net/ice: complete device info get in DCF
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx_vec_sse.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17
18 #include <mlx5_prm.h>
19
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param rxq
35  *   Pointer to RX queue structure.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
43 {
44         const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45         struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
46         unsigned int pos;
47         uint16_t p = n & -2;
48
49         for (pos = 0; pos < p; pos += 2) {
50                 __m128i mbp;
51
52                 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
54         }
55         if (n & 1)
56                 pkts[pos] = elts[pos];
57 }
58
59 /**
60  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61  * extracted from the title completion descriptor.
62  *
63  * @param rxq
64  *   Pointer to RX queue structure.
65  * @param cq
66  *   Pointer to completion array having a compressed completion at first.
67  * @param elts
68  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69  *   the title completion descriptor to be copied to the rest of mbufs.
70  *
71  * @return
72  *   Number of mini-CQEs successfully decompressed.
73  */
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76                     struct rte_mbuf **elts)
77 {
78         volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79         struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
80         unsigned int pos;
81         unsigned int i;
82         unsigned int inv = 0;
83         /* Mask to shuffle from extracted mini CQE to mbuf. */
84         const __m128i shuf_mask1 =
85                 _mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
86                             -1, -1,         /* skip vlan_tci */
87                              6,  7,         /* data_len, bswap16 */
88                             -1, -1,  6,  7, /* pkt_len, bswap16 */
89                             -1, -1, -1, -1  /* skip packet_type */);
90         const __m128i shuf_mask2 =
91                 _mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
92                             -1, -1,         /* skip vlan_tci */
93                             14, 15,         /* data_len, bswap16 */
94                             -1, -1, 14, 15, /* pkt_len, bswap16 */
95                             -1, -1, -1, -1  /* skip packet_type */);
96         /* Restore the compressed count. Must be 16 bits. */
97         const uint16_t mcqe_n = t_pkt->data_len +
98                                 (rxq->crc_present * RTE_ETHER_CRC_LEN);
99         const __m128i rearm =
100                 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
101         const __m128i rxdf =
102                 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103         const __m128i crc_adj =
104                 _mm_set_epi16(0, 0, 0,
105                               rxq->crc_present * RTE_ETHER_CRC_LEN,
106                               0,
107                               rxq->crc_present * RTE_ETHER_CRC_LEN,
108                               0, 0);
109         const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111         const __m128i zero = _mm_setzero_si128();
112         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113         uint32_t rcvd_byte = 0;
114         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115         const __m128i len_shuf_mask =
116                 _mm_set_epi8(-1, -1, -1, -1,
117                              -1, -1, -1, -1,
118                              14, 15,  6,  7,
119                              10, 11,  2,  3);
120 #endif
121         /*
122          * A. load mCQEs into a 128bit register.
123          * B. store rearm data to mbuf.
124          * C. combine data from mCQEs with rx_descriptor_fields1.
125          * D. store rx_descriptor_fields1.
126          * E. store flow tag (rte_flow mark).
127          */
128         for (pos = 0; pos < mcqe_n; ) {
129                 __m128i mcqe1, mcqe2;
130                 __m128i rxdf1, rxdf2;
131 #ifdef MLX5_PMD_SOFT_COUNTERS
132                 __m128i byte_cnt, invalid_mask;
133 #endif
134
135                 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
136                         if (likely(pos + i < mcqe_n))
137                                 rte_prefetch0((void *)(cq + pos + i));
138
139                 /* A.1 load mCQEs into a 128bit register. */
140                 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
141                 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
142                 /* B.1 store rearm data to mbuf. */
143                 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
144                 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
145                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
146                 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
147                 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
148                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
149                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
150                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
151                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
152                 /* D.1 store rx_descriptor_fields1. */
153                 _mm_storeu_si128((__m128i *)
154                                   &elts[pos]->rx_descriptor_fields1,
155                                  rxdf1);
156                 _mm_storeu_si128((__m128i *)
157                                   &elts[pos + 1]->rx_descriptor_fields1,
158                                  rxdf2);
159                 /* B.1 store rearm data to mbuf. */
160                 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
161                 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
162                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
163                 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
164                 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
165                 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
166                 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
167                 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
168                 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
169                 /* D.1 store rx_descriptor_fields1. */
170                 _mm_storeu_si128((__m128i *)
171                                   &elts[pos + 2]->rx_descriptor_fields1,
172                                  rxdf1);
173                 _mm_storeu_si128((__m128i *)
174                                   &elts[pos + 3]->rx_descriptor_fields1,
175                                  rxdf2);
176 #ifdef MLX5_PMD_SOFT_COUNTERS
177                 invalid_mask = _mm_set_epi64x(0,
178                                               (mcqe_n - pos) *
179                                               sizeof(uint16_t) * 8);
180                 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
181                 mcqe1 = _mm_srli_si128(mcqe1, 4);
182                 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
183                 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
184                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
185                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
186                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
187 #endif
188                 if (rxq->mark) {
189                         /* E.1 store flow tag (rte_flow mark). */
190                         elts[pos]->hash.fdir.hi = flow_tag;
191                         elts[pos + 1]->hash.fdir.hi = flow_tag;
192                         elts[pos + 2]->hash.fdir.hi = flow_tag;
193                         elts[pos + 3]->hash.fdir.hi = flow_tag;
194                 }
195                 if (rxq->dynf_meta) {
196                         int32_t offs = rxq->flow_meta_offset;
197                         const uint32_t meta =
198                                 *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
199
200                         /* Check if title packet has valid metadata. */
201                         if (meta) {
202                                 MLX5_ASSERT(t_pkt->ol_flags &
203                                             rxq->flow_meta_mask);
204                                 *RTE_MBUF_DYNFIELD(elts[pos], offs,
205                                                         uint32_t *) = meta;
206                                 *RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
207                                                         uint32_t *) = meta;
208                                 *RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
209                                                         uint32_t *) = meta;
210                                 *RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
211                                                         uint32_t *) = meta;
212                         }
213                 }
214                 pos += MLX5_VPMD_DESCS_PER_LOOP;
215                 /* Move to next CQE and invalidate consumed CQEs. */
216                 if (!(pos & 0x7) && pos < mcqe_n) {
217                         mcq = (void *)(cq + pos);
218                         for (i = 0; i < 8; ++i)
219                                 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
220                 }
221         }
222         /* Invalidate the rest of CQEs. */
223         for (; inv < mcqe_n; ++inv)
224                 cq[inv].op_own = MLX5_CQE_INVALIDATE;
225 #ifdef MLX5_PMD_SOFT_COUNTERS
226         rxq->stats.ipackets += mcqe_n;
227         rxq->stats.ibytes += rcvd_byte;
228 #endif
229         rxq->cq_ci += mcqe_n;
230         return mcqe_n;
231 }
232
233 /**
234  * Calculate packet type and offload flag for mbuf and store it.
235  *
236  * @param rxq
237  *   Pointer to RX queue structure.
238  * @param cqes[4]
239  *   Array of four 16bytes completions extracted from the original completion
240  *   descriptor.
241  * @param op_err
242  *   Opcode vector having responder error status. Each field is 4B.
243  * @param pkts
244  *   Pointer to array of packets to be filled.
245  */
246 static inline void
247 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
248                          __m128i op_err, struct rte_mbuf **pkts)
249 {
250         __m128i pinfo0, pinfo1;
251         __m128i pinfo, ptype;
252         __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
253                                           rxq->hw_timestamp * PKT_RX_TIMESTAMP);
254         __m128i cv_flags;
255         const __m128i zero = _mm_setzero_si128();
256         const __m128i ptype_mask =
257                 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
258         const __m128i ptype_ol_mask =
259                 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
260         const __m128i pinfo_mask =
261                 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
262         const __m128i cv_flag_sel =
263                 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
264                              (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
265                                         PKT_RX_L4_CKSUM_GOOD) >> 1),
266                              0,
267                              (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
268                              0,
269                              (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
270                              (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
271                              0);
272         const __m128i cv_mask =
273                 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
274                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
275                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
276                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
277                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
278                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
279                               PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
280                               PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
281         const __m128i mbuf_init =
282                 _mm_load_si128((__m128i *)&rxq->mbuf_initializer);
283         __m128i rearm0, rearm1, rearm2, rearm3;
284         uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
285
286         /* Extract pkt_info field. */
287         pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
288         pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
289         pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
290         /* Extract hdr_type_etc field. */
291         pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
292         pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
293         ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
294         if (rxq->mark) {
295                 const __m128i pinfo_ft_mask =
296                         _mm_set_epi32(0xffffff00, 0xffffff00,
297                                       0xffffff00, 0xffffff00);
298                 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
299                 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
300                 __m128i flow_tag, invalid_mask;
301
302                 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
303                 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
304                 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
305                 ol_flags = _mm_or_si128(ol_flags,
306                                         _mm_andnot_si128(invalid_mask,
307                                                          fdir_flags));
308                 /* Mask out invalid entries. */
309                 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
310                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
311                 ol_flags = _mm_or_si128(ol_flags,
312                                         _mm_andnot_si128(
313                                                 _mm_cmpeq_epi32(flow_tag,
314                                                                 pinfo_ft_mask),
315                                                 fdir_id_flags));
316         }
317         /*
318          * Merge the two fields to generate the following:
319          * bit[1]     = l3_ok
320          * bit[2]     = l4_ok
321          * bit[8]     = cv
322          * bit[11:10] = l3_hdr_type
323          * bit[14:12] = l4_hdr_type
324          * bit[15]    = ip_frag
325          * bit[16]    = tunneled
326          * bit[17]    = outer_l3_type
327          */
328         ptype = _mm_and_si128(ptype, ptype_mask);
329         pinfo = _mm_and_si128(pinfo, pinfo_mask);
330         pinfo = _mm_slli_epi32(pinfo, 16);
331         /* Make pinfo has merged fields for ol_flags calculation. */
332         pinfo = _mm_or_si128(ptype, pinfo);
333         ptype = _mm_srli_epi32(pinfo, 10);
334         ptype = _mm_packs_epi32(ptype, zero);
335         /* Errored packets will have RTE_PTYPE_ALL_MASK. */
336         op_err = _mm_srli_epi16(op_err, 8);
337         ptype = _mm_or_si128(ptype, op_err);
338         pt_idx0 = _mm_extract_epi8(ptype, 0);
339         pt_idx1 = _mm_extract_epi8(ptype, 2);
340         pt_idx2 = _mm_extract_epi8(ptype, 4);
341         pt_idx3 = _mm_extract_epi8(ptype, 6);
342         pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
343                                !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
344         pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
345                                !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
346         pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
347                                !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
348         pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
349                                !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
350         /* Fill flags for checksum and VLAN. */
351         pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
352         pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
353         /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
354         cv_flags = _mm_slli_epi32(pinfo, 9);
355         cv_flags = _mm_or_si128(pinfo, cv_flags);
356         /* Move back flags to start from byte[0]. */
357         cv_flags = _mm_srli_epi32(cv_flags, 8);
358         /* Mask out garbage bits. */
359         cv_flags = _mm_and_si128(cv_flags, cv_mask);
360         /* Merge to ol_flags. */
361         ol_flags = _mm_or_si128(ol_flags, cv_flags);
362         /* Merge mbuf_init and ol_flags. */
363         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
364         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
365         rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
366         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
367         /* Write 8B rearm_data and 8B ol_flags. */
368         _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
369         _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
370         _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
371         _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
372 }
373
374 /**
375  * Receive burst of packets. An errored completion also consumes a mbuf, but the
376  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
377  * before returning to application.
378  *
379  * @param rxq
380  *   Pointer to RX queue structure.
381  * @param[out] pkts
382  *   Array to store received packets.
383  * @param pkts_n
384  *   Maximum number of packets in array.
385  * @param[out] err
386  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
387  *   packet to handle.
388  * @param[out] no_cq
389  *   Pointer to a boolean. Set true if no new CQE seen.
390  *
391  * @return
392  *   Number of packets received including errors (<= pkts_n).
393  */
394 static inline uint16_t
395 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
396             uint64_t *err, bool *no_cq)
397 {
398         const uint16_t q_n = 1 << rxq->cqe_n;
399         const uint16_t q_mask = q_n - 1;
400         volatile struct mlx5_cqe *cq;
401         struct rte_mbuf **elts;
402         unsigned int pos;
403         uint64_t n;
404         uint16_t repl_n;
405         uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
406         uint16_t nocmp_n = 0;
407         uint16_t rcvd_pkt = 0;
408         unsigned int cq_idx = rxq->cq_ci & q_mask;
409         unsigned int elts_idx;
410         unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
411         const __m128i owner_check =
412                 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
413         const __m128i opcode_check =
414                 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
415         const __m128i format_check =
416                 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
417         const __m128i resp_err_check =
418                 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
419 #ifdef MLX5_PMD_SOFT_COUNTERS
420         uint32_t rcvd_byte = 0;
421         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
422         const __m128i len_shuf_mask =
423                 _mm_set_epi8(-1, -1, -1, -1,
424                              -1, -1, -1, -1,
425                              12, 13,  8,  9,
426                               4,  5,  0,  1);
427 #endif
428         /* Mask to shuffle from extracted CQE to mbuf. */
429         const __m128i shuf_mask =
430                 _mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
431                              12, 13, 14, 15, /* rss, bswap32 */
432                              10, 11,         /* vlan_tci, bswap16 */
433                               4,  5,         /* data_len, bswap16 */
434                              -1, -1,         /* zero out 2nd half of pkt_len */
435                               4,  5          /* pkt_len, bswap16 */);
436         /* Mask to blend from the last Qword to the first DQword. */
437         const __m128i blend_mask =
438                 _mm_set_epi8(-1, -1, -1, -1,
439                              -1, -1, -1, -1,
440                               0,  0,  0,  0,
441                               0,  0,  0, -1);
442         const __m128i zero = _mm_setzero_si128();
443         const __m128i ones = _mm_cmpeq_epi32(zero, zero);
444         const __m128i crc_adj =
445                 _mm_set_epi16(0, 0, 0, 0, 0,
446                               rxq->crc_present * RTE_ETHER_CRC_LEN,
447                               0,
448                               rxq->crc_present * RTE_ETHER_CRC_LEN);
449         const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
450
451         MLX5_ASSERT(rxq->sges_n == 0);
452         MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
453         cq = &(*rxq->cqes)[cq_idx];
454         rte_prefetch0(cq);
455         rte_prefetch0(cq + 1);
456         rte_prefetch0(cq + 2);
457         rte_prefetch0(cq + 3);
458         pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
459         repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
460         if (repl_n >= rxq->rq_repl_thresh)
461                 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
462         /* See if there're unreturned mbufs from compressed CQE. */
463         rcvd_pkt = rxq->decompressed;
464         if (rcvd_pkt > 0) {
465                 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
466                 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
467                 rxq->rq_pi += rcvd_pkt;
468                 rxq->decompressed -= rcvd_pkt;
469                 pkts += rcvd_pkt;
470         }
471         elts_idx = rxq->rq_pi & q_mask;
472         elts = &(*rxq->elts)[elts_idx];
473         /* Not to overflow pkts array. */
474         pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
475         /* Not to cross queue end. */
476         pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
477         pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
478         if (!pkts_n) {
479                 *no_cq = !rcvd_pkt;
480                 return rcvd_pkt;
481         }
482         /* At this point, there shouldn't be any remained packets. */
483         MLX5_ASSERT(rxq->decompressed == 0);
484         /*
485          * A. load first Qword (8bytes) in one loop.
486          * B. copy 4 mbuf pointers from elts ring to returing pkts.
487          * C. load remained CQE data and extract necessary fields.
488          *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
489          *    following structure:
490          *        struct {
491          *          uint8_t  pkt_info;
492          *          uint8_t  flow_tag[3];
493          *          uint16_t byte_cnt;
494          *          uint8_t  rsvd4;
495          *          uint8_t  op_own;
496          *          uint16_t hdr_type_etc;
497          *          uint16_t vlan_info;
498          *          uint32_t rx_has_res;
499          *        } c;
500          * D. fill in mbuf.
501          * E. get valid CQEs.
502          * F. find compressed CQE.
503          */
504         for (pos = 0;
505              pos < pkts_n;
506              pos += MLX5_VPMD_DESCS_PER_LOOP) {
507                 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
508                 __m128i cqe_tmp1, cqe_tmp2;
509                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
510                 __m128i op_own, op_own_tmp1, op_own_tmp2;
511                 __m128i opcode, owner_mask, invalid_mask;
512                 __m128i comp_mask;
513                 __m128i mask;
514 #ifdef MLX5_PMD_SOFT_COUNTERS
515                 __m128i byte_cnt;
516 #endif
517                 __m128i mbp1, mbp2;
518                 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
519                 unsigned int p1, p2, p3;
520
521                 /* Prefetch next 4 CQEs. */
522                 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
523                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
524                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
525                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
526                         rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
527                 }
528                 /* A.0 do not cross the end of CQ. */
529                 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
530                 mask = _mm_sll_epi64(ones, mask);
531                 p = _mm_andnot_si128(mask, p);
532                 /* A.1 load cqes. */
533                 p3 = _mm_extract_epi16(p, 3);
534                 cqes[3] = _mm_loadl_epi64((__m128i *)
535                                            &cq[pos + p3].sop_drop_qpn);
536                 rte_compiler_barrier();
537                 p2 = _mm_extract_epi16(p, 2);
538                 cqes[2] = _mm_loadl_epi64((__m128i *)
539                                            &cq[pos + p2].sop_drop_qpn);
540                 rte_compiler_barrier();
541                 /* B.1 load mbuf pointers. */
542                 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
543                 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
544                 /* A.1 load a block having op_own. */
545                 p1 = _mm_extract_epi16(p, 1);
546                 cqes[1] = _mm_loadl_epi64((__m128i *)
547                                            &cq[pos + p1].sop_drop_qpn);
548                 rte_compiler_barrier();
549                 cqes[0] = _mm_loadl_epi64((__m128i *)
550                                            &cq[pos].sop_drop_qpn);
551                 /* B.2 copy mbuf pointers. */
552                 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
553                 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
554                 rte_cio_rmb();
555                 /* C.1 load remained CQE data and extract necessary fields. */
556                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
557                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
558                 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
559                 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
560                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
561                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
562                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
563                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
564                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
565                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
566                 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
567                 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
568                 /* C.2 generate final structure for mbuf with swapping bytes. */
569                 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
570                 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
571                 /* C.3 adjust CRC length. */
572                 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
573                 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
574                 /* C.4 adjust flow mark. */
575                 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
576                 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
577                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
578                 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
579                 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
580                 /* E.1 extract op_own field. */
581                 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
582                 /* C.1 load remained CQE data and extract necessary fields. */
583                 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
584                 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
585                 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
586                 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
587                 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
588                 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
589                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
590                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
591                 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
592                 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
593                 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
594                 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
595                 /* C.2 generate final structure for mbuf with swapping bytes. */
596                 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
597                 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
598                 /* C.3 adjust CRC length. */
599                 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
600                 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
601                 /* C.4 adjust flow mark. */
602                 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
603                 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
604                 /* E.1 extract op_own byte. */
605                 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
606                 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
607                 /* D.1 fill in mbuf - rx_descriptor_fields1. */
608                 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
609                 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
610                 /* E.2 flip owner bit to mark CQEs from last round. */
611                 owner_mask = _mm_and_si128(op_own, owner_check);
612                 if (ownership)
613                         owner_mask = _mm_xor_si128(owner_mask, owner_check);
614                 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
615                 owner_mask = _mm_packs_epi32(owner_mask, zero);
616                 /* E.3 get mask for invalidated CQEs. */
617                 opcode = _mm_and_si128(op_own, opcode_check);
618                 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
619                 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
620                 /* E.4 mask out beyond boundary. */
621                 invalid_mask = _mm_or_si128(invalid_mask, mask);
622                 /* E.5 merge invalid_mask with invalid owner. */
623                 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
624                 /* F.1 find compressed CQE format. */
625                 comp_mask = _mm_and_si128(op_own, format_check);
626                 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
627                 comp_mask = _mm_packs_epi32(comp_mask, zero);
628                 /* F.2 mask out invalid entries. */
629                 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
630                 comp_idx = _mm_cvtsi128_si64(comp_mask);
631                 /* F.3 get the first compressed CQE. */
632                 comp_idx = comp_idx ?
633                                 __builtin_ctzll(comp_idx) /
634                                         (sizeof(uint16_t) * 8) :
635                                 MLX5_VPMD_DESCS_PER_LOOP;
636                 /* E.6 mask out entries after the compressed CQE. */
637                 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
638                 mask = _mm_sll_epi64(ones, mask);
639                 invalid_mask = _mm_or_si128(invalid_mask, mask);
640                 /* E.7 count non-compressed valid CQEs. */
641                 n = _mm_cvtsi128_si64(invalid_mask);
642                 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
643                         MLX5_VPMD_DESCS_PER_LOOP;
644                 nocmp_n += n;
645                 /* D.2 get the final invalid mask. */
646                 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
647                 mask = _mm_sll_epi64(ones, mask);
648                 invalid_mask = _mm_or_si128(invalid_mask, mask);
649                 /* D.3 check error in opcode. */
650                 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
651                 opcode = _mm_packs_epi32(opcode, zero);
652                 opcode = _mm_andnot_si128(invalid_mask, opcode);
653                 /* D.4 mark if any error is set */
654                 *err |= _mm_cvtsi128_si64(opcode);
655                 /* D.5 fill in mbuf - rearm_data and packet_type. */
656                 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
657                 if (rxq->hw_timestamp) {
658                         pkts[pos]->timestamp =
659                                 rte_be_to_cpu_64(cq[pos].timestamp);
660                         pkts[pos + 1]->timestamp =
661                                 rte_be_to_cpu_64(cq[pos + p1].timestamp);
662                         pkts[pos + 2]->timestamp =
663                                 rte_be_to_cpu_64(cq[pos + p2].timestamp);
664                         pkts[pos + 3]->timestamp =
665                                 rte_be_to_cpu_64(cq[pos + p3].timestamp);
666                 }
667                 if (rxq->dynf_meta) {
668                         /* This code is subject for futher optimization. */
669                         int32_t offs = rxq->flow_meta_offset;
670
671                         *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
672                                 cq[pos].flow_table_metadata;
673                         *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
674                                 cq[pos + p1].flow_table_metadata;
675                         *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
676                                 cq[pos + p2].flow_table_metadata;
677                         *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
678                                 cq[pos + p3].flow_table_metadata;
679                         if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
680                                 pkts[pos]->ol_flags |= rxq->flow_meta_mask;
681                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
682                                 pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
683                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
684                                 pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
685                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
686                                 pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
687                 }
688 #ifdef MLX5_PMD_SOFT_COUNTERS
689                 /* Add up received bytes count. */
690                 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
691                 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
692                 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
693                 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
694 #endif
695                 /*
696                  * Break the loop unless more valid CQE is expected, or if
697                  * there's a compressed CQE.
698                  */
699                 if (n != MLX5_VPMD_DESCS_PER_LOOP)
700                         break;
701         }
702         /* If no new CQE seen, return without updating cq_db. */
703         if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
704                 *no_cq = true;
705                 return rcvd_pkt;
706         }
707         /* Update the consumer indexes for non-compressed CQEs. */
708         MLX5_ASSERT(nocmp_n <= pkts_n);
709         rxq->cq_ci += nocmp_n;
710         rxq->rq_pi += nocmp_n;
711         rcvd_pkt += nocmp_n;
712 #ifdef MLX5_PMD_SOFT_COUNTERS
713         rxq->stats.ipackets += nocmp_n;
714         rxq->stats.ibytes += rcvd_byte;
715 #endif
716         /* Decompress the last CQE if compressed. */
717         if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
718                 MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
719                 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
720                                                         &elts[nocmp_n]);
721                 /* Return more packets if needed. */
722                 if (nocmp_n < pkts_n) {
723                         uint16_t n = rxq->decompressed;
724
725                         n = RTE_MIN(n, pkts_n - nocmp_n);
726                         rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
727                         rxq->rq_pi += n;
728                         rcvd_pkt += n;
729                         rxq->decompressed -= n;
730                 }
731         }
732         rte_compiler_barrier();
733         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
734         *no_cq = !rcvd_pkt;
735         return rcvd_pkt;
736 }
737
738 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */