1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
13 #include <smmintrin.h>
16 #include <rte_mempool.h>
17 #include <rte_prefetch.h>
20 #include "mlx5_utils.h"
21 #include "mlx5_rxtx.h"
22 #include "mlx5_rxtx_vec.h"
23 #include "mlx5_autoconf.h"
24 #include "mlx5_defs.h"
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
32 * Store free buffers to RX SW ring.
35 * Pointer to RX queue structure.
37 * Pointer to array of packets to be stored.
39 * Number of packets to be stored.
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
44 const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45 struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
49 for (pos = 0; pos < p; pos += 2) {
52 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
56 pkts[pos] = elts[pos];
60 * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61 * extracted from the title completion descriptor.
64 * Pointer to RX queue structure.
66 * Pointer to completion array having a compressed completion at first.
68 * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69 * the title completion descriptor to be copied to the rest of mbufs.
72 * Number of mini-CQEs successfully decompressed.
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76 struct rte_mbuf **elts)
78 volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79 struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
83 /* Mask to shuffle from extracted mini CQE to mbuf. */
84 const __m128i shuf_mask1 =
85 _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
86 -1, -1, /* skip vlan_tci */
87 6, 7, /* data_len, bswap16 */
88 -1, -1, 6, 7, /* pkt_len, bswap16 */
89 -1, -1, -1, -1 /* skip packet_type */);
90 const __m128i shuf_mask2 =
91 _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
92 -1, -1, /* skip vlan_tci */
93 14, 15, /* data_len, bswap16 */
94 -1, -1, 14, 15, /* pkt_len, bswap16 */
95 -1, -1, -1, -1 /* skip packet_type */);
96 /* Restore the compressed count. Must be 16 bits. */
97 const uint16_t mcqe_n = t_pkt->data_len +
98 (rxq->crc_present * RTE_ETHER_CRC_LEN);
100 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
102 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103 const __m128i crc_adj =
104 _mm_set_epi16(0, 0, 0,
105 rxq->crc_present * RTE_ETHER_CRC_LEN,
107 rxq->crc_present * RTE_ETHER_CRC_LEN,
109 const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111 const __m128i zero = _mm_setzero_si128();
112 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113 uint32_t rcvd_byte = 0;
114 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115 const __m128i len_shuf_mask =
116 _mm_set_epi8(-1, -1, -1, -1,
123 * A. load mCQEs into a 128bit register.
124 * B. store rearm data to mbuf.
125 * C. combine data from mCQEs with rx_descriptor_fields1.
126 * D. store rx_descriptor_fields1.
127 * E. store flow tag (rte_flow mark).
129 for (pos = 0; pos < mcqe_n; ) {
130 __m128i mcqe1, mcqe2;
131 __m128i rxdf1, rxdf2;
132 #ifdef MLX5_PMD_SOFT_COUNTERS
133 __m128i byte_cnt, invalid_mask;
136 if (!(pos & 0x7) && pos + 8 < mcqe_n)
137 rte_prefetch0((void *)(cq + pos + 8));
138 /* A.1 load mCQEs into a 128bit register. */
139 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
140 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
141 /* B.1 store rearm data to mbuf. */
142 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
143 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
144 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
145 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
146 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
147 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
148 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
149 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
150 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
151 /* D.1 store rx_descriptor_fields1. */
152 _mm_storeu_si128((__m128i *)
153 &elts[pos]->rx_descriptor_fields1,
155 _mm_storeu_si128((__m128i *)
156 &elts[pos + 1]->rx_descriptor_fields1,
158 /* B.1 store rearm data to mbuf. */
159 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
160 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
161 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
162 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
163 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
164 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
165 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
166 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
167 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
168 /* D.1 store rx_descriptor_fields1. */
169 _mm_storeu_si128((__m128i *)
170 &elts[pos + 2]->rx_descriptor_fields1,
172 _mm_storeu_si128((__m128i *)
173 &elts[pos + 3]->rx_descriptor_fields1,
175 #ifdef MLX5_PMD_SOFT_COUNTERS
176 invalid_mask = _mm_set_epi64x(0,
178 sizeof(uint16_t) * 8);
179 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
180 mcqe1 = _mm_srli_si128(mcqe1, 4);
181 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
182 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
183 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
184 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
185 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
188 /* E.1 store flow tag (rte_flow mark). */
189 elts[pos]->hash.fdir.hi = flow_tag;
190 elts[pos + 1]->hash.fdir.hi = flow_tag;
191 elts[pos + 2]->hash.fdir.hi = flow_tag;
192 elts[pos + 3]->hash.fdir.hi = flow_tag;
194 pos += MLX5_VPMD_DESCS_PER_LOOP;
195 /* Move to next CQE and invalidate consumed CQEs. */
196 if (!(pos & 0x7) && pos < mcqe_n) {
197 mcq = (void *)(cq + pos);
198 for (i = 0; i < 8; ++i)
199 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
202 /* Invalidate the rest of CQEs. */
203 for (; inv < mcqe_n; ++inv)
204 cq[inv].op_own = MLX5_CQE_INVALIDATE;
205 #ifdef MLX5_PMD_SOFT_COUNTERS
206 rxq->stats.ipackets += mcqe_n;
207 rxq->stats.ibytes += rcvd_byte;
209 rxq->cq_ci += mcqe_n;
214 * Calculate packet type and offload flag for mbuf and store it.
217 * Pointer to RX queue structure.
219 * Array of four 16bytes completions extracted from the original completion
222 * Opcode vector having responder error status. Each field is 4B.
224 * Pointer to array of packets to be filled.
227 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
228 __m128i op_err, struct rte_mbuf **pkts)
230 __m128i pinfo0, pinfo1;
231 __m128i pinfo, ptype;
232 __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
233 rxq->hw_timestamp * PKT_RX_TIMESTAMP);
235 const __m128i zero = _mm_setzero_si128();
236 const __m128i ptype_mask =
237 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
238 const __m128i ptype_ol_mask =
239 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
240 const __m128i pinfo_mask =
241 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
242 const __m128i cv_flag_sel =
243 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
244 (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
245 PKT_RX_L4_CKSUM_GOOD) >> 1),
247 (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
249 (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
250 (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
252 const __m128i cv_mask =
253 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
254 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
255 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
256 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
257 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
258 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
259 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
260 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
261 const __m128i mbuf_init =
262 _mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
263 __m128i rearm0, rearm1, rearm2, rearm3;
264 uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
266 /* Extract pkt_info field. */
267 pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
268 pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
269 pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
270 /* Extract hdr_type_etc field. */
271 pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
272 pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
273 ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
275 const __m128i pinfo_ft_mask =
276 _mm_set_epi32(0xffffff00, 0xffffff00,
277 0xffffff00, 0xffffff00);
278 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
279 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
280 __m128i flow_tag, invalid_mask;
282 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
283 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
284 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
285 ol_flags = _mm_or_si128(ol_flags,
286 _mm_andnot_si128(invalid_mask,
288 /* Mask out invalid entries. */
289 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
290 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
291 ol_flags = _mm_or_si128(ol_flags,
293 _mm_cmpeq_epi32(flow_tag,
298 * Merge the two fields to generate the following:
302 * bit[11:10] = l3_hdr_type
303 * bit[14:12] = l4_hdr_type
306 * bit[17] = outer_l3_type
308 ptype = _mm_and_si128(ptype, ptype_mask);
309 pinfo = _mm_and_si128(pinfo, pinfo_mask);
310 pinfo = _mm_slli_epi32(pinfo, 16);
311 /* Make pinfo has merged fields for ol_flags calculation. */
312 pinfo = _mm_or_si128(ptype, pinfo);
313 ptype = _mm_srli_epi32(pinfo, 10);
314 ptype = _mm_packs_epi32(ptype, zero);
315 /* Errored packets will have RTE_PTYPE_ALL_MASK. */
316 op_err = _mm_srli_epi16(op_err, 8);
317 ptype = _mm_or_si128(ptype, op_err);
318 pt_idx0 = _mm_extract_epi8(ptype, 0);
319 pt_idx1 = _mm_extract_epi8(ptype, 2);
320 pt_idx2 = _mm_extract_epi8(ptype, 4);
321 pt_idx3 = _mm_extract_epi8(ptype, 6);
322 pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
323 !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
324 pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
325 !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
326 pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
327 !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
328 pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
329 !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
330 /* Fill flags for checksum and VLAN. */
331 pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
332 pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
333 /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
334 cv_flags = _mm_slli_epi32(pinfo, 9);
335 cv_flags = _mm_or_si128(pinfo, cv_flags);
336 /* Move back flags to start from byte[0]. */
337 cv_flags = _mm_srli_epi32(cv_flags, 8);
338 /* Mask out garbage bits. */
339 cv_flags = _mm_and_si128(cv_flags, cv_mask);
340 /* Merge to ol_flags. */
341 ol_flags = _mm_or_si128(ol_flags, cv_flags);
342 /* Merge mbuf_init and ol_flags. */
343 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
344 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
345 rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
346 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
347 /* Write 8B rearm_data and 8B ol_flags. */
348 _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
349 _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
350 _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
351 _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
355 * Receive burst of packets. An errored completion also consumes a mbuf, but the
356 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
357 * before returning to application.
360 * Pointer to RX queue structure.
362 * Array to store received packets.
364 * Maximum number of packets in array.
366 * Pointer to a flag. Set non-zero value if pkts array has at least one error
370 * Number of packets received including errors (<= pkts_n).
372 static inline uint16_t
373 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
376 const uint16_t q_n = 1 << rxq->cqe_n;
377 const uint16_t q_mask = q_n - 1;
378 volatile struct mlx5_cqe *cq;
379 struct rte_mbuf **elts;
383 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
384 uint16_t nocmp_n = 0;
385 uint16_t rcvd_pkt = 0;
386 unsigned int cq_idx = rxq->cq_ci & q_mask;
387 unsigned int elts_idx;
388 unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
389 const __m128i owner_check =
390 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
391 const __m128i opcode_check =
392 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
393 const __m128i format_check =
394 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
395 const __m128i resp_err_check =
396 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
397 #ifdef MLX5_PMD_SOFT_COUNTERS
398 uint32_t rcvd_byte = 0;
399 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
400 const __m128i len_shuf_mask =
401 _mm_set_epi8(-1, -1, -1, -1,
406 /* Mask to shuffle from extracted CQE to mbuf. */
407 const __m128i shuf_mask =
408 _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
409 12, 13, 14, 15, /* rss, bswap32 */
410 10, 11, /* vlan_tci, bswap16 */
411 4, 5, /* data_len, bswap16 */
412 -1, -1, /* zero out 2nd half of pkt_len */
413 4, 5 /* pkt_len, bswap16 */);
414 /* Mask to blend from the last Qword to the first DQword. */
415 const __m128i blend_mask =
416 _mm_set_epi8(-1, -1, -1, -1,
420 const __m128i zero = _mm_setzero_si128();
421 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
422 const __m128i crc_adj =
423 _mm_set_epi16(0, 0, 0, 0, 0,
424 rxq->crc_present * RTE_ETHER_CRC_LEN,
426 rxq->crc_present * RTE_ETHER_CRC_LEN);
427 const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
429 assert(rxq->sges_n == 0);
430 assert(rxq->cqe_n == rxq->elts_n);
431 cq = &(*rxq->cqes)[cq_idx];
433 rte_prefetch0(cq + 1);
434 rte_prefetch0(cq + 2);
435 rte_prefetch0(cq + 3);
436 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
437 repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
438 if (repl_n >= rxq->rq_repl_thresh)
439 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
440 /* See if there're unreturned mbufs from compressed CQE. */
441 rcvd_pkt = rxq->decompressed;
443 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
444 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
445 rxq->rq_pi += rcvd_pkt;
446 rxq->decompressed -= rcvd_pkt;
449 elts_idx = rxq->rq_pi & q_mask;
450 elts = &(*rxq->elts)[elts_idx];
451 /* Not to overflow pkts array. */
452 pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
453 /* Not to cross queue end. */
454 pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
455 pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
458 /* At this point, there shouldn't be any remained packets. */
459 assert(rxq->decompressed == 0);
461 * A. load first Qword (8bytes) in one loop.
462 * B. copy 4 mbuf pointers from elts ring to returing pkts.
463 * C. load remained CQE data and extract necessary fields.
464 * Final 16bytes cqes[] extracted from original 64bytes CQE has the
465 * following structure:
468 * uint8_t flow_tag[3];
472 * uint16_t hdr_type_etc;
473 * uint16_t vlan_info;
474 * uint32_t rx_has_res;
478 * F. find compressed CQE.
482 pos += MLX5_VPMD_DESCS_PER_LOOP) {
483 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
484 __m128i cqe_tmp1, cqe_tmp2;
485 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
486 __m128i op_own, op_own_tmp1, op_own_tmp2;
487 __m128i opcode, owner_mask, invalid_mask;
490 #ifdef MLX5_PMD_SOFT_COUNTERS
494 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
495 unsigned int p1, p2, p3;
497 /* Prefetch next 4 CQEs. */
498 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
499 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
500 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
501 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
502 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
504 /* A.0 do not cross the end of CQ. */
505 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
506 mask = _mm_sll_epi64(ones, mask);
507 p = _mm_andnot_si128(mask, p);
509 p3 = _mm_extract_epi16(p, 3);
510 cqes[3] = _mm_loadl_epi64((__m128i *)
511 &cq[pos + p3].sop_drop_qpn);
512 rte_compiler_barrier();
513 p2 = _mm_extract_epi16(p, 2);
514 cqes[2] = _mm_loadl_epi64((__m128i *)
515 &cq[pos + p2].sop_drop_qpn);
516 rte_compiler_barrier();
517 /* B.1 load mbuf pointers. */
518 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
519 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
520 /* A.1 load a block having op_own. */
521 p1 = _mm_extract_epi16(p, 1);
522 cqes[1] = _mm_loadl_epi64((__m128i *)
523 &cq[pos + p1].sop_drop_qpn);
524 rte_compiler_barrier();
525 cqes[0] = _mm_loadl_epi64((__m128i *)
526 &cq[pos].sop_drop_qpn);
527 /* B.2 copy mbuf pointers. */
528 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
529 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
531 /* C.1 load remained CQE data and extract necessary fields. */
532 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
533 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
534 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
535 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
536 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
537 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
538 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
539 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
540 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd3[9]);
541 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd3[9]);
542 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
543 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
544 /* C.2 generate final structure for mbuf with swapping bytes. */
545 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
546 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
547 /* C.3 adjust CRC length. */
548 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
549 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
550 /* C.4 adjust flow mark. */
551 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
552 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
553 /* D.1 fill in mbuf - rx_descriptor_fields1. */
554 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
555 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
556 /* E.1 extract op_own field. */
557 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
558 /* C.1 load remained CQE data and extract necessary fields. */
559 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
560 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
561 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
562 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
563 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
564 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
565 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
566 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
567 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd3[9]);
568 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd3[9]);
569 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
570 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
571 /* C.2 generate final structure for mbuf with swapping bytes. */
572 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
573 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
574 /* C.3 adjust CRC length. */
575 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
576 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
577 /* C.4 adjust flow mark. */
578 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
579 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
580 /* E.1 extract op_own byte. */
581 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
582 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
583 /* D.1 fill in mbuf - rx_descriptor_fields1. */
584 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
585 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
586 /* E.2 flip owner bit to mark CQEs from last round. */
587 owner_mask = _mm_and_si128(op_own, owner_check);
589 owner_mask = _mm_xor_si128(owner_mask, owner_check);
590 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
591 owner_mask = _mm_packs_epi32(owner_mask, zero);
592 /* E.3 get mask for invalidated CQEs. */
593 opcode = _mm_and_si128(op_own, opcode_check);
594 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
595 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
596 /* E.4 mask out beyond boundary. */
597 invalid_mask = _mm_or_si128(invalid_mask, mask);
598 /* E.5 merge invalid_mask with invalid owner. */
599 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
600 /* F.1 find compressed CQE format. */
601 comp_mask = _mm_and_si128(op_own, format_check);
602 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
603 comp_mask = _mm_packs_epi32(comp_mask, zero);
604 /* F.2 mask out invalid entries. */
605 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
606 comp_idx = _mm_cvtsi128_si64(comp_mask);
607 /* F.3 get the first compressed CQE. */
608 comp_idx = comp_idx ?
609 __builtin_ctzll(comp_idx) /
610 (sizeof(uint16_t) * 8) :
611 MLX5_VPMD_DESCS_PER_LOOP;
612 /* E.6 mask out entries after the compressed CQE. */
613 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
614 mask = _mm_sll_epi64(ones, mask);
615 invalid_mask = _mm_or_si128(invalid_mask, mask);
616 /* E.7 count non-compressed valid CQEs. */
617 n = _mm_cvtsi128_si64(invalid_mask);
618 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
619 MLX5_VPMD_DESCS_PER_LOOP;
621 /* D.2 get the final invalid mask. */
622 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
623 mask = _mm_sll_epi64(ones, mask);
624 invalid_mask = _mm_or_si128(invalid_mask, mask);
625 /* D.3 check error in opcode. */
626 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
627 opcode = _mm_packs_epi32(opcode, zero);
628 opcode = _mm_andnot_si128(invalid_mask, opcode);
629 /* D.4 mark if any error is set */
630 *err |= _mm_cvtsi128_si64(opcode);
631 /* D.5 fill in mbuf - rearm_data and packet_type. */
632 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
633 if (rxq->hw_timestamp) {
634 pkts[pos]->timestamp =
635 rte_be_to_cpu_64(cq[pos].timestamp);
636 pkts[pos + 1]->timestamp =
637 rte_be_to_cpu_64(cq[pos + p1].timestamp);
638 pkts[pos + 2]->timestamp =
639 rte_be_to_cpu_64(cq[pos + p2].timestamp);
640 pkts[pos + 3]->timestamp =
641 rte_be_to_cpu_64(cq[pos + p3].timestamp);
643 #ifdef MLX5_PMD_SOFT_COUNTERS
644 /* Add up received bytes count. */
645 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
646 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
647 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
648 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
651 * Break the loop unless more valid CQE is expected, or if
652 * there's a compressed CQE.
654 if (n != MLX5_VPMD_DESCS_PER_LOOP)
657 /* If no new CQE seen, return without updating cq_db. */
658 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
660 /* Update the consumer indexes for non-compressed CQEs. */
661 assert(nocmp_n <= pkts_n);
662 rxq->cq_ci += nocmp_n;
663 rxq->rq_pi += nocmp_n;
665 #ifdef MLX5_PMD_SOFT_COUNTERS
666 rxq->stats.ipackets += nocmp_n;
667 rxq->stats.ibytes += rcvd_byte;
669 /* Decompress the last CQE if compressed. */
670 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
671 assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
672 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
674 /* Return more packets if needed. */
675 if (nocmp_n < pkts_n) {
676 uint16_t n = rxq->decompressed;
678 n = RTE_MIN(n, pkts_n - nocmp_n);
679 rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
682 rxq->decompressed -= n;
685 rte_compiler_barrier();
686 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
690 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */