1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
12 #include <smmintrin.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
20 #include "mlx5_defs.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
32 * Store free buffers to RX SW ring.
35 * Pointer to RX queue structure.
37 * Pointer to array of packets to be stored.
39 * Number of packets to be stored.
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
44 const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45 struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
49 for (pos = 0; pos < p; pos += 2) {
52 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
56 pkts[pos] = elts[pos];
60 * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61 * extracted from the title completion descriptor.
64 * Pointer to RX queue structure.
66 * Pointer to completion array having a compressed completion at first.
68 * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69 * the title completion descriptor to be copied to the rest of mbufs.
72 * Number of mini-CQEs successfully decompressed.
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76 struct rte_mbuf **elts)
78 volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79 struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
83 /* Mask to shuffle from extracted mini CQE to mbuf. */
84 const __m128i shuf_mask1 =
85 _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
86 -1, -1, /* skip vlan_tci */
87 6, 7, /* data_len, bswap16 */
88 -1, -1, 6, 7, /* pkt_len, bswap16 */
89 -1, -1, -1, -1 /* skip packet_type */);
90 const __m128i shuf_mask2 =
91 _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
92 -1, -1, /* skip vlan_tci */
93 14, 15, /* data_len, bswap16 */
94 -1, -1, 14, 15, /* pkt_len, bswap16 */
95 -1, -1, -1, -1 /* skip packet_type */);
96 /* Restore the compressed count. Must be 16 bits. */
97 const uint16_t mcqe_n = t_pkt->data_len +
98 (rxq->crc_present * RTE_ETHER_CRC_LEN);
100 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
102 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103 const __m128i crc_adj =
104 _mm_set_epi16(0, 0, 0,
105 rxq->crc_present * RTE_ETHER_CRC_LEN,
107 rxq->crc_present * RTE_ETHER_CRC_LEN,
109 const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111 const __m128i zero = _mm_setzero_si128();
112 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113 uint32_t rcvd_byte = 0;
114 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115 const __m128i len_shuf_mask =
116 _mm_set_epi8(-1, -1, -1, -1,
122 * A. load mCQEs into a 128bit register.
123 * B. store rearm data to mbuf.
124 * C. combine data from mCQEs with rx_descriptor_fields1.
125 * D. store rx_descriptor_fields1.
126 * E. store flow tag (rte_flow mark).
128 for (pos = 0; pos < mcqe_n; ) {
129 __m128i mcqe1, mcqe2;
130 __m128i rxdf1, rxdf2;
131 #ifdef MLX5_PMD_SOFT_COUNTERS
132 __m128i byte_cnt, invalid_mask;
135 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
136 if (likely(pos + i < mcqe_n))
137 rte_prefetch0((void *)(cq + pos + i));
138 /* A.1 load mCQEs into a 128bit register. */
139 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
140 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
141 /* B.1 store rearm data to mbuf. */
142 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
143 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
144 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
145 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
146 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
147 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
148 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
149 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
150 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
151 /* D.1 store rx_descriptor_fields1. */
152 _mm_storeu_si128((__m128i *)
153 &elts[pos]->rx_descriptor_fields1,
155 _mm_storeu_si128((__m128i *)
156 &elts[pos + 1]->rx_descriptor_fields1,
158 /* B.1 store rearm data to mbuf. */
159 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
160 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
161 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
162 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
163 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
164 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
165 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
166 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
167 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
168 /* D.1 store rx_descriptor_fields1. */
169 _mm_storeu_si128((__m128i *)
170 &elts[pos + 2]->rx_descriptor_fields1,
172 _mm_storeu_si128((__m128i *)
173 &elts[pos + 3]->rx_descriptor_fields1,
175 #ifdef MLX5_PMD_SOFT_COUNTERS
176 invalid_mask = _mm_set_epi64x(0,
178 sizeof(uint16_t) * 8);
179 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
180 mcqe1 = _mm_srli_si128(mcqe1, 4);
181 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
182 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
183 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
184 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
185 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
188 /* E.1 store flow tag (rte_flow mark). */
189 elts[pos]->hash.fdir.hi = flow_tag;
190 elts[pos + 1]->hash.fdir.hi = flow_tag;
191 elts[pos + 2]->hash.fdir.hi = flow_tag;
192 elts[pos + 3]->hash.fdir.hi = flow_tag;
194 if (rxq->dynf_meta) {
195 int32_t offs = rxq->flow_meta_offset;
196 const uint32_t meta =
197 *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
199 /* Check if title packet has valid metadata. */
201 MLX5_ASSERT(t_pkt->ol_flags &
202 rxq->flow_meta_mask);
203 *RTE_MBUF_DYNFIELD(elts[pos], offs,
205 *RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
207 *RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
209 *RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
213 pos += MLX5_VPMD_DESCS_PER_LOOP;
214 /* Move to next CQE and invalidate consumed CQEs. */
215 if (!(pos & 0x7) && pos < mcqe_n) {
216 if (pos + 8 < mcqe_n)
217 rte_prefetch0((void *)(cq + pos + 8));
218 mcq = (void *)(cq + pos);
219 for (i = 0; i < 8; ++i)
220 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
223 /* Invalidate the rest of CQEs. */
224 for (; inv < mcqe_n; ++inv)
225 cq[inv].op_own = MLX5_CQE_INVALIDATE;
226 #ifdef MLX5_PMD_SOFT_COUNTERS
227 rxq->stats.ipackets += mcqe_n;
228 rxq->stats.ibytes += rcvd_byte;
230 rxq->cq_ci += mcqe_n;
235 * Calculate packet type and offload flag for mbuf and store it.
238 * Pointer to RX queue structure.
240 * Array of four 16bytes completions extracted from the original completion
243 * Opcode vector having responder error status. Each field is 4B.
245 * Pointer to array of packets to be filled.
248 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
249 __m128i op_err, struct rte_mbuf **pkts)
251 __m128i pinfo0, pinfo1;
252 __m128i pinfo, ptype;
253 __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
254 rxq->hw_timestamp * PKT_RX_TIMESTAMP);
256 const __m128i zero = _mm_setzero_si128();
257 const __m128i ptype_mask =
258 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
259 const __m128i ptype_ol_mask =
260 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
261 const __m128i pinfo_mask =
262 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
263 const __m128i cv_flag_sel =
264 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
265 (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
266 PKT_RX_L4_CKSUM_GOOD) >> 1),
268 (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
270 (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
271 (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
273 const __m128i cv_mask =
274 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
275 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
276 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
277 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
278 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
279 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
280 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
281 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
282 const __m128i mbuf_init =
283 _mm_load_si128((__m128i *)&rxq->mbuf_initializer);
284 __m128i rearm0, rearm1, rearm2, rearm3;
285 uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
287 /* Extract pkt_info field. */
288 pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
289 pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
290 pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
291 /* Extract hdr_type_etc field. */
292 pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
293 pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
294 ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
296 const __m128i pinfo_ft_mask =
297 _mm_set_epi32(0xffffff00, 0xffffff00,
298 0xffffff00, 0xffffff00);
299 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
300 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
301 __m128i flow_tag, invalid_mask;
303 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
304 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
305 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
306 ol_flags = _mm_or_si128(ol_flags,
307 _mm_andnot_si128(invalid_mask,
309 /* Mask out invalid entries. */
310 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
311 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
312 ol_flags = _mm_or_si128(ol_flags,
314 _mm_cmpeq_epi32(flow_tag,
319 * Merge the two fields to generate the following:
323 * bit[11:10] = l3_hdr_type
324 * bit[14:12] = l4_hdr_type
327 * bit[17] = outer_l3_type
329 ptype = _mm_and_si128(ptype, ptype_mask);
330 pinfo = _mm_and_si128(pinfo, pinfo_mask);
331 pinfo = _mm_slli_epi32(pinfo, 16);
332 /* Make pinfo has merged fields for ol_flags calculation. */
333 pinfo = _mm_or_si128(ptype, pinfo);
334 ptype = _mm_srli_epi32(pinfo, 10);
335 ptype = _mm_packs_epi32(ptype, zero);
336 /* Errored packets will have RTE_PTYPE_ALL_MASK. */
337 op_err = _mm_srli_epi16(op_err, 8);
338 ptype = _mm_or_si128(ptype, op_err);
339 pt_idx0 = _mm_extract_epi8(ptype, 0);
340 pt_idx1 = _mm_extract_epi8(ptype, 2);
341 pt_idx2 = _mm_extract_epi8(ptype, 4);
342 pt_idx3 = _mm_extract_epi8(ptype, 6);
343 pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
344 !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
345 pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
346 !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
347 pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
348 !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
349 pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
350 !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
351 /* Fill flags for checksum and VLAN. */
352 pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
353 pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
354 /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
355 cv_flags = _mm_slli_epi32(pinfo, 9);
356 cv_flags = _mm_or_si128(pinfo, cv_flags);
357 /* Move back flags to start from byte[0]. */
358 cv_flags = _mm_srli_epi32(cv_flags, 8);
359 /* Mask out garbage bits. */
360 cv_flags = _mm_and_si128(cv_flags, cv_mask);
361 /* Merge to ol_flags. */
362 ol_flags = _mm_or_si128(ol_flags, cv_flags);
363 /* Merge mbuf_init and ol_flags. */
364 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
365 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
366 rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
367 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
368 /* Write 8B rearm_data and 8B ol_flags. */
369 _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
370 _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
371 _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
372 _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
376 * Receive burst of packets. An errored completion also consumes a mbuf, but the
377 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
378 * before returning to application.
381 * Pointer to RX queue structure.
383 * Array to store received packets.
385 * Maximum number of packets in array.
387 * Pointer to a flag. Set non-zero value if pkts array has at least one error
390 * Pointer to a boolean. Set true if no new CQE seen.
393 * Number of packets received including errors (<= pkts_n).
395 static inline uint16_t
396 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
397 uint64_t *err, bool *no_cq)
399 const uint16_t q_n = 1 << rxq->cqe_n;
400 const uint16_t q_mask = q_n - 1;
401 volatile struct mlx5_cqe *cq;
402 struct rte_mbuf **elts;
406 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
407 uint16_t nocmp_n = 0;
408 uint16_t rcvd_pkt = 0;
409 unsigned int cq_idx = rxq->cq_ci & q_mask;
410 unsigned int elts_idx;
411 unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
412 const __m128i owner_check =
413 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
414 const __m128i opcode_check =
415 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
416 const __m128i format_check =
417 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
418 const __m128i resp_err_check =
419 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
420 #ifdef MLX5_PMD_SOFT_COUNTERS
421 uint32_t rcvd_byte = 0;
422 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
423 const __m128i len_shuf_mask =
424 _mm_set_epi8(-1, -1, -1, -1,
429 /* Mask to shuffle from extracted CQE to mbuf. */
430 const __m128i shuf_mask =
431 _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
432 12, 13, 14, 15, /* rss, bswap32 */
433 10, 11, /* vlan_tci, bswap16 */
434 4, 5, /* data_len, bswap16 */
435 -1, -1, /* zero out 2nd half of pkt_len */
436 4, 5 /* pkt_len, bswap16 */);
437 /* Mask to blend from the last Qword to the first DQword. */
438 const __m128i blend_mask =
439 _mm_set_epi8(-1, -1, -1, -1,
443 const __m128i zero = _mm_setzero_si128();
444 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
445 const __m128i crc_adj =
446 _mm_set_epi16(0, 0, 0, 0, 0,
447 rxq->crc_present * RTE_ETHER_CRC_LEN,
449 rxq->crc_present * RTE_ETHER_CRC_LEN);
450 const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
452 MLX5_ASSERT(rxq->sges_n == 0);
453 MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
454 cq = &(*rxq->cqes)[cq_idx];
456 rte_prefetch0(cq + 1);
457 rte_prefetch0(cq + 2);
458 rte_prefetch0(cq + 3);
459 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
460 repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
461 if (repl_n >= rxq->rq_repl_thresh)
462 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
463 /* See if there're unreturned mbufs from compressed CQE. */
464 rcvd_pkt = rxq->decompressed;
466 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
467 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
468 rxq->rq_pi += rcvd_pkt;
469 rxq->decompressed -= rcvd_pkt;
472 elts_idx = rxq->rq_pi & q_mask;
473 elts = &(*rxq->elts)[elts_idx];
474 /* Not to overflow pkts array. */
475 pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
476 /* Not to cross queue end. */
477 pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
478 pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
483 /* At this point, there shouldn't be any remained packets. */
484 MLX5_ASSERT(rxq->decompressed == 0);
486 * A. load first Qword (8bytes) in one loop.
487 * B. copy 4 mbuf pointers from elts ring to returing pkts.
488 * C. load remained CQE data and extract necessary fields.
489 * Final 16bytes cqes[] extracted from original 64bytes CQE has the
490 * following structure:
493 * uint8_t flow_tag[3];
497 * uint16_t hdr_type_etc;
498 * uint16_t vlan_info;
499 * uint32_t rx_has_res;
503 * F. find compressed CQE.
507 pos += MLX5_VPMD_DESCS_PER_LOOP) {
508 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
509 __m128i cqe_tmp1, cqe_tmp2;
510 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
511 __m128i op_own, op_own_tmp1, op_own_tmp2;
512 __m128i opcode, owner_mask, invalid_mask;
515 #ifdef MLX5_PMD_SOFT_COUNTERS
519 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
520 unsigned int p1, p2, p3;
522 /* Prefetch next 4 CQEs. */
523 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
524 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
525 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
526 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
527 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
529 /* A.0 do not cross the end of CQ. */
530 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
531 mask = _mm_sll_epi64(ones, mask);
532 p = _mm_andnot_si128(mask, p);
534 p3 = _mm_extract_epi16(p, 3);
535 cqes[3] = _mm_loadl_epi64((__m128i *)
536 &cq[pos + p3].sop_drop_qpn);
537 rte_compiler_barrier();
538 p2 = _mm_extract_epi16(p, 2);
539 cqes[2] = _mm_loadl_epi64((__m128i *)
540 &cq[pos + p2].sop_drop_qpn);
541 rte_compiler_barrier();
542 /* B.1 load mbuf pointers. */
543 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
544 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
545 /* A.1 load a block having op_own. */
546 p1 = _mm_extract_epi16(p, 1);
547 cqes[1] = _mm_loadl_epi64((__m128i *)
548 &cq[pos + p1].sop_drop_qpn);
549 rte_compiler_barrier();
550 cqes[0] = _mm_loadl_epi64((__m128i *)
551 &cq[pos].sop_drop_qpn);
552 /* B.2 copy mbuf pointers. */
553 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
554 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
556 /* C.1 load remained CQE data and extract necessary fields. */
557 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
558 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
559 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
560 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
561 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
562 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
563 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
564 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
565 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
566 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
567 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
568 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
569 /* C.2 generate final structure for mbuf with swapping bytes. */
570 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
571 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
572 /* C.3 adjust CRC length. */
573 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
574 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
575 /* C.4 adjust flow mark. */
576 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
577 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
578 /* D.1 fill in mbuf - rx_descriptor_fields1. */
579 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
580 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
581 /* E.1 extract op_own field. */
582 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
583 /* C.1 load remained CQE data and extract necessary fields. */
584 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
585 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
586 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
587 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
588 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
589 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
590 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
591 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
592 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
593 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
594 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
595 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
596 /* C.2 generate final structure for mbuf with swapping bytes. */
597 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
598 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
599 /* C.3 adjust CRC length. */
600 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
601 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
602 /* C.4 adjust flow mark. */
603 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
604 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
605 /* E.1 extract op_own byte. */
606 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
607 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
608 /* D.1 fill in mbuf - rx_descriptor_fields1. */
609 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
610 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
611 /* E.2 flip owner bit to mark CQEs from last round. */
612 owner_mask = _mm_and_si128(op_own, owner_check);
614 owner_mask = _mm_xor_si128(owner_mask, owner_check);
615 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
616 owner_mask = _mm_packs_epi32(owner_mask, zero);
617 /* E.3 get mask for invalidated CQEs. */
618 opcode = _mm_and_si128(op_own, opcode_check);
619 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
620 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
621 /* E.4 mask out beyond boundary. */
622 invalid_mask = _mm_or_si128(invalid_mask, mask);
623 /* E.5 merge invalid_mask with invalid owner. */
624 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
625 /* F.1 find compressed CQE format. */
626 comp_mask = _mm_and_si128(op_own, format_check);
627 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
628 comp_mask = _mm_packs_epi32(comp_mask, zero);
629 /* F.2 mask out invalid entries. */
630 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
631 comp_idx = _mm_cvtsi128_si64(comp_mask);
632 /* F.3 get the first compressed CQE. */
633 comp_idx = comp_idx ?
634 __builtin_ctzll(comp_idx) /
635 (sizeof(uint16_t) * 8) :
636 MLX5_VPMD_DESCS_PER_LOOP;
637 /* E.6 mask out entries after the compressed CQE. */
638 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
639 mask = _mm_sll_epi64(ones, mask);
640 invalid_mask = _mm_or_si128(invalid_mask, mask);
641 /* E.7 count non-compressed valid CQEs. */
642 n = _mm_cvtsi128_si64(invalid_mask);
643 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
644 MLX5_VPMD_DESCS_PER_LOOP;
646 /* D.2 get the final invalid mask. */
647 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
648 mask = _mm_sll_epi64(ones, mask);
649 invalid_mask = _mm_or_si128(invalid_mask, mask);
650 /* D.3 check error in opcode. */
651 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
652 opcode = _mm_packs_epi32(opcode, zero);
653 opcode = _mm_andnot_si128(invalid_mask, opcode);
654 /* D.4 mark if any error is set */
655 *err |= _mm_cvtsi128_si64(opcode);
656 /* D.5 fill in mbuf - rearm_data and packet_type. */
657 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
658 if (rxq->hw_timestamp) {
659 if (rxq->rt_timestamp) {
660 struct mlx5_dev_ctx_shared *sh = rxq->sh;
663 ts = rte_be_to_cpu_64(cq[pos].timestamp);
664 pkts[pos]->timestamp =
665 mlx5_txpp_convert_rx_ts(sh, ts);
666 ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
667 pkts[pos + 1]->timestamp =
668 mlx5_txpp_convert_rx_ts(sh, ts);
669 ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
670 pkts[pos + 2]->timestamp =
671 mlx5_txpp_convert_rx_ts(sh, ts);
672 ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
673 pkts[pos + 3]->timestamp =
674 mlx5_txpp_convert_rx_ts(sh, ts);
676 pkts[pos]->timestamp = rte_be_to_cpu_64
678 pkts[pos + 1]->timestamp = rte_be_to_cpu_64
679 (cq[pos + p1].timestamp);
680 pkts[pos + 2]->timestamp = rte_be_to_cpu_64
681 (cq[pos + p2].timestamp);
682 pkts[pos + 3]->timestamp = rte_be_to_cpu_64
683 (cq[pos + p3].timestamp);
686 if (rxq->dynf_meta) {
687 /* This code is subject for futher optimization. */
688 int32_t offs = rxq->flow_meta_offset;
690 *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
691 cq[pos].flow_table_metadata;
692 *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
693 cq[pos + p1].flow_table_metadata;
694 *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
695 cq[pos + p2].flow_table_metadata;
696 *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
697 cq[pos + p3].flow_table_metadata;
698 if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
699 pkts[pos]->ol_flags |= rxq->flow_meta_mask;
700 if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
701 pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
702 if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
703 pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
704 if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
705 pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
707 #ifdef MLX5_PMD_SOFT_COUNTERS
708 /* Add up received bytes count. */
709 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
710 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
711 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
712 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
715 * Break the loop unless more valid CQE is expected, or if
716 * there's a compressed CQE.
718 if (n != MLX5_VPMD_DESCS_PER_LOOP)
721 /* If no new CQE seen, return without updating cq_db. */
722 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
726 /* Update the consumer indexes for non-compressed CQEs. */
727 MLX5_ASSERT(nocmp_n <= pkts_n);
728 rxq->cq_ci += nocmp_n;
729 rxq->rq_pi += nocmp_n;
731 #ifdef MLX5_PMD_SOFT_COUNTERS
732 rxq->stats.ipackets += nocmp_n;
733 rxq->stats.ibytes += rcvd_byte;
735 /* Decompress the last CQE if compressed. */
736 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
737 MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
738 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
740 /* Return more packets if needed. */
741 if (nocmp_n < pkts_n) {
742 uint16_t n = rxq->decompressed;
744 n = RTE_MIN(n, pkts_n - nocmp_n);
745 rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
748 rxq->decompressed -= n;
751 rte_compiler_barrier();
752 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
757 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */