1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation.
3 * Copyright(c) 2014 6WIND S.A.
11 #include <rte_cycles.h>
12 #include <ethdev_driver.h>
13 #include <ethdev_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_malloc.h>
17 #include <rte_mbuf_dyn.h>
18 #include <rte_bus_vdev.h>
19 #include <rte_os_shim.h>
21 #include "pcap_osdep.h"
23 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
24 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
25 #define RTE_ETH_PCAP_PROMISC 1
26 #define RTE_ETH_PCAP_TIMEOUT -1
28 #define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
29 #define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
30 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
31 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
32 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
33 #define ETH_PCAP_IFACE_ARG "iface"
34 #define ETH_PCAP_PHY_MAC_ARG "phy_mac"
35 #define ETH_PCAP_INFINITE_RX_ARG "infinite_rx"
37 #define ETH_PCAP_ARG_MAXLEN 64
39 #define RTE_PMD_PCAP_MAX_QUEUES 16
41 static char errbuf[PCAP_ERRBUF_SIZE];
42 static struct timespec start_time;
43 static uint64_t start_cycles;
45 static uint8_t iface_idx;
47 static uint64_t timestamp_rx_dynflag;
48 static int timestamp_dynfield_offset = -1;
51 volatile unsigned long pkts;
52 volatile unsigned long bytes;
53 volatile unsigned long err_pkts;
54 volatile unsigned long rx_nombuf;
57 struct queue_missed_stat {
58 /* last value retrieved from pcap */
60 /* stores values lost by pcap stop or rollover */
61 unsigned long mnemonic;
62 /* value on last reset */
66 struct pcap_rx_queue {
69 struct rte_mempool *mb_pool;
70 struct queue_stat rx_stat;
71 struct queue_missed_stat missed_stat;
73 char type[ETH_PCAP_ARG_MAXLEN];
75 /* Contains pre-generated packets to be looped through */
76 struct rte_ring *pkts;
79 struct pcap_tx_queue {
82 struct queue_stat tx_stat;
84 char type[ETH_PCAP_ARG_MAXLEN];
87 struct pmd_internals {
88 struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
89 struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
90 char devargs[ETH_PCAP_ARG_MAXLEN];
91 struct rte_ether_addr eth_addr;
95 unsigned int infinite_rx;
98 struct pmd_process_private {
99 pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
100 pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
101 pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
105 unsigned int num_of_queue;
106 struct devargs_queue {
107 pcap_dumper_t *dumper;
111 } queue[RTE_PMD_PCAP_MAX_QUEUES];
115 struct pmd_devargs_all {
116 struct pmd_devargs rx_queues;
117 struct pmd_devargs tx_queues;
119 unsigned int is_tx_pcap;
120 unsigned int is_tx_iface;
121 unsigned int is_rx_pcap;
122 unsigned int is_rx_iface;
123 unsigned int infinite_rx;
126 static const char *valid_arguments[] = {
127 ETH_PCAP_RX_PCAP_ARG,
128 ETH_PCAP_TX_PCAP_ARG,
129 ETH_PCAP_RX_IFACE_ARG,
130 ETH_PCAP_RX_IFACE_IN_ARG,
131 ETH_PCAP_TX_IFACE_ARG,
133 ETH_PCAP_PHY_MAC_ARG,
134 ETH_PCAP_INFINITE_RX_ARG,
138 static struct rte_eth_link pmd_link = {
139 .link_speed = ETH_SPEED_NUM_10G,
140 .link_duplex = ETH_LINK_FULL_DUPLEX,
141 .link_status = ETH_LINK_DOWN,
142 .link_autoneg = ETH_LINK_FIXED,
145 RTE_LOG_REGISTER_DEFAULT(eth_pcap_logtype, NOTICE);
147 static struct queue_missed_stat*
148 queue_missed_stat_update(struct rte_eth_dev *dev, unsigned int qid)
150 struct pmd_internals *internals = dev->data->dev_private;
151 struct queue_missed_stat *missed_stat =
152 &internals->rx_queue[qid].missed_stat;
153 const struct pmd_process_private *pp = dev->process_private;
154 pcap_t *pcap = pp->rx_pcap[qid];
155 struct pcap_stat stat;
157 if (!pcap || (pcap_stats(pcap, &stat) != 0))
160 /* rollover check - best effort fixup assuming single rollover */
161 if (stat.ps_drop < missed_stat->pcap)
162 missed_stat->mnemonic += UINT_MAX;
163 missed_stat->pcap = stat.ps_drop;
169 queue_missed_stat_on_stop_update(struct rte_eth_dev *dev, unsigned int qid)
171 struct queue_missed_stat *missed_stat =
172 queue_missed_stat_update(dev, qid);
174 missed_stat->mnemonic += missed_stat->pcap;
175 missed_stat->pcap = 0;
179 queue_missed_stat_reset(struct rte_eth_dev *dev, unsigned int qid)
181 struct queue_missed_stat *missed_stat =
182 queue_missed_stat_update(dev, qid);
184 missed_stat->reset = missed_stat->pcap;
185 missed_stat->mnemonic = 0;
189 queue_missed_stat_get(struct rte_eth_dev *dev, unsigned int qid)
191 const struct queue_missed_stat *missed_stat =
192 queue_missed_stat_update(dev, qid);
194 return missed_stat->pcap + missed_stat->mnemonic - missed_stat->reset;
198 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
199 const u_char *data, uint16_t data_len)
201 /* Copy the first segment. */
202 uint16_t len = rte_pktmbuf_tailroom(mbuf);
203 struct rte_mbuf *m = mbuf;
205 rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
209 while (data_len > 0) {
210 /* Allocate next mbuf and point to that. */
211 m->next = rte_pktmbuf_alloc(mb_pool);
213 if (unlikely(!m->next))
218 /* Headroom is not needed in chained mbufs. */
219 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
223 /* Copy next segment. */
224 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
225 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
232 return mbuf->nb_segs;
236 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
239 struct pcap_rx_queue *pcap_q = queue;
240 uint32_t rx_bytes = 0;
242 if (unlikely(nb_pkts == 0))
245 if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
248 for (i = 0; i < nb_pkts; i++) {
249 struct rte_mbuf *pcap_buf;
250 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
254 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
255 rte_pktmbuf_mtod(pcap_buf, void *),
257 bufs[i]->data_len = pcap_buf->data_len;
258 bufs[i]->pkt_len = pcap_buf->pkt_len;
259 bufs[i]->port = pcap_q->port_id;
260 rx_bytes += pcap_buf->data_len;
262 /* Enqueue packet back on ring to allow infinite rx. */
263 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
266 pcap_q->rx_stat.pkts += i;
267 pcap_q->rx_stat.bytes += rx_bytes;
273 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
276 struct pcap_pkthdr header;
277 struct pmd_process_private *pp;
278 const u_char *packet;
279 struct rte_mbuf *mbuf;
280 struct pcap_rx_queue *pcap_q = queue;
282 uint32_t rx_bytes = 0;
285 pp = rte_eth_devices[pcap_q->port_id].process_private;
286 pcap = pp->rx_pcap[pcap_q->queue_id];
288 if (unlikely(pcap == NULL || nb_pkts == 0))
291 /* Reads the given number of packets from the pcap file one by one
292 * and copies the packet data into a newly allocated mbuf to return.
294 for (i = 0; i < nb_pkts; i++) {
295 /* Get the next PCAP packet */
296 packet = pcap_next(pcap, &header);
297 if (unlikely(packet == NULL))
300 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
301 if (unlikely(mbuf == NULL)) {
302 pcap_q->rx_stat.rx_nombuf++;
306 if (header.caplen <= rte_pktmbuf_tailroom(mbuf)) {
307 /* pcap packet will fit in the mbuf, can copy it */
308 rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
310 mbuf->data_len = (uint16_t)header.caplen;
312 /* Try read jumbo frame into multi mbufs. */
313 if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
316 header.caplen) == -1)) {
317 pcap_q->rx_stat.err_pkts++;
318 rte_pktmbuf_free(mbuf);
323 mbuf->pkt_len = (uint16_t)header.caplen;
324 *RTE_MBUF_DYNFIELD(mbuf, timestamp_dynfield_offset,
325 rte_mbuf_timestamp_t *) =
326 (uint64_t)header.ts.tv_sec * 1000000 +
328 mbuf->ol_flags |= timestamp_rx_dynflag;
329 mbuf->port = pcap_q->port_id;
332 rx_bytes += header.caplen;
334 pcap_q->rx_stat.pkts += num_rx;
335 pcap_q->rx_stat.bytes += rx_bytes;
341 eth_null_rx(void *queue __rte_unused,
342 struct rte_mbuf **bufs __rte_unused,
343 uint16_t nb_pkts __rte_unused)
348 #define NSEC_PER_SEC 1000000000L
351 * This function stores nanoseconds in `tv_usec` field of `struct timeval`,
352 * because `ts` goes directly to nanosecond-precision dump.
355 calculate_timestamp(struct timeval *ts) {
357 struct timespec cur_time;
359 cycles = rte_get_timer_cycles() - start_cycles;
360 cur_time.tv_sec = cycles / hz;
361 cur_time.tv_nsec = (cycles % hz) * NSEC_PER_SEC / hz;
363 ts->tv_sec = start_time.tv_sec + cur_time.tv_sec;
364 ts->tv_usec = start_time.tv_nsec + cur_time.tv_nsec;
365 if (ts->tv_usec >= NSEC_PER_SEC) {
366 ts->tv_usec -= NSEC_PER_SEC;
372 * Callback to handle writing packets to a pcap file.
375 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
378 struct rte_mbuf *mbuf;
379 struct pmd_process_private *pp;
380 struct pcap_tx_queue *dumper_q = queue;
382 uint32_t tx_bytes = 0;
383 struct pcap_pkthdr header;
384 pcap_dumper_t *dumper;
385 unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
388 pp = rte_eth_devices[dumper_q->port_id].process_private;
389 dumper = pp->tx_dumper[dumper_q->queue_id];
391 if (dumper == NULL || nb_pkts == 0)
394 /* writes the nb_pkts packets to the previously opened pcap file
396 for (i = 0; i < nb_pkts; i++) {
398 len = caplen = rte_pktmbuf_pkt_len(mbuf);
399 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
400 len > sizeof(temp_data))) {
401 caplen = sizeof(temp_data);
404 calculate_timestamp(&header.ts);
406 header.caplen = caplen;
407 /* rte_pktmbuf_read() returns a pointer to the data directly
408 * in the mbuf (when the mbuf is contiguous) or, otherwise,
409 * a pointer to temp_data after copying into it.
411 pcap_dump((u_char *)dumper, &header,
412 rte_pktmbuf_read(mbuf, 0, caplen, temp_data));
416 rte_pktmbuf_free(mbuf);
420 * Since there's no place to hook a callback when the forwarding
421 * process stops and to make sure the pcap file is actually written,
422 * we flush the pcap dumper within each burst.
424 pcap_dump_flush(dumper);
425 dumper_q->tx_stat.pkts += num_tx;
426 dumper_q->tx_stat.bytes += tx_bytes;
427 dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
433 * Callback to handle dropping packets in the infinite rx case.
436 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
439 uint32_t tx_bytes = 0;
440 struct pcap_tx_queue *tx_queue = queue;
442 if (unlikely(nb_pkts == 0))
445 for (i = 0; i < nb_pkts; i++) {
446 tx_bytes += bufs[i]->pkt_len;
447 rte_pktmbuf_free(bufs[i]);
450 tx_queue->tx_stat.pkts += nb_pkts;
451 tx_queue->tx_stat.bytes += tx_bytes;
457 * Callback to handle sending packets through a real NIC.
460 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
464 struct rte_mbuf *mbuf;
465 struct pmd_process_private *pp;
466 struct pcap_tx_queue *tx_queue = queue;
468 uint32_t tx_bytes = 0;
470 unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
473 pp = rte_eth_devices[tx_queue->port_id].process_private;
474 pcap = pp->tx_pcap[tx_queue->queue_id];
476 if (unlikely(nb_pkts == 0 || pcap == NULL))
479 for (i = 0; i < nb_pkts; i++) {
481 len = rte_pktmbuf_pkt_len(mbuf);
482 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
483 len > sizeof(temp_data))) {
485 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
486 len, sizeof(temp_data));
487 rte_pktmbuf_free(mbuf);
491 /* rte_pktmbuf_read() returns a pointer to the data directly
492 * in the mbuf (when the mbuf is contiguous) or, otherwise,
493 * a pointer to temp_data after copying into it.
495 ret = pcap_sendpacket(pcap,
496 rte_pktmbuf_read(mbuf, 0, len, temp_data), len);
497 if (unlikely(ret != 0))
501 rte_pktmbuf_free(mbuf);
504 tx_queue->tx_stat.pkts += num_tx;
505 tx_queue->tx_stat.bytes += tx_bytes;
506 tx_queue->tx_stat.err_pkts += i - num_tx;
512 * pcap_open_live wrapper function
515 open_iface_live(const char *iface, pcap_t **pcap) {
516 *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
517 RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
520 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
528 open_single_iface(const char *iface, pcap_t **pcap)
530 if (open_iface_live(iface, pcap) < 0) {
531 PMD_LOG(ERR, "Couldn't open interface %s", iface);
539 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
544 * We need to create a dummy empty pcap_t to use it
545 * with pcap_dump_open(). We create big enough an Ethernet
548 tx_pcap = pcap_open_dead_with_tstamp_precision(DLT_EN10MB,
549 RTE_ETH_PCAP_SNAPSHOT_LEN, PCAP_TSTAMP_PRECISION_NANO);
550 if (tx_pcap == NULL) {
551 PMD_LOG(ERR, "Couldn't create dead pcap");
555 /* The dumper is created using the previous pcap_t reference */
556 *dumper = pcap_dump_open(tx_pcap, pcap_filename);
557 if (*dumper == NULL) {
559 PMD_LOG(ERR, "Couldn't open %s for writing.",
569 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
571 *pcap = pcap_open_offline(pcap_filename, errbuf);
573 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
582 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
584 const u_char *packet;
585 struct pcap_pkthdr header;
586 uint64_t pcap_pkt_count = 0;
588 while ((packet = pcap_next(*pcap, &header)))
591 /* The pcap is reopened so it can be used as normal later. */
594 open_single_rx_pcap(pcap_q->name, pcap);
596 return pcap_pkt_count;
600 eth_dev_start(struct rte_eth_dev *dev)
603 struct pmd_internals *internals = dev->data->dev_private;
604 struct pmd_process_private *pp = dev->process_private;
605 struct pcap_tx_queue *tx;
606 struct pcap_rx_queue *rx;
608 /* Special iface case. Single pcap is open and shared between tx/rx. */
609 if (internals->single_iface) {
610 tx = &internals->tx_queue[0];
611 rx = &internals->rx_queue[0];
613 if (!pp->tx_pcap[0] &&
614 strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
615 if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
617 pp->rx_pcap[0] = pp->tx_pcap[0];
623 /* If not open already, open tx pcaps/dumpers */
624 for (i = 0; i < dev->data->nb_tx_queues; i++) {
625 tx = &internals->tx_queue[i];
627 if (!pp->tx_dumper[i] &&
628 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
629 if (open_single_tx_pcap(tx->name,
630 &pp->tx_dumper[i]) < 0)
632 } else if (!pp->tx_pcap[i] &&
633 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
634 if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
639 /* If not open already, open rx pcaps */
640 for (i = 0; i < dev->data->nb_rx_queues; i++) {
641 rx = &internals->rx_queue[i];
643 if (pp->rx_pcap[i] != NULL)
646 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
647 if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
649 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
650 if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
656 for (i = 0; i < dev->data->nb_rx_queues; i++)
657 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
659 for (i = 0; i < dev->data->nb_tx_queues; i++)
660 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
662 dev->data->dev_link.link_status = ETH_LINK_UP;
668 * This function gets called when the current port gets stopped.
669 * Is the only place for us to close all the tx streams dumpers.
670 * If not called the dumpers will be flushed within each tx burst.
673 eth_dev_stop(struct rte_eth_dev *dev)
676 struct pmd_internals *internals = dev->data->dev_private;
677 struct pmd_process_private *pp = dev->process_private;
679 /* Special iface case. Single pcap is open and shared between tx/rx. */
680 if (internals->single_iface) {
681 queue_missed_stat_on_stop_update(dev, 0);
682 if (pp->tx_pcap[0] != NULL) {
683 pcap_close(pp->tx_pcap[0]);
684 pp->tx_pcap[0] = NULL;
685 pp->rx_pcap[0] = NULL;
690 for (i = 0; i < dev->data->nb_tx_queues; i++) {
691 if (pp->tx_dumper[i] != NULL) {
692 pcap_dump_close(pp->tx_dumper[i]);
693 pp->tx_dumper[i] = NULL;
696 if (pp->tx_pcap[i] != NULL) {
697 pcap_close(pp->tx_pcap[i]);
698 pp->tx_pcap[i] = NULL;
702 for (i = 0; i < dev->data->nb_rx_queues; i++) {
703 if (pp->rx_pcap[i] != NULL) {
704 queue_missed_stat_on_stop_update(dev, i);
705 pcap_close(pp->rx_pcap[i]);
706 pp->rx_pcap[i] = NULL;
711 for (i = 0; i < dev->data->nb_rx_queues; i++)
712 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
714 for (i = 0; i < dev->data->nb_tx_queues; i++)
715 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
717 dev->data->dev_link.link_status = ETH_LINK_DOWN;
723 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
729 eth_dev_info(struct rte_eth_dev *dev,
730 struct rte_eth_dev_info *dev_info)
732 struct pmd_internals *internals = dev->data->dev_private;
734 dev_info->if_index = internals->if_index;
735 dev_info->max_mac_addrs = 1;
736 dev_info->max_rx_pktlen = (uint32_t) -1;
737 dev_info->max_rx_queues = dev->data->nb_rx_queues;
738 dev_info->max_tx_queues = dev->data->nb_tx_queues;
739 dev_info->min_rx_bufsize = 0;
745 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
748 unsigned long rx_packets_total = 0, rx_bytes_total = 0;
749 unsigned long rx_missed_total = 0;
750 unsigned long rx_nombuf_total = 0, rx_err_total = 0;
751 unsigned long tx_packets_total = 0, tx_bytes_total = 0;
752 unsigned long tx_packets_err_total = 0;
753 const struct pmd_internals *internal = dev->data->dev_private;
755 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
756 i < dev->data->nb_rx_queues; i++) {
757 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
758 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
759 rx_nombuf_total += internal->rx_queue[i].rx_stat.rx_nombuf;
760 rx_err_total += internal->rx_queue[i].rx_stat.err_pkts;
761 rx_packets_total += stats->q_ipackets[i];
762 rx_bytes_total += stats->q_ibytes[i];
763 rx_missed_total += queue_missed_stat_get(dev, i);
766 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
767 i < dev->data->nb_tx_queues; i++) {
768 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
769 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
770 tx_packets_total += stats->q_opackets[i];
771 tx_bytes_total += stats->q_obytes[i];
772 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
775 stats->ipackets = rx_packets_total;
776 stats->ibytes = rx_bytes_total;
777 stats->imissed = rx_missed_total;
778 stats->ierrors = rx_err_total;
779 stats->rx_nombuf = rx_nombuf_total;
780 stats->opackets = tx_packets_total;
781 stats->obytes = tx_bytes_total;
782 stats->oerrors = tx_packets_err_total;
788 eth_stats_reset(struct rte_eth_dev *dev)
791 struct pmd_internals *internal = dev->data->dev_private;
793 for (i = 0; i < dev->data->nb_rx_queues; i++) {
794 internal->rx_queue[i].rx_stat.pkts = 0;
795 internal->rx_queue[i].rx_stat.bytes = 0;
796 internal->rx_queue[i].rx_stat.err_pkts = 0;
797 internal->rx_queue[i].rx_stat.rx_nombuf = 0;
798 queue_missed_stat_reset(dev, i);
801 for (i = 0; i < dev->data->nb_tx_queues; i++) {
802 internal->tx_queue[i].tx_stat.pkts = 0;
803 internal->tx_queue[i].tx_stat.bytes = 0;
804 internal->tx_queue[i].tx_stat.err_pkts = 0;
811 infinite_rx_ring_free(struct rte_ring *pkts)
813 struct rte_mbuf *bufs;
815 while (!rte_ring_dequeue(pkts, (void **)&bufs))
816 rte_pktmbuf_free(bufs);
822 eth_dev_close(struct rte_eth_dev *dev)
825 struct pmd_internals *internals = dev->data->dev_private;
827 PMD_LOG(INFO, "Closing pcap ethdev on NUMA socket %d",
832 rte_free(dev->process_private);
834 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
837 /* Device wide flag, but cleanup must be performed per queue. */
838 if (internals->infinite_rx) {
839 for (i = 0; i < dev->data->nb_rx_queues; i++) {
840 struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
843 * 'pcap_q->pkts' can be NULL if 'eth_dev_close()'
844 * called before 'eth_rx_queue_setup()' has been called
846 if (pcap_q->pkts == NULL)
849 infinite_rx_ring_free(pcap_q->pkts);
853 if (internals->phy_mac == 0)
854 /* not dynamically allocated, must not be freed */
855 dev->data->mac_addrs = NULL;
861 eth_link_update(struct rte_eth_dev *dev __rte_unused,
862 int wait_to_complete __rte_unused)
868 eth_rx_queue_setup(struct rte_eth_dev *dev,
869 uint16_t rx_queue_id,
870 uint16_t nb_rx_desc __rte_unused,
871 unsigned int socket_id __rte_unused,
872 const struct rte_eth_rxconf *rx_conf __rte_unused,
873 struct rte_mempool *mb_pool)
875 struct pmd_internals *internals = dev->data->dev_private;
876 struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
878 pcap_q->mb_pool = mb_pool;
879 pcap_q->port_id = dev->data->port_id;
880 pcap_q->queue_id = rx_queue_id;
881 dev->data->rx_queues[rx_queue_id] = pcap_q;
883 if (internals->infinite_rx) {
884 struct pmd_process_private *pp;
885 char ring_name[RTE_RING_NAMESIZE];
886 static uint32_t ring_number;
887 uint64_t pcap_pkt_count = 0;
888 struct rte_mbuf *bufs[1];
891 pp = rte_eth_devices[pcap_q->port_id].process_private;
892 pcap = &pp->rx_pcap[pcap_q->queue_id];
894 if (unlikely(*pcap == NULL))
897 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
899 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu32,
902 pcap_q->pkts = rte_ring_create(ring_name,
903 rte_align64pow2(pcap_pkt_count + 1), 0,
904 RING_F_SP_ENQ | RING_F_SC_DEQ);
909 /* Fill ring with packets from PCAP file one by one. */
910 while (eth_pcap_rx(pcap_q, bufs, 1)) {
911 /* Check for multiseg mbufs. */
912 if (bufs[0]->nb_segs != 1) {
913 infinite_rx_ring_free(pcap_q->pkts);
915 "Multiseg mbufs are not supported in infinite_rx mode.");
919 rte_ring_enqueue_bulk(pcap_q->pkts,
920 (void * const *)bufs, 1, NULL);
923 if (rte_ring_count(pcap_q->pkts) < pcap_pkt_count) {
924 infinite_rx_ring_free(pcap_q->pkts);
926 "Not enough mbufs to accommodate packets in pcap file. "
927 "At least %" PRIu64 " mbufs per queue is required.",
933 * Reset the stats for this queue since eth_pcap_rx calls above
934 * didn't result in the application receiving packets.
936 pcap_q->rx_stat.pkts = 0;
937 pcap_q->rx_stat.bytes = 0;
944 eth_tx_queue_setup(struct rte_eth_dev *dev,
945 uint16_t tx_queue_id,
946 uint16_t nb_tx_desc __rte_unused,
947 unsigned int socket_id __rte_unused,
948 const struct rte_eth_txconf *tx_conf __rte_unused)
950 struct pmd_internals *internals = dev->data->dev_private;
951 struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
953 pcap_q->port_id = dev->data->port_id;
954 pcap_q->queue_id = tx_queue_id;
955 dev->data->tx_queues[tx_queue_id] = pcap_q;
961 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
963 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
969 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
971 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
977 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
979 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
985 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
987 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
992 static const struct eth_dev_ops ops = {
993 .dev_start = eth_dev_start,
994 .dev_stop = eth_dev_stop,
995 .dev_close = eth_dev_close,
996 .dev_configure = eth_dev_configure,
997 .dev_infos_get = eth_dev_info,
998 .rx_queue_setup = eth_rx_queue_setup,
999 .tx_queue_setup = eth_tx_queue_setup,
1000 .rx_queue_start = eth_rx_queue_start,
1001 .tx_queue_start = eth_tx_queue_start,
1002 .rx_queue_stop = eth_rx_queue_stop,
1003 .tx_queue_stop = eth_tx_queue_stop,
1004 .link_update = eth_link_update,
1005 .stats_get = eth_stats_get,
1006 .stats_reset = eth_stats_reset,
1010 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
1011 pcap_t *pcap, pcap_dumper_t *dumper)
1013 if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
1016 pmd->queue[pmd->num_of_queue].pcap = pcap;
1018 pmd->queue[pmd->num_of_queue].dumper = dumper;
1019 pmd->queue[pmd->num_of_queue].name = name;
1020 pmd->queue[pmd->num_of_queue].type = type;
1021 pmd->num_of_queue++;
1026 * Function handler that opens the pcap file for reading a stores a
1027 * reference of it for use it later on.
1030 open_rx_pcap(const char *key, const char *value, void *extra_args)
1032 const char *pcap_filename = value;
1033 struct pmd_devargs *rx = extra_args;
1034 pcap_t *pcap = NULL;
1036 if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
1039 if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
1048 * Opens a pcap file for writing and stores a reference to it
1049 * for use it later on.
1052 open_tx_pcap(const char *key, const char *value, void *extra_args)
1054 const char *pcap_filename = value;
1055 struct pmd_devargs *dumpers = extra_args;
1056 pcap_dumper_t *dumper;
1058 if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
1061 if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
1062 pcap_dump_close(dumper);
1070 * Opens an interface for reading and writing
1073 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
1075 const char *iface = value;
1076 struct pmd_devargs *tx = extra_args;
1077 pcap_t *pcap = NULL;
1079 if (open_single_iface(iface, &pcap) < 0)
1082 tx->queue[0].pcap = pcap;
1083 tx->queue[0].name = iface;
1084 tx->queue[0].type = key;
1090 set_iface_direction(const char *iface, pcap_t *pcap,
1091 pcap_direction_t direction)
1093 const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
1094 if (pcap_setdirection(pcap, direction) < 0) {
1095 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
1096 iface, direction_str, pcap_geterr(pcap));
1099 PMD_LOG(INFO, "Setting %s pcap direction %s\n",
1100 iface, direction_str);
1105 open_iface(const char *key, const char *value, void *extra_args)
1107 const char *iface = value;
1108 struct pmd_devargs *pmd = extra_args;
1109 pcap_t *pcap = NULL;
1111 if (open_single_iface(iface, &pcap) < 0)
1113 if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1122 * Opens a NIC for reading packets from it
1125 open_rx_iface(const char *key, const char *value, void *extra_args)
1127 int ret = open_iface(key, value, extra_args);
1130 if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1131 struct pmd_devargs *pmd = extra_args;
1132 unsigned int qid = pmd->num_of_queue - 1;
1134 set_iface_direction(pmd->queue[qid].name,
1135 pmd->queue[qid].pcap,
1143 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1145 if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1146 strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1147 return open_rx_iface(key, value, extra_args);
1153 * Opens a NIC for writing packets to it
1156 open_tx_iface(const char *key, const char *value, void *extra_args)
1158 return open_iface(key, value, extra_args);
1162 select_phy_mac(const char *key __rte_unused, const char *value,
1166 const int phy_mac = atoi(value);
1167 int *enable_phy_mac = extra_args;
1170 *enable_phy_mac = 1;
1176 get_infinite_rx_arg(const char *key __rte_unused,
1177 const char *value, void *extra_args)
1180 const int infinite_rx = atoi(value);
1181 int *enable_infinite_rx = extra_args;
1183 if (infinite_rx > 0)
1184 *enable_infinite_rx = 1;
1190 pmd_init_internals(struct rte_vdev_device *vdev,
1191 const unsigned int nb_rx_queues,
1192 const unsigned int nb_tx_queues,
1193 struct pmd_internals **internals,
1194 struct rte_eth_dev **eth_dev)
1196 struct rte_eth_dev_data *data;
1197 struct pmd_process_private *pp;
1198 unsigned int numa_node = vdev->device.numa_node;
1200 PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1203 pp = (struct pmd_process_private *)
1204 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1205 RTE_CACHE_LINE_SIZE);
1209 "Failed to allocate memory for process private");
1213 /* reserve an ethdev entry */
1214 *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1219 (*eth_dev)->process_private = pp;
1220 /* now put it all together
1221 * - store queue data in internals,
1222 * - store numa_node info in eth_dev
1223 * - point eth_dev_data to internals
1224 * - and point eth_dev structure to new eth_dev_data structure
1226 *internals = (*eth_dev)->data->dev_private;
1228 * Interface MAC = 02:70:63:61:70:<iface_idx>
1229 * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1230 * where the middle 4 characters are converted to hex.
1232 (*internals)->eth_addr = (struct rte_ether_addr) {
1233 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1235 (*internals)->phy_mac = 0;
1236 data = (*eth_dev)->data;
1237 data->nb_rx_queues = (uint16_t)nb_rx_queues;
1238 data->nb_tx_queues = (uint16_t)nb_tx_queues;
1239 data->dev_link = pmd_link;
1240 data->mac_addrs = &(*internals)->eth_addr;
1241 data->promiscuous = 1;
1242 data->all_multicast = 1;
1243 data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1246 * NOTE: we'll replace the data element, of originally allocated
1247 * eth_dev so the rings are local per-process
1249 (*eth_dev)->dev_ops = &ops;
1251 strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1252 ETH_PCAP_ARG_MAXLEN);
1258 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1259 const unsigned int numa_node)
1262 struct rte_ether_addr mac;
1264 if (osdep_iface_mac_get(if_name, &mac) < 0)
1267 mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1268 if (mac_addrs == NULL)
1271 PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1272 rte_memcpy(mac_addrs, mac.addr_bytes, RTE_ETHER_ADDR_LEN);
1273 eth_dev->data->mac_addrs = mac_addrs;
1278 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1279 struct pmd_devargs_all *devargs_all,
1280 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1282 struct pmd_process_private *pp;
1283 struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1284 struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1285 const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1286 const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1289 if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1293 pp = (*eth_dev)->process_private;
1294 for (i = 0; i < nb_rx_queues; i++) {
1295 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1296 struct devargs_queue *queue = &rx_queues->queue[i];
1298 pp->rx_pcap[i] = queue->pcap;
1299 strlcpy(rx->name, queue->name, sizeof(rx->name));
1300 strlcpy(rx->type, queue->type, sizeof(rx->type));
1303 for (i = 0; i < nb_tx_queues; i++) {
1304 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1305 struct devargs_queue *queue = &tx_queues->queue[i];
1307 pp->tx_dumper[i] = queue->dumper;
1308 pp->tx_pcap[i] = queue->pcap;
1309 strlcpy(tx->name, queue->name, sizeof(tx->name));
1310 strlcpy(tx->type, queue->type, sizeof(tx->type));
1317 eth_from_pcaps(struct rte_vdev_device *vdev,
1318 struct pmd_devargs_all *devargs_all)
1320 struct pmd_internals *internals = NULL;
1321 struct rte_eth_dev *eth_dev = NULL;
1322 struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1323 int single_iface = devargs_all->single_iface;
1324 unsigned int infinite_rx = devargs_all->infinite_rx;
1327 ret = eth_from_pcaps_common(vdev, devargs_all, &internals, ð_dev);
1332 /* store weather we are using a single interface for rx/tx or not */
1333 internals->single_iface = single_iface;
1336 internals->if_index =
1337 osdep_iface_index_get(rx_queues->queue[0].name);
1339 /* phy_mac arg is applied only only if "iface" devarg is provided */
1340 if (rx_queues->phy_mac) {
1341 if (eth_pcap_update_mac(rx_queues->queue[0].name,
1342 eth_dev, vdev->device.numa_node) == 0)
1343 internals->phy_mac = 1;
1347 internals->infinite_rx = infinite_rx;
1348 /* Assign rx ops. */
1350 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1351 else if (devargs_all->is_rx_pcap || devargs_all->is_rx_iface ||
1353 eth_dev->rx_pkt_burst = eth_pcap_rx;
1355 eth_dev->rx_pkt_burst = eth_null_rx;
1357 /* Assign tx ops. */
1358 if (devargs_all->is_tx_pcap)
1359 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1360 else if (devargs_all->is_tx_iface || single_iface)
1361 eth_dev->tx_pkt_burst = eth_pcap_tx;
1363 eth_dev->tx_pkt_burst = eth_tx_drop;
1365 rte_eth_dev_probing_finish(eth_dev);
1370 eth_release_pcaps(struct pmd_devargs *pcaps,
1371 struct pmd_devargs *dumpers,
1377 if (pcaps->queue[0].pcap)
1378 pcap_close(pcaps->queue[0].pcap);
1382 for (i = 0; i < dumpers->num_of_queue; i++) {
1383 if (dumpers->queue[i].dumper)
1384 pcap_dump_close(dumpers->queue[i].dumper);
1386 if (dumpers->queue[i].pcap)
1387 pcap_close(dumpers->queue[i].pcap);
1390 for (i = 0; i < pcaps->num_of_queue; i++) {
1391 if (pcaps->queue[i].pcap)
1392 pcap_close(pcaps->queue[i].pcap);
1397 pmd_pcap_probe(struct rte_vdev_device *dev)
1400 struct rte_kvargs *kvlist;
1401 struct pmd_devargs pcaps = {0};
1402 struct pmd_devargs dumpers = {0};
1403 struct rte_eth_dev *eth_dev = NULL;
1404 struct pmd_internals *internal;
1407 struct pmd_devargs_all devargs_all = {
1414 name = rte_vdev_device_name(dev);
1415 PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1417 timespec_get(&start_time, TIME_UTC);
1418 start_cycles = rte_get_timer_cycles();
1419 hz = rte_get_timer_hz();
1421 ret = rte_mbuf_dyn_rx_timestamp_register(×tamp_dynfield_offset,
1422 ×tamp_rx_dynflag);
1424 PMD_LOG(ERR, "Failed to register Rx timestamp field/flag");
1428 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1429 eth_dev = rte_eth_dev_attach_secondary(name);
1431 PMD_LOG(ERR, "Failed to probe %s", name);
1435 internal = eth_dev->data->dev_private;
1437 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1441 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1448 * If iface argument is passed we open the NICs and use them for
1451 if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1453 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1454 &open_rx_tx_iface, &pcaps);
1458 dumpers.queue[0] = pcaps.queue[0];
1460 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1461 &select_phy_mac, &pcaps.phy_mac);
1465 dumpers.phy_mac = pcaps.phy_mac;
1467 devargs_all.single_iface = 1;
1468 pcaps.num_of_queue = 1;
1469 dumpers.num_of_queue = 1;
1475 * We check whether we want to open a RX stream from a real NIC, a
1476 * pcap file or open a dummy RX stream
1478 devargs_all.is_rx_pcap =
1479 rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1480 devargs_all.is_rx_iface =
1481 (rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG) +
1482 rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_IN_ARG)) ? 1 : 0;
1483 pcaps.num_of_queue = 0;
1485 devargs_all.is_tx_pcap =
1486 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1487 devargs_all.is_tx_iface =
1488 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1489 dumpers.num_of_queue = 0;
1491 if (devargs_all.is_rx_pcap) {
1493 * We check whether we want to infinitely rx the pcap file.
1495 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1496 ETH_PCAP_INFINITE_RX_ARG);
1498 if (infinite_rx_arg_cnt == 1) {
1499 ret = rte_kvargs_process(kvlist,
1500 ETH_PCAP_INFINITE_RX_ARG,
1501 &get_infinite_rx_arg,
1502 &devargs_all.infinite_rx);
1505 PMD_LOG(INFO, "infinite_rx has been %s for %s",
1506 devargs_all.infinite_rx ? "enabled" : "disabled",
1509 } else if (infinite_rx_arg_cnt > 1) {
1510 PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1511 "argument has been provided more than once "
1515 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1516 &open_rx_pcap, &pcaps);
1517 } else if (devargs_all.is_rx_iface) {
1518 ret = rte_kvargs_process(kvlist, NULL,
1519 &rx_iface_args_process, &pcaps);
1520 } else if (devargs_all.is_tx_iface || devargs_all.is_tx_pcap) {
1523 /* Count number of tx queue args passed before dummy rx queue
1524 * creation so a dummy rx queue can be created for each tx queue
1526 unsigned int num_tx_queues =
1527 (rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) +
1528 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG));
1530 PMD_LOG(INFO, "Creating null rx queue since no rx queues were provided.");
1532 /* Creating a dummy rx queue for each tx queue passed */
1533 for (i = 0; i < num_tx_queues; i++)
1534 ret = add_queue(&pcaps, "dummy_rx", "rx_null", NULL,
1537 PMD_LOG(ERR, "Error - No rx or tx queues provided");
1544 * We check whether we want to open a TX stream to a real NIC,
1545 * a pcap file, or drop packets on tx
1547 if (devargs_all.is_tx_pcap) {
1548 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1549 &open_tx_pcap, &dumpers);
1550 } else if (devargs_all.is_tx_iface) {
1551 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1552 &open_tx_iface, &dumpers);
1556 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1558 /* Add 1 dummy queue per rxq which counts and drops packets. */
1559 for (i = 0; i < pcaps.num_of_queue; i++)
1560 ret = add_queue(&dumpers, "dummy_tx", "tx_drop", NULL,
1568 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1569 struct pmd_process_private *pp;
1572 internal = eth_dev->data->dev_private;
1573 pp = (struct pmd_process_private *)
1575 sizeof(struct pmd_process_private),
1576 RTE_CACHE_LINE_SIZE);
1580 "Failed to allocate memory for process private");
1585 eth_dev->dev_ops = &ops;
1586 eth_dev->device = &dev->device;
1588 /* setup process private */
1589 for (i = 0; i < pcaps.num_of_queue; i++)
1590 pp->rx_pcap[i] = pcaps.queue[i].pcap;
1592 for (i = 0; i < dumpers.num_of_queue; i++) {
1593 pp->tx_dumper[i] = dumpers.queue[i].dumper;
1594 pp->tx_pcap[i] = dumpers.queue[i].pcap;
1597 eth_dev->process_private = pp;
1598 eth_dev->rx_pkt_burst = eth_pcap_rx;
1599 if (devargs_all.is_tx_pcap)
1600 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1602 eth_dev->tx_pkt_burst = eth_pcap_tx;
1604 rte_eth_dev_probing_finish(eth_dev);
1608 devargs_all.rx_queues = pcaps;
1609 devargs_all.tx_queues = dumpers;
1611 ret = eth_from_pcaps(dev, &devargs_all);
1614 rte_kvargs_free(kvlist);
1617 eth_release_pcaps(&pcaps, &dumpers, devargs_all.single_iface);
1623 pmd_pcap_remove(struct rte_vdev_device *dev)
1625 struct rte_eth_dev *eth_dev = NULL;
1630 eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1631 if (eth_dev == NULL)
1632 return 0; /* port already released */
1634 eth_dev_close(eth_dev);
1635 rte_eth_dev_release_port(eth_dev);
1640 static struct rte_vdev_driver pmd_pcap_drv = {
1641 .probe = pmd_pcap_probe,
1642 .remove = pmd_pcap_remove,
1645 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1646 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1647 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1648 ETH_PCAP_RX_PCAP_ARG "=<string> "
1649 ETH_PCAP_TX_PCAP_ARG "=<string> "
1650 ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1651 ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1652 ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1653 ETH_PCAP_IFACE_ARG "=<ifc> "
1654 ETH_PCAP_PHY_MAC_ARG "=<int>"
1655 ETH_PCAP_INFINITE_RX_ARG "=<0|1>");