net/ice/base: use package info from ice segment metadata
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <net/if.h>
10 #include <sys/socket.h>
11 #include <sys/ioctl.h>
12 #include <unistd.h>
13
14 #if defined(RTE_EXEC_ENV_FREEBSD)
15 #include <sys/sysctl.h>
16 #include <net/if_dl.h>
17 #endif
18
19 #include <pcap.h>
20
21 #include <rte_cycles.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_vdev.h>
24 #include <rte_kvargs.h>
25 #include <rte_malloc.h>
26 #include <rte_mbuf.h>
27 #include <rte_bus_vdev.h>
28 #include <rte_string_fns.h>
29
30 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
31 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
32 #define RTE_ETH_PCAP_PROMISC 1
33 #define RTE_ETH_PCAP_TIMEOUT -1
34
35 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
36 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
37 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
38 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
39 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
40 #define ETH_PCAP_IFACE_ARG    "iface"
41 #define ETH_PCAP_PHY_MAC_ARG  "phy_mac"
42 #define ETH_PCAP_INFINITE_RX_ARG  "infinite_rx"
43
44 #define ETH_PCAP_ARG_MAXLEN     64
45
46 #define RTE_PMD_PCAP_MAX_QUEUES 16
47
48 static char errbuf[PCAP_ERRBUF_SIZE];
49 static struct timeval start_time;
50 static uint64_t start_cycles;
51 static uint64_t hz;
52 static uint8_t iface_idx;
53
54 static uint64_t timestamp_rx_dynflag;
55 static int timestamp_dynfield_offset = -1;
56
57 struct queue_stat {
58         volatile unsigned long pkts;
59         volatile unsigned long bytes;
60         volatile unsigned long err_pkts;
61 };
62
63 struct pcap_rx_queue {
64         uint16_t port_id;
65         uint16_t queue_id;
66         struct rte_mempool *mb_pool;
67         struct queue_stat rx_stat;
68         char name[PATH_MAX];
69         char type[ETH_PCAP_ARG_MAXLEN];
70
71         /* Contains pre-generated packets to be looped through */
72         struct rte_ring *pkts;
73 };
74
75 struct pcap_tx_queue {
76         uint16_t port_id;
77         uint16_t queue_id;
78         struct queue_stat tx_stat;
79         char name[PATH_MAX];
80         char type[ETH_PCAP_ARG_MAXLEN];
81 };
82
83 struct pmd_internals {
84         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
85         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
86         char devargs[ETH_PCAP_ARG_MAXLEN];
87         struct rte_ether_addr eth_addr;
88         int if_index;
89         int single_iface;
90         int phy_mac;
91         unsigned int infinite_rx;
92 };
93
94 struct pmd_process_private {
95         pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
96         pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
97         pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
98 };
99
100 struct pmd_devargs {
101         unsigned int num_of_queue;
102         struct devargs_queue {
103                 pcap_dumper_t *dumper;
104                 pcap_t *pcap;
105                 const char *name;
106                 const char *type;
107         } queue[RTE_PMD_PCAP_MAX_QUEUES];
108         int phy_mac;
109 };
110
111 struct pmd_devargs_all {
112         struct pmd_devargs rx_queues;
113         struct pmd_devargs tx_queues;
114         int single_iface;
115         unsigned int is_tx_pcap;
116         unsigned int is_tx_iface;
117         unsigned int is_rx_pcap;
118         unsigned int is_rx_iface;
119         unsigned int infinite_rx;
120 };
121
122 static const char *valid_arguments[] = {
123         ETH_PCAP_RX_PCAP_ARG,
124         ETH_PCAP_TX_PCAP_ARG,
125         ETH_PCAP_RX_IFACE_ARG,
126         ETH_PCAP_RX_IFACE_IN_ARG,
127         ETH_PCAP_TX_IFACE_ARG,
128         ETH_PCAP_IFACE_ARG,
129         ETH_PCAP_PHY_MAC_ARG,
130         ETH_PCAP_INFINITE_RX_ARG,
131         NULL
132 };
133
134 static struct rte_eth_link pmd_link = {
135                 .link_speed = ETH_SPEED_NUM_10G,
136                 .link_duplex = ETH_LINK_FULL_DUPLEX,
137                 .link_status = ETH_LINK_DOWN,
138                 .link_autoneg = ETH_LINK_FIXED,
139 };
140
141 RTE_LOG_REGISTER(eth_pcap_logtype, pmd.net.pcap, NOTICE);
142
143 #define PMD_LOG(level, fmt, args...) \
144         rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
145                 "%s(): " fmt "\n", __func__, ##args)
146
147 static int
148 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
149                 const u_char *data, uint16_t data_len)
150 {
151         /* Copy the first segment. */
152         uint16_t len = rte_pktmbuf_tailroom(mbuf);
153         struct rte_mbuf *m = mbuf;
154
155         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
156         data_len -= len;
157         data += len;
158
159         while (data_len > 0) {
160                 /* Allocate next mbuf and point to that. */
161                 m->next = rte_pktmbuf_alloc(mb_pool);
162
163                 if (unlikely(!m->next))
164                         return -1;
165
166                 m = m->next;
167
168                 /* Headroom is not needed in chained mbufs. */
169                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
170                 m->pkt_len = 0;
171                 m->data_len = 0;
172
173                 /* Copy next segment. */
174                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
175                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
176
177                 mbuf->nb_segs++;
178                 data_len -= len;
179                 data += len;
180         }
181
182         return mbuf->nb_segs;
183 }
184
185 static uint16_t
186 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
187 {
188         int i;
189         struct pcap_rx_queue *pcap_q = queue;
190         uint32_t rx_bytes = 0;
191
192         if (unlikely(nb_pkts == 0))
193                 return 0;
194
195         if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
196                 return 0;
197
198         for (i = 0; i < nb_pkts; i++) {
199                 struct rte_mbuf *pcap_buf;
200                 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
201                 if (err)
202                         return i;
203
204                 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
205                                 rte_pktmbuf_mtod(pcap_buf, void *),
206                                 pcap_buf->data_len);
207                 bufs[i]->data_len = pcap_buf->data_len;
208                 bufs[i]->pkt_len = pcap_buf->pkt_len;
209                 bufs[i]->port = pcap_q->port_id;
210                 rx_bytes += pcap_buf->data_len;
211
212                 /* Enqueue packet back on ring to allow infinite rx. */
213                 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
214         }
215
216         pcap_q->rx_stat.pkts += i;
217         pcap_q->rx_stat.bytes += rx_bytes;
218
219         return i;
220 }
221
222 static uint16_t
223 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
224 {
225         unsigned int i;
226         struct pcap_pkthdr header;
227         struct pmd_process_private *pp;
228         const u_char *packet;
229         struct rte_mbuf *mbuf;
230         struct pcap_rx_queue *pcap_q = queue;
231         uint16_t num_rx = 0;
232         uint32_t rx_bytes = 0;
233         pcap_t *pcap;
234
235         pp = rte_eth_devices[pcap_q->port_id].process_private;
236         pcap = pp->rx_pcap[pcap_q->queue_id];
237
238         if (unlikely(pcap == NULL || nb_pkts == 0))
239                 return 0;
240
241         /* Reads the given number of packets from the pcap file one by one
242          * and copies the packet data into a newly allocated mbuf to return.
243          */
244         for (i = 0; i < nb_pkts; i++) {
245                 /* Get the next PCAP packet */
246                 packet = pcap_next(pcap, &header);
247                 if (unlikely(packet == NULL))
248                         break;
249
250                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
251                 if (unlikely(mbuf == NULL))
252                         break;
253
254                 if (header.caplen <= rte_pktmbuf_tailroom(mbuf)) {
255                         /* pcap packet will fit in the mbuf, can copy it */
256                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
257                                         header.caplen);
258                         mbuf->data_len = (uint16_t)header.caplen;
259                 } else {
260                         /* Try read jumbo frame into multi mbufs. */
261                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
262                                                        mbuf,
263                                                        packet,
264                                                        header.caplen) == -1)) {
265                                 rte_pktmbuf_free(mbuf);
266                                 break;
267                         }
268                 }
269
270                 mbuf->pkt_len = (uint16_t)header.caplen;
271                 *RTE_MBUF_DYNFIELD(mbuf, timestamp_dynfield_offset,
272                         rte_mbuf_timestamp_t *) =
273                                 (uint64_t)header.ts.tv_sec * 1000000 +
274                                 header.ts.tv_usec;
275                 mbuf->ol_flags |= timestamp_rx_dynflag;
276                 mbuf->port = pcap_q->port_id;
277                 bufs[num_rx] = mbuf;
278                 num_rx++;
279                 rx_bytes += header.caplen;
280         }
281         pcap_q->rx_stat.pkts += num_rx;
282         pcap_q->rx_stat.bytes += rx_bytes;
283
284         return num_rx;
285 }
286
287 static uint16_t
288 eth_null_rx(void *queue __rte_unused,
289                 struct rte_mbuf **bufs __rte_unused,
290                 uint16_t nb_pkts __rte_unused)
291 {
292         return 0;
293 }
294
295 #define NSEC_PER_SEC    1000000000L
296
297 static inline void
298 calculate_timestamp(struct timeval *ts) {
299         uint64_t cycles;
300         struct timeval cur_time;
301
302         cycles = rte_get_timer_cycles() - start_cycles;
303         cur_time.tv_sec = cycles / hz;
304         cur_time.tv_usec = (cycles % hz) * NSEC_PER_SEC / hz;
305
306         ts->tv_sec = start_time.tv_sec + cur_time.tv_sec;
307         ts->tv_usec = start_time.tv_usec + cur_time.tv_usec;
308         if (ts->tv_usec >= NSEC_PER_SEC) {
309                 ts->tv_usec -= NSEC_PER_SEC;
310                 ts->tv_sec += 1;
311         }
312 }
313
314 /*
315  * Callback to handle writing packets to a pcap file.
316  */
317 static uint16_t
318 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
319 {
320         unsigned int i;
321         struct rte_mbuf *mbuf;
322         struct pmd_process_private *pp;
323         struct pcap_tx_queue *dumper_q = queue;
324         uint16_t num_tx = 0;
325         uint32_t tx_bytes = 0;
326         struct pcap_pkthdr header;
327         pcap_dumper_t *dumper;
328         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
329         size_t len, caplen;
330
331         pp = rte_eth_devices[dumper_q->port_id].process_private;
332         dumper = pp->tx_dumper[dumper_q->queue_id];
333
334         if (dumper == NULL || nb_pkts == 0)
335                 return 0;
336
337         /* writes the nb_pkts packets to the previously opened pcap file
338          * dumper */
339         for (i = 0; i < nb_pkts; i++) {
340                 mbuf = bufs[i];
341                 len = caplen = rte_pktmbuf_pkt_len(mbuf);
342                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
343                                 len > sizeof(temp_data))) {
344                         caplen = sizeof(temp_data);
345                 }
346
347                 calculate_timestamp(&header.ts);
348                 header.len = len;
349                 header.caplen = caplen;
350                 /* rte_pktmbuf_read() returns a pointer to the data directly
351                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
352                  * a pointer to temp_data after copying into it.
353                  */
354                 pcap_dump((u_char *)dumper, &header,
355                         rte_pktmbuf_read(mbuf, 0, caplen, temp_data));
356
357                 num_tx++;
358                 tx_bytes += caplen;
359                 rte_pktmbuf_free(mbuf);
360         }
361
362         /*
363          * Since there's no place to hook a callback when the forwarding
364          * process stops and to make sure the pcap file is actually written,
365          * we flush the pcap dumper within each burst.
366          */
367         pcap_dump_flush(dumper);
368         dumper_q->tx_stat.pkts += num_tx;
369         dumper_q->tx_stat.bytes += tx_bytes;
370         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
371
372         return nb_pkts;
373 }
374
375 /*
376  * Callback to handle dropping packets in the infinite rx case.
377  */
378 static uint16_t
379 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
380 {
381         unsigned int i;
382         uint32_t tx_bytes = 0;
383         struct pcap_tx_queue *tx_queue = queue;
384
385         if (unlikely(nb_pkts == 0))
386                 return 0;
387
388         for (i = 0; i < nb_pkts; i++) {
389                 tx_bytes += bufs[i]->data_len;
390                 rte_pktmbuf_free(bufs[i]);
391         }
392
393         tx_queue->tx_stat.pkts += nb_pkts;
394         tx_queue->tx_stat.bytes += tx_bytes;
395
396         return i;
397 }
398
399 /*
400  * Callback to handle sending packets through a real NIC.
401  */
402 static uint16_t
403 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
404 {
405         unsigned int i;
406         int ret;
407         struct rte_mbuf *mbuf;
408         struct pmd_process_private *pp;
409         struct pcap_tx_queue *tx_queue = queue;
410         uint16_t num_tx = 0;
411         uint32_t tx_bytes = 0;
412         pcap_t *pcap;
413         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
414         size_t len;
415
416         pp = rte_eth_devices[tx_queue->port_id].process_private;
417         pcap = pp->tx_pcap[tx_queue->queue_id];
418
419         if (unlikely(nb_pkts == 0 || pcap == NULL))
420                 return 0;
421
422         for (i = 0; i < nb_pkts; i++) {
423                 mbuf = bufs[i];
424                 len = rte_pktmbuf_pkt_len(mbuf);
425                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
426                                 len > sizeof(temp_data))) {
427                         PMD_LOG(ERR,
428                                 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
429                                 len, sizeof(temp_data));
430                         rte_pktmbuf_free(mbuf);
431                         continue;
432                 }
433
434                 /* rte_pktmbuf_read() returns a pointer to the data directly
435                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
436                  * a pointer to temp_data after copying into it.
437                  */
438                 ret = pcap_sendpacket(pcap,
439                         rte_pktmbuf_read(mbuf, 0, len, temp_data), len);
440                 if (unlikely(ret != 0))
441                         break;
442                 num_tx++;
443                 tx_bytes += len;
444                 rte_pktmbuf_free(mbuf);
445         }
446
447         tx_queue->tx_stat.pkts += num_tx;
448         tx_queue->tx_stat.bytes += tx_bytes;
449         tx_queue->tx_stat.err_pkts += i - num_tx;
450
451         return i;
452 }
453
454 /*
455  * pcap_open_live wrapper function
456  */
457 static inline int
458 open_iface_live(const char *iface, pcap_t **pcap) {
459         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
460                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
461
462         if (*pcap == NULL) {
463                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
464                 return -1;
465         }
466
467         return 0;
468 }
469
470 static int
471 open_single_iface(const char *iface, pcap_t **pcap)
472 {
473         if (open_iface_live(iface, pcap) < 0) {
474                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
475                 return -1;
476         }
477
478         return 0;
479 }
480
481 static int
482 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
483 {
484         pcap_t *tx_pcap;
485
486         /*
487          * We need to create a dummy empty pcap_t to use it
488          * with pcap_dump_open(). We create big enough an Ethernet
489          * pcap holder.
490          */
491         tx_pcap = pcap_open_dead_with_tstamp_precision(DLT_EN10MB,
492                         RTE_ETH_PCAP_SNAPSHOT_LEN, PCAP_TSTAMP_PRECISION_NANO);
493         if (tx_pcap == NULL) {
494                 PMD_LOG(ERR, "Couldn't create dead pcap");
495                 return -1;
496         }
497
498         /* The dumper is created using the previous pcap_t reference */
499         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
500         if (*dumper == NULL) {
501                 pcap_close(tx_pcap);
502                 PMD_LOG(ERR, "Couldn't open %s for writing.",
503                         pcap_filename);
504                 return -1;
505         }
506
507         pcap_close(tx_pcap);
508         return 0;
509 }
510
511 static int
512 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
513 {
514         *pcap = pcap_open_offline(pcap_filename, errbuf);
515         if (*pcap == NULL) {
516                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
517                         errbuf);
518                 return -1;
519         }
520
521         return 0;
522 }
523
524 static uint64_t
525 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
526 {
527         const u_char *packet;
528         struct pcap_pkthdr header;
529         uint64_t pcap_pkt_count = 0;
530
531         while ((packet = pcap_next(*pcap, &header)))
532                 pcap_pkt_count++;
533
534         /* The pcap is reopened so it can be used as normal later. */
535         pcap_close(*pcap);
536         *pcap = NULL;
537         open_single_rx_pcap(pcap_q->name, pcap);
538
539         return pcap_pkt_count;
540 }
541
542 static int
543 eth_dev_start(struct rte_eth_dev *dev)
544 {
545         unsigned int i;
546         struct pmd_internals *internals = dev->data->dev_private;
547         struct pmd_process_private *pp = dev->process_private;
548         struct pcap_tx_queue *tx;
549         struct pcap_rx_queue *rx;
550
551         /* Special iface case. Single pcap is open and shared between tx/rx. */
552         if (internals->single_iface) {
553                 tx = &internals->tx_queue[0];
554                 rx = &internals->rx_queue[0];
555
556                 if (!pp->tx_pcap[0] &&
557                         strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
558                         if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
559                                 return -1;
560                         pp->rx_pcap[0] = pp->tx_pcap[0];
561                 }
562
563                 goto status_up;
564         }
565
566         /* If not open already, open tx pcaps/dumpers */
567         for (i = 0; i < dev->data->nb_tx_queues; i++) {
568                 tx = &internals->tx_queue[i];
569
570                 if (!pp->tx_dumper[i] &&
571                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
572                         if (open_single_tx_pcap(tx->name,
573                                 &pp->tx_dumper[i]) < 0)
574                                 return -1;
575                 } else if (!pp->tx_pcap[i] &&
576                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
577                         if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
578                                 return -1;
579                 }
580         }
581
582         /* If not open already, open rx pcaps */
583         for (i = 0; i < dev->data->nb_rx_queues; i++) {
584                 rx = &internals->rx_queue[i];
585
586                 if (pp->rx_pcap[i] != NULL)
587                         continue;
588
589                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
590                         if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
591                                 return -1;
592                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
593                         if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
594                                 return -1;
595                 }
596         }
597
598 status_up:
599         for (i = 0; i < dev->data->nb_rx_queues; i++)
600                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
601
602         for (i = 0; i < dev->data->nb_tx_queues; i++)
603                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
604
605         dev->data->dev_link.link_status = ETH_LINK_UP;
606
607         return 0;
608 }
609
610 /*
611  * This function gets called when the current port gets stopped.
612  * Is the only place for us to close all the tx streams dumpers.
613  * If not called the dumpers will be flushed within each tx burst.
614  */
615 static int
616 eth_dev_stop(struct rte_eth_dev *dev)
617 {
618         unsigned int i;
619         struct pmd_internals *internals = dev->data->dev_private;
620         struct pmd_process_private *pp = dev->process_private;
621
622         /* Special iface case. Single pcap is open and shared between tx/rx. */
623         if (internals->single_iface) {
624                 pcap_close(pp->tx_pcap[0]);
625                 pp->tx_pcap[0] = NULL;
626                 pp->rx_pcap[0] = NULL;
627                 goto status_down;
628         }
629
630         for (i = 0; i < dev->data->nb_tx_queues; i++) {
631                 if (pp->tx_dumper[i] != NULL) {
632                         pcap_dump_close(pp->tx_dumper[i]);
633                         pp->tx_dumper[i] = NULL;
634                 }
635
636                 if (pp->tx_pcap[i] != NULL) {
637                         pcap_close(pp->tx_pcap[i]);
638                         pp->tx_pcap[i] = NULL;
639                 }
640         }
641
642         for (i = 0; i < dev->data->nb_rx_queues; i++) {
643                 if (pp->rx_pcap[i] != NULL) {
644                         pcap_close(pp->rx_pcap[i]);
645                         pp->rx_pcap[i] = NULL;
646                 }
647         }
648
649 status_down:
650         for (i = 0; i < dev->data->nb_rx_queues; i++)
651                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
652
653         for (i = 0; i < dev->data->nb_tx_queues; i++)
654                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
655
656         dev->data->dev_link.link_status = ETH_LINK_DOWN;
657
658         return 0;
659 }
660
661 static int
662 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
663 {
664         int ret;
665
666         ret = rte_mbuf_dyn_rx_timestamp_register(&timestamp_dynfield_offset,
667                         &timestamp_rx_dynflag);
668         if (ret != 0) {
669                 PMD_LOG(ERR, "Failed to register Rx timestamp field/flag");
670                 return -rte_errno;
671         }
672
673         return 0;
674 }
675
676 static int
677 eth_dev_info(struct rte_eth_dev *dev,
678                 struct rte_eth_dev_info *dev_info)
679 {
680         struct pmd_internals *internals = dev->data->dev_private;
681
682         dev_info->if_index = internals->if_index;
683         dev_info->max_mac_addrs = 1;
684         dev_info->max_rx_pktlen = (uint32_t) -1;
685         dev_info->max_rx_queues = dev->data->nb_rx_queues;
686         dev_info->max_tx_queues = dev->data->nb_tx_queues;
687         dev_info->min_rx_bufsize = 0;
688
689         return 0;
690 }
691
692 static int
693 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
694 {
695         unsigned int i;
696         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
697         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
698         unsigned long tx_packets_err_total = 0;
699         const struct pmd_internals *internal = dev->data->dev_private;
700
701         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
702                         i < dev->data->nb_rx_queues; i++) {
703                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
704                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
705                 rx_packets_total += stats->q_ipackets[i];
706                 rx_bytes_total += stats->q_ibytes[i];
707         }
708
709         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
710                         i < dev->data->nb_tx_queues; i++) {
711                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
712                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
713                 tx_packets_total += stats->q_opackets[i];
714                 tx_bytes_total += stats->q_obytes[i];
715                 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
716         }
717
718         stats->ipackets = rx_packets_total;
719         stats->ibytes = rx_bytes_total;
720         stats->opackets = tx_packets_total;
721         stats->obytes = tx_bytes_total;
722         stats->oerrors = tx_packets_err_total;
723
724         return 0;
725 }
726
727 static int
728 eth_stats_reset(struct rte_eth_dev *dev)
729 {
730         unsigned int i;
731         struct pmd_internals *internal = dev->data->dev_private;
732
733         for (i = 0; i < dev->data->nb_rx_queues; i++) {
734                 internal->rx_queue[i].rx_stat.pkts = 0;
735                 internal->rx_queue[i].rx_stat.bytes = 0;
736         }
737
738         for (i = 0; i < dev->data->nb_tx_queues; i++) {
739                 internal->tx_queue[i].tx_stat.pkts = 0;
740                 internal->tx_queue[i].tx_stat.bytes = 0;
741                 internal->tx_queue[i].tx_stat.err_pkts = 0;
742         }
743
744         return 0;
745 }
746
747 static int
748 eth_dev_close(struct rte_eth_dev *dev)
749 {
750         unsigned int i;
751         struct pmd_internals *internals = dev->data->dev_private;
752
753         PMD_LOG(INFO, "Closing pcap ethdev on NUMA socket %d",
754                         rte_socket_id());
755
756         rte_free(dev->process_private);
757
758         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
759                 return 0;
760
761         /* Device wide flag, but cleanup must be performed per queue. */
762         if (internals->infinite_rx) {
763                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
764                         struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
765                         struct rte_mbuf *pcap_buf;
766
767                         /*
768                          * 'pcap_q->pkts' can be NULL if 'eth_dev_close()'
769                          * called before 'eth_rx_queue_setup()' has been called
770                          */
771                         if (pcap_q->pkts == NULL)
772                                 continue;
773
774                         while (!rte_ring_dequeue(pcap_q->pkts,
775                                         (void **)&pcap_buf))
776                                 rte_pktmbuf_free(pcap_buf);
777
778                         rte_ring_free(pcap_q->pkts);
779                 }
780         }
781
782         if (internals->phy_mac == 0)
783                 /* not dynamically allocated, must not be freed */
784                 dev->data->mac_addrs = NULL;
785
786         return 0;
787 }
788
789 static void
790 eth_queue_release(void *q __rte_unused)
791 {
792 }
793
794 static int
795 eth_link_update(struct rte_eth_dev *dev __rte_unused,
796                 int wait_to_complete __rte_unused)
797 {
798         return 0;
799 }
800
801 static int
802 eth_rx_queue_setup(struct rte_eth_dev *dev,
803                 uint16_t rx_queue_id,
804                 uint16_t nb_rx_desc __rte_unused,
805                 unsigned int socket_id __rte_unused,
806                 const struct rte_eth_rxconf *rx_conf __rte_unused,
807                 struct rte_mempool *mb_pool)
808 {
809         struct pmd_internals *internals = dev->data->dev_private;
810         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
811
812         pcap_q->mb_pool = mb_pool;
813         pcap_q->port_id = dev->data->port_id;
814         pcap_q->queue_id = rx_queue_id;
815         dev->data->rx_queues[rx_queue_id] = pcap_q;
816
817         if (internals->infinite_rx) {
818                 struct pmd_process_private *pp;
819                 char ring_name[NAME_MAX];
820                 static uint32_t ring_number;
821                 uint64_t pcap_pkt_count = 0;
822                 struct rte_mbuf *bufs[1];
823                 pcap_t **pcap;
824
825                 pp = rte_eth_devices[pcap_q->port_id].process_private;
826                 pcap = &pp->rx_pcap[pcap_q->queue_id];
827
828                 if (unlikely(*pcap == NULL))
829                         return -ENOENT;
830
831                 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
832
833                 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu16,
834                                 ring_number);
835
836                 pcap_q->pkts = rte_ring_create(ring_name,
837                                 rte_align64pow2(pcap_pkt_count + 1), 0,
838                                 RING_F_SP_ENQ | RING_F_SC_DEQ);
839                 ring_number++;
840                 if (!pcap_q->pkts)
841                         return -ENOENT;
842
843                 /* Fill ring with packets from PCAP file one by one. */
844                 while (eth_pcap_rx(pcap_q, bufs, 1)) {
845                         /* Check for multiseg mbufs. */
846                         if (bufs[0]->nb_segs != 1) {
847                                 rte_pktmbuf_free(*bufs);
848
849                                 while (!rte_ring_dequeue(pcap_q->pkts,
850                                                 (void **)bufs))
851                                         rte_pktmbuf_free(*bufs);
852
853                                 rte_ring_free(pcap_q->pkts);
854                                 PMD_LOG(ERR, "Multiseg mbufs are not supported in infinite_rx "
855                                                 "mode.");
856                                 return -EINVAL;
857                         }
858
859                         rte_ring_enqueue_bulk(pcap_q->pkts,
860                                         (void * const *)bufs, 1, NULL);
861                 }
862                 /*
863                  * Reset the stats for this queue since eth_pcap_rx calls above
864                  * didn't result in the application receiving packets.
865                  */
866                 pcap_q->rx_stat.pkts = 0;
867                 pcap_q->rx_stat.bytes = 0;
868         }
869
870         return 0;
871 }
872
873 static int
874 eth_tx_queue_setup(struct rte_eth_dev *dev,
875                 uint16_t tx_queue_id,
876                 uint16_t nb_tx_desc __rte_unused,
877                 unsigned int socket_id __rte_unused,
878                 const struct rte_eth_txconf *tx_conf __rte_unused)
879 {
880         struct pmd_internals *internals = dev->data->dev_private;
881         struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
882
883         pcap_q->port_id = dev->data->port_id;
884         pcap_q->queue_id = tx_queue_id;
885         dev->data->tx_queues[tx_queue_id] = pcap_q;
886
887         return 0;
888 }
889
890 static int
891 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
892 {
893         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
894
895         return 0;
896 }
897
898 static int
899 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
900 {
901         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
902
903         return 0;
904 }
905
906 static int
907 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
908 {
909         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
910
911         return 0;
912 }
913
914 static int
915 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
916 {
917         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
918
919         return 0;
920 }
921
922 static const struct eth_dev_ops ops = {
923         .dev_start = eth_dev_start,
924         .dev_stop = eth_dev_stop,
925         .dev_close = eth_dev_close,
926         .dev_configure = eth_dev_configure,
927         .dev_infos_get = eth_dev_info,
928         .rx_queue_setup = eth_rx_queue_setup,
929         .tx_queue_setup = eth_tx_queue_setup,
930         .rx_queue_start = eth_rx_queue_start,
931         .tx_queue_start = eth_tx_queue_start,
932         .rx_queue_stop = eth_rx_queue_stop,
933         .tx_queue_stop = eth_tx_queue_stop,
934         .rx_queue_release = eth_queue_release,
935         .tx_queue_release = eth_queue_release,
936         .link_update = eth_link_update,
937         .stats_get = eth_stats_get,
938         .stats_reset = eth_stats_reset,
939 };
940
941 static int
942 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
943                 pcap_t *pcap, pcap_dumper_t *dumper)
944 {
945         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
946                 return -1;
947         if (pcap)
948                 pmd->queue[pmd->num_of_queue].pcap = pcap;
949         if (dumper)
950                 pmd->queue[pmd->num_of_queue].dumper = dumper;
951         pmd->queue[pmd->num_of_queue].name = name;
952         pmd->queue[pmd->num_of_queue].type = type;
953         pmd->num_of_queue++;
954         return 0;
955 }
956
957 /*
958  * Function handler that opens the pcap file for reading a stores a
959  * reference of it for use it later on.
960  */
961 static int
962 open_rx_pcap(const char *key, const char *value, void *extra_args)
963 {
964         const char *pcap_filename = value;
965         struct pmd_devargs *rx = extra_args;
966         pcap_t *pcap = NULL;
967
968         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
969                 return -1;
970
971         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
972                 pcap_close(pcap);
973                 return -1;
974         }
975
976         return 0;
977 }
978
979 /*
980  * Opens a pcap file for writing and stores a reference to it
981  * for use it later on.
982  */
983 static int
984 open_tx_pcap(const char *key, const char *value, void *extra_args)
985 {
986         const char *pcap_filename = value;
987         struct pmd_devargs *dumpers = extra_args;
988         pcap_dumper_t *dumper;
989
990         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
991                 return -1;
992
993         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
994                 pcap_dump_close(dumper);
995                 return -1;
996         }
997
998         return 0;
999 }
1000
1001 /*
1002  * Opens an interface for reading and writing
1003  */
1004 static inline int
1005 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
1006 {
1007         const char *iface = value;
1008         struct pmd_devargs *tx = extra_args;
1009         pcap_t *pcap = NULL;
1010
1011         if (open_single_iface(iface, &pcap) < 0)
1012                 return -1;
1013
1014         tx->queue[0].pcap = pcap;
1015         tx->queue[0].name = iface;
1016         tx->queue[0].type = key;
1017
1018         return 0;
1019 }
1020
1021 static inline int
1022 set_iface_direction(const char *iface, pcap_t *pcap,
1023                 pcap_direction_t direction)
1024 {
1025         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
1026         if (pcap_setdirection(pcap, direction) < 0) {
1027                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
1028                                 iface, direction_str, pcap_geterr(pcap));
1029                 return -1;
1030         }
1031         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
1032                         iface, direction_str);
1033         return 0;
1034 }
1035
1036 static inline int
1037 open_iface(const char *key, const char *value, void *extra_args)
1038 {
1039         const char *iface = value;
1040         struct pmd_devargs *pmd = extra_args;
1041         pcap_t *pcap = NULL;
1042
1043         if (open_single_iface(iface, &pcap) < 0)
1044                 return -1;
1045         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1046                 pcap_close(pcap);
1047                 return -1;
1048         }
1049
1050         return 0;
1051 }
1052
1053 /*
1054  * Opens a NIC for reading packets from it
1055  */
1056 static inline int
1057 open_rx_iface(const char *key, const char *value, void *extra_args)
1058 {
1059         int ret = open_iface(key, value, extra_args);
1060         if (ret < 0)
1061                 return ret;
1062         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1063                 struct pmd_devargs *pmd = extra_args;
1064                 unsigned int qid = pmd->num_of_queue - 1;
1065
1066                 set_iface_direction(pmd->queue[qid].name,
1067                                 pmd->queue[qid].pcap,
1068                                 PCAP_D_IN);
1069         }
1070
1071         return 0;
1072 }
1073
1074 static inline int
1075 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1076 {
1077         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1078                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1079                 return open_rx_iface(key, value, extra_args);
1080
1081         return 0;
1082 }
1083
1084 /*
1085  * Opens a NIC for writing packets to it
1086  */
1087 static int
1088 open_tx_iface(const char *key, const char *value, void *extra_args)
1089 {
1090         return open_iface(key, value, extra_args);
1091 }
1092
1093 static int
1094 select_phy_mac(const char *key __rte_unused, const char *value,
1095                 void *extra_args)
1096 {
1097         if (extra_args) {
1098                 const int phy_mac = atoi(value);
1099                 int *enable_phy_mac = extra_args;
1100
1101                 if (phy_mac)
1102                         *enable_phy_mac = 1;
1103         }
1104         return 0;
1105 }
1106
1107 static int
1108 get_infinite_rx_arg(const char *key __rte_unused,
1109                 const char *value, void *extra_args)
1110 {
1111         if (extra_args) {
1112                 const int infinite_rx = atoi(value);
1113                 int *enable_infinite_rx = extra_args;
1114
1115                 if (infinite_rx > 0)
1116                         *enable_infinite_rx = 1;
1117         }
1118         return 0;
1119 }
1120
1121 static int
1122 pmd_init_internals(struct rte_vdev_device *vdev,
1123                 const unsigned int nb_rx_queues,
1124                 const unsigned int nb_tx_queues,
1125                 struct pmd_internals **internals,
1126                 struct rte_eth_dev **eth_dev)
1127 {
1128         struct rte_eth_dev_data *data;
1129         struct pmd_process_private *pp;
1130         unsigned int numa_node = vdev->device.numa_node;
1131
1132         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1133                 numa_node);
1134
1135         pp = (struct pmd_process_private *)
1136                 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1137                                 RTE_CACHE_LINE_SIZE);
1138
1139         if (pp == NULL) {
1140                 PMD_LOG(ERR,
1141                         "Failed to allocate memory for process private");
1142                 return -1;
1143         }
1144
1145         /* reserve an ethdev entry */
1146         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1147         if (!(*eth_dev)) {
1148                 rte_free(pp);
1149                 return -1;
1150         }
1151         (*eth_dev)->process_private = pp;
1152         /* now put it all together
1153          * - store queue data in internals,
1154          * - store numa_node info in eth_dev
1155          * - point eth_dev_data to internals
1156          * - and point eth_dev structure to new eth_dev_data structure
1157          */
1158         *internals = (*eth_dev)->data->dev_private;
1159         /*
1160          * Interface MAC = 02:70:63:61:70:<iface_idx>
1161          * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1162          * where the middle 4 characters are converted to hex.
1163          */
1164         (*internals)->eth_addr = (struct rte_ether_addr) {
1165                 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1166         };
1167         (*internals)->phy_mac = 0;
1168         data = (*eth_dev)->data;
1169         data->nb_rx_queues = (uint16_t)nb_rx_queues;
1170         data->nb_tx_queues = (uint16_t)nb_tx_queues;
1171         data->dev_link = pmd_link;
1172         data->mac_addrs = &(*internals)->eth_addr;
1173         data->promiscuous = 1;
1174         data->all_multicast = 1;
1175         data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1176
1177         /*
1178          * NOTE: we'll replace the data element, of originally allocated
1179          * eth_dev so the rings are local per-process
1180          */
1181         (*eth_dev)->dev_ops = &ops;
1182
1183         strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1184                         ETH_PCAP_ARG_MAXLEN);
1185
1186         return 0;
1187 }
1188
1189 static int
1190 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1191                 const unsigned int numa_node)
1192 {
1193 #if defined(RTE_EXEC_ENV_LINUX)
1194         void *mac_addrs;
1195         struct ifreq ifr;
1196         int if_fd = socket(AF_INET, SOCK_DGRAM, 0);
1197
1198         if (if_fd == -1)
1199                 return -1;
1200
1201         rte_strscpy(ifr.ifr_name, if_name, sizeof(ifr.ifr_name));
1202         if (ioctl(if_fd, SIOCGIFHWADDR, &ifr)) {
1203                 close(if_fd);
1204                 return -1;
1205         }
1206
1207         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1208         if (!mac_addrs) {
1209                 close(if_fd);
1210                 return -1;
1211         }
1212
1213         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1214         eth_dev->data->mac_addrs = mac_addrs;
1215         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1216                         ifr.ifr_hwaddr.sa_data, RTE_ETHER_ADDR_LEN);
1217
1218         close(if_fd);
1219
1220         return 0;
1221
1222 #elif defined(RTE_EXEC_ENV_FREEBSD)
1223         void *mac_addrs;
1224         struct if_msghdr *ifm;
1225         struct sockaddr_dl *sdl;
1226         int mib[6];
1227         size_t len = 0;
1228         char *buf;
1229
1230         mib[0] = CTL_NET;
1231         mib[1] = AF_ROUTE;
1232         mib[2] = 0;
1233         mib[3] = AF_LINK;
1234         mib[4] = NET_RT_IFLIST;
1235         mib[5] = if_nametoindex(if_name);
1236
1237         if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
1238                 return -1;
1239
1240         if (len == 0)
1241                 return -1;
1242
1243         buf = rte_malloc(NULL, len, 0);
1244         if (!buf)
1245                 return -1;
1246
1247         if (sysctl(mib, 6, buf, &len, NULL, 0) < 0) {
1248                 rte_free(buf);
1249                 return -1;
1250         }
1251         ifm = (struct if_msghdr *)buf;
1252         sdl = (struct sockaddr_dl *)(ifm + 1);
1253
1254         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1255         if (!mac_addrs) {
1256                 rte_free(buf);
1257                 return -1;
1258         }
1259
1260         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1261         eth_dev->data->mac_addrs = mac_addrs;
1262         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1263                         LLADDR(sdl), RTE_ETHER_ADDR_LEN);
1264
1265         rte_free(buf);
1266
1267         return 0;
1268 #else
1269         return -1;
1270 #endif
1271 }
1272
1273 static int
1274 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1275                 struct pmd_devargs_all *devargs_all,
1276                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1277 {
1278         struct pmd_process_private *pp;
1279         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1280         struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1281         const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1282         const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1283         unsigned int i;
1284
1285         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1286                         eth_dev) < 0)
1287                 return -1;
1288
1289         pp = (*eth_dev)->process_private;
1290         for (i = 0; i < nb_rx_queues; i++) {
1291                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1292                 struct devargs_queue *queue = &rx_queues->queue[i];
1293
1294                 pp->rx_pcap[i] = queue->pcap;
1295                 strlcpy(rx->name, queue->name, sizeof(rx->name));
1296                 strlcpy(rx->type, queue->type, sizeof(rx->type));
1297         }
1298
1299         for (i = 0; i < nb_tx_queues; i++) {
1300                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1301                 struct devargs_queue *queue = &tx_queues->queue[i];
1302
1303                 pp->tx_dumper[i] = queue->dumper;
1304                 pp->tx_pcap[i] = queue->pcap;
1305                 strlcpy(tx->name, queue->name, sizeof(tx->name));
1306                 strlcpy(tx->type, queue->type, sizeof(tx->type));
1307         }
1308
1309         return 0;
1310 }
1311
1312 static int
1313 eth_from_pcaps(struct rte_vdev_device *vdev,
1314                 struct pmd_devargs_all *devargs_all)
1315 {
1316         struct pmd_internals *internals = NULL;
1317         struct rte_eth_dev *eth_dev = NULL;
1318         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1319         int single_iface = devargs_all->single_iface;
1320         unsigned int infinite_rx = devargs_all->infinite_rx;
1321         int ret;
1322
1323         ret = eth_from_pcaps_common(vdev, devargs_all, &internals, &eth_dev);
1324
1325         if (ret < 0)
1326                 return ret;
1327
1328         /* store weather we are using a single interface for rx/tx or not */
1329         internals->single_iface = single_iface;
1330
1331         if (single_iface) {
1332                 internals->if_index = if_nametoindex(rx_queues->queue[0].name);
1333
1334                 /* phy_mac arg is applied only only if "iface" devarg is provided */
1335                 if (rx_queues->phy_mac) {
1336                         int ret = eth_pcap_update_mac(rx_queues->queue[0].name,
1337                                         eth_dev, vdev->device.numa_node);
1338                         if (ret == 0)
1339                                 internals->phy_mac = 1;
1340                 }
1341         }
1342
1343         internals->infinite_rx = infinite_rx;
1344         /* Assign rx ops. */
1345         if (infinite_rx)
1346                 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1347         else if (devargs_all->is_rx_pcap || devargs_all->is_rx_iface ||
1348                         single_iface)
1349                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1350         else
1351                 eth_dev->rx_pkt_burst = eth_null_rx;
1352
1353         /* Assign tx ops. */
1354         if (devargs_all->is_tx_pcap)
1355                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1356         else if (devargs_all->is_tx_iface || single_iface)
1357                 eth_dev->tx_pkt_burst = eth_pcap_tx;
1358         else
1359                 eth_dev->tx_pkt_burst = eth_tx_drop;
1360
1361         rte_eth_dev_probing_finish(eth_dev);
1362         return 0;
1363 }
1364
1365 static int
1366 pmd_pcap_probe(struct rte_vdev_device *dev)
1367 {
1368         const char *name;
1369         struct rte_kvargs *kvlist;
1370         struct pmd_devargs pcaps = {0};
1371         struct pmd_devargs dumpers = {0};
1372         struct rte_eth_dev *eth_dev =  NULL;
1373         struct pmd_internals *internal;
1374         int ret = 0;
1375
1376         struct pmd_devargs_all devargs_all = {
1377                 .single_iface = 0,
1378                 .is_tx_pcap = 0,
1379                 .is_tx_iface = 0,
1380                 .infinite_rx = 0,
1381         };
1382
1383         name = rte_vdev_device_name(dev);
1384         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1385
1386         gettimeofday(&start_time, NULL);
1387         start_cycles = rte_get_timer_cycles();
1388         hz = rte_get_timer_hz();
1389
1390         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1391                 eth_dev = rte_eth_dev_attach_secondary(name);
1392                 if (!eth_dev) {
1393                         PMD_LOG(ERR, "Failed to probe %s", name);
1394                         return -1;
1395                 }
1396
1397                 internal = eth_dev->data->dev_private;
1398
1399                 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1400                 if (kvlist == NULL)
1401                         return -1;
1402         } else {
1403                 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1404                                 valid_arguments);
1405                 if (kvlist == NULL)
1406                         return -1;
1407         }
1408
1409         /*
1410          * If iface argument is passed we open the NICs and use them for
1411          * reading / writing
1412          */
1413         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1414
1415                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1416                                 &open_rx_tx_iface, &pcaps);
1417                 if (ret < 0)
1418                         goto free_kvlist;
1419
1420                 dumpers.queue[0] = pcaps.queue[0];
1421
1422                 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1423                                 &select_phy_mac, &pcaps.phy_mac);
1424                 if (ret < 0)
1425                         goto free_kvlist;
1426
1427                 dumpers.phy_mac = pcaps.phy_mac;
1428
1429                 devargs_all.single_iface = 1;
1430                 pcaps.num_of_queue = 1;
1431                 dumpers.num_of_queue = 1;
1432
1433                 goto create_eth;
1434         }
1435
1436         /*
1437          * We check whether we want to open a RX stream from a real NIC, a
1438          * pcap file or open a dummy RX stream
1439          */
1440         devargs_all.is_rx_pcap =
1441                 rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1442         devargs_all.is_rx_iface =
1443                 (rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG) +
1444                  rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_IN_ARG)) ? 1 : 0;
1445         pcaps.num_of_queue = 0;
1446
1447         devargs_all.is_tx_pcap =
1448                 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1449         devargs_all.is_tx_iface =
1450                 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1451         dumpers.num_of_queue = 0;
1452
1453         if (devargs_all.is_rx_pcap) {
1454                 /*
1455                  * We check whether we want to infinitely rx the pcap file.
1456                  */
1457                 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1458                                 ETH_PCAP_INFINITE_RX_ARG);
1459
1460                 if (infinite_rx_arg_cnt == 1) {
1461                         ret = rte_kvargs_process(kvlist,
1462                                         ETH_PCAP_INFINITE_RX_ARG,
1463                                         &get_infinite_rx_arg,
1464                                         &devargs_all.infinite_rx);
1465                         if (ret < 0)
1466                                 goto free_kvlist;
1467                         PMD_LOG(INFO, "infinite_rx has been %s for %s",
1468                                         devargs_all.infinite_rx ? "enabled" : "disabled",
1469                                         name);
1470
1471                 } else if (infinite_rx_arg_cnt > 1) {
1472                         PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1473                                         "argument has been provided more than once "
1474                                         "for %s", name);
1475                 }
1476
1477                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1478                                 &open_rx_pcap, &pcaps);
1479         } else if (devargs_all.is_rx_iface) {
1480                 ret = rte_kvargs_process(kvlist, NULL,
1481                                 &rx_iface_args_process, &pcaps);
1482         } else if (devargs_all.is_tx_iface || devargs_all.is_tx_pcap) {
1483                 unsigned int i;
1484
1485                 /* Count number of tx queue args passed before dummy rx queue
1486                  * creation so a dummy rx queue can be created for each tx queue
1487                  */
1488                 unsigned int num_tx_queues =
1489                         (rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) +
1490                         rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG));
1491
1492                 PMD_LOG(INFO, "Creating null rx queue since no rx queues were provided.");
1493
1494                 /* Creating a dummy rx queue for each tx queue passed */
1495                 for (i = 0; i < num_tx_queues; i++)
1496                         ret = add_queue(&pcaps, "dummy_rx", "rx_null", NULL,
1497                                         NULL);
1498         } else {
1499                 PMD_LOG(ERR, "Error - No rx or tx queues provided");
1500                 ret = -ENOENT;
1501         }
1502         if (ret < 0)
1503                 goto free_kvlist;
1504
1505         /*
1506          * We check whether we want to open a TX stream to a real NIC,
1507          * a pcap file, or drop packets on tx
1508          */
1509         if (devargs_all.is_tx_pcap) {
1510                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1511                                 &open_tx_pcap, &dumpers);
1512         } else if (devargs_all.is_tx_iface) {
1513                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1514                                 &open_tx_iface, &dumpers);
1515         } else {
1516                 unsigned int i;
1517
1518                 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1519
1520                 /* Add 1 dummy queue per rxq which counts and drops packets. */
1521                 for (i = 0; i < pcaps.num_of_queue; i++)
1522                         ret = add_queue(&dumpers, "dummy_tx", "tx_drop", NULL,
1523                                         NULL);
1524         }
1525
1526         if (ret < 0)
1527                 goto free_kvlist;
1528
1529 create_eth:
1530         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1531                 struct pmd_process_private *pp;
1532                 unsigned int i;
1533
1534                 internal = eth_dev->data->dev_private;
1535                         pp = (struct pmd_process_private *)
1536                                 rte_zmalloc(NULL,
1537                                         sizeof(struct pmd_process_private),
1538                                         RTE_CACHE_LINE_SIZE);
1539
1540                 if (pp == NULL) {
1541                         PMD_LOG(ERR,
1542                                 "Failed to allocate memory for process private");
1543                         ret = -1;
1544                         goto free_kvlist;
1545                 }
1546
1547                 eth_dev->dev_ops = &ops;
1548                 eth_dev->device = &dev->device;
1549
1550                 /* setup process private */
1551                 for (i = 0; i < pcaps.num_of_queue; i++)
1552                         pp->rx_pcap[i] = pcaps.queue[i].pcap;
1553
1554                 for (i = 0; i < dumpers.num_of_queue; i++) {
1555                         pp->tx_dumper[i] = dumpers.queue[i].dumper;
1556                         pp->tx_pcap[i] = dumpers.queue[i].pcap;
1557                 }
1558
1559                 eth_dev->process_private = pp;
1560                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1561                 if (devargs_all.is_tx_pcap)
1562                         eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1563                 else
1564                         eth_dev->tx_pkt_burst = eth_pcap_tx;
1565
1566                 rte_eth_dev_probing_finish(eth_dev);
1567                 goto free_kvlist;
1568         }
1569
1570         devargs_all.rx_queues = pcaps;
1571         devargs_all.tx_queues = dumpers;
1572
1573         ret = eth_from_pcaps(dev, &devargs_all);
1574
1575 free_kvlist:
1576         rte_kvargs_free(kvlist);
1577
1578         return ret;
1579 }
1580
1581 static int
1582 pmd_pcap_remove(struct rte_vdev_device *dev)
1583 {
1584         struct rte_eth_dev *eth_dev = NULL;
1585
1586         if (!dev)
1587                 return -1;
1588
1589         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1590         if (eth_dev == NULL)
1591                 return 0; /* port already released */
1592
1593         eth_dev_close(eth_dev);
1594         rte_eth_dev_release_port(eth_dev);
1595
1596         return 0;
1597 }
1598
1599 static struct rte_vdev_driver pmd_pcap_drv = {
1600         .probe = pmd_pcap_probe,
1601         .remove = pmd_pcap_remove,
1602 };
1603
1604 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1605 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1606 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1607         ETH_PCAP_RX_PCAP_ARG "=<string> "
1608         ETH_PCAP_TX_PCAP_ARG "=<string> "
1609         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1610         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1611         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1612         ETH_PCAP_IFACE_ARG "=<ifc> "
1613         ETH_PCAP_PHY_MAC_ARG "=<int>"
1614         ETH_PCAP_INFINITE_RX_ARG "=<0|1>");