e9537ce4bb03c4603062b60921e037dfceac1bdd
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, uint32_t *rss_hash);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
45
46 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
47         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
48 };
49
50 /**
51  * Build a table to translate Rx completion flags to packet type.
52  *
53  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
54  */
55 void
56 mlx5_set_ptype_table(void)
57 {
58         unsigned int i;
59         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
60
61         /* Last entry must not be overwritten, reserved for errored packet. */
62         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
63                 (*p)[i] = RTE_PTYPE_UNKNOWN;
64         /*
65          * The index to the array should have:
66          * bit[1:0] = l3_hdr_type
67          * bit[4:2] = l4_hdr_type
68          * bit[5] = ip_frag
69          * bit[6] = tunneled
70          * bit[7] = outer_l3_type
71          */
72         /* L2 */
73         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
74         /* L3 */
75         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
76                      RTE_PTYPE_L4_NONFRAG;
77         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
78                      RTE_PTYPE_L4_NONFRAG;
79         /* Fragmented */
80         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
81                      RTE_PTYPE_L4_FRAG;
82         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
83                      RTE_PTYPE_L4_FRAG;
84         /* TCP */
85         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_TCP;
87         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_TCP;
89         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_TCP;
91         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_TCP;
93         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
94                      RTE_PTYPE_L4_TCP;
95         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         /* UDP */
98         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
99                      RTE_PTYPE_L4_UDP;
100         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_UDP;
102         /* Repeat with outer_l3_type being set. Just in case. */
103         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
108                      RTE_PTYPE_L4_FRAG;
109         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_FRAG;
111         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_TCP;
113         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_TCP;
119         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_TCP;
121         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_UDP;
125         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_UDP;
127         /* Tunneled - L3 */
128         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_NONFRAG;
131         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L4_NONFRAG;
134         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L4_NONFRAG;
137         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
139                      RTE_PTYPE_INNER_L4_NONFRAG;
140         /* Tunneled - Fragmented */
141         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L4_FRAG;
144         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L4_FRAG;
147         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG;
150         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L4_FRAG;
153         /* Tunneled - TCP */
154         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_TCP;
157         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L4_TCP;
160         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L4_TCP;
163         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L4_TCP;
166         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         /* Tunneled - UDP */
191         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_UDP;
194         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_UDP;
197         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L4_UDP;
200         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L4_UDP;
203 }
204
205 /**
206  * Return the size of tailroom of WQ.
207  *
208  * @param txq
209  *   Pointer to TX queue structure.
210  * @param addr
211  *   Pointer to tail of WQ.
212  *
213  * @return
214  *   Size of tailroom.
215  */
216 static inline size_t
217 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
218 {
219         size_t tailroom;
220         tailroom = (uintptr_t)(txq->wqes) +
221                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
222                    (uintptr_t)addr;
223         return tailroom;
224 }
225
226 /**
227  * Copy data to tailroom of circular queue.
228  *
229  * @param dst
230  *   Pointer to destination.
231  * @param src
232  *   Pointer to source.
233  * @param n
234  *   Number of bytes to copy.
235  * @param base
236  *   Pointer to head of queue.
237  * @param tailroom
238  *   Size of tailroom from dst.
239  *
240  * @return
241  *   Pointer after copied data.
242  */
243 static inline void *
244 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
245                 void *base, size_t tailroom)
246 {
247         void *ret;
248
249         if (n > tailroom) {
250                 rte_memcpy(dst, src, tailroom);
251                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
252                            n - tailroom);
253                 ret = (uint8_t *)base + n - tailroom;
254         } else {
255                 rte_memcpy(dst, src, n);
256                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
257         }
258         return ret;
259 }
260
261 /**
262  * Inline TSO headers into WQE.
263  *
264  * @return
265  *   0 on success, negative errno value on failure.
266  */
267 static int
268 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
269            uint32_t *length,
270            uint8_t *cs_flags,
271            uintptr_t *addr,
272            uint16_t *pkt_inline_sz,
273            uint8_t **raw,
274            uint16_t *max_wqe,
275            uint16_t *tso_segsz,
276            uint16_t *tso_header_sz)
277 {
278         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
279                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
280         unsigned int copy_b;
281         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
282         const uint8_t tunneled = txq->tunnel_en &&
283                                  (buf->ol_flags & (PKT_TX_TUNNEL_GRE |
284                                                    PKT_TX_TUNNEL_VXLAN));
285         uint16_t n_wqe;
286
287         *tso_segsz = buf->tso_segsz;
288         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
289         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
290                 txq->stats.oerrors++;
291                 return -EINVAL;
292         }
293         if (tunneled) {
294                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
295                 *cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
296         } else {
297                 *cs_flags |= MLX5_ETH_WQE_L4_CSUM;
298         }
299         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER)) {
300                 txq->stats.oerrors++;
301                 return -EINVAL;
302         }
303         copy_b = *tso_header_sz - *pkt_inline_sz;
304         /* First seg must contain all TSO headers. */
305         assert(copy_b <= *length);
306         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
307                 return -EAGAIN;
308         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
309         if (unlikely(*max_wqe < n_wqe))
310                 return -EINVAL;
311         *max_wqe -= n_wqe;
312         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
313         *length -= copy_b;
314         *addr += copy_b;
315         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
316         *pkt_inline_sz += copy_b;
317         *raw += copy_b;
318         return 0;
319 }
320
321 /**
322  * DPDK callback to check the status of a tx descriptor.
323  *
324  * @param tx_queue
325  *   The tx queue.
326  * @param[in] offset
327  *   The index of the descriptor in the ring.
328  *
329  * @return
330  *   The status of the tx descriptor.
331  */
332 int
333 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
334 {
335         struct mlx5_txq_data *txq = tx_queue;
336         uint16_t used;
337
338         mlx5_tx_complete(txq);
339         used = txq->elts_head - txq->elts_tail;
340         if (offset < used)
341                 return RTE_ETH_TX_DESC_FULL;
342         return RTE_ETH_TX_DESC_DONE;
343 }
344
345 /**
346  * DPDK callback to check the status of a rx descriptor.
347  *
348  * @param rx_queue
349  *   The rx queue.
350  * @param[in] offset
351  *   The index of the descriptor in the ring.
352  *
353  * @return
354  *   The status of the tx descriptor.
355  */
356 int
357 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
358 {
359         struct mlx5_rxq_data *rxq = rx_queue;
360         struct rxq_zip *zip = &rxq->zip;
361         volatile struct mlx5_cqe *cqe;
362         const unsigned int cqe_n = (1 << rxq->cqe_n);
363         const unsigned int cqe_cnt = cqe_n - 1;
364         unsigned int cq_ci;
365         unsigned int used;
366
367         /* if we are processing a compressed cqe */
368         if (zip->ai) {
369                 used = zip->cqe_cnt - zip->ca;
370                 cq_ci = zip->cq_ci;
371         } else {
372                 used = 0;
373                 cq_ci = rxq->cq_ci;
374         }
375         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
376         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
377                 int8_t op_own;
378                 unsigned int n;
379
380                 op_own = cqe->op_own;
381                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
382                         n = rte_be_to_cpu_32(cqe->byte_cnt);
383                 else
384                         n = 1;
385                 cq_ci += n;
386                 used += n;
387                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
388         }
389         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
390         if (offset < used)
391                 return RTE_ETH_RX_DESC_DONE;
392         return RTE_ETH_RX_DESC_AVAIL;
393 }
394
395 /**
396  * DPDK callback for TX.
397  *
398  * @param dpdk_txq
399  *   Generic pointer to TX queue structure.
400  * @param[in] pkts
401  *   Packets to transmit.
402  * @param pkts_n
403  *   Number of packets in array.
404  *
405  * @return
406  *   Number of packets successfully transmitted (<= pkts_n).
407  */
408 uint16_t
409 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
410 {
411         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
412         uint16_t elts_head = txq->elts_head;
413         const uint16_t elts_n = 1 << txq->elts_n;
414         const uint16_t elts_m = elts_n - 1;
415         unsigned int i = 0;
416         unsigned int j = 0;
417         unsigned int k = 0;
418         uint16_t max_elts;
419         uint16_t max_wqe;
420         unsigned int comp;
421         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
422         unsigned int segs_n = 0;
423         const unsigned int max_inline = txq->max_inline;
424
425         if (unlikely(!pkts_n))
426                 return 0;
427         /* Prefetch first packet cacheline. */
428         rte_prefetch0(*pkts);
429         /* Start processing. */
430         mlx5_tx_complete(txq);
431         max_elts = (elts_n - (elts_head - txq->elts_tail));
432         /* A CQE slot must always be available. */
433         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
434         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
435         if (unlikely(!max_wqe))
436                 return 0;
437         do {
438                 struct rte_mbuf *buf = NULL;
439                 uint8_t *raw;
440                 volatile struct mlx5_wqe_v *wqe = NULL;
441                 volatile rte_v128u32_t *dseg = NULL;
442                 uint32_t length;
443                 unsigned int ds = 0;
444                 unsigned int sg = 0; /* counter of additional segs attached. */
445                 uintptr_t addr;
446                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
447                 uint16_t tso_header_sz = 0;
448                 uint16_t ehdr;
449                 uint8_t cs_flags;
450                 uint64_t tso = 0;
451                 uint16_t tso_segsz = 0;
452 #ifdef MLX5_PMD_SOFT_COUNTERS
453                 uint32_t total_length = 0;
454 #endif
455                 int ret;
456
457                 /* first_seg */
458                 buf = *pkts;
459                 segs_n = buf->nb_segs;
460                 /*
461                  * Make sure there is enough room to store this packet and
462                  * that one ring entry remains unused.
463                  */
464                 assert(segs_n);
465                 if (max_elts < segs_n)
466                         break;
467                 max_elts -= segs_n;
468                 sg = --segs_n;
469                 if (unlikely(--max_wqe == 0))
470                         break;
471                 wqe = (volatile struct mlx5_wqe_v *)
472                         tx_mlx5_wqe(txq, txq->wqe_ci);
473                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
474                 if (pkts_n - i > 1)
475                         rte_prefetch0(*(pkts + 1));
476                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
477                 length = DATA_LEN(buf);
478                 ehdr = (((uint8_t *)addr)[1] << 8) |
479                        ((uint8_t *)addr)[0];
480 #ifdef MLX5_PMD_SOFT_COUNTERS
481                 total_length = length;
482 #endif
483                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
484                         txq->stats.oerrors++;
485                         break;
486                 }
487                 /* Update element. */
488                 (*txq->elts)[elts_head & elts_m] = buf;
489                 /* Prefetch next buffer data. */
490                 if (pkts_n - i > 1)
491                         rte_prefetch0(
492                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
493                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
494                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
495                 /* Replace the Ethernet type by the VLAN if necessary. */
496                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
497                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
498                                                          buf->vlan_tci);
499                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
500
501                         addr += 2;
502                         length -= 2;
503                         /* Copy Destination and source mac address. */
504                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
505                         /* Copy VLAN. */
506                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
507                         /* Copy missing two bytes to end the DSeg. */
508                         memcpy((uint8_t *)raw + len + sizeof(vlan),
509                                ((uint8_t *)addr) + len, 2);
510                         addr += len + 2;
511                         length -= (len + 2);
512                 } else {
513                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
514                                MLX5_WQE_DWORD_SIZE);
515                         length -= pkt_inline_sz;
516                         addr += pkt_inline_sz;
517                 }
518                 raw += MLX5_WQE_DWORD_SIZE;
519                 tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
520                 if (tso) {
521                         ret = inline_tso(txq, buf, &length, &cs_flags,
522                                          &addr, &pkt_inline_sz,
523                                          &raw, &max_wqe,
524                                          &tso_segsz, &tso_header_sz);
525                         if (ret == -EINVAL) {
526                                 break;
527                         } else if (ret == -EAGAIN) {
528                                 /* NOP WQE. */
529                                 wqe->ctrl = (rte_v128u32_t){
530                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
531                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
532                                         0,
533                                         0,
534                                 };
535                                 ds = 1;
536 #ifdef MLX5_PMD_SOFT_COUNTERS
537                                 total_length = 0;
538 #endif
539                                 k++;
540                                 goto next_wqe;
541                         }
542                 }
543                 /* Inline if enough room. */
544                 if (max_inline || tso) {
545                         uint32_t inl = 0;
546                         uintptr_t end = (uintptr_t)
547                                 (((uintptr_t)txq->wqes) +
548                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
549                         unsigned int inline_room = max_inline *
550                                                    RTE_CACHE_LINE_SIZE -
551                                                    (pkt_inline_sz - 2) -
552                                                    !!tso * sizeof(inl);
553                         uintptr_t addr_end;
554                         unsigned int copy_b;
555
556 pkt_inline:
557                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
558                                                    RTE_CACHE_LINE_SIZE);
559                         copy_b = (addr_end > addr) ?
560                                  RTE_MIN((addr_end - addr), length) : 0;
561                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
562                                 /*
563                                  * One Dseg remains in the current WQE.  To
564                                  * keep the computation positive, it is
565                                  * removed after the bytes to Dseg conversion.
566                                  */
567                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
568
569                                 if (unlikely(max_wqe < n))
570                                         break;
571                                 max_wqe -= n;
572                                 if (tso && !inl) {
573                                         inl = rte_cpu_to_be_32(copy_b |
574                                                                MLX5_INLINE_SEG);
575                                         rte_memcpy((void *)raw,
576                                                    (void *)&inl, sizeof(inl));
577                                         raw += sizeof(inl);
578                                         pkt_inline_sz += sizeof(inl);
579                                 }
580                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
581                                 addr += copy_b;
582                                 length -= copy_b;
583                                 pkt_inline_sz += copy_b;
584                         }
585                         /*
586                          * 2 DWORDs consumed by the WQE header + ETH segment +
587                          * the size of the inline part of the packet.
588                          */
589                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
590                         if (length > 0) {
591                                 if (ds % (MLX5_WQE_SIZE /
592                                           MLX5_WQE_DWORD_SIZE) == 0) {
593                                         if (unlikely(--max_wqe == 0))
594                                                 break;
595                                         dseg = (volatile rte_v128u32_t *)
596                                                tx_mlx5_wqe(txq, txq->wqe_ci +
597                                                            ds / 4);
598                                 } else {
599                                         dseg = (volatile rte_v128u32_t *)
600                                                 ((uintptr_t)wqe +
601                                                  (ds * MLX5_WQE_DWORD_SIZE));
602                                 }
603                                 goto use_dseg;
604                         } else if (!segs_n) {
605                                 goto next_pkt;
606                         } else {
607                                 raw += copy_b;
608                                 inline_room -= copy_b;
609                                 --segs_n;
610                                 buf = buf->next;
611                                 assert(buf);
612                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
613                                 length = DATA_LEN(buf);
614 #ifdef MLX5_PMD_SOFT_COUNTERS
615                                 total_length += length;
616 #endif
617                                 (*txq->elts)[++elts_head & elts_m] = buf;
618                                 goto pkt_inline;
619                         }
620                 } else {
621                         /*
622                          * No inline has been done in the packet, only the
623                          * Ethernet Header as been stored.
624                          */
625                         dseg = (volatile rte_v128u32_t *)
626                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
627                         ds = 3;
628 use_dseg:
629                         /* Add the remaining packet as a simple ds. */
630                         addr = rte_cpu_to_be_64(addr);
631                         *dseg = (rte_v128u32_t){
632                                 rte_cpu_to_be_32(length),
633                                 mlx5_tx_mb2mr(txq, buf),
634                                 addr,
635                                 addr >> 32,
636                         };
637                         ++ds;
638                         if (!segs_n)
639                                 goto next_pkt;
640                 }
641 next_seg:
642                 assert(buf);
643                 assert(ds);
644                 assert(wqe);
645                 /*
646                  * Spill on next WQE when the current one does not have
647                  * enough room left. Size of WQE must a be a multiple
648                  * of data segment size.
649                  */
650                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
651                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
652                         if (unlikely(--max_wqe == 0))
653                                 break;
654                         dseg = (volatile rte_v128u32_t *)
655                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
656                         rte_prefetch0(tx_mlx5_wqe(txq,
657                                                   txq->wqe_ci + ds / 4 + 1));
658                 } else {
659                         ++dseg;
660                 }
661                 ++ds;
662                 buf = buf->next;
663                 assert(buf);
664                 length = DATA_LEN(buf);
665 #ifdef MLX5_PMD_SOFT_COUNTERS
666                 total_length += length;
667 #endif
668                 /* Store segment information. */
669                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
670                 *dseg = (rte_v128u32_t){
671                         rte_cpu_to_be_32(length),
672                         mlx5_tx_mb2mr(txq, buf),
673                         addr,
674                         addr >> 32,
675                 };
676                 (*txq->elts)[++elts_head & elts_m] = buf;
677                 if (--segs_n)
678                         goto next_seg;
679 next_pkt:
680                 if (ds > MLX5_DSEG_MAX) {
681                         txq->stats.oerrors++;
682                         break;
683                 }
684                 ++elts_head;
685                 ++pkts;
686                 ++i;
687                 j += sg;
688                 /* Initialize known and common part of the WQE structure. */
689                 if (tso) {
690                         wqe->ctrl = (rte_v128u32_t){
691                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
692                                                  MLX5_OPCODE_TSO),
693                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
694                                 0,
695                                 0,
696                         };
697                         wqe->eseg = (rte_v128u32_t){
698                                 0,
699                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
700                                 0,
701                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
702                         };
703                 } else {
704                         wqe->ctrl = (rte_v128u32_t){
705                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
706                                                  MLX5_OPCODE_SEND),
707                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
708                                 0,
709                                 0,
710                         };
711                         wqe->eseg = (rte_v128u32_t){
712                                 0,
713                                 cs_flags,
714                                 0,
715                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
716                         };
717                 }
718 next_wqe:
719                 txq->wqe_ci += (ds + 3) / 4;
720                 /* Save the last successful WQE for completion request */
721                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
722 #ifdef MLX5_PMD_SOFT_COUNTERS
723                 /* Increment sent bytes counter. */
724                 txq->stats.obytes += total_length;
725 #endif
726         } while (i < pkts_n);
727         /* Take a shortcut if nothing must be sent. */
728         if (unlikely((i + k) == 0))
729                 return 0;
730         txq->elts_head += (i + j);
731         /* Check whether completion threshold has been reached. */
732         comp = txq->elts_comp + i + j + k;
733         if (comp >= MLX5_TX_COMP_THRESH) {
734                 /* Request completion on last WQE. */
735                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
736                 /* Save elts_head in unused "immediate" field of WQE. */
737                 last_wqe->ctrl3 = txq->elts_head;
738                 txq->elts_comp = 0;
739 #ifndef NDEBUG
740                 ++txq->cq_pi;
741 #endif
742         } else {
743                 txq->elts_comp = comp;
744         }
745 #ifdef MLX5_PMD_SOFT_COUNTERS
746         /* Increment sent packets counter. */
747         txq->stats.opackets += i;
748 #endif
749         /* Ring QP doorbell. */
750         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
751         return i;
752 }
753
754 /**
755  * Open a MPW session.
756  *
757  * @param txq
758  *   Pointer to TX queue structure.
759  * @param mpw
760  *   Pointer to MPW session structure.
761  * @param length
762  *   Packet length.
763  */
764 static inline void
765 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
766 {
767         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
768         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
769                 (volatile struct mlx5_wqe_data_seg (*)[])
770                 tx_mlx5_wqe(txq, idx + 1);
771
772         mpw->state = MLX5_MPW_STATE_OPENED;
773         mpw->pkts_n = 0;
774         mpw->len = length;
775         mpw->total_len = 0;
776         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
777         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
778         mpw->wqe->eseg.inline_hdr_sz = 0;
779         mpw->wqe->eseg.rsvd0 = 0;
780         mpw->wqe->eseg.rsvd1 = 0;
781         mpw->wqe->eseg.rsvd2 = 0;
782         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
783                                              (txq->wqe_ci << 8) |
784                                              MLX5_OPCODE_TSO);
785         mpw->wqe->ctrl[2] = 0;
786         mpw->wqe->ctrl[3] = 0;
787         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
788                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
789         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
790                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
791         mpw->data.dseg[2] = &(*dseg)[0];
792         mpw->data.dseg[3] = &(*dseg)[1];
793         mpw->data.dseg[4] = &(*dseg)[2];
794 }
795
796 /**
797  * Close a MPW session.
798  *
799  * @param txq
800  *   Pointer to TX queue structure.
801  * @param mpw
802  *   Pointer to MPW session structure.
803  */
804 static inline void
805 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
806 {
807         unsigned int num = mpw->pkts_n;
808
809         /*
810          * Store size in multiple of 16 bytes. Control and Ethernet segments
811          * count as 2.
812          */
813         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
814         mpw->state = MLX5_MPW_STATE_CLOSED;
815         if (num < 3)
816                 ++txq->wqe_ci;
817         else
818                 txq->wqe_ci += 2;
819         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
820         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
821 }
822
823 /**
824  * DPDK callback for TX with MPW support.
825  *
826  * @param dpdk_txq
827  *   Generic pointer to TX queue structure.
828  * @param[in] pkts
829  *   Packets to transmit.
830  * @param pkts_n
831  *   Number of packets in array.
832  *
833  * @return
834  *   Number of packets successfully transmitted (<= pkts_n).
835  */
836 uint16_t
837 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
838 {
839         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
840         uint16_t elts_head = txq->elts_head;
841         const uint16_t elts_n = 1 << txq->elts_n;
842         const uint16_t elts_m = elts_n - 1;
843         unsigned int i = 0;
844         unsigned int j = 0;
845         uint16_t max_elts;
846         uint16_t max_wqe;
847         unsigned int comp;
848         struct mlx5_mpw mpw = {
849                 .state = MLX5_MPW_STATE_CLOSED,
850         };
851
852         if (unlikely(!pkts_n))
853                 return 0;
854         /* Prefetch first packet cacheline. */
855         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
856         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
857         /* Start processing. */
858         mlx5_tx_complete(txq);
859         max_elts = (elts_n - (elts_head - txq->elts_tail));
860         /* A CQE slot must always be available. */
861         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
862         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
863         if (unlikely(!max_wqe))
864                 return 0;
865         do {
866                 struct rte_mbuf *buf = *(pkts++);
867                 uint32_t length;
868                 unsigned int segs_n = buf->nb_segs;
869                 uint32_t cs_flags;
870
871                 /*
872                  * Make sure there is enough room to store this packet and
873                  * that one ring entry remains unused.
874                  */
875                 assert(segs_n);
876                 if (max_elts < segs_n)
877                         break;
878                 /* Do not bother with large packets MPW cannot handle. */
879                 if (segs_n > MLX5_MPW_DSEG_MAX) {
880                         txq->stats.oerrors++;
881                         break;
882                 }
883                 max_elts -= segs_n;
884                 --pkts_n;
885                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
886                 /* Retrieve packet information. */
887                 length = PKT_LEN(buf);
888                 assert(length);
889                 /* Start new session if packet differs. */
890                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
891                     ((mpw.len != length) ||
892                      (segs_n != 1) ||
893                      (mpw.wqe->eseg.cs_flags != cs_flags)))
894                         mlx5_mpw_close(txq, &mpw);
895                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
896                         /*
897                          * Multi-Packet WQE consumes at most two WQE.
898                          * mlx5_mpw_new() expects to be able to use such
899                          * resources.
900                          */
901                         if (unlikely(max_wqe < 2))
902                                 break;
903                         max_wqe -= 2;
904                         mlx5_mpw_new(txq, &mpw, length);
905                         mpw.wqe->eseg.cs_flags = cs_flags;
906                 }
907                 /* Multi-segment packets must be alone in their MPW. */
908                 assert((segs_n == 1) || (mpw.pkts_n == 0));
909 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
910                 length = 0;
911 #endif
912                 do {
913                         volatile struct mlx5_wqe_data_seg *dseg;
914                         uintptr_t addr;
915
916                         assert(buf);
917                         (*txq->elts)[elts_head++ & elts_m] = buf;
918                         dseg = mpw.data.dseg[mpw.pkts_n];
919                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
920                         *dseg = (struct mlx5_wqe_data_seg){
921                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
922                                 .lkey = mlx5_tx_mb2mr(txq, buf),
923                                 .addr = rte_cpu_to_be_64(addr),
924                         };
925 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
926                         length += DATA_LEN(buf);
927 #endif
928                         buf = buf->next;
929                         ++mpw.pkts_n;
930                         ++j;
931                 } while (--segs_n);
932                 assert(length == mpw.len);
933                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
934                         mlx5_mpw_close(txq, &mpw);
935 #ifdef MLX5_PMD_SOFT_COUNTERS
936                 /* Increment sent bytes counter. */
937                 txq->stats.obytes += length;
938 #endif
939                 ++i;
940         } while (pkts_n);
941         /* Take a shortcut if nothing must be sent. */
942         if (unlikely(i == 0))
943                 return 0;
944         /* Check whether completion threshold has been reached. */
945         /* "j" includes both packets and segments. */
946         comp = txq->elts_comp + j;
947         if (comp >= MLX5_TX_COMP_THRESH) {
948                 volatile struct mlx5_wqe *wqe = mpw.wqe;
949
950                 /* Request completion on last WQE. */
951                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
952                 /* Save elts_head in unused "immediate" field of WQE. */
953                 wqe->ctrl[3] = elts_head;
954                 txq->elts_comp = 0;
955 #ifndef NDEBUG
956                 ++txq->cq_pi;
957 #endif
958         } else {
959                 txq->elts_comp = comp;
960         }
961 #ifdef MLX5_PMD_SOFT_COUNTERS
962         /* Increment sent packets counter. */
963         txq->stats.opackets += i;
964 #endif
965         /* Ring QP doorbell. */
966         if (mpw.state == MLX5_MPW_STATE_OPENED)
967                 mlx5_mpw_close(txq, &mpw);
968         mlx5_tx_dbrec(txq, mpw.wqe);
969         txq->elts_head = elts_head;
970         return i;
971 }
972
973 /**
974  * Open a MPW inline session.
975  *
976  * @param txq
977  *   Pointer to TX queue structure.
978  * @param mpw
979  *   Pointer to MPW session structure.
980  * @param length
981  *   Packet length.
982  */
983 static inline void
984 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
985                     uint32_t length)
986 {
987         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
988         struct mlx5_wqe_inl_small *inl;
989
990         mpw->state = MLX5_MPW_INL_STATE_OPENED;
991         mpw->pkts_n = 0;
992         mpw->len = length;
993         mpw->total_len = 0;
994         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
995         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
996                                              (txq->wqe_ci << 8) |
997                                              MLX5_OPCODE_TSO);
998         mpw->wqe->ctrl[2] = 0;
999         mpw->wqe->ctrl[3] = 0;
1000         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1001         mpw->wqe->eseg.inline_hdr_sz = 0;
1002         mpw->wqe->eseg.cs_flags = 0;
1003         mpw->wqe->eseg.rsvd0 = 0;
1004         mpw->wqe->eseg.rsvd1 = 0;
1005         mpw->wqe->eseg.rsvd2 = 0;
1006         inl = (struct mlx5_wqe_inl_small *)
1007                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1008         mpw->data.raw = (uint8_t *)&inl->raw;
1009 }
1010
1011 /**
1012  * Close a MPW inline session.
1013  *
1014  * @param txq
1015  *   Pointer to TX queue structure.
1016  * @param mpw
1017  *   Pointer to MPW session structure.
1018  */
1019 static inline void
1020 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1021 {
1022         unsigned int size;
1023         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1024                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1025
1026         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1027         /*
1028          * Store size in multiple of 16 bytes. Control and Ethernet segments
1029          * count as 2.
1030          */
1031         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1032                                              MLX5_WQE_DS(size));
1033         mpw->state = MLX5_MPW_STATE_CLOSED;
1034         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1035         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1036 }
1037
1038 /**
1039  * DPDK callback for TX with MPW inline support.
1040  *
1041  * @param dpdk_txq
1042  *   Generic pointer to TX queue structure.
1043  * @param[in] pkts
1044  *   Packets to transmit.
1045  * @param pkts_n
1046  *   Number of packets in array.
1047  *
1048  * @return
1049  *   Number of packets successfully transmitted (<= pkts_n).
1050  */
1051 uint16_t
1052 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1053                          uint16_t pkts_n)
1054 {
1055         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1056         uint16_t elts_head = txq->elts_head;
1057         const uint16_t elts_n = 1 << txq->elts_n;
1058         const uint16_t elts_m = elts_n - 1;
1059         unsigned int i = 0;
1060         unsigned int j = 0;
1061         uint16_t max_elts;
1062         uint16_t max_wqe;
1063         unsigned int comp;
1064         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1065         struct mlx5_mpw mpw = {
1066                 .state = MLX5_MPW_STATE_CLOSED,
1067         };
1068         /*
1069          * Compute the maximum number of WQE which can be consumed by inline
1070          * code.
1071          * - 2 DSEG for:
1072          *   - 1 control segment,
1073          *   - 1 Ethernet segment,
1074          * - N Dseg from the inline request.
1075          */
1076         const unsigned int wqe_inl_n =
1077                 ((2 * MLX5_WQE_DWORD_SIZE +
1078                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1079                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1080
1081         if (unlikely(!pkts_n))
1082                 return 0;
1083         /* Prefetch first packet cacheline. */
1084         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1085         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1086         /* Start processing. */
1087         mlx5_tx_complete(txq);
1088         max_elts = (elts_n - (elts_head - txq->elts_tail));
1089         /* A CQE slot must always be available. */
1090         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1091         do {
1092                 struct rte_mbuf *buf = *(pkts++);
1093                 uintptr_t addr;
1094                 uint32_t length;
1095                 unsigned int segs_n = buf->nb_segs;
1096                 uint8_t cs_flags;
1097
1098                 /*
1099                  * Make sure there is enough room to store this packet and
1100                  * that one ring entry remains unused.
1101                  */
1102                 assert(segs_n);
1103                 if (max_elts < segs_n)
1104                         break;
1105                 /* Do not bother with large packets MPW cannot handle. */
1106                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1107                         txq->stats.oerrors++;
1108                         break;
1109                 }
1110                 max_elts -= segs_n;
1111                 --pkts_n;
1112                 /*
1113                  * Compute max_wqe in case less WQE were consumed in previous
1114                  * iteration.
1115                  */
1116                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1117                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1118                 /* Retrieve packet information. */
1119                 length = PKT_LEN(buf);
1120                 /* Start new session if packet differs. */
1121                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1122                         if ((mpw.len != length) ||
1123                             (segs_n != 1) ||
1124                             (mpw.wqe->eseg.cs_flags != cs_flags))
1125                                 mlx5_mpw_close(txq, &mpw);
1126                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1127                         if ((mpw.len != length) ||
1128                             (segs_n != 1) ||
1129                             (length > inline_room) ||
1130                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1131                                 mlx5_mpw_inline_close(txq, &mpw);
1132                                 inline_room =
1133                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1134                         }
1135                 }
1136                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1137                         if ((segs_n != 1) ||
1138                             (length > inline_room)) {
1139                                 /*
1140                                  * Multi-Packet WQE consumes at most two WQE.
1141                                  * mlx5_mpw_new() expects to be able to use
1142                                  * such resources.
1143                                  */
1144                                 if (unlikely(max_wqe < 2))
1145                                         break;
1146                                 max_wqe -= 2;
1147                                 mlx5_mpw_new(txq, &mpw, length);
1148                                 mpw.wqe->eseg.cs_flags = cs_flags;
1149                         } else {
1150                                 if (unlikely(max_wqe < wqe_inl_n))
1151                                         break;
1152                                 max_wqe -= wqe_inl_n;
1153                                 mlx5_mpw_inline_new(txq, &mpw, length);
1154                                 mpw.wqe->eseg.cs_flags = cs_flags;
1155                         }
1156                 }
1157                 /* Multi-segment packets must be alone in their MPW. */
1158                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1159                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1160                         assert(inline_room ==
1161                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1162 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1163                         length = 0;
1164 #endif
1165                         do {
1166                                 volatile struct mlx5_wqe_data_seg *dseg;
1167
1168                                 assert(buf);
1169                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1170                                 dseg = mpw.data.dseg[mpw.pkts_n];
1171                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1172                                 *dseg = (struct mlx5_wqe_data_seg){
1173                                         .byte_count =
1174                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1175                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1176                                         .addr = rte_cpu_to_be_64(addr),
1177                                 };
1178 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1179                                 length += DATA_LEN(buf);
1180 #endif
1181                                 buf = buf->next;
1182                                 ++mpw.pkts_n;
1183                                 ++j;
1184                         } while (--segs_n);
1185                         assert(length == mpw.len);
1186                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1187                                 mlx5_mpw_close(txq, &mpw);
1188                 } else {
1189                         unsigned int max;
1190
1191                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1192                         assert(length <= inline_room);
1193                         assert(length == DATA_LEN(buf));
1194                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1195                         (*txq->elts)[elts_head++ & elts_m] = buf;
1196                         /* Maximum number of bytes before wrapping. */
1197                         max = ((((uintptr_t)(txq->wqes)) +
1198                                 (1 << txq->wqe_n) *
1199                                 MLX5_WQE_SIZE) -
1200                                (uintptr_t)mpw.data.raw);
1201                         if (length > max) {
1202                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1203                                            (void *)addr,
1204                                            max);
1205                                 mpw.data.raw = (volatile void *)txq->wqes;
1206                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1207                                            (void *)(addr + max),
1208                                            length - max);
1209                                 mpw.data.raw += length - max;
1210                         } else {
1211                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1212                                            (void *)addr,
1213                                            length);
1214
1215                                 if (length == max)
1216                                         mpw.data.raw =
1217                                                 (volatile void *)txq->wqes;
1218                                 else
1219                                         mpw.data.raw += length;
1220                         }
1221                         ++mpw.pkts_n;
1222                         mpw.total_len += length;
1223                         ++j;
1224                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1225                                 mlx5_mpw_inline_close(txq, &mpw);
1226                                 inline_room =
1227                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1228                         } else {
1229                                 inline_room -= length;
1230                         }
1231                 }
1232 #ifdef MLX5_PMD_SOFT_COUNTERS
1233                 /* Increment sent bytes counter. */
1234                 txq->stats.obytes += length;
1235 #endif
1236                 ++i;
1237         } while (pkts_n);
1238         /* Take a shortcut if nothing must be sent. */
1239         if (unlikely(i == 0))
1240                 return 0;
1241         /* Check whether completion threshold has been reached. */
1242         /* "j" includes both packets and segments. */
1243         comp = txq->elts_comp + j;
1244         if (comp >= MLX5_TX_COMP_THRESH) {
1245                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1246
1247                 /* Request completion on last WQE. */
1248                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1249                 /* Save elts_head in unused "immediate" field of WQE. */
1250                 wqe->ctrl[3] = elts_head;
1251                 txq->elts_comp = 0;
1252 #ifndef NDEBUG
1253                 ++txq->cq_pi;
1254 #endif
1255         } else {
1256                 txq->elts_comp = comp;
1257         }
1258 #ifdef MLX5_PMD_SOFT_COUNTERS
1259         /* Increment sent packets counter. */
1260         txq->stats.opackets += i;
1261 #endif
1262         /* Ring QP doorbell. */
1263         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1264                 mlx5_mpw_inline_close(txq, &mpw);
1265         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1266                 mlx5_mpw_close(txq, &mpw);
1267         mlx5_tx_dbrec(txq, mpw.wqe);
1268         txq->elts_head = elts_head;
1269         return i;
1270 }
1271
1272 /**
1273  * Open an Enhanced MPW session.
1274  *
1275  * @param txq
1276  *   Pointer to TX queue structure.
1277  * @param mpw
1278  *   Pointer to MPW session structure.
1279  * @param length
1280  *   Packet length.
1281  */
1282 static inline void
1283 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1284 {
1285         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1286
1287         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1288         mpw->pkts_n = 0;
1289         mpw->total_len = sizeof(struct mlx5_wqe);
1290         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1291         mpw->wqe->ctrl[0] =
1292                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1293                                  (txq->wqe_ci << 8) |
1294                                  MLX5_OPCODE_ENHANCED_MPSW);
1295         mpw->wqe->ctrl[2] = 0;
1296         mpw->wqe->ctrl[3] = 0;
1297         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1298         if (unlikely(padding)) {
1299                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1300
1301                 /* Pad the first 2 DWORDs with zero-length inline header. */
1302                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1303                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1304                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1305                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1306                 /* Start from the next WQEBB. */
1307                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1308         } else {
1309                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1310         }
1311 }
1312
1313 /**
1314  * Close an Enhanced MPW session.
1315  *
1316  * @param txq
1317  *   Pointer to TX queue structure.
1318  * @param mpw
1319  *   Pointer to MPW session structure.
1320  *
1321  * @return
1322  *   Number of consumed WQEs.
1323  */
1324 static inline uint16_t
1325 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1326 {
1327         uint16_t ret;
1328
1329         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1330          * count as 2.
1331          */
1332         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1333                                              MLX5_WQE_DS(mpw->total_len));
1334         mpw->state = MLX5_MPW_STATE_CLOSED;
1335         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1336         txq->wqe_ci += ret;
1337         return ret;
1338 }
1339
1340 /**
1341  * TX with Enhanced MPW support.
1342  *
1343  * @param txq
1344  *   Pointer to TX queue structure.
1345  * @param[in] pkts
1346  *   Packets to transmit.
1347  * @param pkts_n
1348  *   Number of packets in array.
1349  *
1350  * @return
1351  *   Number of packets successfully transmitted (<= pkts_n).
1352  */
1353 static inline uint16_t
1354 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1355                uint16_t pkts_n)
1356 {
1357         uint16_t elts_head = txq->elts_head;
1358         const uint16_t elts_n = 1 << txq->elts_n;
1359         const uint16_t elts_m = elts_n - 1;
1360         unsigned int i = 0;
1361         unsigned int j = 0;
1362         uint16_t max_elts;
1363         uint16_t max_wqe;
1364         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1365         unsigned int mpw_room = 0;
1366         unsigned int inl_pad = 0;
1367         uint32_t inl_hdr;
1368         struct mlx5_mpw mpw = {
1369                 .state = MLX5_MPW_STATE_CLOSED,
1370         };
1371
1372         if (unlikely(!pkts_n))
1373                 return 0;
1374         /* Start processing. */
1375         mlx5_tx_complete(txq);
1376         max_elts = (elts_n - (elts_head - txq->elts_tail));
1377         /* A CQE slot must always be available. */
1378         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1379         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1380         if (unlikely(!max_wqe))
1381                 return 0;
1382         do {
1383                 struct rte_mbuf *buf = *(pkts++);
1384                 uintptr_t addr;
1385                 unsigned int do_inline = 0; /* Whether inline is possible. */
1386                 uint32_t length;
1387                 uint8_t cs_flags;
1388
1389                 /* Multi-segmented packet is handled in slow-path outside. */
1390                 assert(NB_SEGS(buf) == 1);
1391                 /* Make sure there is enough room to store this packet. */
1392                 if (max_elts - j == 0)
1393                         break;
1394                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1395                 /* Retrieve packet information. */
1396                 length = PKT_LEN(buf);
1397                 /* Start new session if:
1398                  * - multi-segment packet
1399                  * - no space left even for a dseg
1400                  * - next packet can be inlined with a new WQE
1401                  * - cs_flag differs
1402                  */
1403                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1404                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1405                              mpw_room) ||
1406                             (length <= txq->inline_max_packet_sz &&
1407                              inl_pad + sizeof(inl_hdr) + length >
1408                              mpw_room) ||
1409                             (mpw.wqe->eseg.cs_flags != cs_flags))
1410                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1411                 }
1412                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1413                         /* In Enhanced MPW, inline as much as the budget is
1414                          * allowed. The remaining space is to be filled with
1415                          * dsegs. If the title WQEBB isn't padded, it will have
1416                          * 2 dsegs there.
1417                          */
1418                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1419                                            (max_inline ? max_inline :
1420                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1421                                            MLX5_WQE_SIZE);
1422                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1423                                 break;
1424                         /* Don't pad the title WQEBB to not waste WQ. */
1425                         mlx5_empw_new(txq, &mpw, 0);
1426                         mpw_room -= mpw.total_len;
1427                         inl_pad = 0;
1428                         do_inline = length <= txq->inline_max_packet_sz &&
1429                                     sizeof(inl_hdr) + length <= mpw_room &&
1430                                     !txq->mpw_hdr_dseg;
1431                         mpw.wqe->eseg.cs_flags = cs_flags;
1432                 } else {
1433                         /* Evaluate whether the next packet can be inlined.
1434                          * Inlininig is possible when:
1435                          * - length is less than configured value
1436                          * - length fits for remaining space
1437                          * - not required to fill the title WQEBB with dsegs
1438                          */
1439                         do_inline =
1440                                 length <= txq->inline_max_packet_sz &&
1441                                 inl_pad + sizeof(inl_hdr) + length <=
1442                                  mpw_room &&
1443                                 (!txq->mpw_hdr_dseg ||
1444                                  mpw.total_len >= MLX5_WQE_SIZE);
1445                 }
1446                 if (max_inline && do_inline) {
1447                         /* Inline packet into WQE. */
1448                         unsigned int max;
1449
1450                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1451                         assert(length == DATA_LEN(buf));
1452                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1453                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1454                         mpw.data.raw = (volatile void *)
1455                                 ((uintptr_t)mpw.data.raw + inl_pad);
1456                         max = tx_mlx5_wq_tailroom(txq,
1457                                         (void *)(uintptr_t)mpw.data.raw);
1458                         /* Copy inline header. */
1459                         mpw.data.raw = (volatile void *)
1460                                 mlx5_copy_to_wq(
1461                                           (void *)(uintptr_t)mpw.data.raw,
1462                                           &inl_hdr,
1463                                           sizeof(inl_hdr),
1464                                           (void *)(uintptr_t)txq->wqes,
1465                                           max);
1466                         max = tx_mlx5_wq_tailroom(txq,
1467                                         (void *)(uintptr_t)mpw.data.raw);
1468                         /* Copy packet data. */
1469                         mpw.data.raw = (volatile void *)
1470                                 mlx5_copy_to_wq(
1471                                           (void *)(uintptr_t)mpw.data.raw,
1472                                           (void *)addr,
1473                                           length,
1474                                           (void *)(uintptr_t)txq->wqes,
1475                                           max);
1476                         ++mpw.pkts_n;
1477                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1478                         /* No need to get completion as the entire packet is
1479                          * copied to WQ. Free the buf right away.
1480                          */
1481                         rte_pktmbuf_free_seg(buf);
1482                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1483                         /* Add pad in the next packet if any. */
1484                         inl_pad = (((uintptr_t)mpw.data.raw +
1485                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1486                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1487                                   (uintptr_t)mpw.data.raw;
1488                 } else {
1489                         /* No inline. Load a dseg of packet pointer. */
1490                         volatile rte_v128u32_t *dseg;
1491
1492                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1493                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1494                         assert(length == DATA_LEN(buf));
1495                         if (!tx_mlx5_wq_tailroom(txq,
1496                                         (void *)((uintptr_t)mpw.data.raw
1497                                                 + inl_pad)))
1498                                 dseg = (volatile void *)txq->wqes;
1499                         else
1500                                 dseg = (volatile void *)
1501                                         ((uintptr_t)mpw.data.raw +
1502                                          inl_pad);
1503                         (*txq->elts)[elts_head++ & elts_m] = buf;
1504                         addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1505                                                                  uintptr_t));
1506                         *dseg = (rte_v128u32_t) {
1507                                 rte_cpu_to_be_32(length),
1508                                 mlx5_tx_mb2mr(txq, buf),
1509                                 addr,
1510                                 addr >> 32,
1511                         };
1512                         mpw.data.raw = (volatile void *)(dseg + 1);
1513                         mpw.total_len += (inl_pad + sizeof(*dseg));
1514                         ++j;
1515                         ++mpw.pkts_n;
1516                         mpw_room -= (inl_pad + sizeof(*dseg));
1517                         inl_pad = 0;
1518                 }
1519 #ifdef MLX5_PMD_SOFT_COUNTERS
1520                 /* Increment sent bytes counter. */
1521                 txq->stats.obytes += length;
1522 #endif
1523                 ++i;
1524         } while (i < pkts_n);
1525         /* Take a shortcut if nothing must be sent. */
1526         if (unlikely(i == 0))
1527                 return 0;
1528         /* Check whether completion threshold has been reached. */
1529         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1530                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1531                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1532                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1533
1534                 /* Request completion on last WQE. */
1535                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1536                 /* Save elts_head in unused "immediate" field of WQE. */
1537                 wqe->ctrl[3] = elts_head;
1538                 txq->elts_comp = 0;
1539                 txq->mpw_comp = txq->wqe_ci;
1540 #ifndef NDEBUG
1541                 ++txq->cq_pi;
1542 #endif
1543         } else {
1544                 txq->elts_comp += j;
1545         }
1546 #ifdef MLX5_PMD_SOFT_COUNTERS
1547         /* Increment sent packets counter. */
1548         txq->stats.opackets += i;
1549 #endif
1550         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1551                 mlx5_empw_close(txq, &mpw);
1552         /* Ring QP doorbell. */
1553         mlx5_tx_dbrec(txq, mpw.wqe);
1554         txq->elts_head = elts_head;
1555         return i;
1556 }
1557
1558 /**
1559  * DPDK callback for TX with Enhanced MPW support.
1560  *
1561  * @param dpdk_txq
1562  *   Generic pointer to TX queue structure.
1563  * @param[in] pkts
1564  *   Packets to transmit.
1565  * @param pkts_n
1566  *   Number of packets in array.
1567  *
1568  * @return
1569  *   Number of packets successfully transmitted (<= pkts_n).
1570  */
1571 uint16_t
1572 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1573 {
1574         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1575         uint16_t nb_tx = 0;
1576
1577         while (pkts_n > nb_tx) {
1578                 uint16_t n;
1579                 uint16_t ret;
1580
1581                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1582                 if (n) {
1583                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1584                         if (!ret)
1585                                 break;
1586                         nb_tx += ret;
1587                 }
1588                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1589                 if (n) {
1590                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1591                         if (!ret)
1592                                 break;
1593                         nb_tx += ret;
1594                 }
1595         }
1596         return nb_tx;
1597 }
1598
1599 /**
1600  * Translate RX completion flags to packet type.
1601  *
1602  * @param[in] cqe
1603  *   Pointer to CQE.
1604  *
1605  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1606  *
1607  * @return
1608  *   Packet type for struct rte_mbuf.
1609  */
1610 static inline uint32_t
1611 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1612 {
1613         uint8_t idx;
1614         uint8_t pinfo = cqe->pkt_info;
1615         uint16_t ptype = cqe->hdr_type_etc;
1616
1617         /*
1618          * The index to the array should have:
1619          * bit[1:0] = l3_hdr_type
1620          * bit[4:2] = l4_hdr_type
1621          * bit[5] = ip_frag
1622          * bit[6] = tunneled
1623          * bit[7] = outer_l3_type
1624          */
1625         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1626         return mlx5_ptype_table[idx];
1627 }
1628
1629 /**
1630  * Get size of the next packet for a given CQE. For compressed CQEs, the
1631  * consumer index is updated only once all packets of the current one have
1632  * been processed.
1633  *
1634  * @param rxq
1635  *   Pointer to RX queue.
1636  * @param cqe
1637  *   CQE to process.
1638  * @param[out] rss_hash
1639  *   Packet RSS Hash result.
1640  *
1641  * @return
1642  *   Packet size in bytes (0 if there is none), -1 in case of completion
1643  *   with error.
1644  */
1645 static inline int
1646 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1647                  uint16_t cqe_cnt, uint32_t *rss_hash)
1648 {
1649         struct rxq_zip *zip = &rxq->zip;
1650         uint16_t cqe_n = cqe_cnt + 1;
1651         int len = 0;
1652         uint16_t idx, end;
1653
1654         /* Process compressed data in the CQE and mini arrays. */
1655         if (zip->ai) {
1656                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1657                         (volatile struct mlx5_mini_cqe8 (*)[8])
1658                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1659
1660                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1661                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1662                 if ((++zip->ai & 7) == 0) {
1663                         /* Invalidate consumed CQEs */
1664                         idx = zip->ca;
1665                         end = zip->na;
1666                         while (idx != end) {
1667                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1668                                         MLX5_CQE_INVALIDATE;
1669                                 ++idx;
1670                         }
1671                         /*
1672                          * Increment consumer index to skip the number of
1673                          * CQEs consumed. Hardware leaves holes in the CQ
1674                          * ring for software use.
1675                          */
1676                         zip->ca = zip->na;
1677                         zip->na += 8;
1678                 }
1679                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1680                         /* Invalidate the rest */
1681                         idx = zip->ca;
1682                         end = zip->cq_ci;
1683
1684                         while (idx != end) {
1685                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1686                                         MLX5_CQE_INVALIDATE;
1687                                 ++idx;
1688                         }
1689                         rxq->cq_ci = zip->cq_ci;
1690                         zip->ai = 0;
1691                 }
1692         /* No compressed data, get next CQE and verify if it is compressed. */
1693         } else {
1694                 int ret;
1695                 int8_t op_own;
1696
1697                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1698                 if (unlikely(ret == 1))
1699                         return 0;
1700                 ++rxq->cq_ci;
1701                 op_own = cqe->op_own;
1702                 rte_cio_rmb();
1703                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1704                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1705                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1706                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1707                                                           cqe_cnt].pkt_info);
1708
1709                         /* Fix endianness. */
1710                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1711                         /*
1712                          * Current mini array position is the one returned by
1713                          * check_cqe64().
1714                          *
1715                          * If completion comprises several mini arrays, as a
1716                          * special case the second one is located 7 CQEs after
1717                          * the initial CQE instead of 8 for subsequent ones.
1718                          */
1719                         zip->ca = rxq->cq_ci;
1720                         zip->na = zip->ca + 7;
1721                         /* Compute the next non compressed CQE. */
1722                         --rxq->cq_ci;
1723                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1724                         /* Get packet size to return. */
1725                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1726                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1727                         zip->ai = 1;
1728                         /* Prefetch all the entries to be invalidated */
1729                         idx = zip->ca;
1730                         end = zip->cq_ci;
1731                         while (idx != end) {
1732                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1733                                 ++idx;
1734                         }
1735                 } else {
1736                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1737                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1738                 }
1739                 /* Error while receiving packet. */
1740                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1741                         return -1;
1742         }
1743         return len;
1744 }
1745
1746 /**
1747  * Translate RX completion flags to offload flags.
1748  *
1749  * @param[in] rxq
1750  *   Pointer to RX queue structure.
1751  * @param[in] cqe
1752  *   Pointer to CQE.
1753  *
1754  * @return
1755  *   Offload flags (ol_flags) for struct rte_mbuf.
1756  */
1757 static inline uint32_t
1758 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1759 {
1760         uint32_t ol_flags = 0;
1761         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1762
1763         ol_flags =
1764                 TRANSPOSE(flags,
1765                           MLX5_CQE_RX_L3_HDR_VALID,
1766                           PKT_RX_IP_CKSUM_GOOD) |
1767                 TRANSPOSE(flags,
1768                           MLX5_CQE_RX_L4_HDR_VALID,
1769                           PKT_RX_L4_CKSUM_GOOD);
1770         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1771                 ol_flags |=
1772                         TRANSPOSE(flags,
1773                                   MLX5_CQE_RX_L3_HDR_VALID,
1774                                   PKT_RX_IP_CKSUM_GOOD) |
1775                         TRANSPOSE(flags,
1776                                   MLX5_CQE_RX_L4_HDR_VALID,
1777                                   PKT_RX_L4_CKSUM_GOOD);
1778         return ol_flags;
1779 }
1780
1781 /**
1782  * DPDK callback for RX.
1783  *
1784  * @param dpdk_rxq
1785  *   Generic pointer to RX queue structure.
1786  * @param[out] pkts
1787  *   Array to store received packets.
1788  * @param pkts_n
1789  *   Maximum number of packets in array.
1790  *
1791  * @return
1792  *   Number of packets successfully received (<= pkts_n).
1793  */
1794 uint16_t
1795 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1796 {
1797         struct mlx5_rxq_data *rxq = dpdk_rxq;
1798         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1799         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1800         const unsigned int sges_n = rxq->sges_n;
1801         struct rte_mbuf *pkt = NULL;
1802         struct rte_mbuf *seg = NULL;
1803         volatile struct mlx5_cqe *cqe =
1804                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1805         unsigned int i = 0;
1806         unsigned int rq_ci = rxq->rq_ci << sges_n;
1807         int len = 0; /* keep its value across iterations. */
1808
1809         while (pkts_n) {
1810                 unsigned int idx = rq_ci & wqe_cnt;
1811                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1812                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1813                 uint32_t rss_hash_res = 0;
1814
1815                 if (pkt)
1816                         NEXT(seg) = rep;
1817                 seg = rep;
1818                 rte_prefetch0(seg);
1819                 rte_prefetch0(cqe);
1820                 rte_prefetch0(wqe);
1821                 rep = rte_mbuf_raw_alloc(rxq->mp);
1822                 if (unlikely(rep == NULL)) {
1823                         ++rxq->stats.rx_nombuf;
1824                         if (!pkt) {
1825                                 /*
1826                                  * no buffers before we even started,
1827                                  * bail out silently.
1828                                  */
1829                                 break;
1830                         }
1831                         while (pkt != seg) {
1832                                 assert(pkt != (*rxq->elts)[idx]);
1833                                 rep = NEXT(pkt);
1834                                 NEXT(pkt) = NULL;
1835                                 NB_SEGS(pkt) = 1;
1836                                 rte_mbuf_raw_free(pkt);
1837                                 pkt = rep;
1838                         }
1839                         break;
1840                 }
1841                 if (!pkt) {
1842                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1843                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1844                                                &rss_hash_res);
1845                         if (!len) {
1846                                 rte_mbuf_raw_free(rep);
1847                                 break;
1848                         }
1849                         if (unlikely(len == -1)) {
1850                                 /* RX error, packet is likely too large. */
1851                                 rte_mbuf_raw_free(rep);
1852                                 ++rxq->stats.idropped;
1853                                 goto skip;
1854                         }
1855                         pkt = seg;
1856                         assert(len >= (rxq->crc_present << 2));
1857                         /* Update packet information. */
1858                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1859                         pkt->ol_flags = 0;
1860                         if (rss_hash_res && rxq->rss_hash) {
1861                                 pkt->hash.rss = rss_hash_res;
1862                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1863                         }
1864                         if (rxq->mark &&
1865                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1866                                 pkt->ol_flags |= PKT_RX_FDIR;
1867                                 if (cqe->sop_drop_qpn !=
1868                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1869                                         uint32_t mark = cqe->sop_drop_qpn;
1870
1871                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1872                                         pkt->hash.fdir.hi =
1873                                                 mlx5_flow_mark_get(mark);
1874                                 }
1875                         }
1876                         if (rxq->csum | rxq->csum_l2tun)
1877                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1878                         if (rxq->vlan_strip &&
1879                             (cqe->hdr_type_etc &
1880                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1881                                 pkt->ol_flags |= PKT_RX_VLAN |
1882                                         PKT_RX_VLAN_STRIPPED;
1883                                 pkt->vlan_tci =
1884                                         rte_be_to_cpu_16(cqe->vlan_info);
1885                         }
1886                         if (rxq->hw_timestamp) {
1887                                 pkt->timestamp =
1888                                         rte_be_to_cpu_64(cqe->timestamp);
1889                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1890                         }
1891                         if (rxq->crc_present)
1892                                 len -= ETHER_CRC_LEN;
1893                         PKT_LEN(pkt) = len;
1894                 }
1895                 DATA_LEN(rep) = DATA_LEN(seg);
1896                 PKT_LEN(rep) = PKT_LEN(seg);
1897                 SET_DATA_OFF(rep, DATA_OFF(seg));
1898                 PORT(rep) = PORT(seg);
1899                 (*rxq->elts)[idx] = rep;
1900                 /*
1901                  * Fill NIC descriptor with the new buffer.  The lkey and size
1902                  * of the buffers are already known, only the buffer address
1903                  * changes.
1904                  */
1905                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1906                 if (len > DATA_LEN(seg)) {
1907                         len -= DATA_LEN(seg);
1908                         ++NB_SEGS(pkt);
1909                         ++rq_ci;
1910                         continue;
1911                 }
1912                 DATA_LEN(seg) = len;
1913 #ifdef MLX5_PMD_SOFT_COUNTERS
1914                 /* Increment bytes counter. */
1915                 rxq->stats.ibytes += PKT_LEN(pkt);
1916 #endif
1917                 /* Return packet. */
1918                 *(pkts++) = pkt;
1919                 pkt = NULL;
1920                 --pkts_n;
1921                 ++i;
1922 skip:
1923                 /* Align consumer index to the next stride. */
1924                 rq_ci >>= sges_n;
1925                 ++rq_ci;
1926                 rq_ci <<= sges_n;
1927         }
1928         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1929                 return 0;
1930         /* Update the consumer index. */
1931         rxq->rq_ci = rq_ci >> sges_n;
1932         rte_cio_wmb();
1933         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1934         rte_cio_wmb();
1935         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1936 #ifdef MLX5_PMD_SOFT_COUNTERS
1937         /* Increment packets counter. */
1938         rxq->stats.ipackets += i;
1939 #endif
1940         return i;
1941 }
1942
1943 /**
1944  * Dummy DPDK callback for TX.
1945  *
1946  * This function is used to temporarily replace the real callback during
1947  * unsafe control operations on the queue, or in case of error.
1948  *
1949  * @param dpdk_txq
1950  *   Generic pointer to TX queue structure.
1951  * @param[in] pkts
1952  *   Packets to transmit.
1953  * @param pkts_n
1954  *   Number of packets in array.
1955  *
1956  * @return
1957  *   Number of packets successfully transmitted (<= pkts_n).
1958  */
1959 uint16_t
1960 removed_tx_burst(void *dpdk_txq __rte_unused,
1961                  struct rte_mbuf **pkts __rte_unused,
1962                  uint16_t pkts_n __rte_unused)
1963 {
1964         return 0;
1965 }
1966
1967 /**
1968  * Dummy DPDK callback for RX.
1969  *
1970  * This function is used to temporarily replace the real callback during
1971  * unsafe control operations on the queue, or in case of error.
1972  *
1973  * @param dpdk_rxq
1974  *   Generic pointer to RX queue structure.
1975  * @param[out] pkts
1976  *   Array to store received packets.
1977  * @param pkts_n
1978  *   Maximum number of packets in array.
1979  *
1980  * @return
1981  *   Number of packets successfully received (<= pkts_n).
1982  */
1983 uint16_t
1984 removed_rx_burst(void *dpdk_txq __rte_unused,
1985                  struct rte_mbuf **pkts __rte_unused,
1986                  uint16_t pkts_n __rte_unused)
1987 {
1988         return 0;
1989 }
1990
1991 /*
1992  * Vectorized Rx/Tx routines are not compiled in when required vector
1993  * instructions are not supported on a target architecture. The following null
1994  * stubs are needed for linkage when those are not included outside of this file
1995  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1996  */
1997
1998 uint16_t __attribute__((weak))
1999 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2000                       struct rte_mbuf **pkts __rte_unused,
2001                       uint16_t pkts_n __rte_unused)
2002 {
2003         return 0;
2004 }
2005
2006 uint16_t __attribute__((weak))
2007 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2008                   struct rte_mbuf **pkts __rte_unused,
2009                   uint16_t pkts_n __rte_unused)
2010 {
2011         return 0;
2012 }
2013
2014 uint16_t __attribute__((weak))
2015 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2016                   struct rte_mbuf **pkts __rte_unused,
2017                   uint16_t pkts_n __rte_unused)
2018 {
2019         return 0;
2020 }
2021
2022 int __attribute__((weak))
2023 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2024 {
2025         return -ENOTSUP;
2026 }
2027
2028 int __attribute__((weak))
2029 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2030 {
2031         return -ENOTSUP;
2032 }
2033
2034 int __attribute__((weak))
2035 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2036 {
2037         return -ENOTSUP;
2038 }
2039
2040 int __attribute__((weak))
2041 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2042 {
2043         return -ENOTSUP;
2044 }