4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5 * Copyright(c) 2014 6WIND S.A.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 #include <rte_cycles.h>
42 #include <rte_ethdev.h>
43 #include <rte_kvargs.h>
44 #include <rte_malloc.h>
48 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
49 #define RTE_ETH_PCAP_SNAPLEN ETHER_MAX_JUMBO_FRAME_LEN
50 #define RTE_ETH_PCAP_PROMISC 1
51 #define RTE_ETH_PCAP_TIMEOUT -1
53 #define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
54 #define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
55 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
56 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
57 #define ETH_PCAP_IFACE_ARG "iface"
59 #define ETH_PCAP_ARG_MAXLEN 64
61 #define RTE_PMD_PCAP_MAX_QUEUES 16
63 static char errbuf[PCAP_ERRBUF_SIZE];
64 static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
65 static struct timeval start_time;
66 static uint64_t start_cycles;
70 volatile unsigned long pkts;
71 volatile unsigned long bytes;
72 volatile unsigned long err_pkts;
75 struct pcap_rx_queue {
78 struct rte_mempool *mb_pool;
79 struct queue_stat rx_stat;
81 char type[ETH_PCAP_ARG_MAXLEN];
84 struct pcap_tx_queue {
85 pcap_dumper_t *dumper;
87 struct queue_stat tx_stat;
89 char type[ETH_PCAP_ARG_MAXLEN];
92 struct pmd_internals {
93 struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
94 struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
100 unsigned int num_of_queue;
101 struct devargs_queue {
102 pcap_dumper_t *dumper;
106 } queue[RTE_PMD_PCAP_MAX_QUEUES];
109 static const char *valid_arguments[] = {
110 ETH_PCAP_RX_PCAP_ARG,
111 ETH_PCAP_TX_PCAP_ARG,
112 ETH_PCAP_RX_IFACE_ARG,
113 ETH_PCAP_TX_IFACE_ARG,
118 static struct ether_addr eth_addr = {
119 .addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 }
122 static struct rte_eth_link pmd_link = {
123 .link_speed = ETH_SPEED_NUM_10G,
124 .link_duplex = ETH_LINK_FULL_DUPLEX,
125 .link_status = ETH_LINK_DOWN,
126 .link_autoneg = ETH_LINK_SPEED_FIXED,
130 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
131 const u_char *data, uint16_t data_len)
133 /* Copy the first segment. */
134 uint16_t len = rte_pktmbuf_tailroom(mbuf);
135 struct rte_mbuf *m = mbuf;
137 rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
141 while (data_len > 0) {
142 /* Allocate next mbuf and point to that. */
143 m->next = rte_pktmbuf_alloc(mb_pool);
145 if (unlikely(!m->next))
150 /* Headroom is not needed in chained mbufs. */
151 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
155 /* Copy next segment. */
156 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
157 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
164 return mbuf->nb_segs;
167 /* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
169 eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
171 uint16_t data_len = 0;
174 rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
177 data_len += mbuf->data_len;
183 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
186 struct pcap_pkthdr header;
187 const u_char *packet;
188 struct rte_mbuf *mbuf;
189 struct pcap_rx_queue *pcap_q = queue;
192 uint32_t rx_bytes = 0;
194 if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0))
197 /* Reads the given number of packets from the pcap file one by one
198 * and copies the packet data into a newly allocated mbuf to return.
200 for (i = 0; i < nb_pkts; i++) {
201 /* Get the next PCAP packet */
202 packet = pcap_next(pcap_q->pcap, &header);
203 if (unlikely(packet == NULL))
206 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
207 if (unlikely(mbuf == NULL))
210 /* Now get the space available for data in the mbuf */
211 buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
212 RTE_PKTMBUF_HEADROOM;
214 if (header.caplen <= buf_size) {
215 /* pcap packet will fit in the mbuf, can copy it */
216 rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
218 mbuf->data_len = (uint16_t)header.caplen;
220 /* Try read jumbo frame into multi mbufs. */
221 if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
224 header.caplen) == -1)) {
225 rte_pktmbuf_free(mbuf);
230 mbuf->pkt_len = (uint16_t)header.caplen;
231 mbuf->port = pcap_q->in_port;
234 rx_bytes += header.caplen;
236 pcap_q->rx_stat.pkts += num_rx;
237 pcap_q->rx_stat.bytes += rx_bytes;
243 calculate_timestamp(struct timeval *ts) {
245 struct timeval cur_time;
247 cycles = rte_get_timer_cycles() - start_cycles;
248 cur_time.tv_sec = cycles / hz;
249 cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
250 timeradd(&start_time, &cur_time, ts);
254 * Callback to handle writing packets to a pcap file.
257 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
260 struct rte_mbuf *mbuf;
261 struct pcap_tx_queue *dumper_q = queue;
263 uint32_t tx_bytes = 0;
264 struct pcap_pkthdr header;
266 if (dumper_q->dumper == NULL || nb_pkts == 0)
269 /* writes the nb_pkts packets to the previously opened pcap file
271 for (i = 0; i < nb_pkts; i++) {
273 calculate_timestamp(&header.ts);
274 header.len = mbuf->pkt_len;
275 header.caplen = header.len;
277 if (likely(mbuf->nb_segs == 1)) {
278 pcap_dump((u_char *)dumper_q->dumper, &header,
279 rte_pktmbuf_mtod(mbuf, void*));
281 if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
282 eth_pcap_gather_data(tx_pcap_data, mbuf);
283 pcap_dump((u_char *)dumper_q->dumper, &header,
287 "Dropping PCAP packet. Size (%d) > max jumbo size (%d).\n",
289 ETHER_MAX_JUMBO_FRAME_LEN);
291 rte_pktmbuf_free(mbuf);
296 rte_pktmbuf_free(mbuf);
298 tx_bytes += mbuf->pkt_len;
302 * Since there's no place to hook a callback when the forwarding
303 * process stops and to make sure the pcap file is actually written,
304 * we flush the pcap dumper within each burst.
306 pcap_dump_flush(dumper_q->dumper);
307 dumper_q->tx_stat.pkts += num_tx;
308 dumper_q->tx_stat.bytes += tx_bytes;
309 dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
315 * Callback to handle sending packets through a real NIC.
318 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
322 struct rte_mbuf *mbuf;
323 struct pcap_tx_queue *tx_queue = queue;
325 uint32_t tx_bytes = 0;
327 if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL))
330 for (i = 0; i < nb_pkts; i++) {
333 if (likely(mbuf->nb_segs == 1)) {
334 ret = pcap_sendpacket(tx_queue->pcap,
335 rte_pktmbuf_mtod(mbuf, u_char *),
338 if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
339 eth_pcap_gather_data(tx_pcap_data, mbuf);
340 ret = pcap_sendpacket(tx_queue->pcap,
341 tx_pcap_data, mbuf->pkt_len);
344 "Dropping PCAP packet. Size (%d) > max jumbo size (%d).\n",
346 ETHER_MAX_JUMBO_FRAME_LEN);
348 rte_pktmbuf_free(mbuf);
353 if (unlikely(ret != 0))
356 tx_bytes += mbuf->pkt_len;
357 rte_pktmbuf_free(mbuf);
360 tx_queue->tx_stat.pkts += num_tx;
361 tx_queue->tx_stat.bytes += tx_bytes;
362 tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
368 * pcap_open_live wrapper function
371 open_iface_live(const char *iface, pcap_t **pcap) {
372 *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
373 RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
376 RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", iface, errbuf);
384 open_single_iface(const char *iface, pcap_t **pcap)
386 if (open_iface_live(iface, pcap) < 0) {
387 RTE_LOG(ERR, PMD, "Couldn't open interface %s\n", iface);
395 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
400 * We need to create a dummy empty pcap_t to use it
401 * with pcap_dump_open(). We create big enough an Ethernet
404 tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
405 if (tx_pcap == NULL) {
406 RTE_LOG(ERR, PMD, "Couldn't create dead pcap\n");
410 /* The dumper is created using the previous pcap_t reference */
411 *dumper = pcap_dump_open(tx_pcap, pcap_filename);
412 if (*dumper == NULL) {
413 RTE_LOG(ERR, PMD, "Couldn't open %s for writing.\n",
422 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
424 *pcap = pcap_open_offline(pcap_filename, errbuf);
426 RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", pcap_filename,
435 eth_dev_start(struct rte_eth_dev *dev)
438 struct pmd_internals *internals = dev->data->dev_private;
439 struct pcap_tx_queue *tx;
440 struct pcap_rx_queue *rx;
442 /* Special iface case. Single pcap is open and shared between tx/rx. */
443 if (internals->single_iface) {
444 tx = &internals->tx_queue[0];
445 rx = &internals->rx_queue[0];
447 if (!tx->pcap && strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
448 if (open_single_iface(tx->name, &tx->pcap) < 0)
455 /* If not open already, open tx pcaps/dumpers */
456 for (i = 0; i < dev->data->nb_tx_queues; i++) {
457 tx = &internals->tx_queue[i];
460 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
461 if (open_single_tx_pcap(tx->name, &tx->dumper) < 0)
463 } else if (!tx->pcap &&
464 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
465 if (open_single_iface(tx->name, &tx->pcap) < 0)
470 /* If not open already, open rx pcaps */
471 for (i = 0; i < dev->data->nb_rx_queues; i++) {
472 rx = &internals->rx_queue[i];
474 if (rx->pcap != NULL)
477 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
478 if (open_single_rx_pcap(rx->name, &rx->pcap) < 0)
480 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
481 if (open_single_iface(rx->name, &rx->pcap) < 0)
487 dev->data->dev_link.link_status = ETH_LINK_UP;
493 * This function gets called when the current port gets stopped.
494 * Is the only place for us to close all the tx streams dumpers.
495 * If not called the dumpers will be flushed within each tx burst.
498 eth_dev_stop(struct rte_eth_dev *dev)
501 struct pmd_internals *internals = dev->data->dev_private;
502 struct pcap_tx_queue *tx;
503 struct pcap_rx_queue *rx;
505 /* Special iface case. Single pcap is open and shared between tx/rx. */
506 if (internals->single_iface) {
507 tx = &internals->tx_queue[0];
508 rx = &internals->rx_queue[0];
509 pcap_close(tx->pcap);
515 for (i = 0; i < dev->data->nb_tx_queues; i++) {
516 tx = &internals->tx_queue[i];
518 if (tx->dumper != NULL) {
519 pcap_dump_close(tx->dumper);
523 if (tx->pcap != NULL) {
524 pcap_close(tx->pcap);
529 for (i = 0; i < dev->data->nb_rx_queues; i++) {
530 rx = &internals->rx_queue[i];
532 if (rx->pcap != NULL) {
533 pcap_close(rx->pcap);
539 dev->data->dev_link.link_status = ETH_LINK_DOWN;
543 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
549 eth_dev_info(struct rte_eth_dev *dev,
550 struct rte_eth_dev_info *dev_info)
552 struct pmd_internals *internals = dev->data->dev_private;
554 dev_info->if_index = internals->if_index;
555 dev_info->max_mac_addrs = 1;
556 dev_info->max_rx_pktlen = (uint32_t) -1;
557 dev_info->max_rx_queues = dev->data->nb_rx_queues;
558 dev_info->max_tx_queues = dev->data->nb_tx_queues;
559 dev_info->min_rx_bufsize = 0;
563 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
566 unsigned long rx_packets_total = 0, rx_bytes_total = 0;
567 unsigned long tx_packets_total = 0, tx_bytes_total = 0;
568 unsigned long tx_packets_err_total = 0;
569 const struct pmd_internals *internal = dev->data->dev_private;
571 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
572 i < dev->data->nb_rx_queues; i++) {
573 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
574 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
575 rx_packets_total += stats->q_ipackets[i];
576 rx_bytes_total += stats->q_ibytes[i];
579 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
580 i < dev->data->nb_tx_queues; i++) {
581 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
582 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
583 stats->q_errors[i] = internal->tx_queue[i].tx_stat.err_pkts;
584 tx_packets_total += stats->q_opackets[i];
585 tx_bytes_total += stats->q_obytes[i];
586 tx_packets_err_total += stats->q_errors[i];
589 stats->ipackets = rx_packets_total;
590 stats->ibytes = rx_bytes_total;
591 stats->opackets = tx_packets_total;
592 stats->obytes = tx_bytes_total;
593 stats->oerrors = tx_packets_err_total;
597 eth_stats_reset(struct rte_eth_dev *dev)
600 struct pmd_internals *internal = dev->data->dev_private;
602 for (i = 0; i < dev->data->nb_rx_queues; i++) {
603 internal->rx_queue[i].rx_stat.pkts = 0;
604 internal->rx_queue[i].rx_stat.bytes = 0;
607 for (i = 0; i < dev->data->nb_tx_queues; i++) {
608 internal->tx_queue[i].tx_stat.pkts = 0;
609 internal->tx_queue[i].tx_stat.bytes = 0;
610 internal->tx_queue[i].tx_stat.err_pkts = 0;
615 eth_dev_close(struct rte_eth_dev *dev __rte_unused)
620 eth_queue_release(void *q __rte_unused)
625 eth_link_update(struct rte_eth_dev *dev __rte_unused,
626 int wait_to_complete __rte_unused)
632 eth_rx_queue_setup(struct rte_eth_dev *dev,
633 uint16_t rx_queue_id,
634 uint16_t nb_rx_desc __rte_unused,
635 unsigned int socket_id __rte_unused,
636 const struct rte_eth_rxconf *rx_conf __rte_unused,
637 struct rte_mempool *mb_pool)
639 struct pmd_internals *internals = dev->data->dev_private;
640 struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
642 pcap_q->mb_pool = mb_pool;
643 dev->data->rx_queues[rx_queue_id] = pcap_q;
644 pcap_q->in_port = dev->data->port_id;
650 eth_tx_queue_setup(struct rte_eth_dev *dev,
651 uint16_t tx_queue_id,
652 uint16_t nb_tx_desc __rte_unused,
653 unsigned int socket_id __rte_unused,
654 const struct rte_eth_txconf *tx_conf __rte_unused)
656 struct pmd_internals *internals = dev->data->dev_private;
658 dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
663 static const struct eth_dev_ops ops = {
664 .dev_start = eth_dev_start,
665 .dev_stop = eth_dev_stop,
666 .dev_close = eth_dev_close,
667 .dev_configure = eth_dev_configure,
668 .dev_infos_get = eth_dev_info,
669 .rx_queue_setup = eth_rx_queue_setup,
670 .tx_queue_setup = eth_tx_queue_setup,
671 .rx_queue_release = eth_queue_release,
672 .tx_queue_release = eth_queue_release,
673 .link_update = eth_link_update,
674 .stats_get = eth_stats_get,
675 .stats_reset = eth_stats_reset,
679 * Function handler that opens the pcap file for reading a stores a
680 * reference of it for use it later on.
683 open_rx_pcap(const char *key, const char *value, void *extra_args)
686 const char *pcap_filename = value;
687 struct pmd_devargs *rx = extra_args;
690 for (i = 0; i < rx->num_of_queue; i++) {
691 if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
694 rx->queue[i].pcap = pcap;
695 rx->queue[i].name = pcap_filename;
696 rx->queue[i].type = key;
703 * Opens a pcap file for writing and stores a reference to it
704 * for use it later on.
707 open_tx_pcap(const char *key, const char *value, void *extra_args)
710 const char *pcap_filename = value;
711 struct pmd_devargs *dumpers = extra_args;
712 pcap_dumper_t *dumper;
714 for (i = 0; i < dumpers->num_of_queue; i++) {
715 if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
718 dumpers->queue[i].dumper = dumper;
719 dumpers->queue[i].name = pcap_filename;
720 dumpers->queue[i].type = key;
727 * Opens an interface for reading and writing
730 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
732 const char *iface = value;
733 struct pmd_devargs *tx = extra_args;
736 if (open_single_iface(iface, &pcap) < 0)
739 tx->queue[0].pcap = pcap;
740 tx->queue[0].name = iface;
741 tx->queue[0].type = key;
747 * Opens a NIC for reading packets from it
750 open_rx_iface(const char *key, const char *value, void *extra_args)
753 const char *iface = value;
754 struct pmd_devargs *rx = extra_args;
757 for (i = 0; i < rx->num_of_queue; i++) {
758 if (open_single_iface(iface, &pcap) < 0)
760 rx->queue[i].pcap = pcap;
761 rx->queue[i].name = iface;
762 rx->queue[i].type = key;
769 * Opens a NIC for writing packets to it
772 open_tx_iface(const char *key, const char *value, void *extra_args)
775 const char *iface = value;
776 struct pmd_devargs *tx = extra_args;
779 for (i = 0; i < tx->num_of_queue; i++) {
780 if (open_single_iface(iface, &pcap) < 0)
782 tx->queue[i].pcap = pcap;
783 tx->queue[i].name = iface;
784 tx->queue[i].type = key;
790 static struct rte_vdev_driver pmd_pcap_drv;
793 pmd_init_internals(const char *name, const unsigned int nb_rx_queues,
794 const unsigned int nb_tx_queues,
795 struct pmd_internals **internals,
796 struct rte_eth_dev **eth_dev)
798 struct rte_eth_dev_data *data = NULL;
799 unsigned int numa_node = rte_socket_id();
801 RTE_LOG(INFO, PMD, "Creating pcap-backed ethdev on numa socket %u\n",
804 /* now do all data allocation - for eth_dev structure
805 * and internal (private) data
807 data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
811 *internals = rte_zmalloc_socket(name, sizeof(**internals), 0,
813 if (*internals == NULL)
816 /* reserve an ethdev entry */
817 *eth_dev = rte_eth_dev_allocate(name);
818 if (*eth_dev == NULL)
821 /* now put it all together
822 * - store queue data in internals,
823 * - store numa_node info in eth_dev
824 * - point eth_dev_data to internals
825 * - and point eth_dev structure to new eth_dev_data structure
827 data->dev_private = *internals;
828 data->port_id = (*eth_dev)->data->port_id;
829 snprintf(data->name, sizeof(data->name), "%s", (*eth_dev)->data->name);
830 data->nb_rx_queues = (uint16_t)nb_rx_queues;
831 data->nb_tx_queues = (uint16_t)nb_tx_queues;
832 data->dev_link = pmd_link;
833 data->mac_addrs = ð_addr;
836 * NOTE: we'll replace the data element, of originally allocated
837 * eth_dev so the rings are local per-process
839 (*eth_dev)->data = data;
840 (*eth_dev)->dev_ops = &ops;
841 (*eth_dev)->driver = NULL;
842 data->dev_flags = RTE_ETH_DEV_DETACHABLE;
843 data->kdrv = RTE_KDRV_NONE;
844 data->drv_name = pmd_pcap_drv.driver.name;
845 data->numa_node = numa_node;
851 rte_free(*internals);
857 eth_from_pcaps_common(const char *name, struct pmd_devargs *rx_queues,
858 const unsigned int nb_rx_queues, struct pmd_devargs *tx_queues,
859 const unsigned int nb_tx_queues, struct rte_kvargs *kvlist,
860 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
862 struct rte_kvargs_pair *pair = NULL;
866 /* do some parameter checking */
867 if (rx_queues == NULL && nb_rx_queues > 0)
869 if (tx_queues == NULL && nb_tx_queues > 0)
872 if (pmd_init_internals(name, nb_rx_queues, nb_tx_queues, internals,
876 for (i = 0; i < nb_rx_queues; i++) {
877 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
878 struct devargs_queue *queue = &rx_queues->queue[i];
880 rx->pcap = queue->pcap;
881 snprintf(rx->name, sizeof(rx->name), "%s", queue->name);
882 snprintf(rx->type, sizeof(rx->type), "%s", queue->type);
885 for (i = 0; i < nb_tx_queues; i++) {
886 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
887 struct devargs_queue *queue = &tx_queues->queue[i];
889 tx->dumper = queue->dumper;
890 tx->pcap = queue->pcap;
891 snprintf(tx->name, sizeof(tx->name), "%s", queue->name);
892 snprintf(tx->type, sizeof(tx->type), "%s", queue->type);
895 for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
896 pair = &kvlist->pairs[k_idx];
897 if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL)
902 (*internals)->if_index = 0;
904 (*internals)->if_index = if_nametoindex(pair->value);
910 eth_from_pcaps(const char *name, struct pmd_devargs *rx_queues,
911 const unsigned int nb_rx_queues, struct pmd_devargs *tx_queues,
912 const unsigned int nb_tx_queues, struct rte_kvargs *kvlist,
913 int single_iface, unsigned int using_dumpers)
915 struct pmd_internals *internals = NULL;
916 struct rte_eth_dev *eth_dev = NULL;
919 ret = eth_from_pcaps_common(name, rx_queues, nb_rx_queues,
920 tx_queues, nb_tx_queues, kvlist, &internals, ð_dev);
925 /* store weather we are using a single interface for rx/tx or not */
926 internals->single_iface = single_iface;
928 eth_dev->rx_pkt_burst = eth_pcap_rx;
931 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
933 eth_dev->tx_pkt_burst = eth_pcap_tx;
939 pmd_pcap_probe(const char *name, const char *params)
941 unsigned int is_rx_pcap = 0, is_tx_pcap = 0;
942 struct rte_kvargs *kvlist;
943 struct pmd_devargs pcaps = {0};
944 struct pmd_devargs dumpers = {0};
945 int single_iface = 0;
948 RTE_LOG(INFO, PMD, "Initializing pmd_pcap for %s\n", name);
950 gettimeofday(&start_time, NULL);
951 start_cycles = rte_get_timer_cycles();
952 hz = rte_get_timer_hz();
954 kvlist = rte_kvargs_parse(params, valid_arguments);
959 * If iface argument is passed we open the NICs and use them for
962 if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
964 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
965 &open_rx_tx_iface, &pcaps);
970 dumpers.queue[0] = pcaps.queue[0];
973 pcaps.num_of_queue = 1;
974 dumpers.num_of_queue = 1;
980 * We check whether we want to open a RX stream from a real NIC or a
983 pcaps.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG);
984 if (pcaps.num_of_queue)
987 pcaps.num_of_queue = rte_kvargs_count(kvlist,
988 ETH_PCAP_RX_IFACE_ARG);
990 if (pcaps.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES)
991 pcaps.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES;
994 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
995 &open_rx_pcap, &pcaps);
997 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_IFACE_ARG,
998 &open_rx_iface, &pcaps);
1004 * We check whether we want to open a TX stream to a real NIC or a
1007 dumpers.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG);
1008 if (dumpers.num_of_queue)
1011 dumpers.num_of_queue = rte_kvargs_count(kvlist,
1012 ETH_PCAP_TX_IFACE_ARG);
1014 if (dumpers.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES)
1015 dumpers.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES;
1018 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1019 &open_tx_pcap, &dumpers);
1021 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1022 &open_tx_iface, &dumpers);
1028 ret = eth_from_pcaps(name, &pcaps, pcaps.num_of_queue, &dumpers,
1029 dumpers.num_of_queue, kvlist, single_iface, is_tx_pcap);
1032 rte_kvargs_free(kvlist);
1038 pmd_pcap_remove(const char *name)
1040 struct rte_eth_dev *eth_dev = NULL;
1042 RTE_LOG(INFO, PMD, "Closing pcap ethdev on numa socket %u\n",
1048 /* reserve an ethdev entry */
1049 eth_dev = rte_eth_dev_allocated(name);
1050 if (eth_dev == NULL)
1053 rte_free(eth_dev->data->dev_private);
1054 rte_free(eth_dev->data);
1056 rte_eth_dev_release_port(eth_dev);
1061 static struct rte_vdev_driver pmd_pcap_drv = {
1062 .probe = pmd_pcap_probe,
1063 .remove = pmd_pcap_remove,
1066 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1067 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1068 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1069 ETH_PCAP_RX_PCAP_ARG "=<string> "
1070 ETH_PCAP_TX_PCAP_ARG "=<string> "
1071 ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1072 ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1073 ETH_PCAP_IFACE_ARG "=<ifc>");