_ops
2286  */
2287 int
2288 mlx5_flow_destroy(struct rte_eth_dev *dev,
2289                   struct rte_flow *flow,
2290                   struct rte_flow_error *error __rte_unused)
2291 {
2292         struct priv *priv = dev->data->dev_private;
2293
2294         mlx5_flow_list_destroy(dev, &priv->flows, flow);
2295         return 0;
2296 }
2297
2298 /**
2299  * Destroy all flows.
2300  *
2301  * @see rte_flow_flush()
2302  * @see rte_flow_ops
2303  */
2304 int
2305 mlx5_flow_flush(struct rte_eth_dev *dev,
2306                 struct rte_flow_error *error __rte_unused)
2307 {
2308         struct priv *priv = dev->data->dev_private;
2309
2310         mlx5_flow_list_flush(dev, &priv->flows);
2311         return 0;
2312 }
2313
2314 /**
2315  * Isolated mode.
2316  *
2317  * @see rte_flow_isolate()
2318  * @see rte_flow_ops
2319  */
2320 int
2321 mlx5_flow_isolate(struct rte_eth_dev *dev,
2322                   int enable,
2323                   struct rte_flow_error *error)
2324 {
2325         struct priv *priv = dev->data->dev_private;
2326
2327         if (dev->data->dev_started) {
2328                 rte_flow_error_set(error, EBUSY,
2329                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2330                                    NULL,
2331                                    "port must be stopped first");
2332                 return -rte_errno;
2333         }
2334         priv->isolated = !!enable;
2335         if (enable)
2336                 dev->dev_ops = &mlx5_dev_ops_isolate;
2337         else
2338                 dev->dev_ops = &mlx5_dev_ops;
2339         return 0;
2340 }
2341
2342 /**
2343  * Query flow counter.
2344  *
2345  * @param flow
2346  *   Pointer to the flow.
2347  *
2348  * @return
2349  *   0 on success, a negative errno value otherwise and rte_errno is set.
2350  */
2351 static int
2352 mlx5_flow_query_count(struct rte_flow *flow __rte_unused,
2353                       void *data __rte_unused,
2354                       struct rte_flow_error *error)
2355 {
2356 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
2357         if (flow->actions & MLX5_FLOW_ACTION_COUNT) {
2358                 struct rte_flow_query_count *qc = data;
2359                 uint64_t counters[2] = {0, 0};
2360                 struct ibv_query_counter_set_attr query_cs_attr = {
2361                         .cs = flow->counter->cs,
2362                         .query_flags = IBV_COUNTER_SET_FORCE_UPDATE,
2363                 };
2364                 struct ibv_counter_set_data query_out = {
2365                         .out = counters,
2366                         .outlen = 2 * sizeof(uint64_t),
2367                 };
2368                 int err = mlx5_glue->query_counter_set(&query_cs_attr,
2369                                                        &query_out);
2370
2371                 if (err)
2372                         return rte_flow_error_set
2373                                 (error, err,
2374                                  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2375                                  NULL,
2376                                  "cannot read counter");
2377                 qc->hits_set = 1;
2378                 qc->bytes_set = 1;
2379                 qc->hits = counters[0] - flow->counter->hits;
2380                 qc->bytes = counters[1] - flow->counter->bytes;
2381                 if (qc->reset) {
2382                         flow->counter->hits = counters[0];
2383                         flow->counter->bytes = counters[1];
2384                 }
2385                 return 0;
2386         }
2387         return rte_flow_error_set(error, EINVAL,
2388                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2389                                   NULL,
2390                                   "flow does not have counter");
2391 #endif
2392         return rte_flow_error_set(error, ENOTSUP,
2393                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2394                                   NULL,
2395                                   "counters are not available");
2396 }
2397
2398 /**
2399  * Query a flows.
2400  *
2401  * @see rte_flow_query()
2402  * @see rte_flow_ops
2403  */
2404 int
2405 mlx5_flow_query(struct rte_eth_dev *dev __rte_unused,
2406                 struct rte_flow *flow,
2407                 const struct rte_flow_action *actions,
2408                 void *data,
2409                 struct rte_flow_error *error)
2410 {
2411         int ret = 0;
2412
2413         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2414                 switch (actions->type) {
2415                 case RTE_FLOW_ACTION_TYPE_VOID:
2416                         break;
2417                 case RTE_FLOW_ACTION_TYPE_COUNT:
2418                         ret = mlx5_flow_query_count(flow, data, error);
2419                         break;
2420                 default:
2421                         return rte_flow_error_set(error, ENOTSUP,
2422                                                   RTE_FLOW_ERROR_TYPE_ACTION,
2423                                                   actions,
2424                                                   "action not supported");
2425                 }
2426                 if (ret < 0)
2427                         return ret;
2428         }
2429         return 0;
2430 }
2431
2432 /**
2433  * Convert a flow director filter to a generic flow.
2434  *
2435  * @param dev
2436  *   Pointer to Ethernet device.
2437  * @param fdir_filter
2438  *   Flow director filter to add.
2439  * @param attributes
2440  *   Generic flow parameters structure.
2441  *
2442  * @return
2443  *   0 on success, a negative errno value otherwise and rte_errno is set.
2444  */
2445 static int
2446 mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
2447                          const struct rte_eth_fdir_filter *fdir_filter,
2448                          struct mlx5_fdir *attributes)
2449 {
2450         struct priv *priv = dev->data->dev_private;
2451         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2452         const struct rte_eth_fdir_masks *mask =
2453                 &dev->data->dev_conf.fdir_conf.mask;
2454
2455         /* Validate queue number. */
2456         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2457                 DRV_LOG(ERR, "port %u invalid queue number %d",
2458                         dev->data->port_id, fdir_filter->action.rx_queue);
2459                 rte_errno = EINVAL;
2460                 return -rte_errno;
2461         }
2462         attributes->attr.ingress = 1;
2463         attributes->items[0] = (struct rte_flow_item) {
2464                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2465                 .spec = &attributes->l2,
2466                 .mask = &attributes->l2_mask,
2467         };
2468         switch (fdir_filter->action.behavior) {
2469         case RTE_ETH_FDIR_ACCEPT:
2470                 attributes->actions[0] = (struct rte_flow_action){
2471                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2472                         .conf = &attributes->queue,
2473                 };
2474                 break;
2475         case RTE_ETH_FDIR_REJECT:
2476                 attributes->actions[0] = (struct rte_flow_action){
2477                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2478                 };
2479                 break;
2480         default:
2481                 DRV_LOG(ERR, "port %u invalid behavior %d",
2482                         dev->data->port_id,
2483                         fdir_filter->action.behavior);
2484                 rte_errno = ENOTSUP;
2485                 return -rte_errno;
2486         }
2487         attributes->queue.index = fdir_filter->action.rx_queue;
2488         /* Handle L3. */
2489         switch (fdir_filter->input.flow_type) {
2490         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2491         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2492         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2493                 attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2494                         .src_addr = input->flow.ip4_flow.src_ip,
2495                         .dst_addr = input->flow.ip4_flow.dst_ip,
2496                         .time_to_live = input->flow.ip4_flow.ttl,
2497                         .type_of_service = input->flow.ip4_flow.tos,
2498                 };
2499                 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2500                         .src_addr = mask->ipv4_mask.src_ip,
2501                         .dst_addr = mask->ipv4_mask.dst_ip,
2502                         .time_to_live = mask->ipv4_mask.ttl,
2503                         .type_of_service = mask->ipv4_mask.tos,
2504                         .next_proto_id = mask->ipv4_mask.proto,
2505                 };
2506                 attributes->items[1] = (struct rte_flow_item){
2507                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2508                         .spec = &attributes->l3,
2509                         .mask = &attributes->l3_mask,
2510                 };
2511                 break;
2512         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2513         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2514         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2515                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2516                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2517                         .proto = input->flow.ipv6_flow.proto,
2518                 };
2519
2520                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2521                        input->flow.ipv6_flow.src_ip,
2522                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2523                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2524                        input->flow.ipv6_flow.dst_ip,
2525                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2526                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2527                        mask->ipv6_mask.src_ip,
2528                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2529                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2530                        mask->ipv6_mask.dst_ip,
2531                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2532                 attributes->items[1] = (struct rte_flow_item){
2533                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2534                         .spec = &attributes->l3,
2535                         .mask = &attributes->l3_mask,
2536                 };
2537                 break;
2538         default:
2539                 DRV_LOG(ERR, "port %u invalid flow type%d",
2540                         dev->data->port_id, fdir_filter->input.flow_type);
2541                 rte_errno = ENOTSUP;
2542                 return -rte_errno;
2543         }
2544         /* Handle L4. */
2545         switch (fdir_filter->input.flow_type) {
2546         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2547                 attributes->l4.udp.hdr = (struct udp_hdr){
2548                         .src_port = input->flow.udp4_flow.src_port,
2549                         .dst_port = input->flow.udp4_flow.dst_port,
2550                 };
2551                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2552                         .src_port = mask->src_port_mask,
2553                         .dst_port = mask->dst_port_mask,
2554                 };
2555                 attributes->items[2] = (struct rte_flow_item){
2556                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2557                         .spec = &attributes->l4,
2558                         .mask = &attributes->l4_mask,
2559                 };
2560                 break;
2561         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2562                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2563                         .src_port = input->flow.tcp4_flow.src_port,
2564                         .dst_port = input->flow.tcp4_flow.dst_port,
2565                 };
2566                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2567                         .src_port = mask->src_port_mask,
2568                         .dst_port = mask->dst_port_mask,
2569                 };
2570                 attributes->items[2] = (struct rte_flow_item){
2571                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2572                         .spec = &attributes->l4,
2573                         .mask = &attributes->l4_mask,
2574                 };
2575                 break;
2576         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2577                 attributes->l4.udp.hdr = (struct udp_hdr){
2578                         .src_port = input->flow.udp6_flow.src_port,
2579                         .dst_port = input->flow.udp6_flow.dst_port,
2580                 };
2581                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2582                         .src_port = mask->src_port_mask,
2583                         .dst_port = mask->dst_port_mask,
2584                 };
2585                 attributes->items[2] = (struct rte_flow_item){
2586                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2587                         .spec = &attributes->l4,
2588                         .mask = &attributes->l4_mask,
2589                 };
2590                 break;
2591         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2592                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2593                         .src_port = input->flow.tcp6_flow.src_port,
2594                         .dst_port = input->flow.tcp6_flow.dst_port,
2595                 };
2596                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2597                         .src_port = mask->src_port_mask,
2598                         .dst_port = mask->dst_port_mask,
2599                 };
2600                 attributes->items[2] = (struct rte_flow_item){
2601                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2602                         .spec = &attributes->l4,
2603                         .mask = &attributes->l4_mask,
2604                 };
2605                 break;
2606         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2607         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2608                 break;
2609         default:
2610                 DRV_LOG(ERR, "port %u invalid flow type%d",
2611                         dev->data->port_id, fdir_filter->input.flow_type);
2612                 rte_errno = ENOTSUP;
2613                 return -rte_errno;
2614         }
2615         return 0;
2616 }
2617
2618 /**
2619  * Add new flow director filter and store it in list.
2620  *
2621  * @param dev
2622  *   Pointer to Ethernet device.
2623  * @param fdir_filter
2624  *   Flow director filter to add.
2625  *
2626  * @return
2627  *   0 on success, a negative errno value otherwise and rte_errno is set.
2628  */
2629 static int
2630 mlx5_fdir_filter_add(struct rte_eth_dev *dev,
2631                      const struct rte_eth_fdir_filter *fdir_filter)
2632 {
2633         struct priv *priv = dev->data->dev_private;
2634         struct mlx5_fdir attributes = {
2635                 .attr.group = 0,
2636                 .l2_mask = {
2637                         .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2638                         .src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2639                         .type = 0,
2640                 },
2641         };
2642         struct rte_flow_error error;
2643         struct rte_flow *flow;
2644         int ret;
2645
2646         ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
2647         if (ret)
2648                 return ret;
2649         flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr,
2650                                      attributes.items, attributes.actions,
2651                                      &error);
2652         if (flow) {
2653                 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
2654                         (void *)flow);
2655                 return 0;
2656         }
2657         return -rte_errno;
2658 }
2659
2660 /**
2661  * Delete specific filter.
2662  *
2663  * @param dev
2664  *   Pointer to Ethernet device.
2665  * @param fdir_filter
2666  *   Filter to be deleted.
2667  *
2668  * @return
2669  *   0 on success, a negative errno value otherwise and rte_errno is set.
2670  */
2671 static int
2672 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
2673                         const struct rte_eth_fdir_filter *fdir_filter
2674                         __rte_unused)
2675 {
2676         rte_errno = ENOTSUP;
2677         return -rte_errno;
2678 }
2679
2680 /**
2681  * Update queue for specific filter.
2682  *
2683  * @param dev
2684  *   Pointer to Ethernet device.
2685  * @param fdir_filter
2686  *   Filter to be updated.
2687  *
2688  * @return
2689  *   0 on success, a negative errno value otherwise and rte_errno is set.
2690  */
2691 static int
2692 mlx5_fdir_filter_update(struct rte_eth_dev *dev,
2693                         const struct rte_eth_fdir_filter *fdir_filter)
2694 {
2695         int ret;
2696
2697         ret = mlx5_fdir_filter_delete(dev, fdir_filter);
2698         if (ret)
2699                 return ret;
2700         return mlx5_fdir_filter_add(dev, fdir_filter);
2701 }
2702
2703 /**
2704  * Flush all filters.
2705  *
2706  * @param dev
2707  *   Pointer to Ethernet device.
2708  */
2709 static void
2710 mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
2711 {
2712         struct priv *priv = dev->data->dev_private;
2713
2714         mlx5_flow_list_flush(dev, &priv->flows);
2715 }
2716
2717 /**
2718  * Get flow director information.
2719  *
2720  * @param dev
2721  *   Pointer to Ethernet device.
2722  * @param[out] fdir_info
2723  *   Resulting flow director information.
2724  */
2725 static void
2726 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2727 {
2728         struct rte_eth_fdir_masks *mask =
2729                 &dev->data->dev_conf.fdir_conf.mask;
2730
2731         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2732         fdir_info->guarant_spc = 0;
2733         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2734         fdir_info->max_flexpayload = 0;
2735         fdir_info->flow_types_mask[0] = 0;
2736         fdir_info->flex_payload_unit = 0;
2737         fdir_info->max_flex_payload_segment_num = 0;
2738         fdir_info->flex_payload_limit = 0;
2739         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2740 }
2741
2742 /**
2743  * Deal with flow director operations.
2744  *
2745  * @param dev
2746  *   Pointer to Ethernet device.
2747  * @param filter_op
2748  *   Operation to perform.
2749  * @param arg
2750  *   Pointer to operation-specific structure.
2751  *
2752  * @return
2753  *   0 on success, a negative errno value otherwise and rte_errno is set.
2754  */
2755 static int
2756 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2757                     void *arg)
2758 {
2759         enum rte_fdir_mode fdir_mode =
2760                 dev->data->dev_conf.fdir_conf.mode;
2761
2762         if (filter_op == RTE_ETH_FILTER_NOP)
2763                 return 0;
2764         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2765             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2766                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2767                         dev->data->port_id, fdir_mode);
2768                 rte_errno = EINVAL;
2769                 return -rte_errno;
2770         }
2771         switch (filter_op) {
2772         case RTE_ETH_FILTER_ADD:
2773                 return mlx5_fdir_filter_add(dev, arg);
2774         case RTE_ETH_FILTER_UPDATE:
2775                 return mlx5_fdir_filter_update(dev, arg);
2776         case RTE_ETH_FILTER_DELETE:
2777                 return mlx5_fdir_filter_delete(dev, arg);
2778         case RTE_ETH_FILTER_FLUSH:
2779                 mlx5_fdir_filter_flush(dev);
2780                 break;
2781         case RTE_ETH_FILTER_INFO:
2782                 mlx5_fdir_info_get(dev, arg);
2783                 break;
2784         default:
2785                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2786                         dev->data->port_id, filter_op);
2787                 rte_errno = EINVAL;
2788                 return -rte_errno;
2789         }
2790         return 0;
2791 }
2792
2793 /**
2794  * Manage filter operations.
2795  *
2796  * @param dev
2797  *   Pointer to Ethernet device structure.
2798  * @param filter_type
2799  *   Filter type.
2800  * @param filter_op
2801  *   Operation to perform.
2802  * @param arg
2803  *   Pointer to operation-specific structure.
2804  *
2805  * @return
2806  *   0 on success, a negative errno value otherwise and rte_errno is set.
2807  */
2808 int
2809 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2810                      enum rte_filter_type filter_type,
2811                      enum rte_filter_op filter_op,
2812                      void *arg)
2813 {
2814         switch (filter_type) {
2815         case RTE_ETH_FILTER_GENERIC:
2816                 if (filter_op != RTE_ETH_FILTER_GET) {
2817                         rte_errno = EINVAL;
2818                         return -rte_errno;
2819                 }
2820                 *(const void **)arg = &mlx5_flow_ops;
2821                 return 0;
2822         case RTE_ETH_FILTER_FDIR:
2823                 return mlx5_fdir_ctrl_func(dev, filter_op, arg);
2824         default:
2825                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2826                         dev->data->port_id, filter_type);
2827                 rte_errno = ENOTSUP;
2828                 return -rte_errno;
2829         }
2830         return 0;
2831 }