net/i40e: fix Rx packet statistics
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx_vec_sse.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17
18 #include <mlx5_prm.h>
19
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param elts
35  *   Pointer to SW ring to be filled.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
43 {
44         unsigned int pos;
45         uint16_t p = n & -2;
46
47         for (pos = 0; pos < p; pos += 2) {
48                 __m128i mbp;
49
50                 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
51                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
52         }
53         if (n & 1)
54                 pkts[pos] = elts[pos];
55 }
56
57 /**
58  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
59  * extracted from the title completion descriptor.
60  *
61  * @param rxq
62  *   Pointer to RX queue structure.
63  * @param cq
64  *   Pointer to completion array having a compressed completion at first.
65  * @param elts
66  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
67  *   the title completion descriptor to be copied to the rest of mbufs.
68  *
69  * @return
70  *   Number of mini-CQEs successfully decompressed.
71  */
72 static inline uint16_t
73 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
74                     struct rte_mbuf **elts)
75 {
76         volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
77         struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
78         unsigned int pos;
79         unsigned int i;
80         unsigned int inv = 0;
81         /* Mask to shuffle from extracted mini CQE to mbuf. */
82         const __m128i shuf_mask1 =
83                 _mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
84                             -1, -1,         /* skip vlan_tci */
85                              6,  7,         /* data_len, bswap16 */
86                             -1, -1,  6,  7, /* pkt_len, bswap16 */
87                             -1, -1, -1, -1  /* skip packet_type */);
88         const __m128i shuf_mask2 =
89                 _mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
90                             -1, -1,         /* skip vlan_tci */
91                             14, 15,         /* data_len, bswap16 */
92                             -1, -1, 14, 15, /* pkt_len, bswap16 */
93                             -1, -1, -1, -1  /* skip packet_type */);
94         /* Restore the compressed count. Must be 16 bits. */
95         const uint16_t mcqe_n = t_pkt->data_len +
96                                 (rxq->crc_present * RTE_ETHER_CRC_LEN);
97         const __m128i rearm =
98                 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
99         const __m128i rxdf =
100                 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
101         const __m128i crc_adj =
102                 _mm_set_epi16(0, 0, 0,
103                               rxq->crc_present * RTE_ETHER_CRC_LEN,
104                               0,
105                               rxq->crc_present * RTE_ETHER_CRC_LEN,
106                               0, 0);
107         __m128i ol_flags = _mm_setzero_si128();
108         __m128i ol_flags_mask = _mm_setzero_si128();
109 #ifdef MLX5_PMD_SOFT_COUNTERS
110         const __m128i zero = _mm_setzero_si128();
111         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
112         uint32_t rcvd_byte = 0;
113         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
114         const __m128i len_shuf_mask =
115                 _mm_set_epi8(-1, -1, -1, -1,
116                              -1, -1, -1, -1,
117                              14, 15,  6,  7,
118                              10, 11,  2,  3);
119 #endif
120         /*
121          * A. load mCQEs into a 128bit register.
122          * B. store rearm data to mbuf.
123          * C. combine data from mCQEs with rx_descriptor_fields1.
124          * D. store rx_descriptor_fields1.
125          * E. store flow tag (rte_flow mark).
126          */
127         for (pos = 0; pos < mcqe_n; ) {
128                 __m128i mcqe1, mcqe2;
129                 __m128i rxdf1, rxdf2;
130 #ifdef MLX5_PMD_SOFT_COUNTERS
131                 __m128i byte_cnt, invalid_mask;
132 #endif
133
134                 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
135                         if (likely(pos + i < mcqe_n))
136                                 rte_prefetch0((void *)(cq + pos + i));
137                 /* A.1 load mCQEs into a 128bit register. */
138                 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
139                 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
140                 /* B.1 store rearm data to mbuf. */
141                 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
142                 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
143                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
144                 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
145                 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
146                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
147                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
148                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
149                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
150                 /* D.1 store rx_descriptor_fields1. */
151                 _mm_storeu_si128((__m128i *)
152                                   &elts[pos]->rx_descriptor_fields1,
153                                  rxdf1);
154                 _mm_storeu_si128((__m128i *)
155                                   &elts[pos + 1]->rx_descriptor_fields1,
156                                  rxdf2);
157                 /* B.1 store rearm data to mbuf. */
158                 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
159                 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
160                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
161                 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
162                 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
163                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
164                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
165                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
166                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
167                 /* D.1 store rx_descriptor_fields1. */
168                 _mm_storeu_si128((__m128i *)
169                                   &elts[pos + 2]->rx_descriptor_fields1,
170                                  rxdf1);
171                 _mm_storeu_si128((__m128i *)
172                                   &elts[pos + 3]->rx_descriptor_fields1,
173                                  rxdf2);
174 #ifdef MLX5_PMD_SOFT_COUNTERS
175                 invalid_mask = _mm_set_epi64x(0,
176                                               (mcqe_n - pos) *
177                                               sizeof(uint16_t) * 8);
178                 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
179                 byte_cnt = _mm_blend_epi16(_mm_srli_si128(mcqe1, 4),
180                                            mcqe2, 0xcc);
181                 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
182                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
183                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
184                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
185 #endif
186                 if (rxq->mark) {
187                         if (rxq->mcqe_format !=
188                                 MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
189                                 const uint32_t flow_tag = t_pkt->hash.fdir.hi;
190
191                                 /* E.1 store flow tag (rte_flow mark). */
192                                 elts[pos]->hash.fdir.hi = flow_tag;
193                                 elts[pos + 1]->hash.fdir.hi = flow_tag;
194                                 elts[pos + 2]->hash.fdir.hi = flow_tag;
195                                 elts[pos + 3]->hash.fdir.hi = flow_tag;
196                         } else {
197                                 const __m128i flow_mark_adj =
198                                         _mm_set_epi32(-1, -1, -1, -1);
199                                 const __m128i flow_mark_shuf =
200                                         _mm_set_epi8(-1,  9,  8, 12,
201                                                      -1,  1,  0,  4,
202                                                      -1, -1, -1, -1,
203                                                      -1, -1, -1, -1);
204                                 const __m128i ft_mask =
205                                         _mm_set1_epi32(0xffffff00);
206                                 const __m128i fdir_flags =
207                                         _mm_set1_epi32(PKT_RX_FDIR);
208                                 const __m128i fdir_all_flags =
209                                         _mm_set1_epi32(PKT_RX_FDIR |
210                                                        PKT_RX_FDIR_ID);
211                                 __m128i fdir_id_flags =
212                                         _mm_set1_epi32(PKT_RX_FDIR_ID);
213
214                                 /* Extract flow_tag field. */
215                                 __m128i ftag0 =
216                                         _mm_shuffle_epi8(mcqe1, flow_mark_shuf);
217                                 __m128i ftag1 =
218                                         _mm_shuffle_epi8(mcqe2, flow_mark_shuf);
219                                 __m128i ftag =
220                                         _mm_unpackhi_epi64(ftag0, ftag1);
221                                 __m128i invalid_mask =
222                                         _mm_cmpeq_epi32(ftag, zero);
223
224                                 ol_flags_mask = _mm_or_si128(ol_flags_mask,
225                                                              fdir_all_flags);
226                                 /* Set PKT_RX_FDIR if flow tag is non-zero. */
227                                 ol_flags = _mm_or_si128(ol_flags,
228                                         _mm_andnot_si128(invalid_mask,
229                                                          fdir_flags));
230                                 /* Mask out invalid entries. */
231                                 fdir_id_flags = _mm_andnot_si128(invalid_mask,
232                                                                  fdir_id_flags);
233                                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
234                                 ol_flags = _mm_or_si128(ol_flags,
235                                         _mm_andnot_si128(_mm_cmpeq_epi32(ftag,
236                                                          ft_mask),
237                                         fdir_id_flags));
238                                 ftag = _mm_add_epi32(ftag, flow_mark_adj);
239                                 elts[pos]->hash.fdir.hi =
240                                                 _mm_extract_epi32(ftag, 0);
241                                 elts[pos + 1]->hash.fdir.hi =
242                                                 _mm_extract_epi32(ftag, 1);
243                                 elts[pos + 2]->hash.fdir.hi =
244                                                 _mm_extract_epi32(ftag, 2);
245                                 elts[pos + 3]->hash.fdir.hi =
246                                                 _mm_extract_epi32(ftag, 3);
247                         }
248                 }
249                 if (unlikely(rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)) {
250                         if (rxq->mcqe_format ==
251                             MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
252                                 const uint8_t pkt_info =
253                                         (cq->pkt_info & 0x3) << 6;
254                                 const uint8_t pkt_hdr0 =
255                                         _mm_extract_epi8(mcqe1, 0);
256                                 const uint8_t pkt_hdr1 =
257                                         _mm_extract_epi8(mcqe1, 8);
258                                 const uint8_t pkt_hdr2 =
259                                         _mm_extract_epi8(mcqe2, 0);
260                                 const uint8_t pkt_hdr3 =
261                                         _mm_extract_epi8(mcqe2, 8);
262                                 const __m128i vlan_mask =
263                                         _mm_set1_epi32(PKT_RX_VLAN |
264                                                        PKT_RX_VLAN_STRIPPED);
265                                 const __m128i cv_mask =
266                                         _mm_set1_epi32(MLX5_CQE_VLAN_STRIPPED);
267                                 const __m128i pkt_cv =
268                                         _mm_set_epi32(pkt_hdr0 & 0x1,
269                                                       pkt_hdr1 & 0x1,
270                                                       pkt_hdr2 & 0x1,
271                                                       pkt_hdr3 & 0x1);
272
273                                 ol_flags_mask = _mm_or_si128(ol_flags_mask,
274                                                              vlan_mask);
275                                 ol_flags = _mm_or_si128(ol_flags,
276                                         _mm_and_si128(_mm_cmpeq_epi32(pkt_cv,
277                                         cv_mask), vlan_mask));
278                                 elts[pos]->packet_type =
279                                         mlx5_ptype_table[(pkt_hdr0 >> 2) |
280                                                          pkt_info];
281                                 elts[pos + 1]->packet_type =
282                                         mlx5_ptype_table[(pkt_hdr1 >> 2) |
283                                                          pkt_info];
284                                 elts[pos + 2]->packet_type =
285                                         mlx5_ptype_table[(pkt_hdr2 >> 2) |
286                                                          pkt_info];
287                                 elts[pos + 3]->packet_type =
288                                         mlx5_ptype_table[(pkt_hdr3 >> 2) |
289                                                          pkt_info];
290                                 if (rxq->tunnel) {
291                                         elts[pos]->packet_type |=
292                                                 !!(((pkt_hdr0 >> 2) |
293                                                 pkt_info) & (1 << 6));
294                                         elts[pos + 1]->packet_type |=
295                                                 !!(((pkt_hdr1 >> 2) |
296                                                 pkt_info) & (1 << 6));
297                                         elts[pos + 2]->packet_type |=
298                                                 !!(((pkt_hdr2 >> 2) |
299                                                 pkt_info) & (1 << 6));
300                                         elts[pos + 3]->packet_type |=
301                                                 !!(((pkt_hdr3 >> 2) |
302                                                 pkt_info) & (1 << 6));
303                                 }
304                         }
305                         const __m128i hash_flags =
306                                 _mm_set1_epi32(PKT_RX_RSS_HASH);
307                         const __m128i rearm_flags =
308                                 _mm_set1_epi32((uint32_t)t_pkt->ol_flags);
309
310                         ol_flags_mask = _mm_or_si128(ol_flags_mask, hash_flags);
311                         ol_flags = _mm_or_si128(ol_flags,
312                                 _mm_andnot_si128(ol_flags_mask, rearm_flags));
313                         elts[pos]->ol_flags =
314                                 _mm_extract_epi32(ol_flags, 0);
315                         elts[pos + 1]->ol_flags =
316                                 _mm_extract_epi32(ol_flags, 1);
317                         elts[pos + 2]->ol_flags =
318                                 _mm_extract_epi32(ol_flags, 2);
319                         elts[pos + 3]->ol_flags =
320                                 _mm_extract_epi32(ol_flags, 3);
321                         elts[pos]->hash.rss = 0;
322                         elts[pos + 1]->hash.rss = 0;
323                         elts[pos + 2]->hash.rss = 0;
324                         elts[pos + 3]->hash.rss = 0;
325                 }
326                 if (rxq->dynf_meta) {
327                         int32_t offs = rxq->flow_meta_offset;
328                         const uint32_t meta =
329                                 *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
330
331                         /* Check if title packet has valid metadata. */
332                         if (meta) {
333                                 MLX5_ASSERT(t_pkt->ol_flags &
334                                             rxq->flow_meta_mask);
335                                 *RTE_MBUF_DYNFIELD(elts[pos], offs,
336                                                         uint32_t *) = meta;
337                                 *RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
338                                                         uint32_t *) = meta;
339                                 *RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
340                                                         uint32_t *) = meta;
341                                 *RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
342                                                         uint32_t *) = meta;
343                         }
344                 }
345                 pos += MLX5_VPMD_DESCS_PER_LOOP;
346                 /* Move to next CQE and invalidate consumed CQEs. */
347                 if (!(pos & 0x7) && pos < mcqe_n) {
348                         if (pos + 8 < mcqe_n)
349                                 rte_prefetch0((void *)(cq + pos + 8));
350                         mcq = (void *)(cq + pos);
351                         for (i = 0; i < 8; ++i)
352                                 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
353                 }
354         }
355         /* Invalidate the rest of CQEs. */
356         for (; inv < mcqe_n; ++inv)
357                 cq[inv].op_own = MLX5_CQE_INVALIDATE;
358 #ifdef MLX5_PMD_SOFT_COUNTERS
359         rxq->stats.ipackets += mcqe_n;
360         rxq->stats.ibytes += rcvd_byte;
361 #endif
362         return mcqe_n;
363 }
364
365 /**
366  * Calculate packet type and offload flag for mbuf and store it.
367  *
368  * @param rxq
369  *   Pointer to RX queue structure.
370  * @param cqes[4]
371  *   Array of four 16bytes completions extracted from the original completion
372  *   descriptor.
373  * @param op_err
374  *   Opcode vector having responder error status. Each field is 4B.
375  * @param pkts
376  *   Pointer to array of packets to be filled.
377  */
378 static inline void
379 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
380                          __m128i op_err, struct rte_mbuf **pkts)
381 {
382         __m128i pinfo0, pinfo1;
383         __m128i pinfo, ptype;
384         __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
385                                           rxq->hw_timestamp * rxq->timestamp_rx_flag);
386         __m128i cv_flags;
387         const __m128i zero = _mm_setzero_si128();
388         const __m128i ptype_mask = _mm_set1_epi32(0xfd06);
389         const __m128i ptype_ol_mask = _mm_set1_epi32(0x106);
390         const __m128i pinfo_mask = _mm_set1_epi32(0x3);
391         const __m128i cv_flag_sel =
392                 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
393                              (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
394                                         PKT_RX_L4_CKSUM_GOOD) >> 1),
395                              0,
396                              (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
397                              0,
398                              (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
399                              (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
400                              0);
401         const __m128i cv_mask =
402                 _mm_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
403                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
404         const __m128i mbuf_init =
405                 _mm_load_si128((__m128i *)&rxq->mbuf_initializer);
406         __m128i rearm0, rearm1, rearm2, rearm3;
407         uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
408
409         /* Extract pkt_info field. */
410         pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
411         pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
412         pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
413         /* Extract hdr_type_etc field. */
414         pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
415         pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
416         ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
417         if (rxq->mark) {
418                 const __m128i pinfo_ft_mask = _mm_set1_epi32(0xffffff00);
419                 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
420                 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
421                 __m128i flow_tag, invalid_mask;
422
423                 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
424                 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
425                 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
426                 ol_flags = _mm_or_si128(ol_flags,
427                                         _mm_andnot_si128(invalid_mask,
428                                                          fdir_flags));
429                 /* Mask out invalid entries. */
430                 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
431                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
432                 ol_flags = _mm_or_si128(ol_flags,
433                                         _mm_andnot_si128(
434                                                 _mm_cmpeq_epi32(flow_tag,
435                                                                 pinfo_ft_mask),
436                                                 fdir_id_flags));
437         }
438         /*
439          * Merge the two fields to generate the following:
440          * bit[1]     = l3_ok
441          * bit[2]     = l4_ok
442          * bit[8]     = cv
443          * bit[11:10] = l3_hdr_type
444          * bit[14:12] = l4_hdr_type
445          * bit[15]    = ip_frag
446          * bit[16]    = tunneled
447          * bit[17]    = outer_l3_type
448          */
449         ptype = _mm_and_si128(ptype, ptype_mask);
450         pinfo = _mm_and_si128(pinfo, pinfo_mask);
451         pinfo = _mm_slli_epi32(pinfo, 16);
452         /* Make pinfo has merged fields for ol_flags calculation. */
453         pinfo = _mm_or_si128(ptype, pinfo);
454         ptype = _mm_srli_epi32(pinfo, 10);
455         ptype = _mm_packs_epi32(ptype, zero);
456         /* Errored packets will have RTE_PTYPE_ALL_MASK. */
457         op_err = _mm_srli_epi16(op_err, 8);
458         ptype = _mm_or_si128(ptype, op_err);
459         pt_idx0 = _mm_extract_epi8(ptype, 0);
460         pt_idx1 = _mm_extract_epi8(ptype, 2);
461         pt_idx2 = _mm_extract_epi8(ptype, 4);
462         pt_idx3 = _mm_extract_epi8(ptype, 6);
463         pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
464                                !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
465         pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
466                                !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
467         pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
468                                !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
469         pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
470                                !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
471         /* Fill flags for checksum and VLAN. */
472         pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
473         pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
474         /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
475         cv_flags = _mm_slli_epi32(pinfo, 9);
476         cv_flags = _mm_or_si128(pinfo, cv_flags);
477         /* Move back flags to start from byte[0]. */
478         cv_flags = _mm_srli_epi32(cv_flags, 8);
479         /* Mask out garbage bits. */
480         cv_flags = _mm_and_si128(cv_flags, cv_mask);
481         /* Merge to ol_flags. */
482         ol_flags = _mm_or_si128(ol_flags, cv_flags);
483         /* Merge mbuf_init and ol_flags. */
484         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
485         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
486         rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
487         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
488         /* Write 8B rearm_data and 8B ol_flags. */
489         _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
490         _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
491         _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
492         _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
493 }
494
495 /**
496  * Process a non-compressed completion and fill in mbufs in RX SW ring
497  * with data extracted from the title completion descriptor.
498  *
499  * @param rxq
500  *   Pointer to RX queue structure.
501  * @param cq
502  *   Pointer to completion array having a non-compressed completion at first.
503  * @param elts
504  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
505  *   the title completion descriptor to be copied to the rest of mbufs.
506  * @param[out] pkts
507  *   Array to store received packets.
508  * @param pkts_n
509  *   Maximum number of packets in array.
510  * @param[out] err
511  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
512  *   packet to handle.
513  * @param[out] comp
514  *   Pointer to a index. Set it to the first compressed completion if any.
515  *
516  * @return
517  *   Number of CQEs successfully processed.
518  */
519 static inline uint16_t
520 rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
521                  struct rte_mbuf **elts, struct rte_mbuf **pkts,
522                  uint16_t pkts_n, uint64_t *err, uint64_t *comp)
523 {
524         const uint16_t q_n = 1 << rxq->cqe_n;
525         const uint16_t q_mask = q_n - 1;
526         unsigned int pos;
527         uint64_t n = 0;
528         uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
529         uint16_t nocmp_n = 0;
530         unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
531         const __m128i owner_check =     _mm_set1_epi64x(0x0100000001000000LL);
532         const __m128i opcode_check = _mm_set1_epi64x(0xf0000000f0000000LL);
533         const __m128i format_check = _mm_set1_epi64x(0x0c0000000c000000LL);
534         const __m128i resp_err_check = _mm_set1_epi64x(0xe0000000e0000000LL);
535 #ifdef MLX5_PMD_SOFT_COUNTERS
536         uint32_t rcvd_byte = 0;
537         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
538         const __m128i len_shuf_mask =
539                 _mm_set_epi8(-1, -1, -1, -1,
540                              -1, -1, -1, -1,
541                              12, 13,  8,  9,
542                               4,  5,  0,  1);
543 #endif
544         /* Mask to shuffle from extracted CQE to mbuf. */
545         const __m128i shuf_mask =
546                 _mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
547                              12, 13, 14, 15, /* rss, bswap32 */
548                              10, 11,         /* vlan_tci, bswap16 */
549                               4,  5,         /* data_len, bswap16 */
550                              -1, -1,         /* zero out 2nd half of pkt_len */
551                               4,  5          /* pkt_len, bswap16 */);
552         /* Mask to blend from the last Qword to the first DQword. */
553         const __m128i blend_mask =
554                 _mm_set_epi8(-1, -1, -1, -1,
555                              -1, -1, -1, -1,
556                               0,  0,  0,  0,
557                               0,  0,  0, -1);
558         const __m128i zero = _mm_setzero_si128();
559         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
560         const __m128i crc_adj =
561                 _mm_set_epi16(0, 0, 0, 0, 0,
562                               rxq->crc_present * RTE_ETHER_CRC_LEN,
563                               0,
564                               rxq->crc_present * RTE_ETHER_CRC_LEN);
565         const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
566         /*
567          * A. load first Qword (8bytes) in one loop.
568          * B. copy 4 mbuf pointers from elts ring to returning pkts.
569          * C. load remained CQE data and extract necessary fields.
570          *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
571          *    following structure:
572          *        struct {
573          *          uint8_t  pkt_info;
574          *          uint8_t  flow_tag[3];
575          *          uint16_t byte_cnt;
576          *          uint8_t  rsvd4;
577          *          uint8_t  op_own;
578          *          uint16_t hdr_type_etc;
579          *          uint16_t vlan_info;
580          *          uint32_t rx_has_res;
581          *        } c;
582          * D. fill in mbuf.
583          * E. get valid CQEs.
584          * F. find compressed CQE.
585          */
586         for (pos = 0;
587              pos < pkts_n;
588              pos += MLX5_VPMD_DESCS_PER_LOOP) {
589                 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
590                 __m128i cqe_tmp1, cqe_tmp2;
591                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
592                 __m128i op_own, op_own_tmp1, op_own_tmp2;
593                 __m128i opcode, owner_mask, invalid_mask;
594                 __m128i comp_mask;
595                 __m128i mask;
596 #ifdef MLX5_PMD_SOFT_COUNTERS
597                 __m128i byte_cnt;
598 #endif
599                 __m128i mbp1, mbp2;
600                 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
601                 unsigned int p1, p2, p3;
602
603                 /* Prefetch next 4 CQEs. */
604                 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
605                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
606                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
607                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
608                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
609                 }
610                 /* A.0 do not cross the end of CQ. */
611                 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
612                 mask = _mm_sll_epi64(ones, mask);
613                 p = _mm_andnot_si128(mask, p);
614                 /* A.1 load cqes. */
615                 p3 = _mm_extract_epi16(p, 3);
616                 cqes[3] = _mm_loadl_epi64((__m128i *)
617                                            &cq[pos + p3].sop_drop_qpn);
618                 rte_compiler_barrier();
619                 p2 = _mm_extract_epi16(p, 2);
620                 cqes[2] = _mm_loadl_epi64((__m128i *)
621                                            &cq[pos + p2].sop_drop_qpn);
622                 rte_compiler_barrier();
623                 /* B.1 load mbuf pointers. */
624                 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
625                 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
626                 /* A.1 load a block having op_own. */
627                 p1 = _mm_extract_epi16(p, 1);
628                 cqes[1] = _mm_loadl_epi64((__m128i *)
629                                            &cq[pos + p1].sop_drop_qpn);
630                 rte_compiler_barrier();
631                 cqes[0] = _mm_loadl_epi64((__m128i *)
632                                            &cq[pos].sop_drop_qpn);
633                 /* B.2 copy mbuf pointers. */
634                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
635                 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
636                 rte_io_rmb();
637                 /* C.1 load remained CQE data and extract necessary fields. */
638                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
639                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
640                 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
641                 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
642                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
643                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
644                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
645                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
646                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
647                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
648                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
649                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
650                 /* C.2 generate final structure for mbuf with swapping bytes. */
651                 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
652                 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
653                 /* C.3 adjust CRC length. */
654                 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
655                 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
656                 /* C.4 adjust flow mark. */
657                 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
658                 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
659                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
660                 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
661                 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
662                 /* E.1 extract op_own field. */
663                 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
664                 /* C.1 load remained CQE data and extract necessary fields. */
665                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
666                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
667                 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
668                 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
669                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
670                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
671                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
672                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
673                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
674                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
675                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
676                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
677                 /* C.2 generate final structure for mbuf with swapping bytes. */
678                 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
679                 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
680                 /* C.3 adjust CRC length. */
681                 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
682                 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
683                 /* C.4 adjust flow mark. */
684                 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
685                 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
686                 /* E.1 extract op_own byte. */
687                 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
688                 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
689                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
690                 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
691                 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
692                 /* E.2 flip owner bit to mark CQEs from last round. */
693                 owner_mask = _mm_and_si128(op_own, owner_check);
694                 if (ownership)
695                         owner_mask = _mm_xor_si128(owner_mask, owner_check);
696                 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
697                 owner_mask = _mm_packs_epi32(owner_mask, zero);
698                 /* E.3 get mask for invalidated CQEs. */
699                 opcode = _mm_and_si128(op_own, opcode_check);
700                 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
701                 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
702                 /* E.4 mask out beyond boundary. */
703                 invalid_mask = _mm_or_si128(invalid_mask, mask);
704                 /* E.5 merge invalid_mask with invalid owner. */
705                 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
706                 /* F.1 find compressed CQE format. */
707                 comp_mask = _mm_and_si128(op_own, format_check);
708                 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
709                 comp_mask = _mm_packs_epi32(comp_mask, zero);
710                 /* F.2 mask out invalid entries. */
711                 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
712                 comp_idx = _mm_cvtsi128_si64(comp_mask);
713                 /* F.3 get the first compressed CQE. */
714                 comp_idx = comp_idx ?
715                                 __builtin_ctzll(comp_idx) /
716                                         (sizeof(uint16_t) * 8) :
717                                 MLX5_VPMD_DESCS_PER_LOOP;
718                 /* E.6 mask out entries after the compressed CQE. */
719                 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
720                 mask = _mm_sll_epi64(ones, mask);
721                 invalid_mask = _mm_or_si128(invalid_mask, mask);
722                 /* E.7 count non-compressed valid CQEs. */
723                 n = _mm_cvtsi128_si64(invalid_mask);
724                 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
725                         MLX5_VPMD_DESCS_PER_LOOP;
726                 nocmp_n += n;
727                 /* D.2 get the final invalid mask. */
728                 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
729                 mask = _mm_sll_epi64(ones, mask);
730                 invalid_mask = _mm_or_si128(invalid_mask, mask);
731                 /* D.3 check error in opcode. */
732                 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
733                 opcode = _mm_packs_epi32(opcode, zero);
734                 opcode = _mm_andnot_si128(invalid_mask, opcode);
735                 /* D.4 mark if any error is set */
736                 *err |= _mm_cvtsi128_si64(opcode);
737                 /* D.5 fill in mbuf - rearm_data and packet_type. */
738                 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
739                 if (rxq->hw_timestamp) {
740                         int offset = rxq->timestamp_offset;
741                         if (rxq->rt_timestamp) {
742                                 struct mlx5_dev_ctx_shared *sh = rxq->sh;
743                                 uint64_t ts;
744
745                                 ts = rte_be_to_cpu_64(cq[pos].timestamp);
746                                 mlx5_timestamp_set(pkts[pos], offset,
747                                         mlx5_txpp_convert_rx_ts(sh, ts));
748                                 ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
749                                 mlx5_timestamp_set(pkts[pos + 1], offset,
750                                         mlx5_txpp_convert_rx_ts(sh, ts));
751                                 ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
752                                 mlx5_timestamp_set(pkts[pos + 2], offset,
753                                         mlx5_txpp_convert_rx_ts(sh, ts));
754                                 ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
755                                 mlx5_timestamp_set(pkts[pos + 3], offset,
756                                         mlx5_txpp_convert_rx_ts(sh, ts));
757                         } else {
758                                 mlx5_timestamp_set(pkts[pos], offset,
759                                         rte_be_to_cpu_64(cq[pos].timestamp));
760                                 mlx5_timestamp_set(pkts[pos + 1], offset,
761                                         rte_be_to_cpu_64(cq[pos + p1].timestamp));
762                                 mlx5_timestamp_set(pkts[pos + 2], offset,
763                                         rte_be_to_cpu_64(cq[pos + p2].timestamp));
764                                 mlx5_timestamp_set(pkts[pos + 3], offset,
765                                         rte_be_to_cpu_64(cq[pos + p3].timestamp));
766                         }
767                 }
768                 if (rxq->dynf_meta) {
769                         /* This code is subject for futher optimization. */
770                         int32_t offs = rxq->flow_meta_offset;
771                         uint32_t mask = rxq->flow_meta_port_mask;
772
773                         *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
774                                 rte_be_to_cpu_32
775                                 (cq[pos].flow_table_metadata) & mask;
776                         *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
777                                 rte_be_to_cpu_32
778                                 (cq[pos + p1].flow_table_metadata) & mask;
779                         *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
780                                 rte_be_to_cpu_32
781                                 (cq[pos + p2].flow_table_metadata) & mask;
782                         *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
783                                 rte_be_to_cpu_32
784                                 (cq[pos + p3].flow_table_metadata) & mask;
785                         if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
786                                 pkts[pos]->ol_flags |= rxq->flow_meta_mask;
787                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
788                                 pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
789                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
790                                 pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
791                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
792                                 pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
793                 }
794 #ifdef MLX5_PMD_SOFT_COUNTERS
795                 /* Add up received bytes count. */
796                 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
797                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
798                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
799                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
800 #endif
801                 /*
802                  * Break the loop unless more valid CQE is expected, or if
803                  * there's a compressed CQE.
804                  */
805                 if (n != MLX5_VPMD_DESCS_PER_LOOP)
806                         break;
807         }
808 #ifdef MLX5_PMD_SOFT_COUNTERS
809         rxq->stats.ipackets += nocmp_n;
810         rxq->stats.ibytes += rcvd_byte;
811 #endif
812         if (comp_idx == n)
813                 *comp = comp_idx;
814         return nocmp_n;
815 }
816
817 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */