2 * Copyright (c) 2016 QLogic Corporation.
6 * See LICENSE.qede_pmd for copyright and licensing details.
11 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35 * registers involved are not split and thus configuration is a race where
36 * some of the PFs configuration might be lost.
37 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39 * there's more than a single compiled ecore component in system].
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
45 #define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to
46 * load the driver. The number was
51 #define ECORE_MIN_PWM_REGION ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
54 BAR_ID_0, /* used for GRC */
55 BAR_ID_1 /* Used for doorbells */
58 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
60 u32 bar_reg = (bar_id == BAR_ID_0 ?
61 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
64 if (IS_VF(p_hwfn->p_dev)) {
65 /* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
66 * read from actual register, but we're currently not using
67 * it for actual doorbelling.
72 val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
74 return 1 << (val + 15);
76 /* The above registers were updated in the past only in CMT mode. Since
77 * they were found to be useful MFW started updating them from 8.7.7.0.
78 * In older MFW versions they are set to 0 which means disabled.
80 if (p_hwfn->p_dev->num_hwfns > 1) {
81 DP_NOTICE(p_hwfn, false,
82 "BAR size not configured. Assuming BAR size of 256kB"
83 " for GRC and 512kB for DB\n");
84 val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
86 DP_NOTICE(p_hwfn, false,
87 "BAR size not configured. Assuming BAR size of 512kB"
88 " for GRC and 512kB for DB\n");
95 void ecore_init_dp(struct ecore_dev *p_dev,
96 u32 dp_module, u8 dp_level, void *dp_ctx)
100 p_dev->dp_level = dp_level;
101 p_dev->dp_module = dp_module;
102 p_dev->dp_ctx = dp_ctx;
103 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
104 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
106 p_hwfn->dp_level = dp_level;
107 p_hwfn->dp_module = dp_module;
108 p_hwfn->dp_ctx = dp_ctx;
112 void ecore_init_struct(struct ecore_dev *p_dev)
116 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
117 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
119 p_hwfn->p_dev = p_dev;
121 p_hwfn->b_active = false;
123 OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
124 OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
127 /* hwfn 0 is always active */
128 p_dev->hwfns[0].b_active = true;
130 /* set the default cache alignment to 128 (may be overridden later) */
131 p_dev->cache_shift = 7;
134 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
136 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
138 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
139 qm_info->qm_pq_params = OSAL_NULL;
140 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
141 qm_info->qm_vport_params = OSAL_NULL;
142 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
143 qm_info->qm_port_params = OSAL_NULL;
144 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
145 qm_info->wfq_data = OSAL_NULL;
148 void ecore_resc_free(struct ecore_dev *p_dev)
155 OSAL_FREE(p_dev, p_dev->fw_data);
156 p_dev->fw_data = OSAL_NULL;
158 OSAL_FREE(p_dev, p_dev->reset_stats);
160 for_each_hwfn(p_dev, i) {
161 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
163 OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
164 p_hwfn->p_tx_cids = OSAL_NULL;
165 OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
166 p_hwfn->p_rx_cids = OSAL_NULL;
169 for_each_hwfn(p_dev, i) {
170 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
172 ecore_cxt_mngr_free(p_hwfn);
173 ecore_qm_info_free(p_hwfn);
174 ecore_spq_free(p_hwfn);
175 ecore_eq_free(p_hwfn, p_hwfn->p_eq);
176 ecore_consq_free(p_hwfn, p_hwfn->p_consq);
177 ecore_int_free(p_hwfn);
178 #ifdef CONFIG_ECORE_LL2
179 ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
181 ecore_iov_free(p_hwfn);
182 ecore_dmae_info_free(p_hwfn);
183 ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
184 /* @@@TBD Flush work-queue ? */
188 static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
191 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
192 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
193 struct init_qm_port_params *p_qm_port;
194 bool init_rdma_offload_pq = false;
195 bool init_pure_ack_pq = false;
196 bool init_ooo_pq = false;
197 u16 num_pqs, protocol_pqs;
203 /* @TMP - saving the existing min/max bw config before resetting the
204 * qm_info to restore them.
206 pf_rl = qm_info->pf_rl;
207 pf_wfq = qm_info->pf_wfq;
209 #ifdef CONFIG_ECORE_SRIOV
210 if (p_hwfn->p_dev->p_iov_info)
211 num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
213 OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
216 /* @TMP - Don't allocate QM queues for VFs on emulation */
217 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
218 DP_NOTICE(p_hwfn, false,
219 "Emulation - skip configuring QM queues for VFs\n");
224 /* ethernet PFs require a pq per tc. Even if only a subset of the TCs
225 * active, we want physical queues allocated for all of them, since we
226 * don't have a good recycle flow. Non ethernet PFs require only a
227 * single physical queue.
229 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
230 p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
231 p_hwfn->hw_info.personality == ECORE_PCI_ETH)
232 protocol_pqs = p_hwfn->hw_info.num_hw_tc;
236 num_pqs = protocol_pqs + num_vfs + 1; /* The '1' is for pure-LB */
237 num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
239 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
240 num_pqs++; /* for RoCE queue */
241 init_rdma_offload_pq = true;
242 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
243 /* Due to FW assumption that rl==vport, we limit the
244 * number of rate limiters by the minimum between its
245 * allocated number and the allocated number of vports.
246 * Another limitation is the number of supported qps
247 * with rate limiters in FW.
250 (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
251 RESC_NUM(p_hwfn, ECORE_VPORT));
253 /* we subtract num_vfs because each one requires a rate
254 * limiter, and one default rate limiter.
256 if (num_pf_rls < num_vfs + 1) {
257 DP_ERR(p_hwfn, "No RL for DCQCN");
258 DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
259 num_pf_rls, num_vfs);
262 num_pf_rls -= num_vfs + 1;
265 num_pqs += num_pf_rls;
266 qm_info->num_pf_rls = (u8)num_pf_rls;
269 if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
270 num_pqs += 3; /* for iwarp queue / pure-ack / ooo */
271 init_rdma_offload_pq = true;
272 init_pure_ack_pq = true;
276 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
277 num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */
278 init_pure_ack_pq = true;
282 /* Sanity checking that setup requires legal number of resources */
283 if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
285 "Need too many Physical queues - 0x%04x avail %04x",
286 num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
290 /* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
291 * then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
293 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
294 b_sleepable ? GFP_KERNEL :
296 sizeof(struct init_qm_pq_params) *
298 if (!qm_info->qm_pq_params)
301 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
302 b_sleepable ? GFP_KERNEL :
305 init_qm_vport_params) *
307 if (!qm_info->qm_vport_params)
310 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
311 b_sleepable ? GFP_KERNEL :
313 sizeof(struct init_qm_port_params)
315 if (!qm_info->qm_port_params)
318 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
319 b_sleepable ? GFP_KERNEL :
321 sizeof(struct ecore_wfq_data) *
324 if (!qm_info->wfq_data)
327 vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
329 /* First init rate limited queues ( Due to RoCE assumption of
332 for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
333 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
334 qm_info->qm_pq_params[curr_queue].tc_id =
335 p_hwfn->hw_info.offload_tc;
336 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
337 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
341 for (i = 0; i < protocol_pqs; i++) {
342 struct init_qm_pq_params *params =
343 &qm_info->qm_pq_params[curr_queue++];
345 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
346 p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
347 p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
348 params->vport_id = vport_id;
350 /* Note: this assumes that if we had a configuration
351 * with N tcs and subsequently another configuration
352 * With Fewer TCs, the in flight traffic (in QM queues,
353 * in FW, from driver to FW) will still trickle out and
354 * not get "stuck" in the QM. This is determined by the
355 * NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
356 * supposed to be cleared in this map, allowing traffic
357 * to flush out. If this is not the case, we would need
358 * to set the TC of unused queues to 0, and reconfigure
359 * QM every time num of TCs changes. Unused queues in
360 * this context would mean those intended for TCs where
361 * tc_id > hw_info.num_active_tcs.
363 params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
365 params->vport_id = vport_id;
366 params->tc_id = p_hwfn->hw_info.offload_tc;
367 params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
371 /* Then init pure-LB PQ */
372 qm_info->pure_lb_pq = curr_queue;
373 qm_info->qm_pq_params[curr_queue].vport_id =
374 (u8)RESC_START(p_hwfn, ECORE_VPORT);
375 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
376 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
379 qm_info->offload_pq = 0; /* Already initialized for iSCSI/FCoE */
380 if (init_rdma_offload_pq) {
381 qm_info->offload_pq = curr_queue;
382 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
383 qm_info->qm_pq_params[curr_queue].tc_id =
384 p_hwfn->hw_info.offload_tc;
385 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
389 if (init_pure_ack_pq) {
390 qm_info->pure_ack_pq = curr_queue;
391 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
392 qm_info->qm_pq_params[curr_queue].tc_id =
393 p_hwfn->hw_info.offload_tc;
394 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
399 qm_info->ooo_pq = curr_queue;
400 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
401 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
402 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
406 /* Then init per-VF PQs */
407 vf_offset = curr_queue;
408 for (i = 0; i < num_vfs; i++) {
409 /* First vport is used by the PF */
410 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
411 /* @@@TBD VF Multi-cos */
412 qm_info->qm_pq_params[curr_queue].tc_id = 0;
413 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
414 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
418 qm_info->vf_queues_offset = vf_offset;
419 qm_info->num_pqs = num_pqs;
420 qm_info->num_vports = num_vports;
422 /* Initialize qm port parameters */
423 num_ports = p_hwfn->p_dev->num_ports_in_engines;
424 for (i = 0; i < num_ports; i++) {
425 p_qm_port = &qm_info->qm_port_params[i];
426 p_qm_port->active = 1;
427 /* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
431 p_qm_port->active_phys_tcs = 0xf;
433 p_qm_port->active_phys_tcs = 0x9f;
434 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
435 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
438 if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
439 qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
441 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
443 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
445 qm_info->num_vf_pqs = num_vfs;
446 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
448 for (i = 0; i < qm_info->num_vports; i++)
449 qm_info->qm_vport_params[i].vport_wfq = 1;
451 qm_info->vport_rl_en = 1;
452 qm_info->vport_wfq_en = 1;
453 qm_info->pf_rl = pf_rl;
454 qm_info->pf_wfq = pf_wfq;
456 return ECORE_SUCCESS;
459 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
460 ecore_qm_info_free(p_hwfn);
464 /* This function reconfigures the QM pf on the fly.
465 * For this purpose we:
466 * 1. reconfigure the QM database
467 * 2. set new values to runtime arrat
468 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
469 * 4. activate init tool in QM_PF stage
470 * 5. send an sdm_qm_cmd through rbc interface to release the QM
472 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
473 struct ecore_ptt *p_ptt)
475 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
477 enum _ecore_status_t rc;
479 /* qm_info is allocated in ecore_init_qm_info() which is already called
480 * from ecore_resc_alloc() or previous call of ecore_qm_reconf().
481 * The allocated size may change each init, so we free it before next
484 ecore_qm_info_free(p_hwfn);
486 /* initialize ecore's qm data structure */
487 rc = ecore_init_qm_info(p_hwfn, false);
488 if (rc != ECORE_SUCCESS)
491 /* stop PF's qm queues */
492 OSAL_SPIN_LOCK(&qm_lock);
493 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
494 qm_info->start_pq, qm_info->num_pqs);
495 OSAL_SPIN_UNLOCK(&qm_lock);
499 /* clear the QM_PF runtime phase leftovers from previous init */
500 ecore_init_clear_rt_data(p_hwfn);
502 /* prepare QM portion of runtime array */
503 ecore_qm_init_pf(p_hwfn);
505 /* activate init tool on runtime array */
506 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
507 p_hwfn->hw_info.hw_mode);
508 if (rc != ECORE_SUCCESS)
511 /* start PF's qm queues */
512 OSAL_SPIN_LOCK(&qm_lock);
513 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
514 qm_info->start_pq, qm_info->num_pqs);
515 OSAL_SPIN_UNLOCK(&qm_lock);
519 return ECORE_SUCCESS;
522 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
524 struct ecore_consq *p_consq;
525 struct ecore_eq *p_eq;
526 #ifdef CONFIG_ECORE_LL2
527 struct ecore_ll2_info *p_ll2_info;
529 enum _ecore_status_t rc = ECORE_SUCCESS;
535 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
536 sizeof(*p_dev->fw_data));
540 /* Allocate Memory for the Queue->CID mapping */
541 for_each_hwfn(p_dev, i) {
542 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
543 u32 num_tx_conns = RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
544 int tx_size, rx_size;
546 /* @@@TMP - resc management, change to actual required size */
547 if (p_hwfn->pf_params.eth_pf_params.num_cons > num_tx_conns)
548 num_tx_conns = p_hwfn->pf_params.eth_pf_params.num_cons;
549 tx_size = sizeof(struct ecore_hw_cid_data) * num_tx_conns;
550 rx_size = sizeof(struct ecore_hw_cid_data) *
551 RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
553 p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
555 if (!p_hwfn->p_tx_cids) {
556 DP_NOTICE(p_hwfn, true,
557 "Failed to allocate memory for Tx Cids\n");
561 p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
563 if (!p_hwfn->p_rx_cids) {
564 DP_NOTICE(p_hwfn, true,
565 "Failed to allocate memory for Rx Cids\n");
570 for_each_hwfn(p_dev, i) {
571 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
572 u32 n_eqes, num_cons;
574 /* First allocate the context manager structure */
575 rc = ecore_cxt_mngr_alloc(p_hwfn);
579 /* Set the HW cid/tid numbers (in the contest manager)
580 * Must be done prior to any further computations.
582 rc = ecore_cxt_set_pf_params(p_hwfn);
586 /* Prepare and process QM requirements */
587 rc = ecore_init_qm_info(p_hwfn, true);
591 /* Compute the ILT client partition */
592 rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
596 /* CID map / ILT shadow table / T2
597 * The talbes sizes are determined by the computations above
599 rc = ecore_cxt_tables_alloc(p_hwfn);
603 /* SPQ, must follow ILT because initializes SPQ context */
604 rc = ecore_spq_alloc(p_hwfn);
608 /* SP status block allocation */
609 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
612 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
616 rc = ecore_iov_alloc(p_hwfn);
621 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
622 if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
623 (p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
624 /* Calculate the EQ size
625 * ---------------------
626 * Each ICID may generate up to one event at a time i.e.
627 * the event must be handled/cleared before a new one
628 * can be generated. We calculate the sum of events per
629 * protocol and create an EQ deep enough to handle the
631 * - Core - according to SPQ.
632 * - RoCE - per QP there are a couple of ICIDs, one
633 * responder and one requester, each can
634 * generate an EQE => n_eqes_qp = 2 * n_qp.
635 * Each CQ can generate an EQE. There are 2 CQs
636 * per QP => n_eqes_cq = 2 * n_qp.
637 * Hence the RoCE total is 4 * n_qp or
639 * - ENet - There can be up to two events per VF. One
640 * for VF-PF channel and another for VF FLR
641 * initial cleanup. The number of VFs is
642 * bounded by MAX_NUM_VFS_BB, and is much
643 * smaller than RoCE's so we avoid exact
646 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
648 ecore_cxt_get_proto_cid_count(
654 num_cons = ecore_cxt_get_proto_cid_count(
659 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
660 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
662 ecore_cxt_get_proto_cid_count(p_hwfn,
663 PROTOCOLID_ISCSI, 0);
664 n_eqes += 2 * num_cons;
667 if (n_eqes > 0xFFFF) {
668 DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
669 "The maximum of a u16 chain is 0x%x\n",
675 p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
680 p_consq = ecore_consq_alloc(p_hwfn);
683 p_hwfn->p_consq = p_consq;
685 #ifdef CONFIG_ECORE_LL2
686 if (p_hwfn->using_ll2) {
687 p_ll2_info = ecore_ll2_alloc(p_hwfn);
690 p_hwfn->p_ll2_info = p_ll2_info;
694 /* DMA info initialization */
695 rc = ecore_dmae_info_alloc(p_hwfn);
697 DP_NOTICE(p_hwfn, true,
698 "Failed to allocate memory for dmae_info structure\n");
702 /* DCBX initialization */
703 rc = ecore_dcbx_info_alloc(p_hwfn);
705 DP_NOTICE(p_hwfn, true,
706 "Failed to allocate memory for dcbx structure\n");
711 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
712 sizeof(*p_dev->reset_stats));
713 if (!p_dev->reset_stats) {
714 DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
718 return ECORE_SUCCESS;
723 ecore_resc_free(p_dev);
727 void ecore_resc_setup(struct ecore_dev *p_dev)
734 for_each_hwfn(p_dev, i) {
735 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
737 ecore_cxt_mngr_setup(p_hwfn);
738 ecore_spq_setup(p_hwfn);
739 ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
740 ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
742 /* Read shadow of current MFW mailbox */
743 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
744 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
745 p_hwfn->mcp_info->mfw_mb_cur,
746 p_hwfn->mcp_info->mfw_mb_length);
748 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
750 ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
751 #ifdef CONFIG_ECORE_LL2
752 if (p_hwfn->using_ll2)
753 ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
758 #define FINAL_CLEANUP_POLL_CNT (100)
759 #define FINAL_CLEANUP_POLL_TIME (10)
760 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
761 struct ecore_ptt *p_ptt,
764 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
765 enum _ecore_status_t rc = ECORE_TIMEOUT;
768 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
769 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
770 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
771 return ECORE_SUCCESS;
775 addr = GTT_BAR0_MAP_REG_USDM_RAM +
776 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
781 command |= X_FINAL_CLEANUP_AGG_INT <<
782 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
783 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
784 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
785 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
787 /* Make sure notification is not set before initiating final cleanup */
789 if (REG_RD(p_hwfn, addr)) {
790 DP_NOTICE(p_hwfn, false,
791 "Unexpected; Found final cleanup notification");
792 DP_NOTICE(p_hwfn, false,
793 " before initiating final cleanup\n");
794 REG_WR(p_hwfn, addr, 0);
797 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
798 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
799 id, OSAL_CPU_TO_LE32(command));
801 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
802 OSAL_CPU_TO_LE32(command));
804 /* Poll until completion */
805 while (!REG_RD(p_hwfn, addr) && count--)
806 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
808 if (REG_RD(p_hwfn, addr))
811 DP_NOTICE(p_hwfn, true,
812 "Failed to receive FW final cleanup notification\n");
814 /* Cleanup afterwards */
815 REG_WR(p_hwfn, addr, 0);
820 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
824 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
825 hw_mode |= 1 << MODE_BB_B0;
826 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
827 hw_mode |= 1 << MODE_K2;
829 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
830 p_hwfn->p_dev->type);
834 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
835 switch (p_hwfn->p_dev->num_ports_in_engines) {
837 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
840 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
843 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
846 DP_NOTICE(p_hwfn, true,
847 "num_ports_in_engine = %d not supported\n",
848 p_hwfn->p_dev->num_ports_in_engines);
852 switch (p_hwfn->p_dev->mf_mode) {
853 case ECORE_MF_DEFAULT:
855 hw_mode |= 1 << MODE_MF_SI;
858 hw_mode |= 1 << MODE_MF_SD;
861 DP_NOTICE(p_hwfn, true,
862 "Unsupported MF mode, init as DEFAULT\n");
863 hw_mode |= 1 << MODE_MF_SI;
867 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
868 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
869 hw_mode |= 1 << MODE_FPGA;
871 if (p_hwfn->p_dev->b_is_emul_full)
872 hw_mode |= 1 << MODE_EMUL_FULL;
874 hw_mode |= 1 << MODE_EMUL_REDUCED;
878 hw_mode |= 1 << MODE_ASIC;
880 if (p_hwfn->p_dev->num_hwfns > 1)
881 hw_mode |= 1 << MODE_100G;
883 p_hwfn->hw_info.hw_mode = hw_mode;
885 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
886 "Configuring function for hw_mode: 0x%08x\n",
887 p_hwfn->hw_info.hw_mode);
889 return ECORE_SUCCESS;
893 /* MFW-replacement initializations for non-ASIC */
894 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
895 struct ecore_ptt *p_ptt)
900 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
903 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
905 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
906 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
908 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
909 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
910 if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
911 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
913 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
914 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
915 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
916 (p_hwfn->p_dev->num_ports_in_engines >> 1));
918 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
919 p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
923 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
924 for (i = 0; i < 100; i++) {
926 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
930 DP_NOTICE(p_hwfn, true,
931 "RBC done failed to complete in PSWRQ2\n");
933 return ECORE_SUCCESS;
937 /* Init run time data for all PFs and their VFs on an engine.
938 * TBD - for VFs - Once we have parent PF info for each VF in
939 * shmem available as CAU requires knowledge of parent PF for each VF.
941 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
943 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
946 for_each_hwfn(p_dev, i) {
947 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
948 struct ecore_igu_info *p_igu_info;
949 struct ecore_igu_block *p_block;
950 struct cau_sb_entry sb_entry;
952 p_igu_info = p_hwfn->hw_info.p_igu_info;
954 for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
956 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
961 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
962 p_block->function_id, 0, 0);
963 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
968 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
969 struct ecore_ptt *p_ptt,
972 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
973 struct ecore_dev *p_dev = p_hwfn->p_dev;
974 u8 vf_id, max_num_vfs;
977 enum _ecore_status_t rc = ECORE_SUCCESS;
979 ecore_init_cau_rt_data(p_dev);
981 /* Program GTT windows */
982 ecore_gtt_init(p_hwfn);
985 if (CHIP_REV_IS_EMUL(p_dev)) {
986 rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
987 if (rc != ECORE_SUCCESS)
992 if (p_hwfn->mcp_info) {
993 if (p_hwfn->mcp_info->func_info.bandwidth_max)
994 qm_info->pf_rl_en = 1;
995 if (p_hwfn->mcp_info->func_info.bandwidth_min)
996 qm_info->pf_wfq_en = 1;
999 ecore_qm_common_rt_init(p_hwfn,
1000 p_dev->num_ports_in_engines,
1001 qm_info->max_phys_tcs_per_port,
1002 qm_info->pf_rl_en, qm_info->pf_wfq_en,
1003 qm_info->vport_rl_en, qm_info->vport_wfq_en,
1004 qm_info->qm_port_params);
1006 ecore_cxt_hw_init_common(p_hwfn);
1008 /* Close gate from NIG to BRB/Storm; By default they are open, but
1009 * we close them to prevent NIG from passing data to reset blocks.
1010 * Should have been done in the ENGINE phase, but init-tool lacks
1011 * proper port-pretend capabilities.
1013 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1014 ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1015 ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
1016 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1017 ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1018 ecore_port_unpretend(p_hwfn, p_ptt);
1020 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1021 if (rc != ECORE_SUCCESS)
1024 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1025 * need to decide with which value, maybe runtime
1027 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1028 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1030 if (ECORE_IS_BB(p_dev)) {
1031 /* Workaround clears ROCE search for all functions to prevent
1032 * involving non initialized function in processing ROCE packet.
1034 num_pfs = NUM_OF_ENG_PFS(p_dev);
1035 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1036 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1037 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1038 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1040 /* pretend to original PF */
1041 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1044 /* Workaround for avoiding CCFC execution error when getting packets
1045 * with CRC errors, and allowing instead the invoking of the FW error
1047 * This is not done inside the init tool since it currently can't
1048 * perform a pretending to VFs.
1050 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1051 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1052 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1053 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1054 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1055 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1056 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1057 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1059 /* pretend to original PF */
1060 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1066 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1067 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1069 #define PMEG_IF_BYTE_COUNT 8
1071 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1072 struct ecore_ptt *p_ptt,
1073 u32 addr, u64 data, u8 reg_type, u8 port)
1075 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1076 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1077 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
1078 (8 << PMEG_IF_BYTE_COUNT),
1079 (reg_type << 25) | (addr << 8) | port,
1080 (u32)((data >> 32) & 0xffffffff),
1081 (u32)(data & 0xffffffff));
1083 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
1084 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
1085 0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1086 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
1087 (reg_type << 25) | (addr << 8) | port);
1088 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1090 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1091 (data >> 32) & 0xffffffff);
1094 #define XLPORT_MODE_REG (0x20a)
1095 #define XLPORT_MAC_CONTROL (0x210)
1096 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1097 #define XLPORT_ENABLE_REG (0x20b)
1099 #define XLMAC_CTRL (0x600)
1100 #define XLMAC_MODE (0x601)
1101 #define XLMAC_RX_MAX_SIZE (0x608)
1102 #define XLMAC_TX_CTRL (0x604)
1103 #define XLMAC_PAUSE_CTRL (0x60d)
1104 #define XLMAC_PFC_CTRL (0x60e)
1106 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
1107 struct ecore_ptt *p_ptt)
1109 u8 port = p_hwfn->port_id;
1110 u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
1112 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
1113 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
1114 (port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
1115 | (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
1117 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
1118 1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
1120 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
1121 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
1123 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
1124 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
1126 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
1127 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
1129 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
1130 (0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
1131 (8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
1133 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
1136 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1137 struct ecore_ptt *p_ptt)
1139 u8 loopback = 0, port = p_hwfn->port_id * 2;
1141 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1143 if (ECORE_IS_AH(p_hwfn->p_dev)) {
1144 ecore_emul_link_init_ah(p_hwfn, p_ptt);
1148 /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1149 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1151 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1152 /* XLMAC: SOFT RESET */
1153 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1154 /* XLMAC: Port Speed >= 10Gbps */
1155 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1156 /* XLMAC: Max Size */
1157 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1158 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1159 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1161 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1162 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1163 0x30ffffc000ULL, 0, port);
1164 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1165 port); /* XLMAC: TX_EN, RX_EN */
1166 /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1167 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1168 0x1003 | (loopback << 2), 0, port);
1169 /* Enabled Parallel PFC interface */
1170 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1172 /* XLPORT port enable */
1173 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1176 static void ecore_link_init(struct ecore_hwfn *p_hwfn,
1177 struct ecore_ptt *p_ptt, u8 port)
1179 int port_offset = port ? 0x800 : 0;
1180 u32 xmac_rxctrl = 0;
1183 /* FIXME: move to common start */
1184 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1185 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1187 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1188 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1190 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
1192 /* Set the number of ports on the Warp Core to 10G */
1193 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
1195 /* Soft reset of XMAC */
1196 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1197 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1199 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1200 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1202 /* FIXME: move to common end */
1203 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1204 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
1206 /* Set Max packet size: initialize XMAC block register for port 0 */
1207 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
1209 /* CRC append for Tx packets: init XMAC block register for port 1 */
1210 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
1212 /* Enable TX and RX: initialize XMAC block register for port 1 */
1213 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
1214 XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
1215 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
1216 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
1217 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
1221 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1222 struct ecore_ptt *p_ptt,
1225 enum _ecore_status_t rc = ECORE_SUCCESS;
1227 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1229 if (rc != ECORE_SUCCESS)
1232 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1233 return ECORE_SUCCESS;
1235 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1236 if (ECORE_IS_AH(p_hwfn->p_dev))
1237 return ECORE_SUCCESS;
1238 ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
1239 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1240 if (p_hwfn->p_dev->num_hwfns > 1) {
1241 /* Activate OPTE in CMT */
1244 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1246 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1247 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1248 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1249 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1250 ecore_wr(p_hwfn, p_ptt,
1251 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1252 ecore_wr(p_hwfn, p_ptt,
1253 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1254 ecore_wr(p_hwfn, p_ptt,
1255 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1259 ecore_emul_link_init(p_hwfn, p_ptt);
1261 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1268 static enum _ecore_status_t
1269 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1270 struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1272 u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1273 u32 dpi_bit_shift, dpi_count;
1276 /* Calculate DPI size
1277 * ------------------
1278 * The PWM region contains Doorbell Pages. The first is reserverd for
1279 * the kernel for, e.g, L2. The others are free to be used by non-
1280 * trusted applications, typically from user space. Each page, called a
1281 * doorbell page is sectioned into windows that allow doorbells to be
1282 * issued in parallel by the kernel/application. The size of such a
1283 * window (a.k.a. WID) is 1kB.
1285 * 1kB WID x N WIDS = DPI page size
1286 * DPI page size x N DPIs = PWM region size
1288 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1289 * in order to ensure that two applications won't share the same page.
1290 * It also must contain at least one WID per CPU to allow parallelism.
1291 * It also must be a power of 2, since it is stored as a bit shift.
1293 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1294 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1295 * containing 4 WIDs.
1297 dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1298 dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1299 dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1300 dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1301 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1303 dpi_count = pwm_region_size / dpi_page_size;
1305 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1306 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1309 p_hwfn->dpi_size = dpi_page_size;
1310 p_hwfn->dpi_count = dpi_count;
1312 /* Update registers */
1313 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1315 if (dpi_count < min_dpis)
1316 return ECORE_NORESOURCES;
1318 return ECORE_SUCCESS;
1321 enum ECORE_ROCE_EDPM_MODE {
1322 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1323 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1324 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1327 static enum _ecore_status_t
1328 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1329 struct ecore_ptt *p_ptt)
1331 u32 pwm_regsize, norm_regsize;
1332 u32 non_pwm_conn, min_addr_reg1;
1333 u32 db_bar_size, n_cpus;
1336 int rc = ECORE_SUCCESS;
1339 db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1340 if (p_hwfn->p_dev->num_hwfns > 1)
1343 /* Calculate doorbell regions
1344 * -----------------------------------
1345 * The doorbell BAR is made of two regions. The first is called normal
1346 * region and the second is called PWM region. In the normal region
1347 * each ICID has its own set of addresses so that writing to that
1348 * specific address identifies the ICID. In the Process Window Mode
1349 * region the ICID is given in the data written to the doorbell. The
1350 * above per PF register denotes the offset in the doorbell BAR in which
1351 * the PWM region begins.
1352 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1353 * non-PWM connection. The calculation below computes the total non-PWM
1354 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1355 * in units of 4,096 bytes.
1357 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1358 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1360 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1361 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1362 min_addr_reg1 = norm_regsize / 4096;
1363 pwm_regsize = db_bar_size - norm_regsize;
1365 /* Check that the normal and PWM sizes are valid */
1366 if (db_bar_size < norm_regsize) {
1367 DP_ERR(p_hwfn->p_dev,
1368 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1369 db_bar_size, norm_regsize);
1370 return ECORE_NORESOURCES;
1372 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1373 DP_ERR(p_hwfn->p_dev,
1374 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1375 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1377 return ECORE_NORESOURCES;
1380 /* Calculate number of DPIs */
1381 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1382 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1383 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1384 /* Either EDPM is mandatory, or we are attempting to allocate a
1387 n_cpus = OSAL_NUM_ACTIVE_CPU();
1388 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1391 cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1392 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1393 if (cond || p_hwfn->dcbx_no_edpm) {
1394 /* Either EDPM is disabled from user configuration, or it is
1395 * disabled via DCBx, or it is not mandatory and we failed to
1396 * allocated a WID per CPU.
1399 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1401 /* If we entered this flow due to DCBX then the DPM register is
1402 * already configured.
1407 "doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1408 norm_regsize, pwm_regsize);
1410 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1411 p_hwfn->dpi_size, p_hwfn->dpi_count,
1412 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1413 "disabled" : "enabled");
1415 /* Check return codes from above calls */
1418 "Failed to allocate enough DPIs\n");
1419 return ECORE_NORESOURCES;
1423 p_hwfn->dpi_start_offset = norm_regsize;
1425 /* Update registers */
1426 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1427 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1428 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1429 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1431 return ECORE_SUCCESS;
1434 static enum _ecore_status_t
1435 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1436 struct ecore_ptt *p_ptt,
1437 struct ecore_tunn_start_params *p_tunn,
1440 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1442 u8 rel_pf_id = p_hwfn->rel_pf_id;
1444 enum _ecore_status_t rc = ECORE_SUCCESS;
1448 if (p_hwfn->mcp_info) {
1449 struct ecore_mcp_function_info *p_info;
1451 p_info = &p_hwfn->mcp_info->func_info;
1452 if (p_info->bandwidth_min)
1453 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1455 /* Update rate limit once we'll actually have a link */
1456 p_hwfn->qm_info.pf_rl = 100000;
1458 ecore_cxt_hw_init_pf(p_hwfn);
1460 ecore_int_igu_init_rt(p_hwfn);
1462 /* Set VLAN in NIG if needed */
1463 if (hw_mode & (1 << MODE_MF_SD)) {
1464 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1465 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1466 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1467 p_hwfn->hw_info.ovlan);
1470 /* Enable classification by MAC if needed */
1471 if (hw_mode & (1 << MODE_MF_SI)) {
1472 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1473 "Configuring TAGMAC_CLS_TYPE\n");
1474 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1478 /* Protocl Configuration - @@@TBD - should we set 0 otherwise? */
1479 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1480 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1481 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1482 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1483 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1485 /* perform debug configuration when chip is out of reset */
1486 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1488 /* Cleanup chip from previous driver if such remains exist */
1489 rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1490 if (rc != ECORE_SUCCESS) {
1491 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1495 /* PF Init sequence */
1496 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1500 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1501 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1505 /* Pure runtime initializations - directly to the HW */
1506 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1508 /* PCI relaxed ordering causes a decrease in the performance on some
1509 * systems. Till a root cause is found, disable this attribute in the
1513 * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1515 * DP_NOTICE(p_hwfn, true,
1516 * "Failed to find the PCIe Cap\n");
1519 * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1520 * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1521 * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1524 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1528 /* enable interrupts */
1529 rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1530 if (rc != ECORE_SUCCESS)
1533 /* send function start command */
1534 rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1535 allow_npar_tx_switch);
1537 DP_NOTICE(p_hwfn, true,
1538 "Function start ramrod failed\n");
1540 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1541 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1542 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1544 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1545 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1547 ecore_wr(p_hwfn, p_ptt,
1548 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1551 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1552 "PRS_REG_SEARCH registers after start PFn\n");
1553 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1554 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1555 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1556 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1557 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1558 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1559 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1560 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1561 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1562 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1563 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1564 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1565 prs_reg = ecore_rd(p_hwfn, p_ptt,
1566 PRS_REG_SEARCH_TCP_FIRST_FRAG);
1567 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1568 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1570 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1571 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1572 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1578 static enum _ecore_status_t
1579 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1580 struct ecore_ptt *p_ptt, u8 enable)
1582 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1584 /* Change PF in PXP */
1585 ecore_wr(p_hwfn, p_ptt,
1586 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1588 /* wait until value is set - try for 1 second every 50us */
1589 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1590 val = ecore_rd(p_hwfn, p_ptt,
1591 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1598 if (val != set_val) {
1599 DP_NOTICE(p_hwfn, true,
1600 "PFID_ENABLE_MASTER wasn't changed after a second\n");
1601 return ECORE_UNKNOWN_ERROR;
1604 return ECORE_SUCCESS;
1607 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1608 struct ecore_ptt *p_main_ptt)
1610 /* Read shadow of current MFW mailbox */
1611 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1612 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1613 p_hwfn->mcp_info->mfw_mb_cur,
1614 p_hwfn->mcp_info->mfw_mb_length);
1617 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1618 struct ecore_hw_init_params *p_params)
1620 enum _ecore_status_t rc, mfw_rc;
1621 u32 load_code, param;
1624 if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
1625 (p_dev->num_hwfns > 1)) {
1626 DP_NOTICE(p_dev, false,
1627 "MSI mode is not supported for CMT devices\n");
1632 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1633 if (rc != ECORE_SUCCESS)
1637 for_each_hwfn(p_dev, i) {
1638 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1641 p_hwfn->b_int_enabled = 1;
1645 /* Enable DMAE in PXP */
1646 rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1647 if (rc != ECORE_SUCCESS)
1650 rc = ecore_calc_hw_mode(p_hwfn);
1651 if (rc != ECORE_SUCCESS)
1654 /* @@@TBD need to add here:
1655 * Check for fan failure
1658 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1660 DP_NOTICE(p_hwfn, true,
1661 "Failed sending LOAD_REQ command\n");
1666 * When coming back from hiberbate state, the registers from
1667 * which shadow is read initially are not initialized. It turns
1668 * out that these registers get initialized during the call to
1669 * ecore_mcp_load_req request. So we need to reread them here
1670 * to get the proper shadow register value.
1671 * Note: This is a workaround for the missinginig MFW
1672 * initialization. It may be removed once the implementation
1675 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1677 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1678 "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1681 /* Only relevant for recovery:
1682 * Clear the indication after the LOAD_REQ command is responded
1685 p_dev->recov_in_prog = false;
1687 p_hwfn->first_on_engine = (load_code ==
1688 FW_MSG_CODE_DRV_LOAD_ENGINE);
1690 if (!qm_lock_init) {
1691 OSAL_SPIN_LOCK_INIT(&qm_lock);
1692 qm_lock_init = true;
1695 switch (load_code) {
1696 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1697 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1698 p_hwfn->hw_info.hw_mode);
1702 case FW_MSG_CODE_DRV_LOAD_PORT:
1703 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1704 p_hwfn->hw_info.hw_mode);
1708 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1709 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1711 p_hwfn->hw_info.hw_mode,
1712 p_params->b_hw_start,
1714 p_params->allow_npar_tx_switch);
1721 if (rc != ECORE_SUCCESS)
1722 DP_NOTICE(p_hwfn, true,
1723 "init phase failed for loadcode 0x%x (rc %d)\n",
1726 /* ACK mfw regardless of success or failure of initialization */
1727 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1728 DRV_MSG_CODE_LOAD_DONE,
1729 0, &load_code, ¶m);
1730 if (rc != ECORE_SUCCESS)
1732 if (mfw_rc != ECORE_SUCCESS) {
1733 DP_NOTICE(p_hwfn, true,
1734 "Failed sending LOAD_DONE command\n");
1738 /* send DCBX attention request command */
1739 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
1740 "sending phony dcbx set command to trigger DCBx attention handling\n");
1741 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1742 DRV_MSG_CODE_SET_DCBX,
1743 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1744 &load_code, ¶m);
1745 if (mfw_rc != ECORE_SUCCESS) {
1746 DP_NOTICE(p_hwfn, true,
1747 "Failed to send DCBX attention request\n");
1751 p_hwfn->hw_init_done = true;
1754 return ECORE_SUCCESS;
1757 #define ECORE_HW_STOP_RETRY_LIMIT (10)
1758 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
1759 struct ecore_hwfn *p_hwfn,
1760 struct ecore_ptt *p_ptt)
1765 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1766 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1767 for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
1769 if ((!ecore_rd(p_hwfn, p_ptt,
1770 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1771 (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1774 /* Dependent on number of connection/tasks, possibly
1775 * 1ms sleep is required between polls
1780 if (i < ECORE_HW_STOP_RETRY_LIMIT)
1783 DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
1784 " [Connection %02x Tasks %02x]\n",
1785 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1786 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1789 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
1793 for_each_hwfn(p_dev, j) {
1794 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1795 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1797 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1801 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
1803 enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
1806 for_each_hwfn(p_dev, j) {
1807 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1808 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1810 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
1813 ecore_vf_pf_int_cleanup(p_hwfn);
1817 /* mark the hw as uninitialized... */
1818 p_hwfn->hw_init_done = false;
1820 rc = ecore_sp_pf_stop(p_hwfn);
1822 DP_NOTICE(p_hwfn, true,
1823 "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1825 /* perform debug action after PF stop was sent */
1826 OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
1828 /* close NIG to BRB gate */
1829 ecore_wr(p_hwfn, p_ptt,
1830 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1833 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1834 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1835 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1836 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1837 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1839 /* @@@TBD - clean transmission queues (5.b) */
1840 /* @@@TBD - clean BTB (5.c) */
1842 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1844 /* @@@TBD - verify DMAE requests are done (8) */
1846 /* Disable Attention Generation */
1847 ecore_int_igu_disable_int(p_hwfn, p_ptt);
1848 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1849 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1850 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1851 /* Need to wait 1ms to guarantee SBs are cleared */
1856 /* Disable DMAE in PXP - in CMT, this should only be done for
1857 * first hw-function, and only after all transactions have
1858 * stopped for all active hw-functions.
1860 t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
1861 p_dev->hwfns[0].p_main_ptt, false);
1862 if (t_rc != ECORE_SUCCESS)
1869 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
1873 for_each_hwfn(p_dev, j) {
1874 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1875 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1878 ecore_vf_pf_int_cleanup(p_hwfn);
1882 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1883 "Shutting down the fastpath\n");
1885 ecore_wr(p_hwfn, p_ptt,
1886 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1888 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1889 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1890 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1891 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1892 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1894 /* @@@TBD - clean transmission queues (5.b) */
1895 /* @@@TBD - clean BTB (5.c) */
1897 /* @@@TBD - verify DMAE requests are done (8) */
1899 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1900 /* Need to wait 1ms to guarantee SBs are cleared */
1905 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
1907 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1909 if (IS_VF(p_hwfn->p_dev))
1912 /* If roce info is allocated it means roce is initialized and should
1913 * be enabled in searcher.
1915 if (p_hwfn->p_rdma_info) {
1916 if (p_hwfn->b_rdma_enabled_in_prs)
1917 ecore_wr(p_hwfn, p_ptt,
1918 p_hwfn->rdma_prs_search_reg, 0x1);
1919 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
1922 /* Re-open incoming traffic */
1923 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
1924 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1927 static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
1928 struct ecore_ptt *p_ptt, u32 reg,
1931 u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
1933 if (assert_val != expected) {
1934 DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
1936 return ECORE_UNKNOWN_ERROR;
1942 enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
1944 enum _ecore_status_t rc = ECORE_SUCCESS;
1945 u32 unload_resp, unload_param;
1948 for_each_hwfn(p_dev, i) {
1949 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1952 rc = ecore_vf_pf_reset(p_hwfn);
1958 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
1960 /* Check for incorrect states */
1961 if (!p_dev->recov_in_prog) {
1962 ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1963 QM_REG_USG_CNT_PF_TX, 0);
1964 ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1965 QM_REG_USG_CNT_PF_OTHER, 0);
1966 /* @@@TBD - assert on incorrect xCFC values (10.b) */
1969 /* Disable PF in HW blocks */
1970 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1971 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1973 if (p_dev->recov_in_prog) {
1974 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1975 "Recovery is in progress -> skip sending unload_req/done\n");
1979 /* Send unload command to MCP */
1980 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1981 DRV_MSG_CODE_UNLOAD_REQ,
1982 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1983 &unload_resp, &unload_param);
1984 if (rc != ECORE_SUCCESS) {
1985 DP_NOTICE(p_hwfn, true,
1986 "ecore_hw_reset: UNLOAD_REQ failed\n");
1987 /* @@TBD - what to do? for now, assume ENG. */
1988 unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1991 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1992 DRV_MSG_CODE_UNLOAD_DONE,
1993 0, &unload_resp, &unload_param);
1994 if (rc != ECORE_SUCCESS) {
1996 true, "ecore_hw_reset: UNLOAD_DONE failed\n");
1997 /* @@@TBD - Should it really ASSERT here ? */
2005 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2006 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2008 ecore_ptt_pool_free(p_hwfn);
2009 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2012 /* Setup bar access */
2013 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2015 /* clear indirect access */
2016 if (ECORE_IS_AH(p_hwfn->p_dev)) {
2017 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2018 PGLUE_B_REG_PGL_ADDR_E8_F0, 0);
2019 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2020 PGLUE_B_REG_PGL_ADDR_EC_F0, 0);
2021 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2022 PGLUE_B_REG_PGL_ADDR_F0_F0, 0);
2023 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2024 PGLUE_B_REG_PGL_ADDR_F4_F0, 0);
2026 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2027 PGLUE_B_REG_PGL_ADDR_88_F0, 0);
2028 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2029 PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
2030 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2031 PGLUE_B_REG_PGL_ADDR_90_F0, 0);
2032 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2033 PGLUE_B_REG_PGL_ADDR_94_F0, 0);
2036 /* Clean Previous errors if such exist */
2037 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2038 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2040 /* enable internal target-read */
2041 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2042 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2045 static void get_function_id(struct ecore_hwfn *p_hwfn)
2048 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2049 PXP_PF_ME_OPAQUE_ADDR);
2051 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2053 /* Bits 16-19 from the ME registers are the pf_num */
2054 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2055 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2056 PXP_CONCRETE_FID_PFID);
2057 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2058 PXP_CONCRETE_FID_PORT);
2060 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2061 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2062 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2065 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2067 u32 *feat_num = p_hwfn->hw_info.feat_num;
2068 int num_features = 1;
2070 /* L2 Queues require each: 1 status block. 1 L2 queue */
2071 feat_num[ECORE_PF_L2_QUE] =
2073 RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2074 RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2076 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2077 "#PF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
2078 feat_num[ECORE_PF_L2_QUE],
2079 feat_num[ECORE_RDMA_CNQ],
2080 RESC_NUM(p_hwfn, ECORE_SB), num_features);
2083 static enum resource_id_enum
2084 ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
2086 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2090 mfw_res_id = RESOURCE_NUM_SB_E;
2092 case ECORE_L2_QUEUE:
2093 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2096 mfw_res_id = RESOURCE_NUM_VPORT_E;
2099 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2102 mfw_res_id = RESOURCE_NUM_PQ_E;
2105 mfw_res_id = RESOURCE_NUM_RL_E;
2109 /* Each VFC resource can accommodate both a MAC and a VLAN */
2110 mfw_res_id = RESOURCE_VFC_FILTER_E;
2113 mfw_res_id = RESOURCE_ILT_E;
2115 case ECORE_LL2_QUEUE:
2116 mfw_res_id = RESOURCE_LL2_QUEUE_E;
2118 case ECORE_RDMA_CNQ_RAM:
2119 case ECORE_CMDQS_CQS:
2120 /* CNQ/CMDQS are the same resource */
2121 mfw_res_id = RESOURCE_CQS_E;
2123 case ECORE_RDMA_STATS_QUEUE:
2124 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2133 static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
2134 enum ecore_resources res_id)
2136 u8 num_funcs = p_hwfn->num_funcs_on_engine;
2137 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2138 struct ecore_sb_cnt_info sb_cnt_info;
2139 u32 dflt_resc_num = 0;
2143 OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2144 ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2145 dflt_resc_num = sb_cnt_info.sb_cnt;
2147 case ECORE_L2_QUEUE:
2148 dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2149 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2152 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2153 MAX_NUM_VPORTS_BB) / num_funcs;
2156 dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2157 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2160 dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2161 MAX_QM_TX_QUEUES_BB) / num_funcs;
2164 dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2168 /* Each VFC resource can accommodate both a MAC and a VLAN */
2169 dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2172 dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2173 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2175 case ECORE_LL2_QUEUE:
2176 dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2178 case ECORE_RDMA_CNQ_RAM:
2179 case ECORE_CMDQS_CQS:
2180 /* CNQ/CMDQS are the same resource */
2182 dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2184 case ECORE_RDMA_STATS_QUEUE:
2186 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2187 MAX_NUM_VPORTS_BB) / num_funcs;
2193 return dflt_resc_num;
2196 static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2201 case ECORE_L2_QUEUE:
2215 case ECORE_RDMA_CNQ_RAM:
2216 return "RDMA_CNQ_RAM";
2219 case ECORE_LL2_QUEUE:
2221 case ECORE_CMDQS_CQS:
2223 case ECORE_RDMA_STATS_QUEUE:
2224 return "RDMA_STATS_QUEUE";
2226 return "UNKNOWN_RESOURCE";
2230 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2231 enum ecore_resources res_id,
2232 bool drv_resc_alloc)
2234 u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
2235 u32 *p_resc_num, *p_resc_start;
2236 struct resource_info resc_info;
2237 enum _ecore_status_t rc;
2239 p_resc_num = &RESC_NUM(p_hwfn, res_id);
2240 p_resc_start = &RESC_START(p_hwfn, res_id);
2242 dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
2243 if (!dflt_resc_num) {
2245 "Failed to get default amount for resource %d [%s]\n",
2246 res_id, ecore_hw_get_resc_name(res_id));
2249 dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
2252 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2253 *p_resc_num = dflt_resc_num;
2254 *p_resc_start = dflt_resc_start;
2259 OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
2260 resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
2261 if (resc_info.res_id == RESOURCE_NUM_INVALID) {
2263 "Failed to match resource %d with MFW resources\n",
2268 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
2269 &mcp_resp, &mcp_param);
2270 if (rc != ECORE_SUCCESS) {
2271 DP_NOTICE(p_hwfn, true,
2272 "MFW response failure for an allocation request for"
2273 " resource %d [%s]\n",
2274 res_id, ecore_hw_get_resc_name(res_id));
2278 /* Default driver values are applied in the following cases:
2279 * - The resource allocation MB command is not supported by the MFW
2280 * - There is an internal error in the MFW while processing the request
2281 * - The resource ID is unknown to the MFW
2283 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
2284 mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
2287 "Resource %d [%s]: No allocation info was received"
2288 " [mcp_resp 0x%x]. Applying default values"
2289 " [num %d, start %d].\n",
2290 res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
2291 dflt_resc_num, dflt_resc_start);
2293 *p_resc_num = dflt_resc_num;
2294 *p_resc_start = dflt_resc_start;
2298 /* TBD - remove this when revising the handling of the SB resource */
2299 if (res_id == ECORE_SB) {
2300 /* Excluding the slowpath SB */
2301 resc_info.size -= 1;
2302 resc_info.offset -= p_hwfn->enabled_func_idx;
2305 *p_resc_num = resc_info.size;
2306 *p_resc_start = resc_info.offset;
2308 if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2309 DP_NOTICE(p_hwfn, false,
2310 "Resource %d [%s]: MFW allocation [num %d, start %d]"
2311 " differs from default values [num %d, start %d]%s\n",
2312 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
2313 *p_resc_start, dflt_resc_num, dflt_resc_start,
2314 drv_resc_alloc ? " - Applying default values" : "");
2315 if (drv_resc_alloc) {
2316 *p_resc_num = dflt_resc_num;
2317 *p_resc_start = dflt_resc_start;
2321 return ECORE_SUCCESS;
2324 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2325 bool drv_resc_alloc)
2327 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2328 enum _ecore_status_t rc;
2331 u32 *resc_start = p_hwfn->hw_info.resc_start;
2332 u32 *resc_num = p_hwfn->hw_info.resc_num;
2333 /* For AH, an equal share of the ILT lines between the maximal number of
2334 * PFs is not enough for RoCE. This would be solved by the future
2335 * resource allocation scheme, but isn't currently present for
2336 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2337 * to work - the BB number of ILT lines divided by its max PFs number.
2339 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2342 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2344 * Force the driver's default resource allocation in case there
2345 * is a diff with the MFW allocation value.
2347 rc = ecore_hw_set_resc_info(p_hwfn, res_id,
2348 b_ah || drv_resc_alloc);
2349 if (rc != ECORE_SUCCESS)
2354 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2355 /* Reduced build contains less PQs */
2356 if (!(p_hwfn->p_dev->b_is_emul_full)) {
2357 resc_num[ECORE_PQ] = 32;
2358 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2359 p_hwfn->enabled_func_idx;
2362 /* For AH emulation, since we have a possible maximal number of
2363 * 16 enabled PFs, in case there are not enough ILT lines -
2364 * allocate only first PF as RoCE and have all the other ETH
2365 * only with less ILT lines.
2367 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2368 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2369 resc_num[ECORE_ILT],
2370 roce_min_ilt_lines);
2373 /* Correct the common ILT calculation if PF0 has more */
2374 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2375 p_hwfn->p_dev->b_is_emul_full &&
2376 p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2377 resc_start[ECORE_ILT] += roce_min_ilt_lines -
2378 resc_num[ECORE_ILT];
2381 /* Sanity for ILT */
2382 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2383 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2384 DP_NOTICE(p_hwfn, true,
2385 "Can't assign ILT pages [%08x,...,%08x]\n",
2386 RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2392 ecore_hw_set_feat(p_hwfn);
2394 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2395 "The numbers for each resource are:\n");
2396 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2397 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2398 ecore_hw_get_resc_name(res_id),
2399 RESC_NUM(p_hwfn, res_id),
2400 RESC_START(p_hwfn, res_id));
2402 return ECORE_SUCCESS;
2405 static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2406 struct ecore_ptt *p_ptt)
2408 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
2409 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2410 struct ecore_mcp_link_params *link;
2412 /* Read global nvm_cfg address */
2413 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2415 /* Verify MCP has initialized it */
2416 if (!nvm_cfg_addr) {
2417 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2421 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
2423 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2425 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2426 OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2429 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2431 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2432 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2433 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2434 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2436 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2437 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2439 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2440 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2442 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2443 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2445 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2446 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2448 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2449 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2451 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2452 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2454 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2455 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2457 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2458 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
2460 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2461 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2463 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2464 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2467 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2472 /* Read DCBX configuration */
2473 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2474 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2475 dcbx_mode = ecore_rd(p_hwfn, p_ptt,
2477 OFFSETOF(struct nvm_cfg1_port, generic_cont0));
2478 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
2479 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
2480 switch (dcbx_mode) {
2481 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
2482 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
2484 case NVM_CFG1_PORT_DCBX_MODE_CEE:
2485 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
2487 case NVM_CFG1_PORT_DCBX_MODE_IEEE:
2488 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
2491 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
2494 /* Read default link configuration */
2495 link = &p_hwfn->mcp_info->link_input;
2496 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2497 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2498 link_temp = ecore_rd(p_hwfn, p_ptt,
2500 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2501 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2502 link->speed.advertised_speeds = link_temp;
2504 link_temp = link->speed.advertised_speeds;
2505 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2507 link_temp = ecore_rd(p_hwfn, p_ptt,
2509 OFFSETOF(struct nvm_cfg1_port, link_settings));
2510 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2511 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2512 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2513 link->speed.autoneg = true;
2515 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2516 link->speed.forced_speed = 1000;
2518 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2519 link->speed.forced_speed = 10000;
2521 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2522 link->speed.forced_speed = 25000;
2524 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2525 link->speed.forced_speed = 40000;
2527 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2528 link->speed.forced_speed = 50000;
2530 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2531 link->speed.forced_speed = 100000;
2534 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2537 p_hwfn->mcp_info->link_capabilities.default_speed =
2538 link->speed.forced_speed;
2539 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2540 link->speed.autoneg;
2542 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2543 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2544 link->pause.autoneg = !!(link_temp &
2545 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2546 link->pause.forced_rx = !!(link_temp &
2547 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2548 link->pause.forced_tx = !!(link_temp &
2549 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2550 link->loopback_mode = 0;
2552 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2553 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2554 link->speed.forced_speed, link->speed.advertised_speeds,
2555 link->speed.autoneg, link->pause.autoneg);
2557 /* Read Multi-function information from shmem */
2558 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2559 OFFSETOF(struct nvm_cfg1, glob) +
2560 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
2562 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
2564 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2565 NVM_CFG1_GLOB_MF_MODE_OFFSET;
2568 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2569 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
2571 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2572 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
2574 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2575 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
2578 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2579 p_hwfn->p_dev->mf_mode);
2581 /* Read Multi-function information from shmem */
2582 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2583 OFFSETOF(struct nvm_cfg1, glob) +
2584 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
2586 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
2587 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2588 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
2589 &p_hwfn->hw_info.device_capabilities);
2590 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2591 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
2592 &p_hwfn->hw_info.device_capabilities);
2593 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2594 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
2595 &p_hwfn->hw_info.device_capabilities);
2596 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2597 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
2598 &p_hwfn->hw_info.device_capabilities);
2599 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
2600 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
2601 &p_hwfn->hw_info.device_capabilities);
2603 return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2606 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
2607 struct ecore_ptt *p_ptt)
2609 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2610 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2611 struct ecore_dev *p_dev = p_hwfn->p_dev;
2613 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2615 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2616 * in the other bits are selected.
2617 * Bits 1-15 are for functions 1-15, respectively, and their value is
2618 * '0' only for enabled functions (function 0 always exists and
2620 * In case of CMT in BB, only the "even" functions are enabled, and thus
2621 * the number of functions for both hwfns is learnt from the same bits.
2623 reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2625 if (reg_function_hide & 0x1) {
2626 if (ECORE_IS_BB(p_dev)) {
2627 if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
2639 /* Get the number of the enabled functions on the engine */
2640 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2647 /* Get the PF index within the enabled functions */
2648 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2649 tmp = reg_function_hide & eng_mask & low_pfs_mask;
2657 p_hwfn->num_funcs_on_engine = num_funcs;
2658 p_hwfn->enabled_func_idx = enabled_func_idx;
2661 if (CHIP_REV_IS_FPGA(p_dev)) {
2662 DP_NOTICE(p_hwfn, false,
2663 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
2664 p_hwfn->num_funcs_on_engine = 4;
2668 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2669 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2670 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
2671 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2674 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
2675 struct ecore_ptt *p_ptt)
2680 /* Read the port mode */
2681 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
2683 else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
2684 (p_hwfn->p_dev->num_hwfns > 1))
2685 /* In CMT on emulation, assume 1 port */
2689 port_mode = ecore_rd(p_hwfn, p_ptt,
2690 CNIG_REG_NW_PORT_MODE_BB_B0);
2692 if (port_mode < 3) {
2693 p_hwfn->p_dev->num_ports_in_engines = 1;
2694 } else if (port_mode <= 5) {
2695 p_hwfn->p_dev->num_ports_in_engines = 2;
2697 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
2698 p_hwfn->p_dev->num_ports_in_engines);
2700 /* Default num_ports_in_engines to something */
2701 p_hwfn->p_dev->num_ports_in_engines = 1;
2705 static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
2706 struct ecore_ptt *p_ptt)
2711 p_hwfn->p_dev->num_ports_in_engines = 0;
2714 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2715 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
2716 switch ((port & 0xf000) >> 12) {
2718 p_hwfn->p_dev->num_ports_in_engines = 1;
2721 p_hwfn->p_dev->num_ports_in_engines = 2;
2724 p_hwfn->p_dev->num_ports_in_engines = 4;
2727 DP_NOTICE(p_hwfn, false,
2728 "Unknown port mode in ECO_RESERVED %08x\n",
2733 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2734 port = ecore_rd(p_hwfn, p_ptt,
2735 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2737 p_hwfn->p_dev->num_ports_in_engines++;
2741 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
2742 struct ecore_ptt *p_ptt)
2744 if (ECORE_IS_BB(p_hwfn->p_dev))
2745 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
2747 ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
2750 static enum _ecore_status_t
2751 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2752 enum ecore_pci_personality personality, bool drv_resc_alloc)
2754 enum _ecore_status_t rc;
2756 /* Since all information is common, only first hwfns should do this */
2757 if (IS_LEAD_HWFN(p_hwfn)) {
2758 rc = ecore_iov_hw_info(p_hwfn);
2759 if (rc != ECORE_SUCCESS)
2763 /* TODO In get_hw_info, amoungst others:
2764 * Get MCP FW revision and determine according to it the supported
2765 * featrues (e.g. DCB)
2767 * ecore_get_pcie_width_speed, WOL capability.
2768 * Number of global CQ-s (for storage
2770 ecore_hw_info_port_num(p_hwfn, p_ptt);
2773 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
2775 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt);
2776 if (rc != ECORE_SUCCESS)
2782 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
2783 if (rc != ECORE_SUCCESS)
2787 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
2789 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
2790 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
2793 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
2795 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
2796 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
2800 if (ecore_mcp_is_init(p_hwfn)) {
2801 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
2802 p_hwfn->hw_info.ovlan =
2803 p_hwfn->mcp_info->func_info.ovlan;
2805 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
2808 if (personality != ECORE_PCI_DEFAULT) {
2809 p_hwfn->hw_info.personality = personality;
2810 } else if (ecore_mcp_is_init(p_hwfn)) {
2811 enum ecore_pci_personality protocol;
2813 protocol = p_hwfn->mcp_info->func_info.protocol;
2814 p_hwfn->hw_info.personality = protocol;
2818 /* To overcome ILT lack for emulation, until at least until we'll have
2819 * a definite answer from system about it, allow only PF0 to be RoCE.
2821 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
2822 if (!p_hwfn->rel_pf_id)
2823 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2825 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2829 /* although in BB some constellations may support more than 4 tcs,
2830 * that can result in performance penalty in some cases. 4
2831 * represents a good tradeoff between performance and flexibility.
2833 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2835 /* start out with a single active tc. This can be increased either
2836 * by dcbx negotiation or by upper layer driver
2838 p_hwfn->hw_info.num_active_tc = 1;
2840 ecore_get_num_funcs(p_hwfn, p_ptt);
2842 /* In case of forcing the driver's default resource allocation, calling
2843 * ecore_hw_get_resc() should come after initializing the personality
2844 * and after getting the number of functions, since the calculation of
2845 * the resources/features depends on them.
2846 * This order is not harmful if not forcing.
2848 return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
2851 #define ECORE_DEV_ID_MASK 0xff00
2852 #define ECORE_DEV_ID_MASK_BB 0x1600
2853 #define ECORE_DEV_ID_MASK_AH 0x8000
2855 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
2857 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2860 /* Read Vendor Id / Device Id */
2861 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
2863 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
2866 /* Determine type */
2867 if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
2868 p_dev->type = ECORE_DEV_TYPE_AH;
2870 p_dev->type = ECORE_DEV_TYPE_BB;
2872 p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2873 MISCS_REG_CHIP_NUM);
2874 p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2875 MISCS_REG_CHIP_REV);
2877 MASK_FIELD(CHIP_REV, p_dev->chip_rev);
2879 /* Learn number of HW-functions */
2880 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2881 MISCS_REG_CMT_ENABLED_FOR_PAIR);
2883 if (tmp & (1 << p_hwfn->rel_pf_id)) {
2884 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
2885 p_dev->num_hwfns = 2;
2887 p_dev->num_hwfns = 1;
2891 if (CHIP_REV_IS_EMUL(p_dev)) {
2892 /* For some reason we have problems with this register
2893 * in B0 emulation; Simply assume no CMT
2895 DP_NOTICE(p_dev->hwfns, false,
2896 "device on emul - assume no CMT\n");
2897 p_dev->num_hwfns = 1;
2901 p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2902 MISCS_REG_CHIP_TEST_REG) >> 4;
2903 MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
2904 p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2905 MISCS_REG_CHIP_METAL);
2906 MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
2907 DP_INFO(p_dev->hwfns,
2908 "Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2909 ECORE_IS_BB(p_dev) ? "BB" : "AH",
2910 CHIP_REV_IS_A0(p_dev) ? 0 : 1,
2911 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
2914 if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
2915 DP_NOTICE(p_dev->hwfns, false,
2916 "The chip type/rev (BB A0) is not supported!\n");
2917 return ECORE_ABORTED;
2920 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
2921 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2922 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
2924 if (CHIP_REV_IS_EMUL(p_dev)) {
2925 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2926 MISCS_REG_ECO_RESERVED);
2927 if (tmp & (1 << 29)) {
2928 DP_NOTICE(p_hwfn, false,
2929 "Emulation: Running on a FULL build\n");
2930 p_dev->b_is_emul_full = true;
2932 DP_NOTICE(p_hwfn, false,
2933 "Emulation: Running on a REDUCED build\n");
2938 return ECORE_SUCCESS;
2941 #ifndef LINUX_REMOVE
2942 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
2949 for_each_hwfn(p_dev, j) {
2950 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2952 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2953 "Mark hw/fw uninitialized\n");
2955 p_hwfn->hw_init_done = false;
2956 p_hwfn->first_on_engine = false;
2958 ecore_ptt_invalidate(p_hwfn);
2963 static enum _ecore_status_t
2964 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
2965 void OSAL_IOMEM * p_regview,
2966 void OSAL_IOMEM * p_doorbells,
2967 struct ecore_hw_prepare_params *p_params)
2969 struct ecore_dev *p_dev = p_hwfn->p_dev;
2970 struct ecore_mdump_info mdump_info;
2971 enum _ecore_status_t rc = ECORE_SUCCESS;
2973 /* Split PCI bars evenly between hwfns */
2974 p_hwfn->regview = p_regview;
2975 p_hwfn->doorbells = p_doorbells;
2978 return ecore_vf_hw_prepare(p_hwfn);
2980 /* Validate that chip access is feasible */
2981 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2983 "Reading the ME register returns all Fs; Preventing further chip access\n");
2987 get_function_id(p_hwfn);
2989 /* Allocate PTT pool */
2990 rc = ecore_ptt_pool_alloc(p_hwfn);
2992 DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
2996 /* Allocate the main PTT */
2997 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2999 /* First hwfn learns basic information, e.g., number of hwfns */
3000 if (!p_hwfn->my_id) {
3001 rc = ecore_get_dev_info(p_dev);
3002 if (rc != ECORE_SUCCESS)
3006 ecore_hw_hwfn_prepare(p_hwfn);
3008 /* Initialize MCP structure */
3009 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3011 DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3015 /* Read the device configuration information from the HW and SHMEM */
3016 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3017 p_params->personality, p_params->drv_resc_alloc);
3019 DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3023 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3024 * called, since among others it sets the ports number in an engine.
3026 if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
3027 !p_dev->recov_in_prog) {
3028 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3029 if (rc != ECORE_SUCCESS)
3030 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3033 /* Check if mdump logs are present and update the epoch value */
3034 if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
3035 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
3037 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
3038 DP_NOTICE(p_hwfn, false,
3039 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
3042 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
3046 /* Allocate the init RT array and initialize the init-ops engine */
3047 rc = ecore_init_alloc(p_hwfn);
3049 DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3053 if (CHIP_REV_IS_FPGA(p_dev)) {
3054 DP_NOTICE(p_hwfn, false,
3055 "FPGA: workaround; Prevent DMAE parities\n");
3056 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
3058 DP_NOTICE(p_hwfn, false,
3059 "FPGA: workaround: Set VF bar0 size\n");
3060 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3061 PGLUE_B_REG_VF_BAR0_SIZE, 4);
3067 if (IS_LEAD_HWFN(p_hwfn))
3068 ecore_iov_free_hw_info(p_dev);
3069 ecore_mcp_free(p_hwfn);
3071 ecore_hw_hwfn_free(p_hwfn);
3076 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3077 struct ecore_hw_prepare_params *p_params)
3079 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3080 enum _ecore_status_t rc;
3082 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3084 /* Store the precompiled init data ptrs */
3086 ecore_init_iro_array(p_dev);
3088 /* Initialize the first hwfn - will learn number of hwfns */
3089 rc = ecore_hw_prepare_single(p_hwfn,
3091 p_dev->doorbells, p_params);
3092 if (rc != ECORE_SUCCESS)
3095 p_params->personality = p_hwfn->hw_info.personality;
3097 /* initilalize 2nd hwfn if necessary */
3098 if (p_dev->num_hwfns > 1) {
3099 void OSAL_IOMEM *p_regview, *p_doorbell;
3100 u8 OSAL_IOMEM *addr;
3102 /* adjust bar offset for second engine */
3103 addr = (u8 OSAL_IOMEM *)p_dev->regview +
3104 ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3105 p_regview = (void OSAL_IOMEM *)addr;
3107 addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3108 ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3109 p_doorbell = (void OSAL_IOMEM *)addr;
3111 /* prepare second hw function */
3112 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3113 p_doorbell, p_params);
3115 /* in case of error, need to free the previously
3116 * initiliazed hwfn 0.
3118 if (rc != ECORE_SUCCESS) {
3120 ecore_init_free(p_hwfn);
3121 ecore_mcp_free(p_hwfn);
3122 ecore_hw_hwfn_free(p_hwfn);
3124 DP_NOTICE(p_dev, true,
3125 "What do we need to free when VF hwfn1 init fails\n");
3134 void ecore_hw_remove(struct ecore_dev *p_dev)
3138 for_each_hwfn(p_dev, i) {
3139 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3142 ecore_vf_pf_release(p_hwfn);
3146 ecore_init_free(p_hwfn);
3147 ecore_hw_hwfn_free(p_hwfn);
3148 ecore_mcp_free(p_hwfn);
3150 OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3153 ecore_iov_free_hw_info(p_dev);
3156 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3157 struct ecore_chain *p_chain)
3159 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3160 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3161 struct ecore_chain_next *p_next;
3167 size = p_chain->elem_size * p_chain->usable_per_page;
3169 for (i = 0; i < p_chain->page_cnt; i++) {
3173 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3174 p_virt_next = p_next->next_virt;
3175 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3177 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3178 ECORE_CHAIN_PAGE_SIZE);
3180 p_virt = p_virt_next;
3181 p_phys = p_phys_next;
3185 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3186 struct ecore_chain *p_chain)
3188 if (!p_chain->p_virt_addr)
3191 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3192 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3195 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3196 struct ecore_chain *p_chain)
3198 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3199 u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
3200 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3202 if (!pp_virt_addr_tbl)
3205 if (!p_chain->pbl.p_virt_table)
3208 for (i = 0; i < page_cnt; i++) {
3209 if (!pp_virt_addr_tbl[i])
3212 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3213 *(dma_addr_t *)p_pbl_virt,
3214 ECORE_CHAIN_PAGE_SIZE);
3216 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3219 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3221 if (!p_chain->pbl.external)
3222 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
3223 p_chain->pbl.p_phys_table, pbl_size);
3225 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3228 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3230 switch (p_chain->mode) {
3231 case ECORE_CHAIN_MODE_NEXT_PTR:
3232 ecore_chain_free_next_ptr(p_dev, p_chain);
3234 case ECORE_CHAIN_MODE_SINGLE:
3235 ecore_chain_free_single(p_dev, p_chain);
3237 case ECORE_CHAIN_MODE_PBL:
3238 ecore_chain_free_pbl(p_dev, p_chain);
3243 static enum _ecore_status_t
3244 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3245 enum ecore_chain_cnt_type cnt_type,
3246 osal_size_t elem_size, u32 page_cnt)
3248 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3250 /* The actual chain size can be larger than the maximal possible value
3251 * after rounding up the requested elements number to pages, and after
3252 * taking into acount the unusuable elements (next-ptr elements).
3253 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3254 * size/capacity fields are of a u32 type.
3256 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3257 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3258 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3259 chain_size > ECORE_U32_MAX)) {
3260 DP_NOTICE(p_dev, true,
3261 "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3262 (unsigned long)chain_size);
3266 return ECORE_SUCCESS;
3269 static enum _ecore_status_t
3270 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3272 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3273 dma_addr_t p_phys = 0;
3276 for (i = 0; i < p_chain->page_cnt; i++) {
3277 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3278 ECORE_CHAIN_PAGE_SIZE);
3280 DP_NOTICE(p_dev, true,
3281 "Failed to allocate chain memory\n");
3286 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3287 ecore_chain_reset(p_chain);
3289 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3293 p_virt_prev = p_virt;
3295 /* Last page's next element should point to the beginning of the
3298 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3299 p_chain->p_virt_addr,
3300 p_chain->p_phys_addr);
3302 return ECORE_SUCCESS;
3305 static enum _ecore_status_t
3306 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3308 dma_addr_t p_phys = 0;
3309 void *p_virt = OSAL_NULL;
3311 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3313 DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3317 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3318 ecore_chain_reset(p_chain);
3320 return ECORE_SUCCESS;
3323 static enum _ecore_status_t
3324 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3325 struct ecore_chain *p_chain,
3326 struct ecore_chain_ext_pbl *ext_pbl)
3328 void *p_virt = OSAL_NULL;
3329 u8 *p_pbl_virt = OSAL_NULL;
3330 void **pp_virt_addr_tbl = OSAL_NULL;
3331 dma_addr_t p_phys = 0, p_pbl_phys = 0;
3332 u32 page_cnt = p_chain->page_cnt, size, i;
3334 size = page_cnt * sizeof(*pp_virt_addr_tbl);
3335 pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
3336 if (!pp_virt_addr_tbl) {
3337 DP_NOTICE(p_dev, true,
3338 "Failed to allocate memory for the chain virtual addresses table\n");
3341 OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
3343 /* The allocation of the PBL table is done with its full size, since it
3344 * is expected to be successive.
3345 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3346 * failure, since pp_virt_addr_tbl was previously allocated, and it
3347 * should be saved to allow its freeing during the error flow.
3349 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3351 if (ext_pbl == OSAL_NULL) {
3352 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3354 p_pbl_virt = ext_pbl->p_pbl_virt;
3355 p_pbl_phys = ext_pbl->p_pbl_phys;
3356 p_chain->pbl.external = true;
3359 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3362 DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3366 for (i = 0; i < page_cnt; i++) {
3367 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3368 ECORE_CHAIN_PAGE_SIZE);
3370 DP_NOTICE(p_dev, true,
3371 "Failed to allocate chain memory\n");
3376 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3377 ecore_chain_reset(p_chain);
3380 /* Fill the PBL table with the physical address of the page */
3381 *(dma_addr_t *)p_pbl_virt = p_phys;
3382 /* Keep the virtual address of the page */
3383 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3385 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3388 return ECORE_SUCCESS;
3391 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3392 enum ecore_chain_use_mode intended_use,
3393 enum ecore_chain_mode mode,
3394 enum ecore_chain_cnt_type cnt_type,
3395 u32 num_elems, osal_size_t elem_size,
3396 struct ecore_chain *p_chain,
3397 struct ecore_chain_ext_pbl *ext_pbl)
3400 enum _ecore_status_t rc = ECORE_SUCCESS;
3402 if (mode == ECORE_CHAIN_MODE_SINGLE)
3405 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3407 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3410 DP_NOTICE(p_dev, true,
3411 "Cannot allocate a chain with the given arguments:\n"
3412 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3413 intended_use, mode, cnt_type, num_elems, elem_size);
3417 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3418 mode, cnt_type, p_dev->dp_ctx);
3421 case ECORE_CHAIN_MODE_NEXT_PTR:
3422 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3424 case ECORE_CHAIN_MODE_SINGLE:
3425 rc = ecore_chain_alloc_single(p_dev, p_chain);
3427 case ECORE_CHAIN_MODE_PBL:
3428 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
3434 return ECORE_SUCCESS;
3437 ecore_chain_free(p_dev, p_chain);
3441 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3442 u16 src_id, u16 *dst_id)
3444 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3447 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3448 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3449 DP_NOTICE(p_hwfn, true,
3450 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3456 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3458 return ECORE_SUCCESS;
3461 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3462 u8 src_id, u8 *dst_id)
3464 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3467 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3468 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3469 DP_NOTICE(p_hwfn, true,
3470 "vport id [%d] is not valid, available indices [%d - %d]\n",
3476 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3478 return ECORE_SUCCESS;
3481 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3482 u8 src_id, u8 *dst_id)
3484 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3487 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3488 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3489 DP_NOTICE(p_hwfn, true,
3490 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3496 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3498 return ECORE_SUCCESS;
3501 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3502 struct ecore_ptt *p_ptt,
3508 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3509 return ECORE_SUCCESS;
3511 high = p_filter[1] | (p_filter[0] << 8);
3512 low = p_filter[5] | (p_filter[4] << 8) |
3513 (p_filter[3] << 16) | (p_filter[2] << 24);
3515 /* Find a free entry and utilize it */
3516 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3517 en = ecore_rd(p_hwfn, p_ptt,
3518 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3521 ecore_wr(p_hwfn, p_ptt,
3522 NIG_REG_LLH_FUNC_FILTER_VALUE +
3523 2 * i * sizeof(u32), low);
3524 ecore_wr(p_hwfn, p_ptt,
3525 NIG_REG_LLH_FUNC_FILTER_VALUE +
3526 (2 * i + 1) * sizeof(u32), high);
3527 ecore_wr(p_hwfn, p_ptt,
3528 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3529 ecore_wr(p_hwfn, p_ptt,
3530 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3531 i * sizeof(u32), 0);
3532 ecore_wr(p_hwfn, p_ptt,
3533 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3536 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3537 DP_NOTICE(p_hwfn, false,
3538 "Failed to find an empty LLH filter to utilize\n");
3542 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3543 "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
3544 p_filter[0], p_filter[1], p_filter[2],
3545 p_filter[3], p_filter[4], p_filter[5], i);
3547 return ECORE_SUCCESS;
3550 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
3551 struct ecore_ptt *p_ptt, u8 *p_filter)
3556 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3559 high = p_filter[1] | (p_filter[0] << 8);
3560 low = p_filter[5] | (p_filter[4] << 8) |
3561 (p_filter[3] << 16) | (p_filter[2] << 24);
3563 /* Find the entry and clean it */
3564 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3565 if (ecore_rd(p_hwfn, p_ptt,
3566 NIG_REG_LLH_FUNC_FILTER_VALUE +
3567 2 * i * sizeof(u32)) != low)
3569 if (ecore_rd(p_hwfn, p_ptt,
3570 NIG_REG_LLH_FUNC_FILTER_VALUE +
3571 (2 * i + 1) * sizeof(u32)) != high)
3574 ecore_wr(p_hwfn, p_ptt,
3575 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3576 ecore_wr(p_hwfn, p_ptt,
3577 NIG_REG_LLH_FUNC_FILTER_VALUE +
3578 2 * i * sizeof(u32), 0);
3579 ecore_wr(p_hwfn, p_ptt,
3580 NIG_REG_LLH_FUNC_FILTER_VALUE +
3581 (2 * i + 1) * sizeof(u32), 0);
3584 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3585 DP_NOTICE(p_hwfn, false,
3586 "Tried to remove a non-configured filter\n");
3589 enum _ecore_status_t
3590 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
3591 struct ecore_ptt *p_ptt,
3592 u16 source_port_or_eth_type,
3594 enum ecore_llh_port_filter_type_t type)
3599 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3600 return ECORE_SUCCESS;
3605 case ECORE_LLH_FILTER_ETHERTYPE:
3606 high = source_port_or_eth_type;
3608 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3609 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3610 low = source_port_or_eth_type << 16;
3612 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3613 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3616 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3617 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3618 low = (source_port_or_eth_type << 16) | dest_port;
3621 DP_NOTICE(p_hwfn, true,
3622 "Non valid LLH protocol filter type %d\n", type);
3625 /* Find a free entry and utilize it */
3626 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3627 en = ecore_rd(p_hwfn, p_ptt,
3628 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3631 ecore_wr(p_hwfn, p_ptt,
3632 NIG_REG_LLH_FUNC_FILTER_VALUE +
3633 2 * i * sizeof(u32), low);
3634 ecore_wr(p_hwfn, p_ptt,
3635 NIG_REG_LLH_FUNC_FILTER_VALUE +
3636 (2 * i + 1) * sizeof(u32), high);
3637 ecore_wr(p_hwfn, p_ptt,
3638 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3639 ecore_wr(p_hwfn, p_ptt,
3640 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3641 i * sizeof(u32), 1 << type);
3642 ecore_wr(p_hwfn, p_ptt,
3643 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3646 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3647 DP_NOTICE(p_hwfn, false,
3648 "Failed to find an empty LLH filter to utilize\n");
3649 return ECORE_NORESOURCES;
3652 case ECORE_LLH_FILTER_ETHERTYPE:
3653 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3654 "ETH type %x is added at %d\n",
3655 source_port_or_eth_type, i);
3657 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3658 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3659 "TCP src port %x is added at %d\n",
3660 source_port_or_eth_type, i);
3662 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3663 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3664 "UDP src port %x is added at %d\n",
3665 source_port_or_eth_type, i);
3667 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3668 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3669 "TCP dst port %x is added at %d\n", dest_port, i);
3671 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3672 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3673 "UDP dst port %x is added at %d\n", dest_port, i);
3675 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3676 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3677 "TCP src/dst ports %x/%x are added at %d\n",
3678 source_port_or_eth_type, dest_port, i);
3680 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3681 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3682 "UDP src/dst ports %x/%x are added at %d\n",
3683 source_port_or_eth_type, dest_port, i);
3686 return ECORE_SUCCESS;
3690 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
3691 struct ecore_ptt *p_ptt,
3692 u16 source_port_or_eth_type,
3694 enum ecore_llh_port_filter_type_t type)
3699 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3705 case ECORE_LLH_FILTER_ETHERTYPE:
3706 high = source_port_or_eth_type;
3708 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3709 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3710 low = source_port_or_eth_type << 16;
3712 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3713 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3716 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3717 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3718 low = (source_port_or_eth_type << 16) | dest_port;
3721 DP_NOTICE(p_hwfn, true,
3722 "Non valid LLH protocol filter type %d\n", type);
3726 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3727 if (!ecore_rd(p_hwfn, p_ptt,
3728 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3730 if (!ecore_rd(p_hwfn, p_ptt,
3731 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3733 if (!(ecore_rd(p_hwfn, p_ptt,
3734 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3735 i * sizeof(u32)) & (1 << type)))
3737 if (ecore_rd(p_hwfn, p_ptt,
3738 NIG_REG_LLH_FUNC_FILTER_VALUE +
3739 2 * i * sizeof(u32)) != low)
3741 if (ecore_rd(p_hwfn, p_ptt,
3742 NIG_REG_LLH_FUNC_FILTER_VALUE +
3743 (2 * i + 1) * sizeof(u32)) != high)
3746 ecore_wr(p_hwfn, p_ptt,
3747 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3748 ecore_wr(p_hwfn, p_ptt,
3749 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3750 ecore_wr(p_hwfn, p_ptt,
3751 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3752 i * sizeof(u32), 0);
3753 ecore_wr(p_hwfn, p_ptt,
3754 NIG_REG_LLH_FUNC_FILTER_VALUE +
3755 2 * i * sizeof(u32), 0);
3756 ecore_wr(p_hwfn, p_ptt,
3757 NIG_REG_LLH_FUNC_FILTER_VALUE +
3758 (2 * i + 1) * sizeof(u32), 0);
3762 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3763 DP_NOTICE(p_hwfn, false,
3764 "Tried to remove a non-configured filter\n");
3767 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
3768 struct ecore_ptt *p_ptt)
3772 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3775 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3776 ecore_wr(p_hwfn, p_ptt,
3777 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3778 ecore_wr(p_hwfn, p_ptt,
3779 NIG_REG_LLH_FUNC_FILTER_VALUE +
3780 2 * i * sizeof(u32), 0);
3781 ecore_wr(p_hwfn, p_ptt,
3782 NIG_REG_LLH_FUNC_FILTER_VALUE +
3783 (2 * i + 1) * sizeof(u32), 0);
3787 enum _ecore_status_t
3788 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
3789 struct ecore_ptt *p_ptt)
3791 if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
3792 ecore_wr(p_hwfn, p_ptt,
3793 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
3794 1 << p_hwfn->abs_pf_id / 2);
3795 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
3796 return ECORE_SUCCESS;
3799 DP_NOTICE(p_hwfn, false,
3800 "This function can't be set as default\n");
3804 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
3805 struct ecore_ptt *p_ptt,
3806 u32 hw_addr, void *p_eth_qzone,
3807 osal_size_t eth_qzone_size,
3810 struct coalescing_timeset *p_coal_timeset;
3812 if (IS_VF(p_hwfn->p_dev)) {
3813 DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
3817 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
3818 DP_NOTICE(p_hwfn, true,
3819 "Coalescing configuration not enabled\n");
3823 p_coal_timeset = p_eth_qzone;
3824 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
3825 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3826 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3827 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3829 return ECORE_SUCCESS;
3832 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
3833 struct ecore_ptt *p_ptt,
3834 u16 coalesce, u8 qid, u16 sb_id)
3836 struct ustorm_eth_queue_zone eth_qzone;
3837 u8 timeset, timer_res;
3840 enum _ecore_status_t rc;
3842 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3843 if (coalesce <= 0x7F) {
3845 } else if (coalesce <= 0xFF) {
3847 } else if (coalesce <= 0x1FF) {
3850 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3853 timeset = (u8)(coalesce >> timer_res);
3855 rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3856 if (rc != ECORE_SUCCESS)
3859 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3860 if (rc != ECORE_SUCCESS)
3863 address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3865 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
3866 sizeof(struct ustorm_eth_queue_zone), timeset);
3867 if (rc != ECORE_SUCCESS)
3870 p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
3875 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
3876 struct ecore_ptt *p_ptt,
3877 u16 coalesce, u8 qid, u16 sb_id)
3879 struct xstorm_eth_queue_zone eth_qzone;
3880 u8 timeset, timer_res;
3883 enum _ecore_status_t rc;
3885 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3886 if (coalesce <= 0x7F) {
3888 } else if (coalesce <= 0xFF) {
3890 } else if (coalesce <= 0x1FF) {
3893 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3897 timeset = (u8)(coalesce >> timer_res);
3899 rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3900 if (rc != ECORE_SUCCESS)
3903 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3904 if (rc != ECORE_SUCCESS)
3907 address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3909 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
3910 sizeof(struct xstorm_eth_queue_zone), timeset);
3911 if (rc != ECORE_SUCCESS)
3914 p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
3919 /* Calculate final WFQ values for all vports and configure it.
3920 * After this configuration each vport must have
3921 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
3923 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3924 struct ecore_ptt *p_ptt,
3927 struct init_qm_vport_params *vport_params;
3930 vport_params = p_hwfn->qm_info.qm_vport_params;
3932 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3933 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3935 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
3937 ecore_init_vport_wfq(p_hwfn, p_ptt,
3938 vport_params[i].first_tx_pq_id,
3939 vport_params[i].vport_wfq);
3944 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
3948 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3949 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3952 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3953 struct ecore_ptt *p_ptt,
3956 struct init_qm_vport_params *vport_params;
3959 vport_params = p_hwfn->qm_info.qm_vport_params;
3961 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3962 ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
3963 ecore_init_vport_wfq(p_hwfn, p_ptt,
3964 vport_params[i].first_tx_pq_id,
3965 vport_params[i].vport_wfq);
3969 /* This function performs several validations for WFQ
3970 * configuration and required min rate for a given vport
3971 * 1. req_rate must be greater than one percent of min_pf_rate.
3972 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3973 * rates to get less than one percent of min_pf_rate.
3974 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3976 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
3977 u16 vport_id, u32 req_rate,
3980 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3981 int non_requested_count = 0, req_count = 0, i, num_vports;
3983 num_vports = p_hwfn->qm_info.num_vports;
3985 /* Accounting for the vports which are configured for WFQ explicitly */
3987 for (i = 0; i < num_vports; i++) {
3990 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
3992 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3993 total_req_min_rate += tmp_speed;
3997 /* Include current vport data as well */
3999 total_req_min_rate += req_rate;
4000 non_requested_count = num_vports - req_count;
4002 /* validate possible error cases */
4003 if (req_rate > min_pf_rate) {
4004 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4005 "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4006 vport_id, req_rate, min_pf_rate);
4010 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
4011 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4012 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4013 vport_id, req_rate, min_pf_rate);
4017 /* TBD - for number of vports greater than 100 */
4018 if (num_vports > ECORE_WFQ_UNIT) {
4019 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4020 "Number of vports is greater than %d\n",
4025 if (total_req_min_rate > min_pf_rate) {
4026 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4027 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4028 total_req_min_rate, min_pf_rate);
4032 /* Data left for non requested vports */
4033 total_left_rate = min_pf_rate - total_req_min_rate;
4034 left_rate_per_vp = total_left_rate / non_requested_count;
4036 /* validate if non requested get < 1% of min bw */
4037 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
4038 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4039 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4040 left_rate_per_vp, min_pf_rate);
4044 /* now req_rate for given vport passes all scenarios.
4045 * assign final wfq rates to all vports.
4047 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4048 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4050 for (i = 0; i < num_vports; i++) {
4051 if (p_hwfn->qm_info.wfq_data[i].configured)
4054 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4057 return ECORE_SUCCESS;
4060 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4061 struct ecore_ptt *p_ptt,
4062 u16 vp_id, u32 rate)
4064 struct ecore_mcp_link_state *p_link;
4065 int rc = ECORE_SUCCESS;
4067 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4069 if (!p_link->min_pf_rate) {
4070 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4071 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4075 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4077 if (rc == ECORE_SUCCESS)
4078 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4079 p_link->min_pf_rate);
4081 DP_NOTICE(p_hwfn, false,
4082 "Validation failed while configuring min rate\n");
4087 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4088 struct ecore_ptt *p_ptt,
4091 bool use_wfq = false;
4092 int rc = ECORE_SUCCESS;
4095 /* Validate all pre configured vports for wfq */
4096 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4099 if (!p_hwfn->qm_info.wfq_data[i].configured)
4102 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4105 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4106 if (rc != ECORE_SUCCESS) {
4107 DP_NOTICE(p_hwfn, false,
4108 "WFQ validation failed while configuring min rate\n");
4113 if (rc == ECORE_SUCCESS && use_wfq)
4114 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4116 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4121 /* Main API for ecore clients to configure vport min rate.
4122 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4123 * rate - Speed in Mbps needs to be assigned to a given vport.
4125 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4127 int i, rc = ECORE_INVAL;
4129 /* TBD - for multiple hardware functions - that is 100 gig */
4130 if (p_dev->num_hwfns > 1) {
4131 DP_NOTICE(p_dev, false,
4132 "WFQ configuration is not supported for this device\n");
4136 for_each_hwfn(p_dev, i) {
4137 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4138 struct ecore_ptt *p_ptt;
4140 p_ptt = ecore_ptt_acquire(p_hwfn);
4142 return ECORE_TIMEOUT;
4144 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4146 if (rc != ECORE_SUCCESS) {
4147 ecore_ptt_release(p_hwfn, p_ptt);
4151 ecore_ptt_release(p_hwfn, p_ptt);
4157 /* API to configure WFQ from mcp link change */
4158 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4163 /* TBD - for multiple hardware functions - that is 100 gig */
4164 if (p_dev->num_hwfns > 1) {
4165 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4166 "WFQ configuration is not supported for this device\n");
4170 for_each_hwfn(p_dev, i) {
4171 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4173 __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4179 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4180 struct ecore_ptt *p_ptt,
4181 struct ecore_mcp_link_state *p_link,
4184 int rc = ECORE_SUCCESS;
4186 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4188 if (!p_link->line_speed && (max_bw != 100))
4191 p_link->speed = (p_link->line_speed * max_bw) / 100;
4192 p_hwfn->qm_info.pf_rl = p_link->speed;
4194 /* Since the limiter also affects Tx-switched traffic, we don't want it
4195 * to limit such traffic in case there's no actual limit.
4196 * In that case, set limit to imaginary high boundary.
4199 p_hwfn->qm_info.pf_rl = 100000;
4201 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4202 p_hwfn->qm_info.pf_rl);
4204 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4205 "Configured MAX bandwidth to be %08x Mb/sec\n",
4211 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4212 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4214 int i, rc = ECORE_INVAL;
4216 if (max_bw < 1 || max_bw > 100) {
4217 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4221 for_each_hwfn(p_dev, i) {
4222 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4223 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4224 struct ecore_mcp_link_state *p_link;
4225 struct ecore_ptt *p_ptt;
4227 p_link = &p_lead->mcp_info->link_output;
4229 p_ptt = ecore_ptt_acquire(p_hwfn);
4231 return ECORE_TIMEOUT;
4233 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4236 ecore_ptt_release(p_hwfn, p_ptt);
4238 if (rc != ECORE_SUCCESS)
4245 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4246 struct ecore_ptt *p_ptt,
4247 struct ecore_mcp_link_state *p_link,
4250 int rc = ECORE_SUCCESS;
4252 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4253 p_hwfn->qm_info.pf_wfq = min_bw;
4255 if (!p_link->line_speed)
4258 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4260 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4262 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4263 "Configured MIN bandwidth to be %d Mb/sec\n",
4264 p_link->min_pf_rate);
4269 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4270 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4272 int i, rc = ECORE_INVAL;
4274 if (min_bw < 1 || min_bw > 100) {
4275 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4279 for_each_hwfn(p_dev, i) {
4280 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4281 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4282 struct ecore_mcp_link_state *p_link;
4283 struct ecore_ptt *p_ptt;
4285 p_link = &p_lead->mcp_info->link_output;
4287 p_ptt = ecore_ptt_acquire(p_hwfn);
4289 return ECORE_TIMEOUT;
4291 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4293 if (rc != ECORE_SUCCESS) {
4294 ecore_ptt_release(p_hwfn, p_ptt);
4298 if (p_link->min_pf_rate) {
4299 u32 min_rate = p_link->min_pf_rate;
4301 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4306 ecore_ptt_release(p_hwfn, p_ptt);
4312 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4314 struct ecore_mcp_link_state *p_link;
4316 p_link = &p_hwfn->mcp_info->link_output;
4318 if (p_link->min_pf_rate)
4319 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4320 p_link->min_pf_rate);
4322 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4323 sizeof(*p_hwfn->qm_info.wfq_data) *
4324 p_hwfn->qm_info.num_vports);
4327 int ecore_device_num_engines(struct ecore_dev *p_dev)
4329 return ECORE_IS_BB(p_dev) ? 2 : 1;
4332 int ecore_device_num_ports(struct ecore_dev *p_dev)
4334 /* in CMT always only one port */
4335 if (p_dev->num_hwfns > 1)
4338 return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4341 void ecore_set_fw_mac_addr(__le16 *fw_msb,
4346 ((u8 *)fw_msb)[0] = mac[1];
4347 ((u8 *)fw_msb)[1] = mac[0];
4348 ((u8 *)fw_mid)[0] = mac[3];
4349 ((u8 *)fw_mid)[1] = mac[2];
4350 ((u8 *)fw_lsb)[0] = mac[5];
4351 ((u8 *)fw_lsb)[1] = mac[4];