2 * Copyright (c) 2016 QLogic Corporation.
6 * See LICENSE.qede_pmd for copyright and licensing details.
11 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35 * registers involved are not split and thus configuration is a race where
36 * some of the PFs configuration might be lost.
37 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39 * there's more than a single compiled ecore component in system].
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
45 #define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to
46 * load the driver. The number was
51 #define ECORE_MIN_PWM_REGION ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
54 BAR_ID_0, /* used for GRC */
55 BAR_ID_1 /* Used for doorbells */
58 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
60 u32 bar_reg = (bar_id == BAR_ID_0 ?
61 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
64 if (IS_VF(p_hwfn->p_dev)) {
65 /* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
66 * read from actual register, but we're currently not using
67 * it for actual doorbelling.
72 val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
74 return 1 << (val + 15);
76 /* The above registers were updated in the past only in CMT mode. Since
77 * they were found to be useful MFW started updating them from 8.7.7.0.
78 * In older MFW versions they are set to 0 which means disabled.
80 if (p_hwfn->p_dev->num_hwfns > 1) {
81 DP_NOTICE(p_hwfn, false,
82 "BAR size not configured. Assuming BAR size of 256kB"
83 " for GRC and 512kB for DB\n");
84 val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
86 DP_NOTICE(p_hwfn, false,
87 "BAR size not configured. Assuming BAR size of 512kB"
88 " for GRC and 512kB for DB\n");
95 void ecore_init_dp(struct ecore_dev *p_dev,
96 u32 dp_module, u8 dp_level, void *dp_ctx)
100 p_dev->dp_level = dp_level;
101 p_dev->dp_module = dp_module;
102 p_dev->dp_ctx = dp_ctx;
103 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
104 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
106 p_hwfn->dp_level = dp_level;
107 p_hwfn->dp_module = dp_module;
108 p_hwfn->dp_ctx = dp_ctx;
112 void ecore_init_struct(struct ecore_dev *p_dev)
116 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
117 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
119 p_hwfn->p_dev = p_dev;
121 p_hwfn->b_active = false;
123 OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
124 OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
127 /* hwfn 0 is always active */
128 p_dev->hwfns[0].b_active = true;
130 /* set the default cache alignment to 128 (may be overridden later) */
131 p_dev->cache_shift = 7;
134 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
136 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
138 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
139 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
140 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
141 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
144 void ecore_resc_free(struct ecore_dev *p_dev)
151 OSAL_FREE(p_dev, p_dev->fw_data);
153 OSAL_FREE(p_dev, p_dev->reset_stats);
155 for_each_hwfn(p_dev, i) {
156 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
158 OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
159 OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
162 for_each_hwfn(p_dev, i) {
163 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
165 ecore_cxt_mngr_free(p_hwfn);
166 ecore_qm_info_free(p_hwfn);
167 ecore_spq_free(p_hwfn);
168 ecore_eq_free(p_hwfn, p_hwfn->p_eq);
169 ecore_consq_free(p_hwfn, p_hwfn->p_consq);
170 ecore_int_free(p_hwfn);
171 #ifdef CONFIG_ECORE_LL2
172 ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
174 ecore_iov_free(p_hwfn);
175 ecore_dmae_info_free(p_hwfn);
176 ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
177 /* @@@TBD Flush work-queue ? */
181 static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
184 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
185 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
186 struct init_qm_port_params *p_qm_port;
187 bool init_rdma_offload_pq = false;
188 bool init_pure_ack_pq = false;
189 bool init_ooo_pq = false;
190 u16 num_pqs, protocol_pqs;
196 /* @TMP - saving the existing min/max bw config before resetting the
197 * qm_info to restore them.
199 pf_rl = qm_info->pf_rl;
200 pf_wfq = qm_info->pf_wfq;
202 #ifdef CONFIG_ECORE_SRIOV
203 if (p_hwfn->p_dev->p_iov_info)
204 num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
206 OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
209 /* @TMP - Don't allocate QM queues for VFs on emulation */
210 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
211 DP_NOTICE(p_hwfn, false,
212 "Emulation - skip configuring QM queues for VFs\n");
217 /* ethernet PFs require a pq per tc. Even if only a subset of the TCs
218 * active, we want physical queues allocated for all of them, since we
219 * don't have a good recycle flow. Non ethernet PFs require only a
220 * single physical queue.
222 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
223 p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
224 p_hwfn->hw_info.personality == ECORE_PCI_ETH)
225 protocol_pqs = p_hwfn->hw_info.num_hw_tc;
229 num_pqs = protocol_pqs + num_vfs + 1; /* The '1' is for pure-LB */
230 num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
232 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
233 num_pqs++; /* for RoCE queue */
234 init_rdma_offload_pq = true;
235 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
236 /* Due to FW assumption that rl==vport, we limit the
237 * number of rate limiters by the minimum between its
238 * allocated number and the allocated number of vports.
239 * Another limitation is the number of supported qps
240 * with rate limiters in FW.
243 (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
244 RESC_NUM(p_hwfn, ECORE_VPORT));
246 /* we subtract num_vfs because each one requires a rate
247 * limiter, and one default rate limiter.
249 if (num_pf_rls < num_vfs + 1) {
250 DP_ERR(p_hwfn, "No RL for DCQCN");
251 DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
252 num_pf_rls, num_vfs);
255 num_pf_rls -= num_vfs + 1;
258 num_pqs += num_pf_rls;
259 qm_info->num_pf_rls = (u8)num_pf_rls;
262 if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
263 num_pqs += 3; /* for iwarp queue / pure-ack / ooo */
264 init_rdma_offload_pq = true;
265 init_pure_ack_pq = true;
269 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
270 num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */
271 init_pure_ack_pq = true;
275 /* Sanity checking that setup requires legal number of resources */
276 if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
278 "Need too many Physical queues - 0x%04x avail %04x",
279 num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
283 /* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
284 * then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
286 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
287 b_sleepable ? GFP_KERNEL :
289 sizeof(struct init_qm_pq_params) *
291 if (!qm_info->qm_pq_params)
294 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
295 b_sleepable ? GFP_KERNEL :
298 init_qm_vport_params) *
300 if (!qm_info->qm_vport_params)
303 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
304 b_sleepable ? GFP_KERNEL :
306 sizeof(struct init_qm_port_params)
308 if (!qm_info->qm_port_params)
311 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
312 b_sleepable ? GFP_KERNEL :
314 sizeof(struct ecore_wfq_data) *
317 if (!qm_info->wfq_data)
320 vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
322 /* First init rate limited queues ( Due to RoCE assumption of
325 for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
326 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
327 qm_info->qm_pq_params[curr_queue].tc_id =
328 p_hwfn->hw_info.offload_tc;
329 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
330 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
334 for (i = 0; i < protocol_pqs; i++) {
335 struct init_qm_pq_params *params =
336 &qm_info->qm_pq_params[curr_queue++];
338 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
339 p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
340 p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
341 params->vport_id = vport_id;
343 /* Note: this assumes that if we had a configuration
344 * with N tcs and subsequently another configuration
345 * With Fewer TCs, the in flight traffic (in QM queues,
346 * in FW, from driver to FW) will still trickle out and
347 * not get "stuck" in the QM. This is determined by the
348 * NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
349 * supposed to be cleared in this map, allowing traffic
350 * to flush out. If this is not the case, we would need
351 * to set the TC of unused queues to 0, and reconfigure
352 * QM every time num of TCs changes. Unused queues in
353 * this context would mean those intended for TCs where
354 * tc_id > hw_info.num_active_tcs.
356 params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
358 params->vport_id = vport_id;
359 params->tc_id = p_hwfn->hw_info.offload_tc;
360 params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
364 /* Then init pure-LB PQ */
365 qm_info->pure_lb_pq = curr_queue;
366 qm_info->qm_pq_params[curr_queue].vport_id =
367 (u8)RESC_START(p_hwfn, ECORE_VPORT);
368 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
369 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
372 qm_info->offload_pq = 0; /* Already initialized for iSCSI/FCoE */
373 if (init_rdma_offload_pq) {
374 qm_info->offload_pq = curr_queue;
375 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
376 qm_info->qm_pq_params[curr_queue].tc_id =
377 p_hwfn->hw_info.offload_tc;
378 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
382 if (init_pure_ack_pq) {
383 qm_info->pure_ack_pq = curr_queue;
384 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
385 qm_info->qm_pq_params[curr_queue].tc_id =
386 p_hwfn->hw_info.offload_tc;
387 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
392 qm_info->ooo_pq = curr_queue;
393 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
394 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
395 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
399 /* Then init per-VF PQs */
400 vf_offset = curr_queue;
401 for (i = 0; i < num_vfs; i++) {
402 /* First vport is used by the PF */
403 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
404 /* @@@TBD VF Multi-cos */
405 qm_info->qm_pq_params[curr_queue].tc_id = 0;
406 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
407 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
411 qm_info->vf_queues_offset = vf_offset;
412 qm_info->num_pqs = num_pqs;
413 qm_info->num_vports = num_vports;
415 /* Initialize qm port parameters */
416 num_ports = p_hwfn->p_dev->num_ports_in_engines;
417 for (i = 0; i < num_ports; i++) {
418 p_qm_port = &qm_info->qm_port_params[i];
419 p_qm_port->active = 1;
420 /* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
424 p_qm_port->active_phys_tcs = 0xf;
426 p_qm_port->active_phys_tcs = 0x9f;
427 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
428 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
431 if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
432 qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
434 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
436 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
438 qm_info->num_vf_pqs = num_vfs;
439 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
441 for (i = 0; i < qm_info->num_vports; i++)
442 qm_info->qm_vport_params[i].vport_wfq = 1;
444 qm_info->vport_rl_en = 1;
445 qm_info->vport_wfq_en = 1;
446 qm_info->pf_rl = pf_rl;
447 qm_info->pf_wfq = pf_wfq;
449 return ECORE_SUCCESS;
452 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
453 ecore_qm_info_free(p_hwfn);
457 /* This function reconfigures the QM pf on the fly.
458 * For this purpose we:
459 * 1. reconfigure the QM database
460 * 2. set new values to runtime arrat
461 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
462 * 4. activate init tool in QM_PF stage
463 * 5. send an sdm_qm_cmd through rbc interface to release the QM
465 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
466 struct ecore_ptt *p_ptt)
468 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
470 enum _ecore_status_t rc;
472 /* qm_info is allocated in ecore_init_qm_info() which is already called
473 * from ecore_resc_alloc() or previous call of ecore_qm_reconf().
474 * The allocated size may change each init, so we free it before next
477 ecore_qm_info_free(p_hwfn);
479 /* initialize ecore's qm data structure */
480 rc = ecore_init_qm_info(p_hwfn, false);
481 if (rc != ECORE_SUCCESS)
484 /* stop PF's qm queues */
485 OSAL_SPIN_LOCK(&qm_lock);
486 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
487 qm_info->start_pq, qm_info->num_pqs);
488 OSAL_SPIN_UNLOCK(&qm_lock);
492 /* clear the QM_PF runtime phase leftovers from previous init */
493 ecore_init_clear_rt_data(p_hwfn);
495 /* prepare QM portion of runtime array */
496 ecore_qm_init_pf(p_hwfn);
498 /* activate init tool on runtime array */
499 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
500 p_hwfn->hw_info.hw_mode);
501 if (rc != ECORE_SUCCESS)
504 /* start PF's qm queues */
505 OSAL_SPIN_LOCK(&qm_lock);
506 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
507 qm_info->start_pq, qm_info->num_pqs);
508 OSAL_SPIN_UNLOCK(&qm_lock);
512 return ECORE_SUCCESS;
515 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
517 struct ecore_consq *p_consq;
518 struct ecore_eq *p_eq;
519 #ifdef CONFIG_ECORE_LL2
520 struct ecore_ll2_info *p_ll2_info;
522 enum _ecore_status_t rc = ECORE_SUCCESS;
528 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
529 sizeof(*p_dev->fw_data));
533 /* Allocate Memory for the Queue->CID mapping */
534 for_each_hwfn(p_dev, i) {
535 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
536 u32 num_tx_conns = RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
537 int tx_size, rx_size;
539 /* @@@TMP - resc management, change to actual required size */
540 if (p_hwfn->pf_params.eth_pf_params.num_cons > num_tx_conns)
541 num_tx_conns = p_hwfn->pf_params.eth_pf_params.num_cons;
542 tx_size = sizeof(struct ecore_hw_cid_data) * num_tx_conns;
543 rx_size = sizeof(struct ecore_hw_cid_data) *
544 RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
546 p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
548 if (!p_hwfn->p_tx_cids) {
549 DP_NOTICE(p_hwfn, true,
550 "Failed to allocate memory for Tx Cids\n");
554 p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
556 if (!p_hwfn->p_rx_cids) {
557 DP_NOTICE(p_hwfn, true,
558 "Failed to allocate memory for Rx Cids\n");
563 for_each_hwfn(p_dev, i) {
564 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
565 u32 n_eqes, num_cons;
567 /* First allocate the context manager structure */
568 rc = ecore_cxt_mngr_alloc(p_hwfn);
572 /* Set the HW cid/tid numbers (in the contest manager)
573 * Must be done prior to any further computations.
575 rc = ecore_cxt_set_pf_params(p_hwfn);
579 /* Prepare and process QM requirements */
580 rc = ecore_init_qm_info(p_hwfn, true);
584 /* Compute the ILT client partition */
585 rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
589 /* CID map / ILT shadow table / T2
590 * The talbes sizes are determined by the computations above
592 rc = ecore_cxt_tables_alloc(p_hwfn);
596 /* SPQ, must follow ILT because initializes SPQ context */
597 rc = ecore_spq_alloc(p_hwfn);
601 /* SP status block allocation */
602 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
605 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
609 rc = ecore_iov_alloc(p_hwfn);
614 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
615 if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
616 (p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
617 /* Calculate the EQ size
618 * ---------------------
619 * Each ICID may generate up to one event at a time i.e.
620 * the event must be handled/cleared before a new one
621 * can be generated. We calculate the sum of events per
622 * protocol and create an EQ deep enough to handle the
624 * - Core - according to SPQ.
625 * - RoCE - per QP there are a couple of ICIDs, one
626 * responder and one requester, each can
627 * generate an EQE => n_eqes_qp = 2 * n_qp.
628 * Each CQ can generate an EQE. There are 2 CQs
629 * per QP => n_eqes_cq = 2 * n_qp.
630 * Hence the RoCE total is 4 * n_qp or
632 * - ENet - There can be up to two events per VF. One
633 * for VF-PF channel and another for VF FLR
634 * initial cleanup. The number of VFs is
635 * bounded by MAX_NUM_VFS_BB, and is much
636 * smaller than RoCE's so we avoid exact
639 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
641 ecore_cxt_get_proto_cid_count(
647 num_cons = ecore_cxt_get_proto_cid_count(
652 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
653 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
655 ecore_cxt_get_proto_cid_count(p_hwfn,
656 PROTOCOLID_ISCSI, 0);
657 n_eqes += 2 * num_cons;
660 if (n_eqes > 0xFFFF) {
661 DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
662 "The maximum of a u16 chain is 0x%x\n",
667 p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
672 p_consq = ecore_consq_alloc(p_hwfn);
675 p_hwfn->p_consq = p_consq;
677 #ifdef CONFIG_ECORE_LL2
678 if (p_hwfn->using_ll2) {
679 p_ll2_info = ecore_ll2_alloc(p_hwfn);
682 p_hwfn->p_ll2_info = p_ll2_info;
686 /* DMA info initialization */
687 rc = ecore_dmae_info_alloc(p_hwfn);
689 DP_NOTICE(p_hwfn, true,
690 "Failed to allocate memory for dmae_info structure\n");
694 /* DCBX initialization */
695 rc = ecore_dcbx_info_alloc(p_hwfn);
697 DP_NOTICE(p_hwfn, true,
698 "Failed to allocate memory for dcbx structure\n");
703 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
704 sizeof(*p_dev->reset_stats));
705 if (!p_dev->reset_stats) {
706 DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
710 return ECORE_SUCCESS;
715 ecore_resc_free(p_dev);
719 void ecore_resc_setup(struct ecore_dev *p_dev)
726 for_each_hwfn(p_dev, i) {
727 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
729 ecore_cxt_mngr_setup(p_hwfn);
730 ecore_spq_setup(p_hwfn);
731 ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
732 ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
734 /* Read shadow of current MFW mailbox */
735 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
736 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
737 p_hwfn->mcp_info->mfw_mb_cur,
738 p_hwfn->mcp_info->mfw_mb_length);
740 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
742 ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
743 #ifdef CONFIG_ECORE_LL2
744 if (p_hwfn->using_ll2)
745 ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
750 #define FINAL_CLEANUP_POLL_CNT (100)
751 #define FINAL_CLEANUP_POLL_TIME (10)
752 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
753 struct ecore_ptt *p_ptt,
756 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
757 enum _ecore_status_t rc = ECORE_TIMEOUT;
760 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
761 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
762 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
763 return ECORE_SUCCESS;
767 addr = GTT_BAR0_MAP_REG_USDM_RAM +
768 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
773 command |= X_FINAL_CLEANUP_AGG_INT <<
774 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
775 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
776 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
777 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
779 /* Make sure notification is not set before initiating final cleanup */
781 if (REG_RD(p_hwfn, addr)) {
782 DP_NOTICE(p_hwfn, false,
783 "Unexpected; Found final cleanup notification");
784 DP_NOTICE(p_hwfn, false,
785 " before initiating final cleanup\n");
786 REG_WR(p_hwfn, addr, 0);
789 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
790 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
791 id, OSAL_CPU_TO_LE32(command));
793 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
794 OSAL_CPU_TO_LE32(command));
796 /* Poll until completion */
797 while (!REG_RD(p_hwfn, addr) && count--)
798 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
800 if (REG_RD(p_hwfn, addr))
803 DP_NOTICE(p_hwfn, true,
804 "Failed to receive FW final cleanup notification\n");
806 /* Cleanup afterwards */
807 REG_WR(p_hwfn, addr, 0);
812 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
816 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
817 hw_mode |= 1 << MODE_BB_B0;
818 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
819 hw_mode |= 1 << MODE_K2;
821 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
822 p_hwfn->p_dev->type);
826 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
827 switch (p_hwfn->p_dev->num_ports_in_engines) {
829 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
832 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
835 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
838 DP_NOTICE(p_hwfn, true,
839 "num_ports_in_engine = %d not supported\n",
840 p_hwfn->p_dev->num_ports_in_engines);
844 switch (p_hwfn->p_dev->mf_mode) {
845 case ECORE_MF_DEFAULT:
847 hw_mode |= 1 << MODE_MF_SI;
850 hw_mode |= 1 << MODE_MF_SD;
853 DP_NOTICE(p_hwfn, true,
854 "Unsupported MF mode, init as DEFAULT\n");
855 hw_mode |= 1 << MODE_MF_SI;
859 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
860 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
861 hw_mode |= 1 << MODE_FPGA;
863 if (p_hwfn->p_dev->b_is_emul_full)
864 hw_mode |= 1 << MODE_EMUL_FULL;
866 hw_mode |= 1 << MODE_EMUL_REDUCED;
870 hw_mode |= 1 << MODE_ASIC;
872 if (p_hwfn->p_dev->num_hwfns > 1)
873 hw_mode |= 1 << MODE_100G;
875 p_hwfn->hw_info.hw_mode = hw_mode;
877 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
878 "Configuring function for hw_mode: 0x%08x\n",
879 p_hwfn->hw_info.hw_mode);
881 return ECORE_SUCCESS;
885 /* MFW-replacement initializations for non-ASIC */
886 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
887 struct ecore_ptt *p_ptt)
892 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
895 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
897 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
898 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
900 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
901 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
902 if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
903 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
905 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
906 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
907 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
908 (p_hwfn->p_dev->num_ports_in_engines >> 1));
910 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
911 p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
915 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
916 for (i = 0; i < 100; i++) {
918 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
922 DP_NOTICE(p_hwfn, true,
923 "RBC done failed to complete in PSWRQ2\n");
925 return ECORE_SUCCESS;
929 /* Init run time data for all PFs and their VFs on an engine.
930 * TBD - for VFs - Once we have parent PF info for each VF in
931 * shmem available as CAU requires knowledge of parent PF for each VF.
933 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
935 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
938 for_each_hwfn(p_dev, i) {
939 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
940 struct ecore_igu_info *p_igu_info;
941 struct ecore_igu_block *p_block;
942 struct cau_sb_entry sb_entry;
944 p_igu_info = p_hwfn->hw_info.p_igu_info;
946 for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
948 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
953 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
954 p_block->function_id, 0, 0);
955 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
960 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
961 struct ecore_ptt *p_ptt,
964 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
965 struct ecore_dev *p_dev = p_hwfn->p_dev;
966 u8 vf_id, max_num_vfs;
969 enum _ecore_status_t rc = ECORE_SUCCESS;
971 ecore_init_cau_rt_data(p_dev);
973 /* Program GTT windows */
974 ecore_gtt_init(p_hwfn);
977 if (CHIP_REV_IS_EMUL(p_dev)) {
978 rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
979 if (rc != ECORE_SUCCESS)
984 if (p_hwfn->mcp_info) {
985 if (p_hwfn->mcp_info->func_info.bandwidth_max)
986 qm_info->pf_rl_en = 1;
987 if (p_hwfn->mcp_info->func_info.bandwidth_min)
988 qm_info->pf_wfq_en = 1;
991 ecore_qm_common_rt_init(p_hwfn,
992 p_dev->num_ports_in_engines,
993 qm_info->max_phys_tcs_per_port,
994 qm_info->pf_rl_en, qm_info->pf_wfq_en,
995 qm_info->vport_rl_en, qm_info->vport_wfq_en,
996 qm_info->qm_port_params);
998 ecore_cxt_hw_init_common(p_hwfn);
1000 /* Close gate from NIG to BRB/Storm; By default they are open, but
1001 * we close them to prevent NIG from passing data to reset blocks.
1002 * Should have been done in the ENGINE phase, but init-tool lacks
1003 * proper port-pretend capabilities.
1005 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1006 ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1007 ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
1008 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1009 ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1010 ecore_port_unpretend(p_hwfn, p_ptt);
1012 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1013 if (rc != ECORE_SUCCESS)
1016 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1017 * need to decide with which value, maybe runtime
1019 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1020 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1022 if (ECORE_IS_BB(p_dev)) {
1023 /* Workaround clears ROCE search for all functions to prevent
1024 * involving non initialized function in processing ROCE packet.
1026 num_pfs = NUM_OF_ENG_PFS(p_dev);
1027 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1028 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1029 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1030 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1032 /* pretend to original PF */
1033 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1036 /* Workaround for avoiding CCFC execution error when getting packets
1037 * with CRC errors, and allowing instead the invoking of the FW error
1039 * This is not done inside the init tool since it currently can't
1040 * perform a pretending to VFs.
1042 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1043 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1044 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1045 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1046 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1047 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1048 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1049 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1051 /* pretend to original PF */
1052 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1058 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1059 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1061 #define PMEG_IF_BYTE_COUNT 8
1063 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1064 struct ecore_ptt *p_ptt,
1065 u32 addr, u64 data, u8 reg_type, u8 port)
1067 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1068 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1069 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
1070 (8 << PMEG_IF_BYTE_COUNT),
1071 (reg_type << 25) | (addr << 8) | port,
1072 (u32)((data >> 32) & 0xffffffff),
1073 (u32)(data & 0xffffffff));
1075 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
1076 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
1077 0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1078 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
1079 (reg_type << 25) | (addr << 8) | port);
1080 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1082 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1083 (data >> 32) & 0xffffffff);
1086 #define XLPORT_MODE_REG (0x20a)
1087 #define XLPORT_MAC_CONTROL (0x210)
1088 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1089 #define XLPORT_ENABLE_REG (0x20b)
1091 #define XLMAC_CTRL (0x600)
1092 #define XLMAC_MODE (0x601)
1093 #define XLMAC_RX_MAX_SIZE (0x608)
1094 #define XLMAC_TX_CTRL (0x604)
1095 #define XLMAC_PAUSE_CTRL (0x60d)
1096 #define XLMAC_PFC_CTRL (0x60e)
1098 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
1099 struct ecore_ptt *p_ptt)
1101 u8 port = p_hwfn->port_id;
1102 u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
1104 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
1105 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
1106 (port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
1107 | (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
1109 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
1110 1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
1112 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
1113 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
1115 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
1116 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
1118 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
1119 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
1121 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
1122 (0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
1123 (8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
1125 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
1128 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1129 struct ecore_ptt *p_ptt)
1131 u8 loopback = 0, port = p_hwfn->port_id * 2;
1133 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1135 if (ECORE_IS_AH(p_hwfn->p_dev)) {
1136 ecore_emul_link_init_ah(p_hwfn, p_ptt);
1140 /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1141 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1143 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1144 /* XLMAC: SOFT RESET */
1145 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1146 /* XLMAC: Port Speed >= 10Gbps */
1147 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1148 /* XLMAC: Max Size */
1149 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1150 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1151 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1153 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1154 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1155 0x30ffffc000ULL, 0, port);
1156 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1157 port); /* XLMAC: TX_EN, RX_EN */
1158 /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1159 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1160 0x1003 | (loopback << 2), 0, port);
1161 /* Enabled Parallel PFC interface */
1162 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1164 /* XLPORT port enable */
1165 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1168 static void ecore_link_init(struct ecore_hwfn *p_hwfn,
1169 struct ecore_ptt *p_ptt, u8 port)
1171 int port_offset = port ? 0x800 : 0;
1172 u32 xmac_rxctrl = 0;
1175 /* FIXME: move to common start */
1176 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1177 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1179 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1180 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1182 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
1184 /* Set the number of ports on the Warp Core to 10G */
1185 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
1187 /* Soft reset of XMAC */
1188 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1189 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1191 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1192 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1194 /* FIXME: move to common end */
1195 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1196 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
1198 /* Set Max packet size: initialize XMAC block register for port 0 */
1199 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
1201 /* CRC append for Tx packets: init XMAC block register for port 1 */
1202 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
1204 /* Enable TX and RX: initialize XMAC block register for port 1 */
1205 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
1206 XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
1207 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
1208 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
1209 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
1213 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1214 struct ecore_ptt *p_ptt,
1217 enum _ecore_status_t rc = ECORE_SUCCESS;
1219 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1221 if (rc != ECORE_SUCCESS)
1224 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1225 return ECORE_SUCCESS;
1227 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1228 if (ECORE_IS_AH(p_hwfn->p_dev))
1229 return ECORE_SUCCESS;
1230 ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
1231 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1232 if (p_hwfn->p_dev->num_hwfns > 1) {
1233 /* Activate OPTE in CMT */
1236 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1238 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1239 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1240 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1241 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1242 ecore_wr(p_hwfn, p_ptt,
1243 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1244 ecore_wr(p_hwfn, p_ptt,
1245 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1246 ecore_wr(p_hwfn, p_ptt,
1247 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1251 ecore_emul_link_init(p_hwfn, p_ptt);
1253 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1260 static enum _ecore_status_t
1261 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1262 struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1264 u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1265 u32 dpi_bit_shift, dpi_count;
1268 /* Calculate DPI size
1269 * ------------------
1270 * The PWM region contains Doorbell Pages. The first is reserverd for
1271 * the kernel for, e.g, L2. The others are free to be used by non-
1272 * trusted applications, typically from user space. Each page, called a
1273 * doorbell page is sectioned into windows that allow doorbells to be
1274 * issued in parallel by the kernel/application. The size of such a
1275 * window (a.k.a. WID) is 1kB.
1277 * 1kB WID x N WIDS = DPI page size
1278 * DPI page size x N DPIs = PWM region size
1280 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1281 * in order to ensure that two applications won't share the same page.
1282 * It also must contain at least one WID per CPU to allow parallelism.
1283 * It also must be a power of 2, since it is stored as a bit shift.
1285 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1286 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1287 * containing 4 WIDs.
1289 dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1290 dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1291 dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1292 dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1293 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1295 dpi_count = pwm_region_size / dpi_page_size;
1297 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1298 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1301 p_hwfn->dpi_size = dpi_page_size;
1302 p_hwfn->dpi_count = dpi_count;
1304 /* Update registers */
1305 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1307 if (dpi_count < min_dpis)
1308 return ECORE_NORESOURCES;
1310 return ECORE_SUCCESS;
1313 enum ECORE_ROCE_EDPM_MODE {
1314 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1315 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1316 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1319 static enum _ecore_status_t
1320 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1321 struct ecore_ptt *p_ptt)
1323 u32 pwm_regsize, norm_regsize;
1324 u32 non_pwm_conn, min_addr_reg1;
1325 u32 db_bar_size, n_cpus;
1328 int rc = ECORE_SUCCESS;
1331 db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1332 if (p_hwfn->p_dev->num_hwfns > 1)
1335 /* Calculate doorbell regions
1336 * -----------------------------------
1337 * The doorbell BAR is made of two regions. The first is called normal
1338 * region and the second is called PWM region. In the normal region
1339 * each ICID has its own set of addresses so that writing to that
1340 * specific address identifies the ICID. In the Process Window Mode
1341 * region the ICID is given in the data written to the doorbell. The
1342 * above per PF register denotes the offset in the doorbell BAR in which
1343 * the PWM region begins.
1344 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1345 * non-PWM connection. The calculation below computes the total non-PWM
1346 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1347 * in units of 4,096 bytes.
1349 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1350 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1352 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1353 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1354 min_addr_reg1 = norm_regsize / 4096;
1355 pwm_regsize = db_bar_size - norm_regsize;
1357 /* Check that the normal and PWM sizes are valid */
1358 if (db_bar_size < norm_regsize) {
1359 DP_ERR(p_hwfn->p_dev,
1360 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1361 db_bar_size, norm_regsize);
1362 return ECORE_NORESOURCES;
1364 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1365 DP_ERR(p_hwfn->p_dev,
1366 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1367 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1369 return ECORE_NORESOURCES;
1372 /* Calculate number of DPIs */
1373 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1374 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1375 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1376 /* Either EDPM is mandatory, or we are attempting to allocate a
1379 n_cpus = OSAL_NUM_ACTIVE_CPU();
1380 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1383 cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1384 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1385 if (cond || p_hwfn->dcbx_no_edpm) {
1386 /* Either EDPM is disabled from user configuration, or it is
1387 * disabled via DCBx, or it is not mandatory and we failed to
1388 * allocated a WID per CPU.
1391 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1393 /* If we entered this flow due to DCBX then the DPM register is
1394 * already configured.
1399 "doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1400 norm_regsize, pwm_regsize);
1402 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1403 p_hwfn->dpi_size, p_hwfn->dpi_count,
1404 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1405 "disabled" : "enabled");
1407 /* Check return codes from above calls */
1410 "Failed to allocate enough DPIs\n");
1411 return ECORE_NORESOURCES;
1415 p_hwfn->dpi_start_offset = norm_regsize;
1417 /* Update registers */
1418 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1419 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1420 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1421 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1423 return ECORE_SUCCESS;
1426 static enum _ecore_status_t
1427 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1428 struct ecore_ptt *p_ptt,
1429 struct ecore_tunn_start_params *p_tunn,
1432 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1434 u8 rel_pf_id = p_hwfn->rel_pf_id;
1436 enum _ecore_status_t rc = ECORE_SUCCESS;
1440 if (p_hwfn->mcp_info) {
1441 struct ecore_mcp_function_info *p_info;
1443 p_info = &p_hwfn->mcp_info->func_info;
1444 if (p_info->bandwidth_min)
1445 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1447 /* Update rate limit once we'll actually have a link */
1448 p_hwfn->qm_info.pf_rl = 100000;
1450 ecore_cxt_hw_init_pf(p_hwfn);
1452 ecore_int_igu_init_rt(p_hwfn);
1454 /* Set VLAN in NIG if needed */
1455 if (hw_mode & (1 << MODE_MF_SD)) {
1456 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1457 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1458 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1459 p_hwfn->hw_info.ovlan);
1462 /* Enable classification by MAC if needed */
1463 if (hw_mode & (1 << MODE_MF_SI)) {
1464 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1465 "Configuring TAGMAC_CLS_TYPE\n");
1466 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1470 /* Protocl Configuration - @@@TBD - should we set 0 otherwise? */
1471 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1472 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1473 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1474 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1475 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1477 /* perform debug configuration when chip is out of reset */
1478 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1480 /* Cleanup chip from previous driver if such remains exist */
1481 rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1482 if (rc != ECORE_SUCCESS) {
1483 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1487 /* PF Init sequence */
1488 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1492 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1493 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1497 /* Pure runtime initializations - directly to the HW */
1498 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1500 /* PCI relaxed ordering causes a decrease in the performance on some
1501 * systems. Till a root cause is found, disable this attribute in the
1505 * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1507 * DP_NOTICE(p_hwfn, true,
1508 * "Failed to find the PCIe Cap\n");
1511 * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1512 * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1513 * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1516 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1520 /* enable interrupts */
1521 rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1522 if (rc != ECORE_SUCCESS)
1525 /* send function start command */
1526 rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1527 allow_npar_tx_switch);
1529 DP_NOTICE(p_hwfn, true,
1530 "Function start ramrod failed\n");
1532 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1533 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1534 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1536 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1537 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1539 ecore_wr(p_hwfn, p_ptt,
1540 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1543 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1544 "PRS_REG_SEARCH registers after start PFn\n");
1545 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1546 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1547 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1548 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1549 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1550 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1551 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1552 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1553 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1554 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1555 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1556 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1557 prs_reg = ecore_rd(p_hwfn, p_ptt,
1558 PRS_REG_SEARCH_TCP_FIRST_FRAG);
1559 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1560 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1562 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1563 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1564 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1570 static enum _ecore_status_t
1571 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1572 struct ecore_ptt *p_ptt, u8 enable)
1574 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1576 /* Change PF in PXP */
1577 ecore_wr(p_hwfn, p_ptt,
1578 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1580 /* wait until value is set - try for 1 second every 50us */
1581 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1582 val = ecore_rd(p_hwfn, p_ptt,
1583 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1590 if (val != set_val) {
1591 DP_NOTICE(p_hwfn, true,
1592 "PFID_ENABLE_MASTER wasn't changed after a second\n");
1593 return ECORE_UNKNOWN_ERROR;
1596 return ECORE_SUCCESS;
1599 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1600 struct ecore_ptt *p_main_ptt)
1602 /* Read shadow of current MFW mailbox */
1603 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1604 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1605 p_hwfn->mcp_info->mfw_mb_cur,
1606 p_hwfn->mcp_info->mfw_mb_length);
1609 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1610 struct ecore_hw_init_params *p_params)
1612 enum _ecore_status_t rc, mfw_rc;
1613 u32 load_code, param;
1616 if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
1617 (p_dev->num_hwfns > 1)) {
1618 DP_NOTICE(p_dev, false,
1619 "MSI mode is not supported for CMT devices\n");
1624 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1625 if (rc != ECORE_SUCCESS)
1629 for_each_hwfn(p_dev, i) {
1630 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1633 p_hwfn->b_int_enabled = 1;
1637 /* Enable DMAE in PXP */
1638 rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1639 if (rc != ECORE_SUCCESS)
1642 rc = ecore_calc_hw_mode(p_hwfn);
1643 if (rc != ECORE_SUCCESS)
1646 /* @@@TBD need to add here:
1647 * Check for fan failure
1650 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1652 DP_NOTICE(p_hwfn, true,
1653 "Failed sending LOAD_REQ command\n");
1658 * When coming back from hiberbate state, the registers from
1659 * which shadow is read initially are not initialized. It turns
1660 * out that these registers get initialized during the call to
1661 * ecore_mcp_load_req request. So we need to reread them here
1662 * to get the proper shadow register value.
1663 * Note: This is a workaround for the missinginig MFW
1664 * initialization. It may be removed once the implementation
1667 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1669 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1670 "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1673 /* Only relevant for recovery:
1674 * Clear the indication after the LOAD_REQ command is responded
1677 p_dev->recov_in_prog = false;
1679 p_hwfn->first_on_engine = (load_code ==
1680 FW_MSG_CODE_DRV_LOAD_ENGINE);
1682 if (!qm_lock_init) {
1683 OSAL_SPIN_LOCK_INIT(&qm_lock);
1684 qm_lock_init = true;
1687 switch (load_code) {
1688 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1689 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1690 p_hwfn->hw_info.hw_mode);
1694 case FW_MSG_CODE_DRV_LOAD_PORT:
1695 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1696 p_hwfn->hw_info.hw_mode);
1700 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1701 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1703 p_hwfn->hw_info.hw_mode,
1704 p_params->b_hw_start,
1706 p_params->allow_npar_tx_switch);
1713 if (rc != ECORE_SUCCESS)
1714 DP_NOTICE(p_hwfn, true,
1715 "init phase failed for loadcode 0x%x (rc %d)\n",
1718 /* ACK mfw regardless of success or failure of initialization */
1719 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1720 DRV_MSG_CODE_LOAD_DONE,
1721 0, &load_code, ¶m);
1722 if (rc != ECORE_SUCCESS)
1724 if (mfw_rc != ECORE_SUCCESS) {
1725 DP_NOTICE(p_hwfn, true,
1726 "Failed sending LOAD_DONE command\n");
1730 /* send DCBX attention request command */
1731 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
1732 "sending phony dcbx set command to trigger DCBx attention handling\n");
1733 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1734 DRV_MSG_CODE_SET_DCBX,
1735 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1736 &load_code, ¶m);
1737 if (mfw_rc != ECORE_SUCCESS) {
1738 DP_NOTICE(p_hwfn, true,
1739 "Failed to send DCBX attention request\n");
1743 p_hwfn->hw_init_done = true;
1746 return ECORE_SUCCESS;
1749 #define ECORE_HW_STOP_RETRY_LIMIT (10)
1750 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
1751 struct ecore_hwfn *p_hwfn,
1752 struct ecore_ptt *p_ptt)
1757 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1758 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1759 for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
1761 if ((!ecore_rd(p_hwfn, p_ptt,
1762 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1763 (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1766 /* Dependent on number of connection/tasks, possibly
1767 * 1ms sleep is required between polls
1772 if (i < ECORE_HW_STOP_RETRY_LIMIT)
1775 DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
1776 " [Connection %02x Tasks %02x]\n",
1777 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1778 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1781 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
1785 for_each_hwfn(p_dev, j) {
1786 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1787 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1789 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1793 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
1795 enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
1798 for_each_hwfn(p_dev, j) {
1799 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1800 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1802 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
1805 ecore_vf_pf_int_cleanup(p_hwfn);
1809 /* mark the hw as uninitialized... */
1810 p_hwfn->hw_init_done = false;
1812 rc = ecore_sp_pf_stop(p_hwfn);
1814 DP_NOTICE(p_hwfn, true,
1815 "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1817 /* perform debug action after PF stop was sent */
1818 OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
1820 /* close NIG to BRB gate */
1821 ecore_wr(p_hwfn, p_ptt,
1822 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1825 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1826 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1827 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1828 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1829 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1831 /* @@@TBD - clean transmission queues (5.b) */
1832 /* @@@TBD - clean BTB (5.c) */
1834 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1836 /* @@@TBD - verify DMAE requests are done (8) */
1838 /* Disable Attention Generation */
1839 ecore_int_igu_disable_int(p_hwfn, p_ptt);
1840 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1841 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1842 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1843 /* Need to wait 1ms to guarantee SBs are cleared */
1848 /* Disable DMAE in PXP - in CMT, this should only be done for
1849 * first hw-function, and only after all transactions have
1850 * stopped for all active hw-functions.
1852 t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
1853 p_dev->hwfns[0].p_main_ptt, false);
1854 if (t_rc != ECORE_SUCCESS)
1861 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
1865 for_each_hwfn(p_dev, j) {
1866 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1867 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1870 ecore_vf_pf_int_cleanup(p_hwfn);
1874 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1875 "Shutting down the fastpath\n");
1877 ecore_wr(p_hwfn, p_ptt,
1878 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1880 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1881 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1882 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1883 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1884 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1886 /* @@@TBD - clean transmission queues (5.b) */
1887 /* @@@TBD - clean BTB (5.c) */
1889 /* @@@TBD - verify DMAE requests are done (8) */
1891 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1892 /* Need to wait 1ms to guarantee SBs are cleared */
1897 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
1899 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1901 if (IS_VF(p_hwfn->p_dev))
1904 /* If roce info is allocated it means roce is initialized and should
1905 * be enabled in searcher.
1907 if (p_hwfn->p_rdma_info) {
1908 if (p_hwfn->b_rdma_enabled_in_prs)
1909 ecore_wr(p_hwfn, p_ptt,
1910 p_hwfn->rdma_prs_search_reg, 0x1);
1911 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
1914 /* Re-open incoming traffic */
1915 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
1916 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1919 static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
1920 struct ecore_ptt *p_ptt, u32 reg,
1923 u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
1925 if (assert_val != expected) {
1926 DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
1928 return ECORE_UNKNOWN_ERROR;
1934 enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
1936 enum _ecore_status_t rc = ECORE_SUCCESS;
1937 u32 unload_resp, unload_param;
1940 for_each_hwfn(p_dev, i) {
1941 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1944 rc = ecore_vf_pf_reset(p_hwfn);
1950 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
1952 /* Check for incorrect states */
1953 if (!p_dev->recov_in_prog) {
1954 ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1955 QM_REG_USG_CNT_PF_TX, 0);
1956 ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1957 QM_REG_USG_CNT_PF_OTHER, 0);
1958 /* @@@TBD - assert on incorrect xCFC values (10.b) */
1961 /* Disable PF in HW blocks */
1962 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1963 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1965 if (p_dev->recov_in_prog) {
1966 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1967 "Recovery is in progress -> skip sending unload_req/done\n");
1971 /* Send unload command to MCP */
1972 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1973 DRV_MSG_CODE_UNLOAD_REQ,
1974 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1975 &unload_resp, &unload_param);
1976 if (rc != ECORE_SUCCESS) {
1977 DP_NOTICE(p_hwfn, true,
1978 "ecore_hw_reset: UNLOAD_REQ failed\n");
1979 /* @@TBD - what to do? for now, assume ENG. */
1980 unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1983 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1984 DRV_MSG_CODE_UNLOAD_DONE,
1985 0, &unload_resp, &unload_param);
1986 if (rc != ECORE_SUCCESS) {
1988 true, "ecore_hw_reset: UNLOAD_DONE failed\n");
1989 /* @@@TBD - Should it really ASSERT here ? */
1997 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1998 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2000 ecore_ptt_pool_free(p_hwfn);
2001 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2004 /* Setup bar access */
2005 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2007 /* clear indirect access */
2008 if (ECORE_IS_AH(p_hwfn->p_dev)) {
2009 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2010 PGLUE_B_REG_PGL_ADDR_E8_F0, 0);
2011 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2012 PGLUE_B_REG_PGL_ADDR_EC_F0, 0);
2013 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2014 PGLUE_B_REG_PGL_ADDR_F0_F0, 0);
2015 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2016 PGLUE_B_REG_PGL_ADDR_F4_F0, 0);
2018 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2019 PGLUE_B_REG_PGL_ADDR_88_F0, 0);
2020 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2021 PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
2022 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2023 PGLUE_B_REG_PGL_ADDR_90_F0, 0);
2024 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2025 PGLUE_B_REG_PGL_ADDR_94_F0, 0);
2028 /* Clean Previous errors if such exist */
2029 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2030 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2032 /* enable internal target-read */
2033 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2034 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2037 static void get_function_id(struct ecore_hwfn *p_hwfn)
2040 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2041 PXP_PF_ME_OPAQUE_ADDR);
2043 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2045 /* Bits 16-19 from the ME registers are the pf_num */
2046 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2047 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2048 PXP_CONCRETE_FID_PFID);
2049 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2050 PXP_CONCRETE_FID_PORT);
2052 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2053 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2054 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2057 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2059 u32 *feat_num = p_hwfn->hw_info.feat_num;
2060 int num_features = 1;
2062 /* L2 Queues require each: 1 status block. 1 L2 queue */
2063 feat_num[ECORE_PF_L2_QUE] =
2065 RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2066 RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2068 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2069 "#PF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
2070 feat_num[ECORE_PF_L2_QUE],
2071 feat_num[ECORE_RDMA_CNQ],
2072 RESC_NUM(p_hwfn, ECORE_SB), num_features);
2075 static enum resource_id_enum
2076 ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
2078 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2082 mfw_res_id = RESOURCE_NUM_SB_E;
2084 case ECORE_L2_QUEUE:
2085 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2088 mfw_res_id = RESOURCE_NUM_VPORT_E;
2091 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2094 mfw_res_id = RESOURCE_NUM_PQ_E;
2097 mfw_res_id = RESOURCE_NUM_RL_E;
2101 /* Each VFC resource can accommodate both a MAC and a VLAN */
2102 mfw_res_id = RESOURCE_VFC_FILTER_E;
2105 mfw_res_id = RESOURCE_ILT_E;
2107 case ECORE_LL2_QUEUE:
2108 mfw_res_id = RESOURCE_LL2_QUEUE_E;
2110 case ECORE_RDMA_CNQ_RAM:
2111 case ECORE_CMDQS_CQS:
2112 /* CNQ/CMDQS are the same resource */
2113 mfw_res_id = RESOURCE_CQS_E;
2115 case ECORE_RDMA_STATS_QUEUE:
2116 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2125 static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
2126 enum ecore_resources res_id)
2128 u8 num_funcs = p_hwfn->num_funcs_on_engine;
2129 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2130 struct ecore_sb_cnt_info sb_cnt_info;
2131 u32 dflt_resc_num = 0;
2135 OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2136 ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2137 dflt_resc_num = sb_cnt_info.sb_cnt;
2139 case ECORE_L2_QUEUE:
2140 dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2141 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2144 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2145 MAX_NUM_VPORTS_BB) / num_funcs;
2148 dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2149 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2152 dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2153 MAX_QM_TX_QUEUES_BB) / num_funcs;
2156 dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2160 /* Each VFC resource can accommodate both a MAC and a VLAN */
2161 dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2164 dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2165 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2167 case ECORE_LL2_QUEUE:
2168 dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2170 case ECORE_RDMA_CNQ_RAM:
2171 case ECORE_CMDQS_CQS:
2172 /* CNQ/CMDQS are the same resource */
2174 dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2176 case ECORE_RDMA_STATS_QUEUE:
2178 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2179 MAX_NUM_VPORTS_BB) / num_funcs;
2185 return dflt_resc_num;
2188 static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2193 case ECORE_L2_QUEUE:
2207 case ECORE_RDMA_CNQ_RAM:
2208 return "RDMA_CNQ_RAM";
2211 case ECORE_LL2_QUEUE:
2213 case ECORE_CMDQS_CQS:
2215 case ECORE_RDMA_STATS_QUEUE:
2216 return "RDMA_STATS_QUEUE";
2218 return "UNKNOWN_RESOURCE";
2222 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2223 enum ecore_resources res_id,
2224 bool drv_resc_alloc)
2226 u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
2227 u32 *p_resc_num, *p_resc_start;
2228 struct resource_info resc_info;
2229 enum _ecore_status_t rc;
2231 p_resc_num = &RESC_NUM(p_hwfn, res_id);
2232 p_resc_start = &RESC_START(p_hwfn, res_id);
2234 dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
2235 if (!dflt_resc_num) {
2237 "Failed to get default amount for resource %d [%s]\n",
2238 res_id, ecore_hw_get_resc_name(res_id));
2241 dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
2244 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2245 *p_resc_num = dflt_resc_num;
2246 *p_resc_start = dflt_resc_start;
2251 OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
2252 resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
2253 if (resc_info.res_id == RESOURCE_NUM_INVALID) {
2255 "Failed to match resource %d with MFW resources\n",
2260 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
2261 &mcp_resp, &mcp_param);
2262 if (rc != ECORE_SUCCESS) {
2263 DP_NOTICE(p_hwfn, true,
2264 "MFW response failure for an allocation request for"
2265 " resource %d [%s]\n",
2266 res_id, ecore_hw_get_resc_name(res_id));
2270 /* Default driver values are applied in the following cases:
2271 * - The resource allocation MB command is not supported by the MFW
2272 * - There is an internal error in the MFW while processing the request
2273 * - The resource ID is unknown to the MFW
2275 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
2276 mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
2279 "Resource %d [%s]: No allocation info was received"
2280 " [mcp_resp 0x%x]. Applying default values"
2281 " [num %d, start %d].\n",
2282 res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
2283 dflt_resc_num, dflt_resc_start);
2285 *p_resc_num = dflt_resc_num;
2286 *p_resc_start = dflt_resc_start;
2290 /* TBD - remove this when revising the handling of the SB resource */
2291 if (res_id == ECORE_SB) {
2292 /* Excluding the slowpath SB */
2293 resc_info.size -= 1;
2294 resc_info.offset -= p_hwfn->enabled_func_idx;
2297 *p_resc_num = resc_info.size;
2298 *p_resc_start = resc_info.offset;
2300 if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2302 "Resource %d [%s]: MFW allocation [num %d, start %d] differs from default values [num %d, start %d]%s\n",
2303 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
2304 *p_resc_start, dflt_resc_num, dflt_resc_start,
2305 drv_resc_alloc ? " - Applying default values" : "");
2306 if (drv_resc_alloc) {
2307 *p_resc_num = dflt_resc_num;
2308 *p_resc_start = dflt_resc_start;
2312 return ECORE_SUCCESS;
2315 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2316 bool drv_resc_alloc)
2318 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2319 enum _ecore_status_t rc;
2322 u32 *resc_start = p_hwfn->hw_info.resc_start;
2323 u32 *resc_num = p_hwfn->hw_info.resc_num;
2324 /* For AH, an equal share of the ILT lines between the maximal number of
2325 * PFs is not enough for RoCE. This would be solved by the future
2326 * resource allocation scheme, but isn't currently present for
2327 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2328 * to work - the BB number of ILT lines divided by its max PFs number.
2330 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2333 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2334 rc = ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
2335 if (rc != ECORE_SUCCESS)
2340 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2341 /* Reduced build contains less PQs */
2342 if (!(p_hwfn->p_dev->b_is_emul_full)) {
2343 resc_num[ECORE_PQ] = 32;
2344 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2345 p_hwfn->enabled_func_idx;
2348 /* For AH emulation, since we have a possible maximal number of
2349 * 16 enabled PFs, in case there are not enough ILT lines -
2350 * allocate only first PF as RoCE and have all the other ETH
2351 * only with less ILT lines.
2353 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2354 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2355 resc_num[ECORE_ILT],
2356 roce_min_ilt_lines);
2359 /* Correct the common ILT calculation if PF0 has more */
2360 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2361 p_hwfn->p_dev->b_is_emul_full &&
2362 p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2363 resc_start[ECORE_ILT] += roce_min_ilt_lines -
2364 resc_num[ECORE_ILT];
2367 /* Sanity for ILT */
2368 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2369 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2370 DP_NOTICE(p_hwfn, true,
2371 "Can't assign ILT pages [%08x,...,%08x]\n",
2372 RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2378 ecore_hw_set_feat(p_hwfn);
2380 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2381 "The numbers for each resource are:\n");
2382 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2383 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2384 ecore_hw_get_resc_name(res_id),
2385 RESC_NUM(p_hwfn, res_id),
2386 RESC_START(p_hwfn, res_id));
2388 return ECORE_SUCCESS;
2391 static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2392 struct ecore_ptt *p_ptt)
2394 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
2395 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2396 struct ecore_mcp_link_params *link;
2398 /* Read global nvm_cfg address */
2399 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2401 /* Verify MCP has initialized it */
2402 if (!nvm_cfg_addr) {
2403 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2407 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
2409 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2411 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2412 OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2415 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2417 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2418 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2419 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2420 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2422 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2423 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2425 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2426 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2428 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2429 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2431 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2432 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2434 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2435 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2437 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2438 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2440 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2441 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2443 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2444 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
2446 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2447 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2449 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2450 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2453 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2458 /* Read DCBX configuration */
2459 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2460 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2461 dcbx_mode = ecore_rd(p_hwfn, p_ptt,
2463 OFFSETOF(struct nvm_cfg1_port, generic_cont0));
2464 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
2465 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
2466 switch (dcbx_mode) {
2467 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
2468 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
2470 case NVM_CFG1_PORT_DCBX_MODE_CEE:
2471 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
2473 case NVM_CFG1_PORT_DCBX_MODE_IEEE:
2474 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
2477 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
2480 /* Read default link configuration */
2481 link = &p_hwfn->mcp_info->link_input;
2482 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2483 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2484 link_temp = ecore_rd(p_hwfn, p_ptt,
2486 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2487 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2488 link->speed.advertised_speeds = link_temp;
2490 link_temp = link->speed.advertised_speeds;
2491 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2493 link_temp = ecore_rd(p_hwfn, p_ptt,
2495 OFFSETOF(struct nvm_cfg1_port, link_settings));
2496 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2497 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2498 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2499 link->speed.autoneg = true;
2501 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2502 link->speed.forced_speed = 1000;
2504 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2505 link->speed.forced_speed = 10000;
2507 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2508 link->speed.forced_speed = 25000;
2510 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2511 link->speed.forced_speed = 40000;
2513 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2514 link->speed.forced_speed = 50000;
2516 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2517 link->speed.forced_speed = 100000;
2520 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2523 p_hwfn->mcp_info->link_capabilities.default_speed =
2524 link->speed.forced_speed;
2525 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2526 link->speed.autoneg;
2528 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2529 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2530 link->pause.autoneg = !!(link_temp &
2531 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2532 link->pause.forced_rx = !!(link_temp &
2533 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2534 link->pause.forced_tx = !!(link_temp &
2535 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2536 link->loopback_mode = 0;
2538 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2539 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2540 link->speed.forced_speed, link->speed.advertised_speeds,
2541 link->speed.autoneg, link->pause.autoneg);
2543 /* Read Multi-function information from shmem */
2544 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2545 OFFSETOF(struct nvm_cfg1, glob) +
2546 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
2548 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
2550 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2551 NVM_CFG1_GLOB_MF_MODE_OFFSET;
2554 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2555 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
2557 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2558 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
2560 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2561 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
2564 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2565 p_hwfn->p_dev->mf_mode);
2567 /* Read Multi-function information from shmem */
2568 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2569 OFFSETOF(struct nvm_cfg1, glob) +
2570 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
2572 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
2573 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2574 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
2575 &p_hwfn->hw_info.device_capabilities);
2576 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2577 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
2578 &p_hwfn->hw_info.device_capabilities);
2579 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2580 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
2581 &p_hwfn->hw_info.device_capabilities);
2582 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2583 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
2584 &p_hwfn->hw_info.device_capabilities);
2585 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
2586 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
2587 &p_hwfn->hw_info.device_capabilities);
2589 return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2592 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
2593 struct ecore_ptt *p_ptt)
2595 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2596 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2597 struct ecore_dev *p_dev = p_hwfn->p_dev;
2599 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2601 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2602 * in the other bits are selected.
2603 * Bits 1-15 are for functions 1-15, respectively, and their value is
2604 * '0' only for enabled functions (function 0 always exists and
2606 * In case of CMT in BB, only the "even" functions are enabled, and thus
2607 * the number of functions for both hwfns is learnt from the same bits.
2609 reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2611 if (reg_function_hide & 0x1) {
2612 if (ECORE_IS_BB(p_dev)) {
2613 if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
2625 /* Get the number of the enabled functions on the engine */
2626 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2633 /* Get the PF index within the enabled functions */
2634 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2635 tmp = reg_function_hide & eng_mask & low_pfs_mask;
2643 p_hwfn->num_funcs_on_engine = num_funcs;
2644 p_hwfn->enabled_func_idx = enabled_func_idx;
2647 if (CHIP_REV_IS_FPGA(p_dev)) {
2648 DP_NOTICE(p_hwfn, false,
2649 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
2650 p_hwfn->num_funcs_on_engine = 4;
2654 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2655 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2656 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
2657 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2660 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
2661 struct ecore_ptt *p_ptt)
2666 /* Read the port mode */
2667 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
2669 else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
2670 (p_hwfn->p_dev->num_hwfns > 1))
2671 /* In CMT on emulation, assume 1 port */
2675 port_mode = ecore_rd(p_hwfn, p_ptt,
2676 CNIG_REG_NW_PORT_MODE_BB_B0);
2678 if (port_mode < 3) {
2679 p_hwfn->p_dev->num_ports_in_engines = 1;
2680 } else if (port_mode <= 5) {
2681 p_hwfn->p_dev->num_ports_in_engines = 2;
2683 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
2684 p_hwfn->p_dev->num_ports_in_engines);
2686 /* Default num_ports_in_engines to something */
2687 p_hwfn->p_dev->num_ports_in_engines = 1;
2691 static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
2692 struct ecore_ptt *p_ptt)
2697 p_hwfn->p_dev->num_ports_in_engines = 0;
2700 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2701 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
2702 switch ((port & 0xf000) >> 12) {
2704 p_hwfn->p_dev->num_ports_in_engines = 1;
2707 p_hwfn->p_dev->num_ports_in_engines = 2;
2710 p_hwfn->p_dev->num_ports_in_engines = 4;
2713 DP_NOTICE(p_hwfn, false,
2714 "Unknown port mode in ECO_RESERVED %08x\n",
2719 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2720 port = ecore_rd(p_hwfn, p_ptt,
2721 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2723 p_hwfn->p_dev->num_ports_in_engines++;
2727 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
2728 struct ecore_ptt *p_ptt)
2730 if (ECORE_IS_BB(p_hwfn->p_dev))
2731 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
2733 ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
2736 static enum _ecore_status_t
2737 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2738 enum ecore_pci_personality personality, bool drv_resc_alloc)
2740 enum _ecore_status_t rc;
2742 /* Since all information is common, only first hwfns should do this */
2743 if (IS_LEAD_HWFN(p_hwfn)) {
2744 rc = ecore_iov_hw_info(p_hwfn);
2745 if (rc != ECORE_SUCCESS)
2749 /* TODO In get_hw_info, amoungst others:
2750 * Get MCP FW revision and determine according to it the supported
2751 * featrues (e.g. DCB)
2753 * ecore_get_pcie_width_speed, WOL capability.
2754 * Number of global CQ-s (for storage
2756 ecore_hw_info_port_num(p_hwfn, p_ptt);
2759 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
2761 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt);
2762 if (rc != ECORE_SUCCESS)
2768 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
2769 if (rc != ECORE_SUCCESS)
2773 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
2775 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
2776 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
2779 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
2781 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
2782 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
2786 if (ecore_mcp_is_init(p_hwfn)) {
2787 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
2788 p_hwfn->hw_info.ovlan =
2789 p_hwfn->mcp_info->func_info.ovlan;
2791 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
2794 if (personality != ECORE_PCI_DEFAULT) {
2795 p_hwfn->hw_info.personality = personality;
2796 } else if (ecore_mcp_is_init(p_hwfn)) {
2797 enum ecore_pci_personality protocol;
2799 protocol = p_hwfn->mcp_info->func_info.protocol;
2800 p_hwfn->hw_info.personality = protocol;
2804 /* To overcome ILT lack for emulation, until at least until we'll have
2805 * a definite answer from system about it, allow only PF0 to be RoCE.
2807 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
2808 if (!p_hwfn->rel_pf_id)
2809 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2811 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2815 /* although in BB some constellations may support more than 4 tcs,
2816 * that can result in performance penalty in some cases. 4
2817 * represents a good tradeoff between performance and flexibility.
2819 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2821 /* start out with a single active tc. This can be increased either
2822 * by dcbx negotiation or by upper layer driver
2824 p_hwfn->hw_info.num_active_tc = 1;
2826 ecore_get_num_funcs(p_hwfn, p_ptt);
2828 /* In case of forcing the driver's default resource allocation, calling
2829 * ecore_hw_get_resc() should come after initializing the personality
2830 * and after getting the number of functions, since the calculation of
2831 * the resources/features depends on them.
2832 * This order is not harmful if not forcing.
2834 return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
2837 #define ECORE_DEV_ID_MASK 0xff00
2838 #define ECORE_DEV_ID_MASK_BB 0x1600
2839 #define ECORE_DEV_ID_MASK_AH 0x8000
2841 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
2843 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2846 /* Read Vendor Id / Device Id */
2847 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
2849 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
2852 /* Determine type */
2853 if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
2854 p_dev->type = ECORE_DEV_TYPE_AH;
2856 p_dev->type = ECORE_DEV_TYPE_BB;
2858 p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2859 MISCS_REG_CHIP_NUM);
2860 p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2861 MISCS_REG_CHIP_REV);
2863 MASK_FIELD(CHIP_REV, p_dev->chip_rev);
2865 /* Learn number of HW-functions */
2866 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2867 MISCS_REG_CMT_ENABLED_FOR_PAIR);
2869 if (tmp & (1 << p_hwfn->rel_pf_id)) {
2870 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
2871 p_dev->num_hwfns = 2;
2873 p_dev->num_hwfns = 1;
2877 if (CHIP_REV_IS_EMUL(p_dev)) {
2878 /* For some reason we have problems with this register
2879 * in B0 emulation; Simply assume no CMT
2881 DP_NOTICE(p_dev->hwfns, false,
2882 "device on emul - assume no CMT\n");
2883 p_dev->num_hwfns = 1;
2887 p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2888 MISCS_REG_CHIP_TEST_REG) >> 4;
2889 MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
2890 p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2891 MISCS_REG_CHIP_METAL);
2892 MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
2893 DP_INFO(p_dev->hwfns,
2894 "Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2895 ECORE_IS_BB(p_dev) ? "BB" : "AH",
2896 CHIP_REV_IS_A0(p_dev) ? 0 : 1,
2897 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
2900 if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
2901 DP_NOTICE(p_dev->hwfns, false,
2902 "The chip type/rev (BB A0) is not supported!\n");
2903 return ECORE_ABORTED;
2906 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
2907 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2908 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
2910 if (CHIP_REV_IS_EMUL(p_dev)) {
2911 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2912 MISCS_REG_ECO_RESERVED);
2913 if (tmp & (1 << 29)) {
2914 DP_NOTICE(p_hwfn, false,
2915 "Emulation: Running on a FULL build\n");
2916 p_dev->b_is_emul_full = true;
2918 DP_NOTICE(p_hwfn, false,
2919 "Emulation: Running on a REDUCED build\n");
2924 return ECORE_SUCCESS;
2927 #ifndef LINUX_REMOVE
2928 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
2935 for_each_hwfn(p_dev, j) {
2936 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2938 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2939 "Mark hw/fw uninitialized\n");
2941 p_hwfn->hw_init_done = false;
2942 p_hwfn->first_on_engine = false;
2944 ecore_ptt_invalidate(p_hwfn);
2949 static enum _ecore_status_t
2950 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
2951 void OSAL_IOMEM * p_regview,
2952 void OSAL_IOMEM * p_doorbells,
2953 struct ecore_hw_prepare_params *p_params)
2955 struct ecore_dev *p_dev = p_hwfn->p_dev;
2956 struct ecore_mdump_info mdump_info;
2957 enum _ecore_status_t rc = ECORE_SUCCESS;
2959 /* Split PCI bars evenly between hwfns */
2960 p_hwfn->regview = p_regview;
2961 p_hwfn->doorbells = p_doorbells;
2964 return ecore_vf_hw_prepare(p_hwfn);
2966 /* Validate that chip access is feasible */
2967 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2969 "Reading the ME register returns all Fs; Preventing further chip access\n");
2973 get_function_id(p_hwfn);
2975 /* Allocate PTT pool */
2976 rc = ecore_ptt_pool_alloc(p_hwfn);
2978 DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
2982 /* Allocate the main PTT */
2983 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2985 /* First hwfn learns basic information, e.g., number of hwfns */
2986 if (!p_hwfn->my_id) {
2987 rc = ecore_get_dev_info(p_dev);
2988 if (rc != ECORE_SUCCESS)
2992 ecore_hw_hwfn_prepare(p_hwfn);
2994 /* Initialize MCP structure */
2995 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
2997 DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3001 /* Read the device configuration information from the HW and SHMEM */
3002 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3003 p_params->personality, p_params->drv_resc_alloc);
3005 DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3009 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3010 * called, since among others it sets the ports number in an engine.
3012 if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
3013 !p_dev->recov_in_prog) {
3014 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3015 if (rc != ECORE_SUCCESS)
3016 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3019 /* Check if mdump logs are present and update the epoch value */
3020 if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
3021 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
3023 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
3024 DP_NOTICE(p_hwfn, false,
3025 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
3028 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
3032 /* Allocate the init RT array and initialize the init-ops engine */
3033 rc = ecore_init_alloc(p_hwfn);
3035 DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3039 if (CHIP_REV_IS_FPGA(p_dev)) {
3040 DP_NOTICE(p_hwfn, false,
3041 "FPGA: workaround; Prevent DMAE parities\n");
3042 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
3044 DP_NOTICE(p_hwfn, false,
3045 "FPGA: workaround: Set VF bar0 size\n");
3046 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3047 PGLUE_B_REG_VF_BAR0_SIZE, 4);
3053 if (IS_LEAD_HWFN(p_hwfn))
3054 ecore_iov_free_hw_info(p_dev);
3055 ecore_mcp_free(p_hwfn);
3057 ecore_hw_hwfn_free(p_hwfn);
3062 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3063 struct ecore_hw_prepare_params *p_params)
3065 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3066 enum _ecore_status_t rc;
3068 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3070 /* Store the precompiled init data ptrs */
3072 ecore_init_iro_array(p_dev);
3074 /* Initialize the first hwfn - will learn number of hwfns */
3075 rc = ecore_hw_prepare_single(p_hwfn,
3077 p_dev->doorbells, p_params);
3078 if (rc != ECORE_SUCCESS)
3081 p_params->personality = p_hwfn->hw_info.personality;
3083 /* initilalize 2nd hwfn if necessary */
3084 if (p_dev->num_hwfns > 1) {
3085 void OSAL_IOMEM *p_regview, *p_doorbell;
3086 u8 OSAL_IOMEM *addr;
3088 /* adjust bar offset for second engine */
3089 addr = (u8 OSAL_IOMEM *)p_dev->regview +
3090 ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3091 p_regview = (void OSAL_IOMEM *)addr;
3093 addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3094 ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3095 p_doorbell = (void OSAL_IOMEM *)addr;
3097 /* prepare second hw function */
3098 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3099 p_doorbell, p_params);
3101 /* in case of error, need to free the previously
3102 * initiliazed hwfn 0.
3104 if (rc != ECORE_SUCCESS) {
3106 ecore_init_free(p_hwfn);
3107 ecore_mcp_free(p_hwfn);
3108 ecore_hw_hwfn_free(p_hwfn);
3110 DP_NOTICE(p_dev, true,
3111 "What do we need to free when VF hwfn1 init fails\n");
3120 void ecore_hw_remove(struct ecore_dev *p_dev)
3124 for_each_hwfn(p_dev, i) {
3125 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3128 ecore_vf_pf_release(p_hwfn);
3132 ecore_init_free(p_hwfn);
3133 ecore_hw_hwfn_free(p_hwfn);
3134 ecore_mcp_free(p_hwfn);
3136 OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3139 ecore_iov_free_hw_info(p_dev);
3142 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3143 struct ecore_chain *p_chain)
3145 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3146 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3147 struct ecore_chain_next *p_next;
3153 size = p_chain->elem_size * p_chain->usable_per_page;
3155 for (i = 0; i < p_chain->page_cnt; i++) {
3159 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3160 p_virt_next = p_next->next_virt;
3161 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3163 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3164 ECORE_CHAIN_PAGE_SIZE);
3166 p_virt = p_virt_next;
3167 p_phys = p_phys_next;
3171 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3172 struct ecore_chain *p_chain)
3174 if (!p_chain->p_virt_addr)
3177 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3178 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3181 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3182 struct ecore_chain *p_chain)
3184 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3185 u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
3186 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3188 if (!pp_virt_addr_tbl)
3191 if (!p_chain->pbl.p_virt_table)
3194 for (i = 0; i < page_cnt; i++) {
3195 if (!pp_virt_addr_tbl[i])
3198 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3199 *(dma_addr_t *)p_pbl_virt,
3200 ECORE_CHAIN_PAGE_SIZE);
3202 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3205 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3207 if (!p_chain->pbl.external)
3208 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
3209 p_chain->pbl.p_phys_table, pbl_size);
3211 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3214 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3216 switch (p_chain->mode) {
3217 case ECORE_CHAIN_MODE_NEXT_PTR:
3218 ecore_chain_free_next_ptr(p_dev, p_chain);
3220 case ECORE_CHAIN_MODE_SINGLE:
3221 ecore_chain_free_single(p_dev, p_chain);
3223 case ECORE_CHAIN_MODE_PBL:
3224 ecore_chain_free_pbl(p_dev, p_chain);
3229 static enum _ecore_status_t
3230 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3231 enum ecore_chain_cnt_type cnt_type,
3232 osal_size_t elem_size, u32 page_cnt)
3234 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3236 /* The actual chain size can be larger than the maximal possible value
3237 * after rounding up the requested elements number to pages, and after
3238 * taking into acount the unusuable elements (next-ptr elements).
3239 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3240 * size/capacity fields are of a u32 type.
3242 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3243 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3244 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3245 chain_size > ECORE_U32_MAX)) {
3246 DP_NOTICE(p_dev, true,
3247 "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3248 (unsigned long)chain_size);
3252 return ECORE_SUCCESS;
3255 static enum _ecore_status_t
3256 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3258 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3259 dma_addr_t p_phys = 0;
3262 for (i = 0; i < p_chain->page_cnt; i++) {
3263 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3264 ECORE_CHAIN_PAGE_SIZE);
3266 DP_NOTICE(p_dev, true,
3267 "Failed to allocate chain memory\n");
3272 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3273 ecore_chain_reset(p_chain);
3275 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3279 p_virt_prev = p_virt;
3281 /* Last page's next element should point to the beginning of the
3284 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3285 p_chain->p_virt_addr,
3286 p_chain->p_phys_addr);
3288 return ECORE_SUCCESS;
3291 static enum _ecore_status_t
3292 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3294 dma_addr_t p_phys = 0;
3295 void *p_virt = OSAL_NULL;
3297 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3299 DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3303 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3304 ecore_chain_reset(p_chain);
3306 return ECORE_SUCCESS;
3309 static enum _ecore_status_t
3310 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3311 struct ecore_chain *p_chain,
3312 struct ecore_chain_ext_pbl *ext_pbl)
3314 void *p_virt = OSAL_NULL;
3315 u8 *p_pbl_virt = OSAL_NULL;
3316 void **pp_virt_addr_tbl = OSAL_NULL;
3317 dma_addr_t p_phys = 0, p_pbl_phys = 0;
3318 u32 page_cnt = p_chain->page_cnt, size, i;
3320 size = page_cnt * sizeof(*pp_virt_addr_tbl);
3321 pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
3322 if (!pp_virt_addr_tbl) {
3323 DP_NOTICE(p_dev, true,
3324 "Failed to allocate memory for the chain virtual addresses table\n");
3327 OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
3329 /* The allocation of the PBL table is done with its full size, since it
3330 * is expected to be successive.
3331 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3332 * failure, since pp_virt_addr_tbl was previously allocated, and it
3333 * should be saved to allow its freeing during the error flow.
3335 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3337 if (ext_pbl == OSAL_NULL) {
3338 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3340 p_pbl_virt = ext_pbl->p_pbl_virt;
3341 p_pbl_phys = ext_pbl->p_pbl_phys;
3342 p_chain->pbl.external = true;
3345 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3348 DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3352 for (i = 0; i < page_cnt; i++) {
3353 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3354 ECORE_CHAIN_PAGE_SIZE);
3356 DP_NOTICE(p_dev, true,
3357 "Failed to allocate chain memory\n");
3362 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3363 ecore_chain_reset(p_chain);
3366 /* Fill the PBL table with the physical address of the page */
3367 *(dma_addr_t *)p_pbl_virt = p_phys;
3368 /* Keep the virtual address of the page */
3369 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3371 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3374 return ECORE_SUCCESS;
3377 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3378 enum ecore_chain_use_mode intended_use,
3379 enum ecore_chain_mode mode,
3380 enum ecore_chain_cnt_type cnt_type,
3381 u32 num_elems, osal_size_t elem_size,
3382 struct ecore_chain *p_chain,
3383 struct ecore_chain_ext_pbl *ext_pbl)
3386 enum _ecore_status_t rc = ECORE_SUCCESS;
3388 if (mode == ECORE_CHAIN_MODE_SINGLE)
3391 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3393 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3396 DP_NOTICE(p_dev, true,
3397 "Cannot allocate a chain with the given arguments:\n"
3398 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3399 intended_use, mode, cnt_type, num_elems, elem_size);
3403 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3404 mode, cnt_type, p_dev->dp_ctx);
3407 case ECORE_CHAIN_MODE_NEXT_PTR:
3408 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3410 case ECORE_CHAIN_MODE_SINGLE:
3411 rc = ecore_chain_alloc_single(p_dev, p_chain);
3413 case ECORE_CHAIN_MODE_PBL:
3414 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
3420 return ECORE_SUCCESS;
3423 ecore_chain_free(p_dev, p_chain);
3427 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3428 u16 src_id, u16 *dst_id)
3430 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3433 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3434 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3435 DP_NOTICE(p_hwfn, true,
3436 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3442 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3444 return ECORE_SUCCESS;
3447 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3448 u8 src_id, u8 *dst_id)
3450 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3453 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3454 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3455 DP_NOTICE(p_hwfn, true,
3456 "vport id [%d] is not valid, available indices [%d - %d]\n",
3462 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3464 return ECORE_SUCCESS;
3467 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3468 u8 src_id, u8 *dst_id)
3470 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3473 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3474 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3475 DP_NOTICE(p_hwfn, true,
3476 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3482 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3484 return ECORE_SUCCESS;
3487 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3488 struct ecore_ptt *p_ptt,
3494 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3495 return ECORE_SUCCESS;
3497 high = p_filter[1] | (p_filter[0] << 8);
3498 low = p_filter[5] | (p_filter[4] << 8) |
3499 (p_filter[3] << 16) | (p_filter[2] << 24);
3501 /* Find a free entry and utilize it */
3502 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3503 en = ecore_rd(p_hwfn, p_ptt,
3504 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3507 ecore_wr(p_hwfn, p_ptt,
3508 NIG_REG_LLH_FUNC_FILTER_VALUE +
3509 2 * i * sizeof(u32), low);
3510 ecore_wr(p_hwfn, p_ptt,
3511 NIG_REG_LLH_FUNC_FILTER_VALUE +
3512 (2 * i + 1) * sizeof(u32), high);
3513 ecore_wr(p_hwfn, p_ptt,
3514 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3515 ecore_wr(p_hwfn, p_ptt,
3516 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3517 i * sizeof(u32), 0);
3518 ecore_wr(p_hwfn, p_ptt,
3519 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3522 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3523 DP_NOTICE(p_hwfn, false,
3524 "Failed to find an empty LLH filter to utilize\n");
3528 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3529 "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
3530 p_filter[0], p_filter[1], p_filter[2],
3531 p_filter[3], p_filter[4], p_filter[5], i);
3533 return ECORE_SUCCESS;
3536 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
3537 struct ecore_ptt *p_ptt, u8 *p_filter)
3542 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3545 high = p_filter[1] | (p_filter[0] << 8);
3546 low = p_filter[5] | (p_filter[4] << 8) |
3547 (p_filter[3] << 16) | (p_filter[2] << 24);
3549 /* Find the entry and clean it */
3550 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3551 if (ecore_rd(p_hwfn, p_ptt,
3552 NIG_REG_LLH_FUNC_FILTER_VALUE +
3553 2 * i * sizeof(u32)) != low)
3555 if (ecore_rd(p_hwfn, p_ptt,
3556 NIG_REG_LLH_FUNC_FILTER_VALUE +
3557 (2 * i + 1) * sizeof(u32)) != high)
3560 ecore_wr(p_hwfn, p_ptt,
3561 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3562 ecore_wr(p_hwfn, p_ptt,
3563 NIG_REG_LLH_FUNC_FILTER_VALUE +
3564 2 * i * sizeof(u32), 0);
3565 ecore_wr(p_hwfn, p_ptt,
3566 NIG_REG_LLH_FUNC_FILTER_VALUE +
3567 (2 * i + 1) * sizeof(u32), 0);
3570 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3571 DP_NOTICE(p_hwfn, false,
3572 "Tried to remove a non-configured filter\n");
3575 enum _ecore_status_t
3576 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
3577 struct ecore_ptt *p_ptt,
3578 u16 source_port_or_eth_type,
3580 enum ecore_llh_port_filter_type_t type)
3585 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3586 return ECORE_SUCCESS;
3591 case ECORE_LLH_FILTER_ETHERTYPE:
3592 high = source_port_or_eth_type;
3594 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3595 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3596 low = source_port_or_eth_type << 16;
3598 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3599 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3602 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3603 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3604 low = (source_port_or_eth_type << 16) | dest_port;
3607 DP_NOTICE(p_hwfn, true,
3608 "Non valid LLH protocol filter type %d\n", type);
3611 /* Find a free entry and utilize it */
3612 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3613 en = ecore_rd(p_hwfn, p_ptt,
3614 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3617 ecore_wr(p_hwfn, p_ptt,
3618 NIG_REG_LLH_FUNC_FILTER_VALUE +
3619 2 * i * sizeof(u32), low);
3620 ecore_wr(p_hwfn, p_ptt,
3621 NIG_REG_LLH_FUNC_FILTER_VALUE +
3622 (2 * i + 1) * sizeof(u32), high);
3623 ecore_wr(p_hwfn, p_ptt,
3624 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3625 ecore_wr(p_hwfn, p_ptt,
3626 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3627 i * sizeof(u32), 1 << type);
3628 ecore_wr(p_hwfn, p_ptt,
3629 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3632 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3633 DP_NOTICE(p_hwfn, false,
3634 "Failed to find an empty LLH filter to utilize\n");
3635 return ECORE_NORESOURCES;
3638 case ECORE_LLH_FILTER_ETHERTYPE:
3639 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3640 "ETH type %x is added at %d\n",
3641 source_port_or_eth_type, i);
3643 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3644 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3645 "TCP src port %x is added at %d\n",
3646 source_port_or_eth_type, i);
3648 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3649 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3650 "UDP src port %x is added at %d\n",
3651 source_port_or_eth_type, i);
3653 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3654 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3655 "TCP dst port %x is added at %d\n", dest_port, i);
3657 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3658 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3659 "UDP dst port %x is added at %d\n", dest_port, i);
3661 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3662 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3663 "TCP src/dst ports %x/%x are added at %d\n",
3664 source_port_or_eth_type, dest_port, i);
3666 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3667 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3668 "UDP src/dst ports %x/%x are added at %d\n",
3669 source_port_or_eth_type, dest_port, i);
3672 return ECORE_SUCCESS;
3676 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
3677 struct ecore_ptt *p_ptt,
3678 u16 source_port_or_eth_type,
3680 enum ecore_llh_port_filter_type_t type)
3685 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3691 case ECORE_LLH_FILTER_ETHERTYPE:
3692 high = source_port_or_eth_type;
3694 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3695 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3696 low = source_port_or_eth_type << 16;
3698 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3699 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3702 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3703 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3704 low = (source_port_or_eth_type << 16) | dest_port;
3707 DP_NOTICE(p_hwfn, true,
3708 "Non valid LLH protocol filter type %d\n", type);
3712 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3713 if (!ecore_rd(p_hwfn, p_ptt,
3714 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3716 if (!ecore_rd(p_hwfn, p_ptt,
3717 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3719 if (!(ecore_rd(p_hwfn, p_ptt,
3720 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3721 i * sizeof(u32)) & (1 << type)))
3723 if (ecore_rd(p_hwfn, p_ptt,
3724 NIG_REG_LLH_FUNC_FILTER_VALUE +
3725 2 * i * sizeof(u32)) != low)
3727 if (ecore_rd(p_hwfn, p_ptt,
3728 NIG_REG_LLH_FUNC_FILTER_VALUE +
3729 (2 * i + 1) * sizeof(u32)) != high)
3732 ecore_wr(p_hwfn, p_ptt,
3733 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3734 ecore_wr(p_hwfn, p_ptt,
3735 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3736 ecore_wr(p_hwfn, p_ptt,
3737 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3738 i * sizeof(u32), 0);
3739 ecore_wr(p_hwfn, p_ptt,
3740 NIG_REG_LLH_FUNC_FILTER_VALUE +
3741 2 * i * sizeof(u32), 0);
3742 ecore_wr(p_hwfn, p_ptt,
3743 NIG_REG_LLH_FUNC_FILTER_VALUE +
3744 (2 * i + 1) * sizeof(u32), 0);
3748 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3749 DP_NOTICE(p_hwfn, false,
3750 "Tried to remove a non-configured filter\n");
3753 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
3754 struct ecore_ptt *p_ptt)
3758 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3761 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3762 ecore_wr(p_hwfn, p_ptt,
3763 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3764 ecore_wr(p_hwfn, p_ptt,
3765 NIG_REG_LLH_FUNC_FILTER_VALUE +
3766 2 * i * sizeof(u32), 0);
3767 ecore_wr(p_hwfn, p_ptt,
3768 NIG_REG_LLH_FUNC_FILTER_VALUE +
3769 (2 * i + 1) * sizeof(u32), 0);
3773 enum _ecore_status_t
3774 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
3775 struct ecore_ptt *p_ptt)
3777 if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
3778 ecore_wr(p_hwfn, p_ptt,
3779 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
3780 1 << p_hwfn->abs_pf_id / 2);
3781 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
3782 return ECORE_SUCCESS;
3785 DP_NOTICE(p_hwfn, false,
3786 "This function can't be set as default\n");
3790 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
3791 struct ecore_ptt *p_ptt,
3792 u32 hw_addr, void *p_eth_qzone,
3793 osal_size_t eth_qzone_size,
3796 struct coalescing_timeset *p_coal_timeset;
3798 if (IS_VF(p_hwfn->p_dev)) {
3799 DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
3803 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
3804 DP_NOTICE(p_hwfn, true,
3805 "Coalescing configuration not enabled\n");
3809 p_coal_timeset = p_eth_qzone;
3810 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
3811 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3812 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3813 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3815 return ECORE_SUCCESS;
3818 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
3819 struct ecore_ptt *p_ptt,
3820 u16 coalesce, u8 qid, u16 sb_id)
3822 struct ustorm_eth_queue_zone eth_qzone;
3823 u8 timeset, timer_res;
3826 enum _ecore_status_t rc;
3828 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3829 if (coalesce <= 0x7F) {
3831 } else if (coalesce <= 0xFF) {
3833 } else if (coalesce <= 0x1FF) {
3836 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3839 timeset = (u8)(coalesce >> timer_res);
3841 rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3842 if (rc != ECORE_SUCCESS)
3845 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3846 if (rc != ECORE_SUCCESS)
3849 address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3851 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
3852 sizeof(struct ustorm_eth_queue_zone), timeset);
3853 if (rc != ECORE_SUCCESS)
3856 p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
3861 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
3862 struct ecore_ptt *p_ptt,
3863 u16 coalesce, u8 qid, u16 sb_id)
3865 struct xstorm_eth_queue_zone eth_qzone;
3866 u8 timeset, timer_res;
3869 enum _ecore_status_t rc;
3871 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3872 if (coalesce <= 0x7F) {
3874 } else if (coalesce <= 0xFF) {
3876 } else if (coalesce <= 0x1FF) {
3879 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3883 timeset = (u8)(coalesce >> timer_res);
3885 rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3886 if (rc != ECORE_SUCCESS)
3889 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3890 if (rc != ECORE_SUCCESS)
3893 address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3895 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
3896 sizeof(struct xstorm_eth_queue_zone), timeset);
3897 if (rc != ECORE_SUCCESS)
3900 p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
3905 /* Calculate final WFQ values for all vports and configure it.
3906 * After this configuration each vport must have
3907 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
3909 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3910 struct ecore_ptt *p_ptt,
3913 struct init_qm_vport_params *vport_params;
3916 vport_params = p_hwfn->qm_info.qm_vport_params;
3918 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3919 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3921 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
3923 ecore_init_vport_wfq(p_hwfn, p_ptt,
3924 vport_params[i].first_tx_pq_id,
3925 vport_params[i].vport_wfq);
3930 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
3934 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3935 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3938 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3939 struct ecore_ptt *p_ptt,
3942 struct init_qm_vport_params *vport_params;
3945 vport_params = p_hwfn->qm_info.qm_vport_params;
3947 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3948 ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
3949 ecore_init_vport_wfq(p_hwfn, p_ptt,
3950 vport_params[i].first_tx_pq_id,
3951 vport_params[i].vport_wfq);
3955 /* This function performs several validations for WFQ
3956 * configuration and required min rate for a given vport
3957 * 1. req_rate must be greater than one percent of min_pf_rate.
3958 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3959 * rates to get less than one percent of min_pf_rate.
3960 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3962 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
3963 u16 vport_id, u32 req_rate,
3966 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3967 int non_requested_count = 0, req_count = 0, i, num_vports;
3969 num_vports = p_hwfn->qm_info.num_vports;
3971 /* Accounting for the vports which are configured for WFQ explicitly */
3973 for (i = 0; i < num_vports; i++) {
3976 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
3978 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3979 total_req_min_rate += tmp_speed;
3983 /* Include current vport data as well */
3985 total_req_min_rate += req_rate;
3986 non_requested_count = num_vports - req_count;
3988 /* validate possible error cases */
3989 if (req_rate > min_pf_rate) {
3990 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3991 "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3992 vport_id, req_rate, min_pf_rate);
3996 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
3997 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3998 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3999 vport_id, req_rate, min_pf_rate);
4003 /* TBD - for number of vports greater than 100 */
4004 if (num_vports > ECORE_WFQ_UNIT) {
4005 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4006 "Number of vports is greater than %d\n",
4011 if (total_req_min_rate > min_pf_rate) {
4012 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4013 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4014 total_req_min_rate, min_pf_rate);
4018 /* Data left for non requested vports */
4019 total_left_rate = min_pf_rate - total_req_min_rate;
4020 left_rate_per_vp = total_left_rate / non_requested_count;
4022 /* validate if non requested get < 1% of min bw */
4023 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
4024 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4025 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4026 left_rate_per_vp, min_pf_rate);
4030 /* now req_rate for given vport passes all scenarios.
4031 * assign final wfq rates to all vports.
4033 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4034 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4036 for (i = 0; i < num_vports; i++) {
4037 if (p_hwfn->qm_info.wfq_data[i].configured)
4040 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4043 return ECORE_SUCCESS;
4046 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4047 struct ecore_ptt *p_ptt,
4048 u16 vp_id, u32 rate)
4050 struct ecore_mcp_link_state *p_link;
4051 int rc = ECORE_SUCCESS;
4053 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4055 if (!p_link->min_pf_rate) {
4056 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4057 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4061 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4063 if (rc == ECORE_SUCCESS)
4064 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4065 p_link->min_pf_rate);
4067 DP_NOTICE(p_hwfn, false,
4068 "Validation failed while configuring min rate\n");
4073 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4074 struct ecore_ptt *p_ptt,
4077 bool use_wfq = false;
4078 int rc = ECORE_SUCCESS;
4081 /* Validate all pre configured vports for wfq */
4082 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4085 if (!p_hwfn->qm_info.wfq_data[i].configured)
4088 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4091 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4092 if (rc != ECORE_SUCCESS) {
4093 DP_NOTICE(p_hwfn, false,
4094 "WFQ validation failed while configuring min rate\n");
4099 if (rc == ECORE_SUCCESS && use_wfq)
4100 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4102 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4107 /* Main API for ecore clients to configure vport min rate.
4108 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4109 * rate - Speed in Mbps needs to be assigned to a given vport.
4111 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4113 int i, rc = ECORE_INVAL;
4115 /* TBD - for multiple hardware functions - that is 100 gig */
4116 if (p_dev->num_hwfns > 1) {
4117 DP_NOTICE(p_dev, false,
4118 "WFQ configuration is not supported for this device\n");
4122 for_each_hwfn(p_dev, i) {
4123 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4124 struct ecore_ptt *p_ptt;
4126 p_ptt = ecore_ptt_acquire(p_hwfn);
4128 return ECORE_TIMEOUT;
4130 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4132 if (rc != ECORE_SUCCESS) {
4133 ecore_ptt_release(p_hwfn, p_ptt);
4137 ecore_ptt_release(p_hwfn, p_ptt);
4143 /* API to configure WFQ from mcp link change */
4144 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4149 /* TBD - for multiple hardware functions - that is 100 gig */
4150 if (p_dev->num_hwfns > 1) {
4151 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4152 "WFQ configuration is not supported for this device\n");
4156 for_each_hwfn(p_dev, i) {
4157 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4159 __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4165 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4166 struct ecore_ptt *p_ptt,
4167 struct ecore_mcp_link_state *p_link,
4170 int rc = ECORE_SUCCESS;
4172 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4174 if (!p_link->line_speed && (max_bw != 100))
4177 p_link->speed = (p_link->line_speed * max_bw) / 100;
4178 p_hwfn->qm_info.pf_rl = p_link->speed;
4180 /* Since the limiter also affects Tx-switched traffic, we don't want it
4181 * to limit such traffic in case there's no actual limit.
4182 * In that case, set limit to imaginary high boundary.
4185 p_hwfn->qm_info.pf_rl = 100000;
4187 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4188 p_hwfn->qm_info.pf_rl);
4190 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4191 "Configured MAX bandwidth to be %08x Mb/sec\n",
4197 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4198 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4200 int i, rc = ECORE_INVAL;
4202 if (max_bw < 1 || max_bw > 100) {
4203 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4207 for_each_hwfn(p_dev, i) {
4208 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4209 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4210 struct ecore_mcp_link_state *p_link;
4211 struct ecore_ptt *p_ptt;
4213 p_link = &p_lead->mcp_info->link_output;
4215 p_ptt = ecore_ptt_acquire(p_hwfn);
4217 return ECORE_TIMEOUT;
4219 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4222 ecore_ptt_release(p_hwfn, p_ptt);
4224 if (rc != ECORE_SUCCESS)
4231 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4232 struct ecore_ptt *p_ptt,
4233 struct ecore_mcp_link_state *p_link,
4236 int rc = ECORE_SUCCESS;
4238 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4239 p_hwfn->qm_info.pf_wfq = min_bw;
4241 if (!p_link->line_speed)
4244 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4246 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4248 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4249 "Configured MIN bandwidth to be %d Mb/sec\n",
4250 p_link->min_pf_rate);
4255 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4256 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4258 int i, rc = ECORE_INVAL;
4260 if (min_bw < 1 || min_bw > 100) {
4261 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4265 for_each_hwfn(p_dev, i) {
4266 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4267 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4268 struct ecore_mcp_link_state *p_link;
4269 struct ecore_ptt *p_ptt;
4271 p_link = &p_lead->mcp_info->link_output;
4273 p_ptt = ecore_ptt_acquire(p_hwfn);
4275 return ECORE_TIMEOUT;
4277 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4279 if (rc != ECORE_SUCCESS) {
4280 ecore_ptt_release(p_hwfn, p_ptt);
4284 if (p_link->min_pf_rate) {
4285 u32 min_rate = p_link->min_pf_rate;
4287 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4292 ecore_ptt_release(p_hwfn, p_ptt);
4298 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4300 struct ecore_mcp_link_state *p_link;
4302 p_link = &p_hwfn->mcp_info->link_output;
4304 if (p_link->min_pf_rate)
4305 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4306 p_link->min_pf_rate);
4308 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4309 sizeof(*p_hwfn->qm_info.wfq_data) *
4310 p_hwfn->qm_info.num_vports);
4313 int ecore_device_num_engines(struct ecore_dev *p_dev)
4315 return ECORE_IS_BB(p_dev) ? 2 : 1;
4318 int ecore_device_num_ports(struct ecore_dev *p_dev)
4320 /* in CMT always only one port */
4321 if (p_dev->num_hwfns > 1)
4324 return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4327 void ecore_set_fw_mac_addr(__le16 *fw_msb,
4332 ((u8 *)fw_msb)[0] = mac[1];
4333 ((u8 *)fw_msb)[1] = mac[0];
4334 ((u8 *)fw_mid)[0] = mac[3];
4335 ((u8 *)fw_mid)[1] = mac[2];
4336 ((u8 *)fw_lsb)[0] = mac[5];
4337 ((u8 *)fw_lsb)[1] = mac[4];