net/qede/base: prevent device init failure
[dpdk.git] / drivers / net / qede / base / ecore_dev.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
33
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35  * registers involved are not split and thus configuration is a race where
36  * some of the PFs configuration might be lost.
37  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39  * there's more than a single compiled ecore component in system].
40  */
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
43
44 /* Configurable */
45 #define ECORE_MIN_DPIS          (4)     /* The minimal num of DPIs required to
46                                          * load the driver. The number was
47                                          * arbitrarily set.
48                                          */
49
50 /* Derived */
51 #define ECORE_MIN_PWM_REGION    ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
52
53 enum BAR_ID {
54         BAR_ID_0,               /* used for GRC */
55         BAR_ID_1                /* Used for doorbells */
56 };
57
58 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
59 {
60         u32 bar_reg = (bar_id == BAR_ID_0 ?
61                        PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
62         u32 val;
63
64         if (IS_VF(p_hwfn->p_dev)) {
65                 /* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
66                  * read from actual register, but we're currently not using
67                  * it for actual doorbelling.
68                  */
69                 return 1 << 17;
70         }
71
72         val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
73         if (val)
74                 return 1 << (val + 15);
75
76         /* The above registers were updated in the past only in CMT mode. Since
77          * they were found to be useful MFW started updating them from 8.7.7.0.
78          * In older MFW versions they are set to 0 which means disabled.
79          */
80         if (p_hwfn->p_dev->num_hwfns > 1) {
81                 DP_NOTICE(p_hwfn, false,
82                           "BAR size not configured. Assuming BAR size of 256kB"
83                           " for GRC and 512kB for DB\n");
84                 val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
85         } else {
86                 DP_NOTICE(p_hwfn, false,
87                           "BAR size not configured. Assuming BAR size of 512kB"
88                           " for GRC and 512kB for DB\n");
89                 val = 512 * 1024;
90         }
91
92         return val;
93 }
94
95 void ecore_init_dp(struct ecore_dev *p_dev,
96                    u32 dp_module, u8 dp_level, void *dp_ctx)
97 {
98         u32 i;
99
100         p_dev->dp_level = dp_level;
101         p_dev->dp_module = dp_module;
102         p_dev->dp_ctx = dp_ctx;
103         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
104                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
105
106                 p_hwfn->dp_level = dp_level;
107                 p_hwfn->dp_module = dp_module;
108                 p_hwfn->dp_ctx = dp_ctx;
109         }
110 }
111
112 void ecore_init_struct(struct ecore_dev *p_dev)
113 {
114         u8 i;
115
116         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
117                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
118
119                 p_hwfn->p_dev = p_dev;
120                 p_hwfn->my_id = i;
121                 p_hwfn->b_active = false;
122
123                 OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
124                 OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
125         }
126
127         /* hwfn 0 is always active */
128         p_dev->hwfns[0].b_active = true;
129
130         /* set the default cache alignment to 128 (may be overridden later) */
131         p_dev->cache_shift = 7;
132 }
133
134 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
135 {
136         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
137
138         OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
139         OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
140         OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
141         OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
142 }
143
144 void ecore_resc_free(struct ecore_dev *p_dev)
145 {
146         int i;
147
148         if (IS_VF(p_dev))
149                 return;
150
151         OSAL_FREE(p_dev, p_dev->fw_data);
152
153         OSAL_FREE(p_dev, p_dev->reset_stats);
154
155         for_each_hwfn(p_dev, i) {
156                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
157
158                 OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
159                 OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
160         }
161
162         for_each_hwfn(p_dev, i) {
163                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
164
165                 ecore_cxt_mngr_free(p_hwfn);
166                 ecore_qm_info_free(p_hwfn);
167                 ecore_spq_free(p_hwfn);
168                 ecore_eq_free(p_hwfn, p_hwfn->p_eq);
169                 ecore_consq_free(p_hwfn, p_hwfn->p_consq);
170                 ecore_int_free(p_hwfn);
171 #ifdef CONFIG_ECORE_LL2
172                 ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
173 #endif
174                 ecore_iov_free(p_hwfn);
175                 ecore_dmae_info_free(p_hwfn);
176                 ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
177                 /* @@@TBD Flush work-queue ? */
178         }
179 }
180
181 static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
182                                                bool b_sleepable)
183 {
184         u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
185         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
186         struct init_qm_port_params *p_qm_port;
187         bool init_rdma_offload_pq = false;
188         bool init_pure_ack_pq = false;
189         bool init_ooo_pq = false;
190         u16 num_pqs, protocol_pqs;
191         u16 num_pf_rls = 0;
192         u16 num_vfs = 0;
193         u32 pf_rl;
194         u8 pf_wfq;
195
196         /* @TMP - saving the existing min/max bw config before resetting the
197          * qm_info to restore them.
198          */
199         pf_rl = qm_info->pf_rl;
200         pf_wfq = qm_info->pf_wfq;
201
202 #ifdef CONFIG_ECORE_SRIOV
203         if (p_hwfn->p_dev->p_iov_info)
204                 num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
205 #endif
206         OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
207
208 #ifndef ASIC_ONLY
209         /* @TMP - Don't allocate QM queues for VFs on emulation */
210         if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
211                 DP_NOTICE(p_hwfn, false,
212                           "Emulation - skip configuring QM queues for VFs\n");
213                 num_vfs = 0;
214         }
215 #endif
216
217         /* ethernet PFs require a pq per tc. Even if only a subset of the TCs
218          * active, we want physical queues allocated for all of them, since we
219          * don't have a good recycle flow. Non ethernet PFs require only a
220          * single physical queue.
221          */
222         if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
223             p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
224             p_hwfn->hw_info.personality == ECORE_PCI_ETH)
225                 protocol_pqs = p_hwfn->hw_info.num_hw_tc;
226         else
227                 protocol_pqs = 1;
228
229         num_pqs = protocol_pqs + num_vfs + 1;   /* The '1' is for pure-LB */
230         num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
231
232         if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
233                 num_pqs++;      /* for RoCE queue */
234                 init_rdma_offload_pq = true;
235                 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
236                         /* Due to FW assumption that rl==vport, we limit the
237                          * number of rate limiters by the minimum between its
238                          * allocated number and the allocated number of vports.
239                          * Another limitation is the number of supported qps
240                          * with rate limiters in FW.
241                          */
242                         num_pf_rls =
243                             (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
244                                              RESC_NUM(p_hwfn, ECORE_VPORT));
245
246                         /* we subtract num_vfs because each one requires a rate
247                          * limiter, and one default rate limiter.
248                          */
249                         if (num_pf_rls < num_vfs + 1) {
250                                 DP_ERR(p_hwfn, "No RL for DCQCN");
251                                 DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
252                                        num_pf_rls, num_vfs);
253                                 return ECORE_INVAL;
254                         }
255                         num_pf_rls -= num_vfs + 1;
256                 }
257
258                 num_pqs += num_pf_rls;
259                 qm_info->num_pf_rls = (u8)num_pf_rls;
260         }
261
262         if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
263                 num_pqs += 3;   /* for iwarp queue / pure-ack / ooo */
264                 init_rdma_offload_pq = true;
265                 init_pure_ack_pq = true;
266                 init_ooo_pq = true;
267         }
268
269         if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
270                 num_pqs += 2;   /* for iSCSI pure-ACK / OOO queue */
271                 init_pure_ack_pq = true;
272                 init_ooo_pq = true;
273         }
274
275         /* Sanity checking that setup requires legal number of resources */
276         if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
277                 DP_ERR(p_hwfn,
278                        "Need too many Physical queues - 0x%04x avail %04x",
279                        num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
280                 return ECORE_INVAL;
281         }
282
283         /* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
284          * then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
285          */
286         qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
287                                             b_sleepable ? GFP_KERNEL :
288                                             GFP_ATOMIC,
289                                             sizeof(struct init_qm_pq_params) *
290                                             num_pqs);
291         if (!qm_info->qm_pq_params)
292                 goto alloc_err;
293
294         qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
295                                                b_sleepable ? GFP_KERNEL :
296                                                GFP_ATOMIC,
297                                                sizeof(struct
298                                                       init_qm_vport_params) *
299                                                num_vports);
300         if (!qm_info->qm_vport_params)
301                 goto alloc_err;
302
303         qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
304                                               b_sleepable ? GFP_KERNEL :
305                                               GFP_ATOMIC,
306                                               sizeof(struct init_qm_port_params)
307                                               * MAX_NUM_PORTS);
308         if (!qm_info->qm_port_params)
309                 goto alloc_err;
310
311         qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
312                                         b_sleepable ? GFP_KERNEL :
313                                         GFP_ATOMIC,
314                                         sizeof(struct ecore_wfq_data) *
315                                         num_vports);
316
317         if (!qm_info->wfq_data)
318                 goto alloc_err;
319
320         vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
321
322         /* First init rate limited queues ( Due to RoCE assumption of
323          * qpid=rlid )
324          */
325         for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
326                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
327                 qm_info->qm_pq_params[curr_queue].tc_id =
328                     p_hwfn->hw_info.offload_tc;
329                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
330                 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
331         };
332
333         /* Protocol PQs */
334         for (i = 0; i < protocol_pqs; i++) {
335                 struct init_qm_pq_params *params =
336                     &qm_info->qm_pq_params[curr_queue++];
337
338                 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
339                     p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
340                     p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
341                         params->vport_id = vport_id;
342                         params->tc_id = i;
343                         /* Note: this assumes that if we had a configuration
344                          * with N tcs and subsequently another configuration
345                          * With Fewer TCs, the in flight traffic (in QM queues,
346                          * in FW, from driver to FW) will still trickle out and
347                          * not get "stuck" in the QM. This is determined by the
348                          * NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
349                          * supposed to be cleared in this map, allowing traffic
350                          * to flush out. If this is not the case, we would need
351                          * to set the TC of unused queues to 0, and reconfigure
352                          * QM every time num of TCs changes. Unused queues in
353                          * this context would mean those intended for TCs where
354                          * tc_id > hw_info.num_active_tcs.
355                          */
356                         params->wrr_group = 1;  /* @@@TBD ECORE_WRR_MEDIUM */
357                 } else {
358                         params->vport_id = vport_id;
359                         params->tc_id = p_hwfn->hw_info.offload_tc;
360                         params->wrr_group = 1;  /* @@@TBD ECORE_WRR_MEDIUM */
361                 }
362         }
363
364         /* Then init pure-LB PQ */
365         qm_info->pure_lb_pq = curr_queue;
366         qm_info->qm_pq_params[curr_queue].vport_id =
367             (u8)RESC_START(p_hwfn, ECORE_VPORT);
368         qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
369         qm_info->qm_pq_params[curr_queue].wrr_group = 1;
370         curr_queue++;
371
372         qm_info->offload_pq = 0;        /* Already initialized for iSCSI/FCoE */
373         if (init_rdma_offload_pq) {
374                 qm_info->offload_pq = curr_queue;
375                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
376                 qm_info->qm_pq_params[curr_queue].tc_id =
377                     p_hwfn->hw_info.offload_tc;
378                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
379                 curr_queue++;
380         }
381
382         if (init_pure_ack_pq) {
383                 qm_info->pure_ack_pq = curr_queue;
384                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
385                 qm_info->qm_pq_params[curr_queue].tc_id =
386                     p_hwfn->hw_info.offload_tc;
387                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
388                 curr_queue++;
389         }
390
391         if (init_ooo_pq) {
392                 qm_info->ooo_pq = curr_queue;
393                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
394                 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
395                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
396                 curr_queue++;
397         }
398
399         /* Then init per-VF PQs */
400         vf_offset = curr_queue;
401         for (i = 0; i < num_vfs; i++) {
402                 /* First vport is used by the PF */
403                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
404                 /* @@@TBD VF Multi-cos */
405                 qm_info->qm_pq_params[curr_queue].tc_id = 0;
406                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
407                 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
408                 curr_queue++;
409         };
410
411         qm_info->vf_queues_offset = vf_offset;
412         qm_info->num_pqs = num_pqs;
413         qm_info->num_vports = num_vports;
414
415         /* Initialize qm port parameters */
416         num_ports = p_hwfn->p_dev->num_ports_in_engines;
417         for (i = 0; i < num_ports; i++) {
418                 p_qm_port = &qm_info->qm_port_params[i];
419                 p_qm_port->active = 1;
420                 /* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
421                  * be in place
422                  */
423                 if (num_ports == 4)
424                         p_qm_port->active_phys_tcs = 0xf;
425                 else
426                         p_qm_port->active_phys_tcs = 0x9f;
427                 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
428                 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
429         }
430
431         if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
432                 qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
433         else
434                 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
435
436         qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
437
438         qm_info->num_vf_pqs = num_vfs;
439         qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
440
441         for (i = 0; i < qm_info->num_vports; i++)
442                 qm_info->qm_vport_params[i].vport_wfq = 1;
443
444         qm_info->vport_rl_en = 1;
445         qm_info->vport_wfq_en = 1;
446         qm_info->pf_rl = pf_rl;
447         qm_info->pf_wfq = pf_wfq;
448
449         return ECORE_SUCCESS;
450
451  alloc_err:
452         DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
453         ecore_qm_info_free(p_hwfn);
454         return ECORE_NOMEM;
455 }
456
457 /* This function reconfigures the QM pf on the fly.
458  * For this purpose we:
459  * 1. reconfigure the QM database
460  * 2. set new values to runtime arrat
461  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
462  * 4. activate init tool in QM_PF stage
463  * 5. send an sdm_qm_cmd through rbc interface to release the QM
464  */
465 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
466                                      struct ecore_ptt *p_ptt)
467 {
468         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
469         bool b_rc;
470         enum _ecore_status_t rc;
471
472         /* qm_info is allocated in ecore_init_qm_info() which is already called
473          * from ecore_resc_alloc() or previous call of ecore_qm_reconf().
474          * The allocated size may change each init, so we free it before next
475          * allocation.
476          */
477         ecore_qm_info_free(p_hwfn);
478
479         /* initialize ecore's qm data structure */
480         rc = ecore_init_qm_info(p_hwfn, false);
481         if (rc != ECORE_SUCCESS)
482                 return rc;
483
484         /* stop PF's qm queues */
485         OSAL_SPIN_LOCK(&qm_lock);
486         b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
487                                       qm_info->start_pq, qm_info->num_pqs);
488         OSAL_SPIN_UNLOCK(&qm_lock);
489         if (!b_rc)
490                 return ECORE_INVAL;
491
492         /* clear the QM_PF runtime phase leftovers from previous init */
493         ecore_init_clear_rt_data(p_hwfn);
494
495         /* prepare QM portion of runtime array */
496         ecore_qm_init_pf(p_hwfn);
497
498         /* activate init tool on runtime array */
499         rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
500                             p_hwfn->hw_info.hw_mode);
501         if (rc != ECORE_SUCCESS)
502                 return rc;
503
504         /* start PF's qm queues */
505         OSAL_SPIN_LOCK(&qm_lock);
506         b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
507                                       qm_info->start_pq, qm_info->num_pqs);
508         OSAL_SPIN_UNLOCK(&qm_lock);
509         if (!b_rc)
510                 return ECORE_INVAL;
511
512         return ECORE_SUCCESS;
513 }
514
515 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
516 {
517         struct ecore_consq *p_consq;
518         struct ecore_eq *p_eq;
519 #ifdef  CONFIG_ECORE_LL2
520         struct ecore_ll2_info *p_ll2_info;
521 #endif
522         enum _ecore_status_t rc = ECORE_SUCCESS;
523         int i;
524
525         if (IS_VF(p_dev))
526                 return rc;
527
528         p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
529                                      sizeof(*p_dev->fw_data));
530         if (!p_dev->fw_data)
531                 return ECORE_NOMEM;
532
533         /* Allocate Memory for the Queue->CID mapping */
534         for_each_hwfn(p_dev, i) {
535                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
536                 u32 num_tx_conns = RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
537                 int tx_size, rx_size;
538
539                 /* @@@TMP - resc management, change to actual required size */
540                 if (p_hwfn->pf_params.eth_pf_params.num_cons > num_tx_conns)
541                         num_tx_conns = p_hwfn->pf_params.eth_pf_params.num_cons;
542                 tx_size = sizeof(struct ecore_hw_cid_data) * num_tx_conns;
543                 rx_size = sizeof(struct ecore_hw_cid_data) *
544                     RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
545
546                 p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
547                                                 tx_size);
548                 if (!p_hwfn->p_tx_cids) {
549                         DP_NOTICE(p_hwfn, true,
550                                   "Failed to allocate memory for Tx Cids\n");
551                         goto alloc_no_mem;
552                 }
553
554                 p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
555                                                 rx_size);
556                 if (!p_hwfn->p_rx_cids) {
557                         DP_NOTICE(p_hwfn, true,
558                                   "Failed to allocate memory for Rx Cids\n");
559                         goto alloc_no_mem;
560                 }
561         }
562
563         for_each_hwfn(p_dev, i) {
564                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
565                 u32 n_eqes, num_cons;
566
567                 /* First allocate the context manager structure */
568                 rc = ecore_cxt_mngr_alloc(p_hwfn);
569                 if (rc)
570                         goto alloc_err;
571
572                 /* Set the HW cid/tid numbers (in the contest manager)
573                  * Must be done prior to any further computations.
574                  */
575                 rc = ecore_cxt_set_pf_params(p_hwfn);
576                 if (rc)
577                         goto alloc_err;
578
579                 /* Prepare and process QM requirements */
580                 rc = ecore_init_qm_info(p_hwfn, true);
581                 if (rc)
582                         goto alloc_err;
583
584                 /* Compute the ILT client partition */
585                 rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
586                 if (rc)
587                         goto alloc_err;
588
589                 /* CID map / ILT shadow table / T2
590                  * The talbes sizes are determined by the computations above
591                  */
592                 rc = ecore_cxt_tables_alloc(p_hwfn);
593                 if (rc)
594                         goto alloc_err;
595
596                 /* SPQ, must follow ILT because initializes SPQ context */
597                 rc = ecore_spq_alloc(p_hwfn);
598                 if (rc)
599                         goto alloc_err;
600
601                 /* SP status block allocation */
602                 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
603                                                            RESERVED_PTT_DPC);
604
605                 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
606                 if (rc)
607                         goto alloc_err;
608
609                 rc = ecore_iov_alloc(p_hwfn);
610                 if (rc)
611                         goto alloc_err;
612
613                 /* EQ */
614                 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
615                 if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
616                     (p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
617                         /* Calculate the EQ size
618                          * ---------------------
619                          * Each ICID may generate up to one event at a time i.e.
620                          * the event must be handled/cleared before a new one
621                          * can be generated. We calculate the sum of events per
622                          * protocol and create an EQ deep enough to handle the
623                          * worst case:
624                          * - Core - according to SPQ.
625                          * - RoCE - per QP there are a couple of ICIDs, one
626                          *          responder and one requester, each can
627                          *          generate an EQE => n_eqes_qp = 2 * n_qp.
628                          *          Each CQ can generate an EQE. There are 2 CQs
629                          *          per QP => n_eqes_cq = 2 * n_qp.
630                          *          Hence the RoCE total is 4 * n_qp or
631                          *          2 * num_cons.
632                          * - ENet - There can be up to two events per VF. One
633                          *          for VF-PF channel and another for VF FLR
634                          *          initial cleanup. The number of VFs is
635                          *          bounded by MAX_NUM_VFS_BB, and is much
636                          *          smaller than RoCE's so we avoid exact
637                          *          calculation.
638                          */
639                         if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
640                                 num_cons =
641                                     ecore_cxt_get_proto_cid_count(
642                                                 p_hwfn,
643                                                 PROTOCOLID_ROCE,
644                                                 OSAL_NULL);
645                                 num_cons *= 2;
646                         } else {
647                                 num_cons = ecore_cxt_get_proto_cid_count(
648                                                 p_hwfn,
649                                                 PROTOCOLID_IWARP,
650                                                 OSAL_NULL);
651                         }
652                         n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
653                 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
654                         num_cons =
655                             ecore_cxt_get_proto_cid_count(p_hwfn,
656                                                           PROTOCOLID_ISCSI,
657                                                           OSAL_NULL);
658                         n_eqes += 2 * num_cons;
659                 }
660
661                 if (n_eqes > 0xFFFF) {
662                         DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
663                                        "The maximum of a u16 chain is 0x%x\n",
664                                n_eqes, 0xFFFF);
665                         goto alloc_no_mem;
666                 }
667
668                 p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
669                 if (!p_eq)
670                         goto alloc_no_mem;
671                 p_hwfn->p_eq = p_eq;
672
673                 p_consq = ecore_consq_alloc(p_hwfn);
674                 if (!p_consq)
675                         goto alloc_no_mem;
676                 p_hwfn->p_consq = p_consq;
677
678 #ifdef CONFIG_ECORE_LL2
679                 if (p_hwfn->using_ll2) {
680                         p_ll2_info = ecore_ll2_alloc(p_hwfn);
681                         if (!p_ll2_info)
682                                 goto alloc_no_mem;
683                         p_hwfn->p_ll2_info = p_ll2_info;
684                 }
685 #endif
686
687                 /* DMA info initialization */
688                 rc = ecore_dmae_info_alloc(p_hwfn);
689                 if (rc) {
690                         DP_NOTICE(p_hwfn, true,
691                                   "Failed to allocate memory for dmae_info structure\n");
692                         goto alloc_err;
693                 }
694
695                 /* DCBX initialization */
696                 rc = ecore_dcbx_info_alloc(p_hwfn);
697                 if (rc) {
698                         DP_NOTICE(p_hwfn, true,
699                                   "Failed to allocate memory for dcbx structure\n");
700                         goto alloc_err;
701                 }
702         }
703
704         p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
705                                          sizeof(*p_dev->reset_stats));
706         if (!p_dev->reset_stats) {
707                 DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
708                 goto alloc_no_mem;
709         }
710
711         return ECORE_SUCCESS;
712
713  alloc_no_mem:
714         rc = ECORE_NOMEM;
715  alloc_err:
716         ecore_resc_free(p_dev);
717         return rc;
718 }
719
720 void ecore_resc_setup(struct ecore_dev *p_dev)
721 {
722         int i;
723
724         if (IS_VF(p_dev))
725                 return;
726
727         for_each_hwfn(p_dev, i) {
728                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
729
730                 ecore_cxt_mngr_setup(p_hwfn);
731                 ecore_spq_setup(p_hwfn);
732                 ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
733                 ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
734
735                 /* Read shadow of current MFW mailbox */
736                 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
737                 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
738                             p_hwfn->mcp_info->mfw_mb_cur,
739                             p_hwfn->mcp_info->mfw_mb_length);
740
741                 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
742
743                 ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
744 #ifdef CONFIG_ECORE_LL2
745                 if (p_hwfn->using_ll2)
746                         ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
747 #endif
748         }
749 }
750
751 #define FINAL_CLEANUP_POLL_CNT  (100)
752 #define FINAL_CLEANUP_POLL_TIME (10)
753 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
754                                          struct ecore_ptt *p_ptt,
755                                          u16 id, bool is_vf)
756 {
757         u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
758         enum _ecore_status_t rc = ECORE_TIMEOUT;
759
760 #ifndef ASIC_ONLY
761         if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
762             CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
763                 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
764                 return ECORE_SUCCESS;
765         }
766 #endif
767
768         addr = GTT_BAR0_MAP_REG_USDM_RAM +
769             USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
770
771         if (is_vf)
772                 id += 0x10;
773
774         command |= X_FINAL_CLEANUP_AGG_INT <<
775             SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
776         command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
777         command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
778         command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
779
780 /* Make sure notification is not set before initiating final cleanup */
781
782         if (REG_RD(p_hwfn, addr)) {
783                 DP_NOTICE(p_hwfn, false,
784                           "Unexpected; Found final cleanup notification");
785                 DP_NOTICE(p_hwfn, false,
786                           " before initiating final cleanup\n");
787                 REG_WR(p_hwfn, addr, 0);
788         }
789
790         DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
791                    "Sending final cleanup for PFVF[%d] [Command %08x\n]",
792                    id, command);
793
794         ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
795
796         /* Poll until completion */
797         while (!REG_RD(p_hwfn, addr) && count--)
798                 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
799
800         if (REG_RD(p_hwfn, addr))
801                 rc = ECORE_SUCCESS;
802         else
803                 DP_NOTICE(p_hwfn, true,
804                           "Failed to receive FW final cleanup notification\n");
805
806         /* Cleanup afterwards */
807         REG_WR(p_hwfn, addr, 0);
808
809         return rc;
810 }
811
812 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
813 {
814         int hw_mode = 0;
815
816         if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
817                 hw_mode |= 1 << MODE_BB;
818         } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
819                 hw_mode |= 1 << MODE_K2;
820         } else {
821                 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
822                           p_hwfn->p_dev->type);
823                 return ECORE_INVAL;
824         }
825
826         /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
827         switch (p_hwfn->p_dev->num_ports_in_engines) {
828         case 1:
829                 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
830                 break;
831         case 2:
832                 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
833                 break;
834         case 4:
835                 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
836                 break;
837         default:
838                 DP_NOTICE(p_hwfn, true,
839                           "num_ports_in_engine = %d not supported\n",
840                           p_hwfn->p_dev->num_ports_in_engines);
841                 return ECORE_INVAL;
842         }
843
844         switch (p_hwfn->p_dev->mf_mode) {
845         case ECORE_MF_DEFAULT:
846         case ECORE_MF_NPAR:
847                 hw_mode |= 1 << MODE_MF_SI;
848                 break;
849         case ECORE_MF_OVLAN:
850                 hw_mode |= 1 << MODE_MF_SD;
851                 break;
852         default:
853                 DP_NOTICE(p_hwfn, true,
854                           "Unsupported MF mode, init as DEFAULT\n");
855                 hw_mode |= 1 << MODE_MF_SI;
856         }
857
858 #ifndef ASIC_ONLY
859         if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
860                 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
861                         hw_mode |= 1 << MODE_FPGA;
862                 } else {
863                         if (p_hwfn->p_dev->b_is_emul_full)
864                                 hw_mode |= 1 << MODE_EMUL_FULL;
865                         else
866                                 hw_mode |= 1 << MODE_EMUL_REDUCED;
867                 }
868         } else
869 #endif
870                 hw_mode |= 1 << MODE_ASIC;
871
872         if (p_hwfn->p_dev->num_hwfns > 1)
873                 hw_mode |= 1 << MODE_100G;
874
875         p_hwfn->hw_info.hw_mode = hw_mode;
876
877         DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
878                    "Configuring function for hw_mode: 0x%08x\n",
879                    p_hwfn->hw_info.hw_mode);
880
881         return ECORE_SUCCESS;
882 }
883
884 #ifndef ASIC_ONLY
885 /* MFW-replacement initializations for non-ASIC */
886 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
887                                                struct ecore_ptt *p_ptt)
888 {
889         struct ecore_dev *p_dev = p_hwfn->p_dev;
890         u32 pl_hv = 1;
891         int i;
892
893         if (CHIP_REV_IS_EMUL(p_dev)) {
894                 if (ECORE_IS_AH(p_dev))
895                         pl_hv |= 0x600;
896         }
897
898         ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
899
900         if (CHIP_REV_IS_EMUL(p_dev) &&
901             (ECORE_IS_AH(p_dev)))
902                 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
903                          0x3ffffff);
904
905         /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
906         /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
907         if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
908                 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
909
910         if (CHIP_REV_IS_EMUL(p_dev)) {
911                 if (ECORE_IS_AH(p_dev)) {
912                         /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
913                         ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
914                                  (p_dev->num_ports_in_engines >> 1));
915
916                         ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
917                                  p_dev->num_ports_in_engines == 4 ? 0 : 3);
918                 }
919         }
920
921         /* Poll on RBC */
922         ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
923         for (i = 0; i < 100; i++) {
924                 OSAL_UDELAY(50);
925                 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
926                         break;
927         }
928         if (i == 100)
929                 DP_NOTICE(p_hwfn, true,
930                           "RBC done failed to complete in PSWRQ2\n");
931
932         return ECORE_SUCCESS;
933 }
934 #endif
935
936 /* Init run time data for all PFs and their VFs on an engine.
937  * TBD - for VFs - Once we have parent PF info for each VF in
938  * shmem available as CAU requires knowledge of parent PF for each VF.
939  */
940 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
941 {
942         u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
943         int i, sb_id;
944
945         for_each_hwfn(p_dev, i) {
946                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
947                 struct ecore_igu_info *p_igu_info;
948                 struct ecore_igu_block *p_block;
949                 struct cau_sb_entry sb_entry;
950
951                 p_igu_info = p_hwfn->hw_info.p_igu_info;
952
953                 for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
954                      sb_id++) {
955                         p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
956
957                         if (!p_block->is_pf)
958                                 continue;
959
960                         ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
961                                                 p_block->function_id, 0, 0);
962                         STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
963                 }
964         }
965 }
966
967 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
968                                                  struct ecore_ptt *p_ptt,
969                                                  int hw_mode)
970 {
971         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
972         struct ecore_dev *p_dev = p_hwfn->p_dev;
973         u8 vf_id, max_num_vfs;
974         u16 num_pfs, pf_id;
975         u32 concrete_fid;
976         enum _ecore_status_t rc = ECORE_SUCCESS;
977
978         ecore_init_cau_rt_data(p_dev);
979
980         /* Program GTT windows */
981         ecore_gtt_init(p_hwfn);
982
983 #ifndef ASIC_ONLY
984         if (CHIP_REV_IS_EMUL(p_dev)) {
985                 rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
986                 if (rc != ECORE_SUCCESS)
987                         return rc;
988         }
989 #endif
990
991         if (p_hwfn->mcp_info) {
992                 if (p_hwfn->mcp_info->func_info.bandwidth_max)
993                         qm_info->pf_rl_en = 1;
994                 if (p_hwfn->mcp_info->func_info.bandwidth_min)
995                         qm_info->pf_wfq_en = 1;
996         }
997
998         ecore_qm_common_rt_init(p_hwfn,
999                                 p_dev->num_ports_in_engines,
1000                                 qm_info->max_phys_tcs_per_port,
1001                                 qm_info->pf_rl_en, qm_info->pf_wfq_en,
1002                                 qm_info->vport_rl_en, qm_info->vport_wfq_en,
1003                                 qm_info->qm_port_params);
1004
1005         ecore_cxt_hw_init_common(p_hwfn);
1006
1007         /* Close gate from NIG to BRB/Storm; By default they are open, but
1008          * we close them to prevent NIG from passing data to reset blocks.
1009          * Should have been done in the ENGINE phase, but init-tool lacks
1010          * proper port-pretend capabilities.
1011          */
1012         ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1013         ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1014         ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
1015         ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1016         ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1017         ecore_port_unpretend(p_hwfn, p_ptt);
1018
1019         rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1020         if (rc != ECORE_SUCCESS)
1021                 return rc;
1022
1023         /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1024          * need to decide with which value, maybe runtime
1025          */
1026         ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1027         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1028
1029         if (ECORE_IS_BB(p_dev)) {
1030                 /* Workaround clears ROCE search for all functions to prevent
1031                  * involving non initialized function in processing ROCE packet.
1032                  */
1033                 num_pfs = NUM_OF_ENG_PFS(p_dev);
1034                 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1035                         ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1036                         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1037                         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1038                 }
1039                 /* pretend to original PF */
1040                 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1041         }
1042
1043         /* Workaround for avoiding CCFC execution error when getting packets
1044          * with CRC errors, and allowing instead the invoking of the FW error
1045          * handler.
1046          * This is not done inside the init tool since it currently can't
1047          * perform a pretending to VFs.
1048          */
1049         max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1050         for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1051                 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1052                 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1053                 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1054                 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1055                 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1056                 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1057         }
1058         /* pretend to original PF */
1059         ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1060
1061         return rc;
1062 }
1063
1064 #ifndef ASIC_ONLY
1065 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1066 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1067
1068 #define PMEG_IF_BYTE_COUNT      8
1069
1070 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1071                              struct ecore_ptt *p_ptt,
1072                              u32 addr, u64 data, u8 reg_type, u8 port)
1073 {
1074         DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1075                    "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1076                    ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1077                    (8 << PMEG_IF_BYTE_COUNT),
1078                    (reg_type << 25) | (addr << 8) | port,
1079                    (u32)((data >> 32) & 0xffffffff),
1080                    (u32)(data & 0xffffffff));
1081
1082         ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1083                  (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1084                   0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1085         ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1086                  (reg_type << 25) | (addr << 8) | port);
1087         ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1088         ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1089                  (data >> 32) & 0xffffffff);
1090 }
1091
1092 #define XLPORT_MODE_REG (0x20a)
1093 #define XLPORT_MAC_CONTROL (0x210)
1094 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1095 #define XLPORT_ENABLE_REG (0x20b)
1096
1097 #define XLMAC_CTRL (0x600)
1098 #define XLMAC_MODE (0x601)
1099 #define XLMAC_RX_MAX_SIZE (0x608)
1100 #define XLMAC_TX_CTRL (0x604)
1101 #define XLMAC_PAUSE_CTRL (0x60d)
1102 #define XLMAC_PFC_CTRL (0x60e)
1103
1104 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1105                                     struct ecore_ptt *p_ptt)
1106 {
1107         u8 loopback = 0, port = p_hwfn->port_id * 2;
1108
1109         DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1110
1111         /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1112         ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1113                          port);
1114         ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1115         /* XLMAC: SOFT RESET */
1116         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1117         /* XLMAC: Port Speed >= 10Gbps */
1118         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1119         /* XLMAC: Max Size */
1120         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1121         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1122                          0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1123                          0, port);
1124         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1125         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1126                          0x30ffffc000ULL, 0, port);
1127         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1128                          port); /* XLMAC: TX_EN, RX_EN */
1129         /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1130         ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1131                          0x1003 | (loopback << 2), 0, port);
1132         /* Enabled Parallel PFC interface */
1133         ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1134
1135         /* XLPORT port enable */
1136         ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1137 }
1138
1139 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1140                                        struct ecore_ptt *p_ptt)
1141 {
1142         u8 port = p_hwfn->port_id;
1143         u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1144
1145         DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1146
1147         ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1148                  (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1149                  (port <<
1150                   CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1151                  (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1152
1153         ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1154                  1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1155
1156         ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1157                  9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1158
1159         ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1160                  0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1161
1162         ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1163                  8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1164
1165         ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1166                  (0xA <<
1167                   ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1168                  (8 <<
1169                   ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1170
1171         ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1172                  0xa853);
1173 }
1174
1175 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1176                                  struct ecore_ptt *p_ptt)
1177 {
1178         if (ECORE_IS_AH(p_hwfn->p_dev))
1179                 ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1180         else /* BB */
1181                 ecore_emul_link_init_bb(p_hwfn, p_ptt);
1182 }
1183
1184 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1185                                struct ecore_ptt *p_ptt,  u8 port)
1186 {
1187         int port_offset = port ? 0x800 : 0;
1188         u32 xmac_rxctrl = 0;
1189
1190         /* Reset of XMAC */
1191         /* FIXME: move to common start */
1192         ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1193                  MISC_REG_RESET_REG_2_XMAC_BIT);        /* Clear */
1194         OSAL_MSLEEP(1);
1195         ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1196                  MISC_REG_RESET_REG_2_XMAC_BIT);        /* Set */
1197
1198         ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1199
1200         /* Set the number of ports on the Warp Core to 10G */
1201         ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1202
1203         /* Soft reset of XMAC */
1204         ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1205                  MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1206         OSAL_MSLEEP(1);
1207         ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1208                  MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1209
1210         /* FIXME: move to common end */
1211         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1212                 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1213
1214         /* Set Max packet size: initialize XMAC block register for port 0 */
1215         ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1216
1217         /* CRC append for Tx packets: init XMAC block register for port 1 */
1218         ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1219
1220         /* Enable TX and RX: initialize XMAC block register for port 1 */
1221         ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1222                  XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1223         xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1224                                XMAC_REG_RX_CTRL_BB + port_offset);
1225         xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1226         ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1227 }
1228 #endif
1229
1230 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1231                                                struct ecore_ptt *p_ptt,
1232                                                int hw_mode)
1233 {
1234         enum _ecore_status_t rc = ECORE_SUCCESS;
1235
1236         rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1237                             hw_mode);
1238         if (rc != ECORE_SUCCESS)
1239                 return rc;
1240 #ifndef ASIC_ONLY
1241         if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1242                 return ECORE_SUCCESS;
1243
1244         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1245                 if (ECORE_IS_AH(p_hwfn->p_dev))
1246                         return ECORE_SUCCESS;
1247                 else if (ECORE_IS_BB(p_hwfn->p_dev))
1248                         ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
1249         } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1250                 if (p_hwfn->p_dev->num_hwfns > 1) {
1251                         /* Activate OPTE in CMT */
1252                         u32 val;
1253
1254                         val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1255                         val |= 0x10;
1256                         ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1257                         ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1258                         ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1259                         ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1260                         ecore_wr(p_hwfn, p_ptt,
1261                                  NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1262                         ecore_wr(p_hwfn, p_ptt,
1263                                  NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1264                         ecore_wr(p_hwfn, p_ptt,
1265                                  NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1266                                  0x55555555);
1267                 }
1268
1269                 ecore_emul_link_init(p_hwfn, p_ptt);
1270         } else {
1271                 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1272         }
1273 #endif
1274
1275         return rc;
1276 }
1277
1278 static enum _ecore_status_t
1279 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1280                        struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1281 {
1282         u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1283         u32 dpi_bit_shift, dpi_count;
1284         u32 min_dpis;
1285
1286         /* Calculate DPI size
1287          * ------------------
1288          * The PWM region contains Doorbell Pages. The first is reserverd for
1289          * the kernel for, e.g, L2. The others are free to be used by non-
1290          * trusted applications, typically from user space. Each page, called a
1291          * doorbell page is sectioned into windows that allow doorbells to be
1292          * issued in parallel by the kernel/application. The size of such a
1293          * window (a.k.a. WID) is 1kB.
1294          * Summary:
1295          *    1kB WID x N WIDS = DPI page size
1296          *    DPI page size x N DPIs = PWM region size
1297          * Notes:
1298          * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1299          * in order to ensure that two applications won't share the same page.
1300          * It also must contain at least one WID per CPU to allow parallelism.
1301          * It also must be a power of 2, since it is stored as a bit shift.
1302          *
1303          * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1304          * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1305          * containing 4 WIDs.
1306          */
1307         dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1308         dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1309         dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1310         dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1311         dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1312
1313         dpi_count = pwm_region_size / dpi_page_size;
1314
1315         min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1316         min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1317
1318         /* Update hwfn */
1319         p_hwfn->dpi_size = dpi_page_size;
1320         p_hwfn->dpi_count = dpi_count;
1321
1322         /* Update registers */
1323         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1324
1325         if (dpi_count < min_dpis)
1326                 return ECORE_NORESOURCES;
1327
1328         return ECORE_SUCCESS;
1329 }
1330
1331 enum ECORE_ROCE_EDPM_MODE {
1332         ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1333         ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1334         ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1335 };
1336
1337 static enum _ecore_status_t
1338 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1339                               struct ecore_ptt *p_ptt)
1340 {
1341         u32 pwm_regsize, norm_regsize;
1342         u32 non_pwm_conn, min_addr_reg1;
1343         u32 db_bar_size, n_cpus;
1344         u32 roce_edpm_mode;
1345         u32 pf_dems_shift;
1346         int rc = ECORE_SUCCESS;
1347         u8 cond;
1348
1349         db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1350         if (p_hwfn->p_dev->num_hwfns > 1)
1351                 db_bar_size /= 2;
1352
1353         /* Calculate doorbell regions
1354          * -----------------------------------
1355          * The doorbell BAR is made of two regions. The first is called normal
1356          * region and the second is called PWM region. In the normal region
1357          * each ICID has its own set of addresses so that writing to that
1358          * specific address identifies the ICID. In the Process Window Mode
1359          * region the ICID is given in the data written to the doorbell. The
1360          * above per PF register denotes the offset in the doorbell BAR in which
1361          * the PWM region begins.
1362          * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1363          * non-PWM connection. The calculation below computes the total non-PWM
1364          * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1365          * in units of 4,096 bytes.
1366          */
1367         non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1368             ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1369                                           OSAL_NULL) +
1370             ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1371         norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1372         min_addr_reg1 = norm_regsize / 4096;
1373         pwm_regsize = db_bar_size - norm_regsize;
1374
1375         /* Check that the normal and PWM sizes are valid */
1376         if (db_bar_size < norm_regsize) {
1377                 DP_ERR(p_hwfn->p_dev,
1378                        "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1379                        db_bar_size, norm_regsize);
1380                 return ECORE_NORESOURCES;
1381         }
1382         if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1383                 DP_ERR(p_hwfn->p_dev,
1384                        "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1385                        pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1386                        norm_regsize);
1387                 return ECORE_NORESOURCES;
1388         }
1389
1390         /* Calculate number of DPIs */
1391         roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1392         if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1393             ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1394                 /* Either EDPM is mandatory, or we are attempting to allocate a
1395                  * WID per CPU.
1396                  */
1397                 n_cpus = OSAL_NUM_ACTIVE_CPU();
1398                 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1399         }
1400
1401         cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1402             (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1403         if (cond || p_hwfn->dcbx_no_edpm) {
1404                 /* Either EDPM is disabled from user configuration, or it is
1405                  * disabled via DCBx, or it is not mandatory and we failed to
1406                  * allocated a WID per CPU.
1407                  */
1408                 n_cpus = 1;
1409                 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1410
1411                 /* If we entered this flow due to DCBX then the DPM register is
1412                  * already configured.
1413                  */
1414         }
1415
1416         DP_INFO(p_hwfn,
1417                 "doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1418                 norm_regsize, pwm_regsize);
1419         DP_INFO(p_hwfn,
1420                 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1421                 p_hwfn->dpi_size, p_hwfn->dpi_count,
1422                 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1423                 "disabled" : "enabled");
1424
1425         /* Check return codes from above calls */
1426         if (rc) {
1427                 DP_ERR(p_hwfn,
1428                        "Failed to allocate enough DPIs\n");
1429                 return ECORE_NORESOURCES;
1430         }
1431
1432         /* Update hwfn */
1433         p_hwfn->dpi_start_offset = norm_regsize;
1434
1435         /* Update registers */
1436         /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1437         pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1438         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1439         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1440
1441         return ECORE_SUCCESS;
1442 }
1443
1444 static enum _ecore_status_t
1445 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1446                  struct ecore_ptt *p_ptt,
1447                  struct ecore_tunn_start_params *p_tunn,
1448                  int hw_mode,
1449                  bool b_hw_start,
1450                  enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1451 {
1452         u8 rel_pf_id = p_hwfn->rel_pf_id;
1453         u32 prs_reg;
1454         enum _ecore_status_t rc = ECORE_SUCCESS;
1455         u16 ctrl;
1456         int pos;
1457
1458         if (p_hwfn->mcp_info) {
1459                 struct ecore_mcp_function_info *p_info;
1460
1461                 p_info = &p_hwfn->mcp_info->func_info;
1462                 if (p_info->bandwidth_min)
1463                         p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1464
1465                 /* Update rate limit once we'll actually have a link */
1466                 p_hwfn->qm_info.pf_rl = 100000;
1467         }
1468         ecore_cxt_hw_init_pf(p_hwfn);
1469
1470         ecore_int_igu_init_rt(p_hwfn);
1471
1472         /* Set VLAN in NIG if needed */
1473         if (hw_mode & (1 << MODE_MF_SD)) {
1474                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1475                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1476                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1477                              p_hwfn->hw_info.ovlan);
1478         }
1479
1480         /* Enable classification by MAC if needed */
1481         if (hw_mode & (1 << MODE_MF_SI)) {
1482                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1483                            "Configuring TAGMAC_CLS_TYPE\n");
1484                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1485                              1);
1486         }
1487
1488         /* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
1489         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1490                      (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1491         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1492                      (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1493         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1494
1495         /* perform debug configuration when chip is out of reset */
1496         OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1497
1498         /* Cleanup chip from previous driver if such remains exist */
1499         rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1500         if (rc != ECORE_SUCCESS) {
1501                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1502                 return rc;
1503         }
1504
1505         /* PF Init sequence */
1506         rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1507         if (rc)
1508                 return rc;
1509
1510         /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1511         rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1512         if (rc)
1513                 return rc;
1514
1515         /* Pure runtime initializations - directly to the HW  */
1516         ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1517
1518         /* PCI relaxed ordering causes a decrease in the performance on some
1519          * systems. Till a root cause is found, disable this attribute in the
1520          * PCI config space.
1521          */
1522         /* Not in use @DPDK
1523         * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1524         * if (!pos) {
1525         *       DP_NOTICE(p_hwfn, true,
1526         *                 "Failed to find the PCIe Cap\n");
1527         *       return ECORE_IO;
1528         * }
1529         * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1530         * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1531         * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1532         */
1533
1534         rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1535         if (rc)
1536                 return rc;
1537         if (b_hw_start) {
1538                 /* enable interrupts */
1539                 rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1540                 if (rc != ECORE_SUCCESS)
1541                         return rc;
1542
1543                 /* send function start command */
1544                 rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1545                                        allow_npar_tx_switch);
1546                 if (rc) {
1547                         DP_NOTICE(p_hwfn, true,
1548                                   "Function start ramrod failed\n");
1549                 } else {
1550                         prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1551                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1552                                    "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1553
1554                         if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1555                                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1556                                          (1 << 2));
1557                                 ecore_wr(p_hwfn, p_ptt,
1558                                     PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1559                                     0x100);
1560                         }
1561                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1562                                    "PRS_REG_SEARCH registers after start PFn\n");
1563                         prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1564                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1565                                    "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1566                         prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1567                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1568                                    "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1569                         prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1570                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1571                                    "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1572                         prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1573                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1574                                    "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1575                         prs_reg = ecore_rd(p_hwfn, p_ptt,
1576                                            PRS_REG_SEARCH_TCP_FIRST_FRAG);
1577                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1578                                    "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1579                                    prs_reg);
1580                         prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1581                         DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1582                                    "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1583                 }
1584         }
1585         return rc;
1586 }
1587
1588 static enum _ecore_status_t
1589 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1590                       struct ecore_ptt *p_ptt, u8 enable)
1591 {
1592         u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1593
1594         /* Change PF in PXP */
1595         ecore_wr(p_hwfn, p_ptt,
1596                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1597
1598         /* wait until value is set - try for 1 second every 50us */
1599         for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1600                 val = ecore_rd(p_hwfn, p_ptt,
1601                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1602                 if (val == set_val)
1603                         break;
1604
1605                 OSAL_UDELAY(50);
1606         }
1607
1608         if (val != set_val) {
1609                 DP_NOTICE(p_hwfn, true,
1610                           "PFID_ENABLE_MASTER wasn't changed after a second\n");
1611                 return ECORE_UNKNOWN_ERROR;
1612         }
1613
1614         return ECORE_SUCCESS;
1615 }
1616
1617 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1618                                   struct ecore_ptt *p_main_ptt)
1619 {
1620         /* Read shadow of current MFW mailbox */
1621         ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1622         OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1623                     p_hwfn->mcp_info->mfw_mb_cur,
1624                     p_hwfn->mcp_info->mfw_mb_length);
1625 }
1626
1627 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1628                                    struct ecore_hw_init_params *p_params)
1629 {
1630         enum _ecore_status_t rc = ECORE_SUCCESS, mfw_rc;
1631         u32 load_code, param, drv_mb_param;
1632         bool b_default_mtu = true;
1633         struct ecore_hwfn *p_hwfn;
1634         int i;
1635
1636         if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
1637             (p_dev->num_hwfns > 1)) {
1638                 DP_NOTICE(p_dev, false,
1639                           "MSI mode is not supported for CMT devices\n");
1640                 return ECORE_INVAL;
1641         }
1642
1643         if (IS_PF(p_dev)) {
1644                 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1645                 if (rc != ECORE_SUCCESS)
1646                         return rc;
1647         }
1648
1649         for_each_hwfn(p_dev, i) {
1650                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1651
1652                 /* If management didn't provide a default, set one of our own */
1653                 if (!p_hwfn->hw_info.mtu) {
1654                         p_hwfn->hw_info.mtu = 1500;
1655                         b_default_mtu = false;
1656                 }
1657
1658                 if (IS_VF(p_dev)) {
1659                         p_hwfn->b_int_enabled = 1;
1660                         continue;
1661                 }
1662
1663                 /* Enable DMAE in PXP */
1664                 rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1665                 if (rc != ECORE_SUCCESS)
1666                         return rc;
1667
1668                 rc = ecore_calc_hw_mode(p_hwfn);
1669                 if (rc != ECORE_SUCCESS)
1670                         return rc;
1671
1672                 /* @@@TBD need to add here:
1673                  * Check for fan failure
1674                  * Prev_unload
1675                  */
1676                 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1677                 if (rc) {
1678                         DP_NOTICE(p_hwfn, true,
1679                                   "Failed sending LOAD_REQ command\n");
1680                         return rc;
1681                 }
1682
1683                 /* CQ75580:
1684                  * When coming back from hiberbate state, the registers from
1685                  * which shadow is read initially are not initialized. It turns
1686                  * out that these registers get initialized during the call to
1687                  * ecore_mcp_load_req request. So we need to reread them here
1688                  * to get the proper shadow register value.
1689                  * Note: This is a workaround for the missing MFW
1690                  * initialization. It may be removed once the implementation
1691                  * is done.
1692                  */
1693                 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1694
1695                 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1696                            "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1697                            rc, load_code);
1698
1699                 /* Only relevant for recovery:
1700                  * Clear the indication after the LOAD_REQ command is responded
1701                  * by the MFW.
1702                  */
1703                 p_dev->recov_in_prog = false;
1704
1705                 p_hwfn->first_on_engine = (load_code ==
1706                                            FW_MSG_CODE_DRV_LOAD_ENGINE);
1707
1708                 if (!qm_lock_init) {
1709                         OSAL_SPIN_LOCK_INIT(&qm_lock);
1710                         qm_lock_init = true;
1711                 }
1712
1713                 switch (load_code) {
1714                 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1715                         rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1716                                                   p_hwfn->hw_info.hw_mode);
1717                         if (rc)
1718                                 break;
1719                         /* Fall into */
1720                 case FW_MSG_CODE_DRV_LOAD_PORT:
1721                         rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1722                                                 p_hwfn->hw_info.hw_mode);
1723                         if (rc)
1724                                 break;
1725                         /* Fall into */
1726                 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1727                         rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1728                                               p_params->p_tunn,
1729                                               p_hwfn->hw_info.hw_mode,
1730                                               p_params->b_hw_start,
1731                                               p_params->int_mode,
1732                                               p_params->allow_npar_tx_switch);
1733                         break;
1734                 default:
1735                         rc = ECORE_NOTIMPL;
1736                         break;
1737                 }
1738
1739                 if (rc != ECORE_SUCCESS)
1740                         DP_NOTICE(p_hwfn, true,
1741                                   "init phase failed for loadcode 0x%x (rc %d)\n",
1742                                   load_code, rc);
1743
1744                 /* ACK mfw regardless of success or failure of initialization */
1745                 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1746                                        DRV_MSG_CODE_LOAD_DONE,
1747                                        0, &load_code, &param);
1748                 if (rc != ECORE_SUCCESS)
1749                         return rc;
1750                 if (mfw_rc != ECORE_SUCCESS) {
1751                         DP_NOTICE(p_hwfn, true,
1752                                   "Failed sending LOAD_DONE command\n");
1753                         return mfw_rc;
1754                 }
1755
1756                 /* send DCBX attention request command */
1757                 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
1758                            "sending phony dcbx set command to trigger DCBx attention handling\n");
1759                 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1760                                        DRV_MSG_CODE_SET_DCBX,
1761                                        1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1762                                        &load_code, &param);
1763                 if (mfw_rc != ECORE_SUCCESS) {
1764                         DP_NOTICE(p_hwfn, true,
1765                                   "Failed to send DCBX attention request\n");
1766                         return mfw_rc;
1767                 }
1768
1769                 p_hwfn->hw_init_done = true;
1770         }
1771
1772         if (IS_PF(p_dev)) {
1773                 p_hwfn = ECORE_LEADING_HWFN(p_dev);
1774                 drv_mb_param = (FW_MAJOR_VERSION << 24) |
1775                                (FW_MINOR_VERSION << 16) |
1776                                (FW_REVISION_VERSION << 8) |
1777                                (FW_ENGINEERING_VERSION);
1778                 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1779                                    DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
1780                                    drv_mb_param, &load_code, &param);
1781                 if (rc != ECORE_SUCCESS)
1782                         DP_INFO(p_hwfn, "Failed to update firmware version\n");
1783
1784                 if (!b_default_mtu)
1785                         rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
1786                                                       p_hwfn->hw_info.mtu);
1787                 if (rc != ECORE_SUCCESS)
1788                         DP_INFO(p_hwfn, "Failed to update default mtu\n");
1789
1790                 rc = ecore_mcp_ov_update_driver_state(p_hwfn,
1791                                                       p_hwfn->p_main_ptt,
1792                                                 ECORE_OV_DRIVER_STATE_DISABLED);
1793                 if (rc != ECORE_SUCCESS)
1794                         DP_INFO(p_hwfn, "Failed to update driver state\n");
1795         }
1796
1797         return rc;
1798 }
1799
1800 #define ECORE_HW_STOP_RETRY_LIMIT       (10)
1801 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
1802                                  struct ecore_hwfn *p_hwfn,
1803                                  struct ecore_ptt *p_ptt)
1804 {
1805         int i;
1806
1807         /* close timers */
1808         ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1809         ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1810         for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
1811                                                                         i++) {
1812                 if ((!ecore_rd(p_hwfn, p_ptt,
1813                                TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1814                     (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1815                         break;
1816
1817                 /* Dependent on number of connection/tasks, possibly
1818                  * 1ms sleep is required between polls
1819                  */
1820                 OSAL_MSLEEP(1);
1821         }
1822
1823         if (i < ECORE_HW_STOP_RETRY_LIMIT)
1824                 return;
1825
1826         DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
1827                   " [Connection %02x Tasks %02x]\n",
1828                   (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1829                   (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1830 }
1831
1832 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
1833 {
1834         int j;
1835
1836         for_each_hwfn(p_dev, j) {
1837                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1838                 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1839
1840                 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1841         }
1842 }
1843
1844 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
1845 {
1846         enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
1847         int j;
1848
1849         for_each_hwfn(p_dev, j) {
1850                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1851                 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1852
1853                 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
1854
1855                 if (IS_VF(p_dev)) {
1856                         ecore_vf_pf_int_cleanup(p_hwfn);
1857                         continue;
1858                 }
1859
1860                 /* mark the hw as uninitialized... */
1861                 p_hwfn->hw_init_done = false;
1862
1863                 rc = ecore_sp_pf_stop(p_hwfn);
1864                 if (rc)
1865                         DP_NOTICE(p_hwfn, true,
1866                                   "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1867
1868                 /* perform debug action after PF stop was sent */
1869                 OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
1870
1871                 /* close NIG to BRB gate */
1872                 ecore_wr(p_hwfn, p_ptt,
1873                          NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1874
1875                 /* close parser */
1876                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1877                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1878                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1879                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1880                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1881
1882                 /* @@@TBD - clean transmission queues (5.b) */
1883                 /* @@@TBD - clean BTB (5.c) */
1884
1885                 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1886
1887                 /* @@@TBD - verify DMAE requests are done (8) */
1888
1889                 /* Disable Attention Generation */
1890                 ecore_int_igu_disable_int(p_hwfn, p_ptt);
1891                 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1892                 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1893                 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1894                 /* Need to wait 1ms to guarantee SBs are cleared */
1895                 OSAL_MSLEEP(1);
1896         }
1897
1898         if (IS_PF(p_dev)) {
1899                 /* Disable DMAE in PXP - in CMT, this should only be done for
1900                  * first hw-function, and only after all transactions have
1901                  * stopped for all active hw-functions.
1902                  */
1903                 t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
1904                                              p_dev->hwfns[0].p_main_ptt, false);
1905                 if (t_rc != ECORE_SUCCESS)
1906                         rc = t_rc;
1907         }
1908
1909         return rc;
1910 }
1911
1912 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
1913 {
1914         int j;
1915
1916         for_each_hwfn(p_dev, j) {
1917                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1918                 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1919
1920                 if (IS_VF(p_dev)) {
1921                         ecore_vf_pf_int_cleanup(p_hwfn);
1922                         continue;
1923                 }
1924
1925                 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1926                            "Shutting down the fastpath\n");
1927
1928                 ecore_wr(p_hwfn, p_ptt,
1929                          NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1930
1931                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1932                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1933                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1934                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1935                 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1936
1937                 /* @@@TBD - clean transmission queues (5.b) */
1938                 /* @@@TBD - clean BTB (5.c) */
1939
1940                 /* @@@TBD - verify DMAE requests are done (8) */
1941
1942                 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1943                 /* Need to wait 1ms to guarantee SBs are cleared */
1944                 OSAL_MSLEEP(1);
1945         }
1946 }
1947
1948 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
1949 {
1950         struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1951
1952         if (IS_VF(p_hwfn->p_dev))
1953                 return;
1954
1955         /* If roce info is allocated it means roce is initialized and should
1956          * be enabled in searcher.
1957          */
1958         if (p_hwfn->p_rdma_info) {
1959                 if (p_hwfn->b_rdma_enabled_in_prs)
1960                         ecore_wr(p_hwfn, p_ptt,
1961                                  p_hwfn->rdma_prs_search_reg, 0x1);
1962                 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
1963         }
1964
1965         /* Re-open incoming traffic */
1966         ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
1967                  NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1968 }
1969
1970 static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
1971                                              struct ecore_ptt *p_ptt, u32 reg,
1972                                              bool expected)
1973 {
1974         u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
1975
1976         if (assert_val != expected) {
1977                 DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
1978                           reg, expected);
1979                 return ECORE_UNKNOWN_ERROR;
1980         }
1981
1982         return 0;
1983 }
1984
1985 enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
1986 {
1987         enum _ecore_status_t rc = ECORE_SUCCESS;
1988         u32 unload_resp, unload_param;
1989         int i;
1990
1991         for_each_hwfn(p_dev, i) {
1992                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1993
1994                 if (IS_VF(p_dev)) {
1995                         rc = ecore_vf_pf_reset(p_hwfn);
1996                         if (rc)
1997                                 return rc;
1998                         continue;
1999                 }
2000
2001                 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
2002
2003                 /* Check for incorrect states */
2004                 if (!p_dev->recov_in_prog) {
2005                         ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
2006                                          QM_REG_USG_CNT_PF_TX, 0);
2007                         ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
2008                                          QM_REG_USG_CNT_PF_OTHER, 0);
2009                         /* @@@TBD - assert on incorrect xCFC values (10.b) */
2010                 }
2011
2012                 /* Disable PF in HW blocks */
2013                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2014                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
2015
2016                 if (p_dev->recov_in_prog) {
2017                         DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2018                                    "Recovery is in progress -> skip sending unload_req/done\n");
2019                         break;
2020                 }
2021
2022                 /* Send unload command to MCP */
2023                 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2024                                    DRV_MSG_CODE_UNLOAD_REQ,
2025                                    DRV_MB_PARAM_UNLOAD_WOL_MCP,
2026                                    &unload_resp, &unload_param);
2027                 if (rc != ECORE_SUCCESS) {
2028                         DP_NOTICE(p_hwfn, true,
2029                                   "ecore_hw_reset: UNLOAD_REQ failed\n");
2030                         /* @@TBD - what to do? for now, assume ENG. */
2031                         unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
2032                 }
2033
2034                 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2035                                    DRV_MSG_CODE_UNLOAD_DONE,
2036                                    0, &unload_resp, &unload_param);
2037                 if (rc != ECORE_SUCCESS) {
2038                         DP_NOTICE(p_hwfn,
2039                                   true, "ecore_hw_reset: UNLOAD_DONE failed\n");
2040                         /* @@@TBD - Should it really ASSERT here ? */
2041                         return rc;
2042                 }
2043         }
2044
2045         return rc;
2046 }
2047
2048 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2049 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2050 {
2051         ecore_ptt_pool_free(p_hwfn);
2052         OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2053 }
2054
2055 /* Setup bar access */
2056 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2057 {
2058         /* clear indirect access */
2059         if (ECORE_IS_AH(p_hwfn->p_dev)) {
2060                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2061                          PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
2062                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2063                          PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
2064                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2065                          PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
2066                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2067                          PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
2068         } else {
2069                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2070                          PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2071                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2072                          PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2073                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2074                          PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2075                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2076                          PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2077         }
2078
2079         /* Clean Previous errors if such exist */
2080         ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2081                  PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2082
2083         /* enable internal target-read */
2084         ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2085                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2086 }
2087
2088 static void get_function_id(struct ecore_hwfn *p_hwfn)
2089 {
2090         /* ME Register */
2091         p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2092                                                   PXP_PF_ME_OPAQUE_ADDR);
2093
2094         p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2095
2096         /* Bits 16-19 from the ME registers are the pf_num */
2097         p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2098         p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2099                                       PXP_CONCRETE_FID_PFID);
2100         p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2101                                     PXP_CONCRETE_FID_PORT);
2102
2103         DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2104                    "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2105                    p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2106 }
2107
2108 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2109 {
2110         u32 *feat_num = p_hwfn->hw_info.feat_num;
2111         struct ecore_sb_cnt_info sb_cnt_info;
2112         int num_features = 1;
2113
2114         /* L2 Queues require each: 1 status block. 1 L2 queue */
2115         feat_num[ECORE_PF_L2_QUE] =
2116             OSAL_MIN_T(u32,
2117                        RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2118                        RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2119
2120         OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2121         ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2122         feat_num[ECORE_VF_L2_QUE] =
2123                 OSAL_MIN_T(u32,
2124                            RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
2125                            FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2126                            sb_cnt_info.sb_iov_cnt);
2127
2128         DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2129                    "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
2130                    (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2131                    (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
2132                    (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
2133                    RESC_NUM(p_hwfn, ECORE_SB),
2134                    num_features);
2135 }
2136
2137 static enum resource_id_enum
2138 ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
2139 {
2140         enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2141
2142         switch (res_id) {
2143         case ECORE_SB:
2144                 mfw_res_id = RESOURCE_NUM_SB_E;
2145                 break;
2146         case ECORE_L2_QUEUE:
2147                 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2148                 break;
2149         case ECORE_VPORT:
2150                 mfw_res_id = RESOURCE_NUM_VPORT_E;
2151                 break;
2152         case ECORE_RSS_ENG:
2153                 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2154                 break;
2155         case ECORE_PQ:
2156                 mfw_res_id = RESOURCE_NUM_PQ_E;
2157                 break;
2158         case ECORE_RL:
2159                 mfw_res_id = RESOURCE_NUM_RL_E;
2160                 break;
2161         case ECORE_MAC:
2162         case ECORE_VLAN:
2163                 /* Each VFC resource can accommodate both a MAC and a VLAN */
2164                 mfw_res_id = RESOURCE_VFC_FILTER_E;
2165                 break;
2166         case ECORE_ILT:
2167                 mfw_res_id = RESOURCE_ILT_E;
2168                 break;
2169         case ECORE_LL2_QUEUE:
2170                 mfw_res_id = RESOURCE_LL2_QUEUE_E;
2171                 break;
2172         case ECORE_RDMA_CNQ_RAM:
2173         case ECORE_CMDQS_CQS:
2174                 /* CNQ/CMDQS are the same resource */
2175                 mfw_res_id = RESOURCE_CQS_E;
2176                 break;
2177         case ECORE_RDMA_STATS_QUEUE:
2178                 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2179                 break;
2180         default:
2181                 break;
2182         }
2183
2184         return mfw_res_id;
2185 }
2186
2187 static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
2188                                       enum ecore_resources res_id)
2189 {
2190         u8 num_funcs = p_hwfn->num_funcs_on_engine;
2191         bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2192         struct ecore_sb_cnt_info sb_cnt_info;
2193         u32 dflt_resc_num = 0;
2194
2195         switch (res_id) {
2196         case ECORE_SB:
2197                 OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2198                 ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2199                 dflt_resc_num = sb_cnt_info.sb_cnt;
2200                 break;
2201         case ECORE_L2_QUEUE:
2202                 dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2203                                  MAX_NUM_L2_QUEUES_BB) / num_funcs;
2204                 break;
2205         case ECORE_VPORT:
2206                 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2207                                  MAX_NUM_VPORTS_BB) / num_funcs;
2208                 break;
2209         case ECORE_RSS_ENG:
2210                 dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2211                                  ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2212                 break;
2213         case ECORE_PQ:
2214                 dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2215                                  MAX_QM_TX_QUEUES_BB) / num_funcs;
2216                 break;
2217         case ECORE_RL:
2218                 dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2219                 break;
2220         case ECORE_MAC:
2221         case ECORE_VLAN:
2222                 /* Each VFC resource can accommodate both a MAC and a VLAN */
2223                 dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2224                 break;
2225         case ECORE_ILT:
2226                 dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2227                                  PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2228                 break;
2229         case ECORE_LL2_QUEUE:
2230                 dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2231                 break;
2232         case ECORE_RDMA_CNQ_RAM:
2233         case ECORE_CMDQS_CQS:
2234                 /* CNQ/CMDQS are the same resource */
2235                 /* @DPDK */
2236                 dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2237                 break;
2238         case ECORE_RDMA_STATS_QUEUE:
2239                 /* @DPDK */
2240                 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2241                                  MAX_NUM_VPORTS_BB) / num_funcs;
2242                 break;
2243         default:
2244                 break;
2245         }
2246
2247         return dflt_resc_num;
2248 }
2249
2250 static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2251 {
2252         switch (res_id) {
2253         case ECORE_SB:
2254                 return "SB";
2255         case ECORE_L2_QUEUE:
2256                 return "L2_QUEUE";
2257         case ECORE_VPORT:
2258                 return "VPORT";
2259         case ECORE_RSS_ENG:
2260                 return "RSS_ENG";
2261         case ECORE_PQ:
2262                 return "PQ";
2263         case ECORE_RL:
2264                 return "RL";
2265         case ECORE_MAC:
2266                 return "MAC";
2267         case ECORE_VLAN:
2268                 return "VLAN";
2269         case ECORE_RDMA_CNQ_RAM:
2270                 return "RDMA_CNQ_RAM";
2271         case ECORE_ILT:
2272                 return "ILT";
2273         case ECORE_LL2_QUEUE:
2274                 return "LL2_QUEUE";
2275         case ECORE_CMDQS_CQS:
2276                 return "CMDQS_CQS";
2277         case ECORE_RDMA_STATS_QUEUE:
2278                 return "RDMA_STATS_QUEUE";
2279         default:
2280                 return "UNKNOWN_RESOURCE";
2281         }
2282 }
2283
2284 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2285                                                    enum ecore_resources res_id,
2286                                                    bool drv_resc_alloc)
2287 {
2288         u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
2289         u32 *p_resc_num, *p_resc_start;
2290         struct resource_info resc_info;
2291         enum _ecore_status_t rc;
2292
2293         p_resc_num = &RESC_NUM(p_hwfn, res_id);
2294         p_resc_start = &RESC_START(p_hwfn, res_id);
2295
2296         dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
2297         if (!dflt_resc_num) {
2298                 DP_ERR(p_hwfn,
2299                        "Failed to get default amount for resource %d [%s]\n",
2300                         res_id, ecore_hw_get_resc_name(res_id));
2301                 return ECORE_INVAL;
2302         }
2303         dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
2304
2305 #ifndef ASIC_ONLY
2306         if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2307                 *p_resc_num = dflt_resc_num;
2308                 *p_resc_start = dflt_resc_start;
2309                 goto out;
2310         }
2311 #endif
2312
2313         OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
2314         resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
2315         if (resc_info.res_id == RESOURCE_NUM_INVALID) {
2316                 DP_ERR(p_hwfn,
2317                        "Failed to match resource %d with MFW resources\n",
2318                        res_id);
2319                 return ECORE_INVAL;
2320         }
2321
2322         rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
2323                                      &mcp_resp, &mcp_param);
2324         if (rc != ECORE_SUCCESS) {
2325                 DP_NOTICE(p_hwfn, true,
2326                           "MFW response failure for an allocation request for"
2327                           " resource %d [%s]\n",
2328                           res_id, ecore_hw_get_resc_name(res_id));
2329                 return rc;
2330         }
2331
2332         /* Default driver values are applied in the following cases:
2333          * - The resource allocation MB command is not supported by the MFW
2334          * - There is an internal error in the MFW while processing the request
2335          * - The resource ID is unknown to the MFW
2336          */
2337         if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
2338             mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
2339                 /* @DPDK */
2340                 DP_INFO(p_hwfn,
2341                         "Resource %d [%s]: No allocation info was received"
2342                         " [mcp_resp 0x%x]. Applying default values"
2343                         " [num %d, start %d].\n",
2344                         res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
2345                         dflt_resc_num, dflt_resc_start);
2346
2347                 *p_resc_num = dflt_resc_num;
2348                 *p_resc_start = dflt_resc_start;
2349                 goto out;
2350         }
2351
2352         /* TBD - remove this when revising the handling of the SB resource */
2353         if (res_id == ECORE_SB) {
2354                 /* Excluding the slowpath SB */
2355                 resc_info.size -= 1;
2356                 resc_info.offset -= p_hwfn->enabled_func_idx;
2357         }
2358
2359         *p_resc_num = resc_info.size;
2360         *p_resc_start = resc_info.offset;
2361
2362         if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2363                 DP_INFO(p_hwfn,
2364                         "Resource %d [%s]: MFW allocation [num %d, start %d] differs from default values [num %d, start %d]%s\n",
2365                         res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
2366                         *p_resc_start, dflt_resc_num, dflt_resc_start,
2367                         drv_resc_alloc ? " - Applying default values" : "");
2368                 if (drv_resc_alloc) {
2369                         *p_resc_num = dflt_resc_num;
2370                         *p_resc_start = dflt_resc_start;
2371                 }
2372         }
2373  out:
2374         return ECORE_SUCCESS;
2375 }
2376
2377 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2378                                               bool drv_resc_alloc)
2379 {
2380         bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2381         enum _ecore_status_t rc;
2382         u8 res_id;
2383 #ifndef ASIC_ONLY
2384         u32 *resc_start = p_hwfn->hw_info.resc_start;
2385         u32 *resc_num = p_hwfn->hw_info.resc_num;
2386         /* For AH, an equal share of the ILT lines between the maximal number of
2387          * PFs is not enough for RoCE. This would be solved by the future
2388          * resource allocation scheme, but isn't currently present for
2389          * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2390          * to work - the BB number of ILT lines divided by its max PFs number.
2391          */
2392         u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2393 #endif
2394
2395         for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2396                 rc = ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
2397                 if (rc != ECORE_SUCCESS)
2398                         return rc;
2399         }
2400
2401 #ifndef ASIC_ONLY
2402         if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2403                 /* Reduced build contains less PQs */
2404                 if (!(p_hwfn->p_dev->b_is_emul_full)) {
2405                         resc_num[ECORE_PQ] = 32;
2406                         resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2407                             p_hwfn->enabled_func_idx;
2408                 }
2409
2410                 /* For AH emulation, since we have a possible maximal number of
2411                  * 16 enabled PFs, in case there are not enough ILT lines -
2412                  * allocate only first PF as RoCE and have all the other ETH
2413                  * only with less ILT lines.
2414                  */
2415                 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2416                         resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2417                                                          resc_num[ECORE_ILT],
2418                                                          roce_min_ilt_lines);
2419         }
2420
2421         /* Correct the common ILT calculation if PF0 has more */
2422         if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2423             p_hwfn->p_dev->b_is_emul_full &&
2424             p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2425                 resc_start[ECORE_ILT] += roce_min_ilt_lines -
2426                     resc_num[ECORE_ILT];
2427 #endif
2428
2429         /* Sanity for ILT */
2430         if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2431             (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2432                 DP_NOTICE(p_hwfn, true,
2433                           "Can't assign ILT pages [%08x,...,%08x]\n",
2434                           RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2435                                                                   ECORE_ILT) -
2436                           1);
2437                 return ECORE_INVAL;
2438         }
2439
2440         ecore_hw_set_feat(p_hwfn);
2441
2442         DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2443                    "The numbers for each resource are:\n");
2444         for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2445                 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2446                            ecore_hw_get_resc_name(res_id),
2447                            RESC_NUM(p_hwfn, res_id),
2448                            RESC_START(p_hwfn, res_id));
2449
2450         return ECORE_SUCCESS;
2451 }
2452
2453 static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2454                                                   struct ecore_ptt *p_ptt)
2455 {
2456         u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
2457         u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2458         struct ecore_mcp_link_params *link;
2459
2460         /* Read global nvm_cfg address */
2461         nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2462
2463         /* Verify MCP has initialized it */
2464         if (!nvm_cfg_addr) {
2465                 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2466                 return ECORE_INVAL;
2467         }
2468
2469 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2470
2471         nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2472
2473         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2474             OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2475                                                        core_cfg);
2476
2477         core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2478
2479         switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2480                 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2481         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2482                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2483                 break;
2484         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2485                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2486                 break;
2487         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2488                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2489                 break;
2490         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2491                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2492                 break;
2493         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2494                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2495                 break;
2496         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2497                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2498                 break;
2499         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2500                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2501                 break;
2502         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2503                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2504                 break;
2505         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2506                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
2507                 break;
2508         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2509                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2510                 break;
2511         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2512                 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2513                 break;
2514         default:
2515                 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2516                           core_cfg);
2517                 break;
2518         }
2519
2520         /* Read DCBX configuration */
2521         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2522                         OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2523         dcbx_mode = ecore_rd(p_hwfn, p_ptt,
2524                              port_cfg_addr +
2525                              OFFSETOF(struct nvm_cfg1_port, generic_cont0));
2526         dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
2527                 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
2528         switch (dcbx_mode) {
2529         case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
2530                 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
2531                 break;
2532         case NVM_CFG1_PORT_DCBX_MODE_CEE:
2533                 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
2534                 break;
2535         case NVM_CFG1_PORT_DCBX_MODE_IEEE:
2536                 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
2537                 break;
2538         default:
2539                 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
2540         }
2541
2542         /* Read default link configuration */
2543         link = &p_hwfn->mcp_info->link_input;
2544         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2545             OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2546         link_temp = ecore_rd(p_hwfn, p_ptt,
2547                              port_cfg_addr +
2548                              OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2549         link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2550         link->speed.advertised_speeds = link_temp;
2551
2552         link_temp = link->speed.advertised_speeds;
2553         p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2554
2555         link_temp = ecore_rd(p_hwfn, p_ptt,
2556                              port_cfg_addr +
2557                              OFFSETOF(struct nvm_cfg1_port, link_settings));
2558         switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2559                 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2560         case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2561                 link->speed.autoneg = true;
2562                 break;
2563         case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2564                 link->speed.forced_speed = 1000;
2565                 break;
2566         case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2567                 link->speed.forced_speed = 10000;
2568                 break;
2569         case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2570                 link->speed.forced_speed = 25000;
2571                 break;
2572         case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2573                 link->speed.forced_speed = 40000;
2574                 break;
2575         case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2576                 link->speed.forced_speed = 50000;
2577                 break;
2578         case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2579                 link->speed.forced_speed = 100000;
2580                 break;
2581         default:
2582                 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2583         }
2584
2585         p_hwfn->mcp_info->link_capabilities.default_speed =
2586             link->speed.forced_speed;
2587         p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2588             link->speed.autoneg;
2589
2590         link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2591         link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2592         link->pause.autoneg = !!(link_temp &
2593                                   NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2594         link->pause.forced_rx = !!(link_temp &
2595                                     NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2596         link->pause.forced_tx = !!(link_temp &
2597                                     NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2598         link->loopback_mode = 0;
2599
2600         DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2601                    "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2602                    link->speed.forced_speed, link->speed.advertised_speeds,
2603                    link->speed.autoneg, link->pause.autoneg);
2604
2605         /* Read Multi-function information from shmem */
2606         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2607             OFFSETOF(struct nvm_cfg1, glob) +
2608             OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
2609
2610         generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
2611
2612         mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2613             NVM_CFG1_GLOB_MF_MODE_OFFSET;
2614
2615         switch (mf_mode) {
2616         case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2617                 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
2618                 break;
2619         case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2620                 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
2621                 break;
2622         case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2623                 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
2624                 break;
2625         }
2626         DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2627                 p_hwfn->p_dev->mf_mode);
2628
2629         /* Read Multi-function information from shmem */
2630         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2631             OFFSETOF(struct nvm_cfg1, glob) +
2632             OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
2633
2634         device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
2635         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2636                 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
2637                              &p_hwfn->hw_info.device_capabilities);
2638         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2639                 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
2640                              &p_hwfn->hw_info.device_capabilities);
2641         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2642                 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
2643                              &p_hwfn->hw_info.device_capabilities);
2644         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2645                 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
2646                              &p_hwfn->hw_info.device_capabilities);
2647         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
2648                 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
2649                              &p_hwfn->hw_info.device_capabilities);
2650
2651         return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2652 }
2653
2654 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
2655                                 struct ecore_ptt *p_ptt)
2656 {
2657         u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2658         u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2659         struct ecore_dev *p_dev = p_hwfn->p_dev;
2660
2661         num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2662
2663         /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2664          * in the other bits are selected.
2665          * Bits 1-15 are for functions 1-15, respectively, and their value is
2666          * '0' only for enabled functions (function 0 always exists and
2667          * enabled).
2668          * In case of CMT in BB, only the "even" functions are enabled, and thus
2669          * the number of functions for both hwfns is learnt from the same bits.
2670          */
2671         if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
2672                 reg_function_hide = ecore_rd(p_hwfn, p_ptt,
2673                                              MISCS_REG_FUNCTION_HIDE_BB_K2);
2674         } else { /* E5 */
2675                 reg_function_hide = 0;
2676         }
2677
2678         if (reg_function_hide & 0x1) {
2679                 if (ECORE_IS_BB(p_dev)) {
2680                         if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
2681                                 num_funcs = 0;
2682                                 eng_mask = 0xaaaa;
2683                         } else {
2684                                 num_funcs = 1;
2685                                 eng_mask = 0x5554;
2686                         }
2687                 } else {
2688                         num_funcs = 1;
2689                         eng_mask = 0xfffe;
2690                 }
2691
2692                 /* Get the number of the enabled functions on the engine */
2693                 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2694                 while (tmp) {
2695                         if (tmp & 0x1)
2696                                 num_funcs++;
2697                         tmp >>= 0x1;
2698                 }
2699
2700                 /* Get the PF index within the enabled functions */
2701                 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2702                 tmp = reg_function_hide & eng_mask & low_pfs_mask;
2703                 while (tmp) {
2704                         if (tmp & 0x1)
2705                                 enabled_func_idx--;
2706                         tmp >>= 0x1;
2707                 }
2708         }
2709
2710         p_hwfn->num_funcs_on_engine = num_funcs;
2711         p_hwfn->enabled_func_idx = enabled_func_idx;
2712
2713 #ifndef ASIC_ONLY
2714         if (CHIP_REV_IS_FPGA(p_dev)) {
2715                 DP_NOTICE(p_hwfn, false,
2716                           "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
2717                 p_hwfn->num_funcs_on_engine = 4;
2718         }
2719 #endif
2720
2721         DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2722                    "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2723                    p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
2724                    p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2725 }
2726
2727 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
2728                                       struct ecore_ptt *p_ptt)
2729 {
2730         u32 port_mode;
2731
2732 #ifndef ASIC_ONLY
2733         /* Read the port mode */
2734         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
2735                 port_mode = 4;
2736         else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
2737                  (p_hwfn->p_dev->num_hwfns > 1))
2738                 /* In CMT on emulation, assume 1 port */
2739                 port_mode = 1;
2740         else
2741 #endif
2742         port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
2743
2744         if (port_mode < 3) {
2745                 p_hwfn->p_dev->num_ports_in_engines = 1;
2746         } else if (port_mode <= 5) {
2747                 p_hwfn->p_dev->num_ports_in_engines = 2;
2748         } else {
2749                 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
2750                           p_hwfn->p_dev->num_ports_in_engines);
2751
2752                 /* Default num_ports_in_engines to something */
2753                 p_hwfn->p_dev->num_ports_in_engines = 1;
2754         }
2755 }
2756
2757 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
2758                                          struct ecore_ptt *p_ptt)
2759 {
2760         u32 port;
2761         int i;
2762
2763         p_hwfn->p_dev->num_ports_in_engines = 0;
2764
2765 #ifndef ASIC_ONLY
2766         if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2767                 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
2768                 switch ((port & 0xf000) >> 12) {
2769                 case 1:
2770                         p_hwfn->p_dev->num_ports_in_engines = 1;
2771                         break;
2772                 case 3:
2773                         p_hwfn->p_dev->num_ports_in_engines = 2;
2774                         break;
2775                 case 0xf:
2776                         p_hwfn->p_dev->num_ports_in_engines = 4;
2777                         break;
2778                 default:
2779                         DP_NOTICE(p_hwfn, false,
2780                                   "Unknown port mode in ECO_RESERVED %08x\n",
2781                                   port);
2782                 }
2783         } else
2784 #endif
2785                 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2786                         port = ecore_rd(p_hwfn, p_ptt,
2787                                         CNIG_REG_NIG_PORT0_CONF_K2_E5 +
2788                                         (i * 4));
2789                         if (port & 1)
2790                                 p_hwfn->p_dev->num_ports_in_engines++;
2791                 }
2792 }
2793
2794 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
2795                                    struct ecore_ptt *p_ptt)
2796 {
2797         if (ECORE_IS_BB(p_hwfn->p_dev))
2798                 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
2799         else
2800                 ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
2801 }
2802
2803 static enum _ecore_status_t
2804 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2805                   enum ecore_pci_personality personality, bool drv_resc_alloc)
2806 {
2807         enum _ecore_status_t rc;
2808
2809         /* Since all information is common, only first hwfns should do this */
2810         if (IS_LEAD_HWFN(p_hwfn)) {
2811                 rc = ecore_iov_hw_info(p_hwfn);
2812                 if (rc != ECORE_SUCCESS)
2813                         return rc;
2814         }
2815
2816         /* TODO In get_hw_info, amoungst others:
2817          * Get MCP FW revision and determine according to it the supported
2818          * featrues (e.g. DCB)
2819          * Get boot mode
2820          * ecore_get_pcie_width_speed, WOL capability.
2821          * Number of global CQ-s (for storage
2822          */
2823         ecore_hw_info_port_num(p_hwfn, p_ptt);
2824
2825 #ifndef ASIC_ONLY
2826         if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
2827 #endif
2828         rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt);
2829         if (rc != ECORE_SUCCESS)
2830                 return rc;
2831 #ifndef ASIC_ONLY
2832         }
2833 #endif
2834
2835         rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
2836         if (rc != ECORE_SUCCESS)
2837                 return rc;
2838
2839 #ifndef ASIC_ONLY
2840         if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
2841 #endif
2842                 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
2843                             p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
2844 #ifndef ASIC_ONLY
2845         } else {
2846                 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
2847
2848                 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
2849                 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
2850         }
2851 #endif
2852
2853         if (ecore_mcp_is_init(p_hwfn)) {
2854                 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
2855                         p_hwfn->hw_info.ovlan =
2856                             p_hwfn->mcp_info->func_info.ovlan;
2857
2858                 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
2859         }
2860
2861         if (personality != ECORE_PCI_DEFAULT) {
2862                 p_hwfn->hw_info.personality = personality;
2863         } else if (ecore_mcp_is_init(p_hwfn)) {
2864                 enum ecore_pci_personality protocol;
2865
2866                 protocol = p_hwfn->mcp_info->func_info.protocol;
2867                 p_hwfn->hw_info.personality = protocol;
2868         }
2869
2870 #ifndef ASIC_ONLY
2871         /* To overcome ILT lack for emulation, until at least until we'll have
2872          * a definite answer from system about it, allow only PF0 to be RoCE.
2873          */
2874         if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
2875                 if (!p_hwfn->rel_pf_id)
2876                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2877                 else
2878                         p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2879         }
2880 #endif
2881
2882         /* although in BB some constellations may support more than 4 tcs,
2883          * that can result in performance penalty in some cases. 4
2884          * represents a good tradeoff between performance and flexibility.
2885          */
2886         p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2887
2888         /* start out with a single active tc. This can be increased either
2889          * by dcbx negotiation or by upper layer driver
2890          */
2891         p_hwfn->hw_info.num_active_tc = 1;
2892
2893         ecore_get_num_funcs(p_hwfn, p_ptt);
2894
2895         if (ecore_mcp_is_init(p_hwfn))
2896                 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
2897
2898         /* In case of forcing the driver's default resource allocation, calling
2899          * ecore_hw_get_resc() should come after initializing the personality
2900          * and after getting the number of functions, since the calculation of
2901          * the resources/features depends on them.
2902          * This order is not harmful if not forcing.
2903          */
2904         return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
2905 }
2906
2907 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
2908 {
2909         struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2910         u32 tmp;
2911
2912         /* Read Vendor Id / Device Id */
2913         OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
2914                                   &p_dev->vendor_id);
2915         OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
2916                                   &p_dev->device_id);
2917
2918         /* Determine type */
2919         if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
2920                 p_dev->type = ECORE_DEV_TYPE_AH;
2921         else
2922                 p_dev->type = ECORE_DEV_TYPE_BB;
2923
2924         p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2925                                          MISCS_REG_CHIP_NUM);
2926         p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2927                                          MISCS_REG_CHIP_REV);
2928
2929         MASK_FIELD(CHIP_REV, p_dev->chip_rev);
2930
2931         /* Learn number of HW-functions */
2932         tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2933                        MISCS_REG_CMT_ENABLED_FOR_PAIR);
2934
2935         if (tmp & (1 << p_hwfn->rel_pf_id)) {
2936                 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
2937                 p_dev->num_hwfns = 2;
2938         } else {
2939                 p_dev->num_hwfns = 1;
2940         }
2941
2942 #ifndef ASIC_ONLY
2943         if (CHIP_REV_IS_EMUL(p_dev)) {
2944                 /* For some reason we have problems with this register
2945                  * in B0 emulation; Simply assume no CMT
2946                  */
2947                 DP_NOTICE(p_dev->hwfns, false,
2948                           "device on emul - assume no CMT\n");
2949                 p_dev->num_hwfns = 1;
2950         }
2951 #endif
2952
2953         p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2954                                        MISCS_REG_CHIP_TEST_REG) >> 4;
2955         MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
2956         p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2957                                            MISCS_REG_CHIP_METAL);
2958         MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
2959         DP_INFO(p_dev->hwfns,
2960                 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2961                 ECORE_IS_BB(p_dev) ? "BB" : "AH",
2962                 'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
2963                 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
2964                 p_dev->chip_metal);
2965
2966         if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
2967                 DP_NOTICE(p_dev->hwfns, false,
2968                           "The chip type/rev (BB A0) is not supported!\n");
2969                 return ECORE_ABORTED;
2970         }
2971 #ifndef ASIC_ONLY
2972         if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
2973                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2974                          MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
2975
2976         if (CHIP_REV_IS_EMUL(p_dev)) {
2977                 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2978                                MISCS_REG_ECO_RESERVED);
2979                 if (tmp & (1 << 29)) {
2980                         DP_NOTICE(p_hwfn, false,
2981                                   "Emulation: Running on a FULL build\n");
2982                         p_dev->b_is_emul_full = true;
2983                 } else {
2984                         DP_NOTICE(p_hwfn, false,
2985                                   "Emulation: Running on a REDUCED build\n");
2986                 }
2987         }
2988 #endif
2989
2990         return ECORE_SUCCESS;
2991 }
2992
2993 #ifndef LINUX_REMOVE
2994 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
2995 {
2996         int j;
2997
2998         if (IS_VF(p_dev))
2999                 return;
3000
3001         for_each_hwfn(p_dev, j) {
3002                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3003
3004                 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
3005                            "Mark hw/fw uninitialized\n");
3006
3007                 p_hwfn->hw_init_done = false;
3008                 p_hwfn->first_on_engine = false;
3009
3010                 ecore_ptt_invalidate(p_hwfn);
3011         }
3012 }
3013 #endif
3014
3015 static enum _ecore_status_t
3016 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
3017                         void OSAL_IOMEM * p_regview,
3018                         void OSAL_IOMEM * p_doorbells,
3019                         struct ecore_hw_prepare_params *p_params)
3020 {
3021         struct ecore_dev *p_dev = p_hwfn->p_dev;
3022         struct ecore_mdump_info mdump_info;
3023         enum _ecore_status_t rc = ECORE_SUCCESS;
3024
3025         /* Split PCI bars evenly between hwfns */
3026         p_hwfn->regview = p_regview;
3027         p_hwfn->doorbells = p_doorbells;
3028
3029         if (IS_VF(p_dev))
3030                 return ecore_vf_hw_prepare(p_hwfn);
3031
3032         /* Validate that chip access is feasible */
3033         if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
3034                 DP_ERR(p_hwfn,
3035                        "Reading the ME register returns all Fs; Preventing further chip access\n");
3036                 return ECORE_INVAL;
3037         }
3038
3039         get_function_id(p_hwfn);
3040
3041         /* Allocate PTT pool */
3042         rc = ecore_ptt_pool_alloc(p_hwfn);
3043         if (rc) {
3044                 DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
3045                 goto err0;
3046         }
3047
3048         /* Allocate the main PTT */
3049         p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
3050
3051         /* First hwfn learns basic information, e.g., number of hwfns */
3052         if (!p_hwfn->my_id) {
3053                 rc = ecore_get_dev_info(p_dev);
3054                 if (rc != ECORE_SUCCESS)
3055                         goto err1;
3056         }
3057
3058         ecore_hw_hwfn_prepare(p_hwfn);
3059
3060         /* Initialize MCP structure */
3061         rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3062         if (rc) {
3063                 DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3064                 goto err1;
3065         }
3066
3067         /* Read the device configuration information from the HW and SHMEM */
3068         rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3069                                p_params->personality, p_params->drv_resc_alloc);
3070         if (rc) {
3071                 DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3072                 goto err2;
3073         }
3074
3075         /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3076          * called, since among others it sets the ports number in an engine.
3077          */
3078         if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
3079             !p_dev->recov_in_prog) {
3080                 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3081                 if (rc != ECORE_SUCCESS)
3082                         DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3083         }
3084
3085         /* Check if mdump logs are present and update the epoch value */
3086         if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
3087                 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
3088                                               &mdump_info);
3089                 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
3090                         DP_NOTICE(p_hwfn, false,
3091                                   "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
3092                 }
3093
3094                 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
3095                                            p_params->epoch);
3096         }
3097
3098         /* Allocate the init RT array and initialize the init-ops engine */
3099         rc = ecore_init_alloc(p_hwfn);
3100         if (rc) {
3101                 DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3102                 goto err2;
3103         }
3104 #ifndef ASIC_ONLY
3105         if (CHIP_REV_IS_FPGA(p_dev)) {
3106                 DP_NOTICE(p_hwfn, false,
3107                           "FPGA: workaround; Prevent DMAE parities\n");
3108                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
3109                          7);
3110
3111                 DP_NOTICE(p_hwfn, false,
3112                           "FPGA: workaround: Set VF bar0 size\n");
3113                 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3114                          PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
3115         }
3116 #endif
3117
3118         return rc;
3119  err2:
3120         if (IS_LEAD_HWFN(p_hwfn))
3121                 ecore_iov_free_hw_info(p_dev);
3122         ecore_mcp_free(p_hwfn);
3123  err1:
3124         ecore_hw_hwfn_free(p_hwfn);
3125  err0:
3126         return rc;
3127 }
3128
3129 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3130                                       struct ecore_hw_prepare_params *p_params)
3131 {
3132         struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3133         enum _ecore_status_t rc;
3134
3135         p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3136
3137         /* Store the precompiled init data ptrs */
3138         if (IS_PF(p_dev))
3139                 ecore_init_iro_array(p_dev);
3140
3141         /* Initialize the first hwfn - will learn number of hwfns */
3142         rc = ecore_hw_prepare_single(p_hwfn,
3143                                      p_dev->regview,
3144                                      p_dev->doorbells, p_params);
3145         if (rc != ECORE_SUCCESS)
3146                 return rc;
3147
3148         p_params->personality = p_hwfn->hw_info.personality;
3149
3150         /* initilalize 2nd hwfn if necessary */
3151         if (p_dev->num_hwfns > 1) {
3152                 void OSAL_IOMEM *p_regview, *p_doorbell;
3153                 u8 OSAL_IOMEM *addr;
3154
3155                 /* adjust bar offset for second engine */
3156                 addr = (u8 OSAL_IOMEM *)p_dev->regview +
3157                     ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3158                 p_regview = (void OSAL_IOMEM *)addr;
3159
3160                 addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3161                     ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3162                 p_doorbell = (void OSAL_IOMEM *)addr;
3163
3164                 /* prepare second hw function */
3165                 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3166                                              p_doorbell, p_params);
3167
3168                 /* in case of error, need to free the previously
3169                  * initiliazed hwfn 0.
3170                  */
3171                 if (rc != ECORE_SUCCESS) {
3172                         if (IS_PF(p_dev)) {
3173                                 ecore_init_free(p_hwfn);
3174                                 ecore_mcp_free(p_hwfn);
3175                                 ecore_hw_hwfn_free(p_hwfn);
3176                         } else {
3177                                 DP_NOTICE(p_dev, true,
3178                                           "What do we need to free when VF hwfn1 init fails\n");
3179                         }
3180                         return rc;
3181                 }
3182         }
3183
3184         return rc;
3185 }
3186
3187 void ecore_hw_remove(struct ecore_dev *p_dev)
3188 {
3189         struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3190         int i;
3191
3192         if (IS_PF(p_dev))
3193                 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
3194                                         ECORE_OV_DRIVER_STATE_NOT_LOADED);
3195
3196         for_each_hwfn(p_dev, i) {
3197                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3198
3199                 if (IS_VF(p_dev)) {
3200                         ecore_vf_pf_release(p_hwfn);
3201                         continue;
3202                 }
3203
3204                 ecore_init_free(p_hwfn);
3205                 ecore_hw_hwfn_free(p_hwfn);
3206                 ecore_mcp_free(p_hwfn);
3207
3208                 OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3209         }
3210
3211         ecore_iov_free_hw_info(p_dev);
3212 }
3213
3214 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3215                                       struct ecore_chain *p_chain)
3216 {
3217         void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3218         dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3219         struct ecore_chain_next *p_next;
3220         u32 size, i;
3221
3222         if (!p_virt)
3223                 return;
3224
3225         size = p_chain->elem_size * p_chain->usable_per_page;
3226
3227         for (i = 0; i < p_chain->page_cnt; i++) {
3228                 if (!p_virt)
3229                         break;
3230
3231                 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3232                 p_virt_next = p_next->next_virt;
3233                 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3234
3235                 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3236                                        ECORE_CHAIN_PAGE_SIZE);
3237
3238                 p_virt = p_virt_next;
3239                 p_phys = p_phys_next;
3240         }
3241 }
3242
3243 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3244                                     struct ecore_chain *p_chain)
3245 {
3246         if (!p_chain->p_virt_addr)
3247                 return;
3248
3249         OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3250                                p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3251 }
3252
3253 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3254                                  struct ecore_chain *p_chain)
3255 {
3256         void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3257         u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
3258         u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3259
3260         if (!pp_virt_addr_tbl)
3261                 return;
3262
3263         if (!p_chain->pbl.p_virt_table)
3264                 goto out;
3265
3266         for (i = 0; i < page_cnt; i++) {
3267                 if (!pp_virt_addr_tbl[i])
3268                         break;
3269
3270                 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3271                                        *(dma_addr_t *)p_pbl_virt,
3272                                        ECORE_CHAIN_PAGE_SIZE);
3273
3274                 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3275         }
3276
3277         pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3278
3279         if (!p_chain->pbl.external)
3280                 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
3281                                        p_chain->pbl.p_phys_table, pbl_size);
3282  out:
3283         OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3284 }
3285
3286 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3287 {
3288         switch (p_chain->mode) {
3289         case ECORE_CHAIN_MODE_NEXT_PTR:
3290                 ecore_chain_free_next_ptr(p_dev, p_chain);
3291                 break;
3292         case ECORE_CHAIN_MODE_SINGLE:
3293                 ecore_chain_free_single(p_dev, p_chain);
3294                 break;
3295         case ECORE_CHAIN_MODE_PBL:
3296                 ecore_chain_free_pbl(p_dev, p_chain);
3297                 break;
3298         }
3299 }
3300
3301 static enum _ecore_status_t
3302 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3303                                enum ecore_chain_cnt_type cnt_type,
3304                                osal_size_t elem_size, u32 page_cnt)
3305 {
3306         u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3307
3308         /* The actual chain size can be larger than the maximal possible value
3309          * after rounding up the requested elements number to pages, and after
3310          * taking into acount the unusuable elements (next-ptr elements).
3311          * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3312          * size/capacity fields are of a u32 type.
3313          */
3314         if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3315              chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3316             (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3317              chain_size > ECORE_U32_MAX)) {
3318                 DP_NOTICE(p_dev, true,
3319                           "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3320                           (unsigned long)chain_size);
3321                 return ECORE_INVAL;
3322         }
3323
3324         return ECORE_SUCCESS;
3325 }
3326
3327 static enum _ecore_status_t
3328 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3329 {
3330         void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3331         dma_addr_t p_phys = 0;
3332         u32 i;
3333
3334         for (i = 0; i < p_chain->page_cnt; i++) {
3335                 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3336                                                  ECORE_CHAIN_PAGE_SIZE);
3337                 if (!p_virt) {
3338                         DP_NOTICE(p_dev, true,
3339                                   "Failed to allocate chain memory\n");
3340                         return ECORE_NOMEM;
3341                 }
3342
3343                 if (i == 0) {
3344                         ecore_chain_init_mem(p_chain, p_virt, p_phys);
3345                         ecore_chain_reset(p_chain);
3346                 } else {
3347                         ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3348                                                        p_virt, p_phys);
3349                 }
3350
3351                 p_virt_prev = p_virt;
3352         }
3353         /* Last page's next element should point to the beginning of the
3354          * chain.
3355          */
3356         ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3357                                        p_chain->p_virt_addr,
3358                                        p_chain->p_phys_addr);
3359
3360         return ECORE_SUCCESS;
3361 }
3362
3363 static enum _ecore_status_t
3364 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3365 {
3366         dma_addr_t p_phys = 0;
3367         void *p_virt = OSAL_NULL;
3368
3369         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3370         if (!p_virt) {
3371                 DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3372                 return ECORE_NOMEM;
3373         }
3374
3375         ecore_chain_init_mem(p_chain, p_virt, p_phys);
3376         ecore_chain_reset(p_chain);
3377
3378         return ECORE_SUCCESS;
3379 }
3380
3381 static enum _ecore_status_t
3382 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3383                       struct ecore_chain *p_chain,
3384                       struct ecore_chain_ext_pbl *ext_pbl)
3385 {
3386         void *p_virt = OSAL_NULL;
3387         u8 *p_pbl_virt = OSAL_NULL;
3388         void **pp_virt_addr_tbl = OSAL_NULL;
3389         dma_addr_t p_phys = 0, p_pbl_phys = 0;
3390         u32 page_cnt = p_chain->page_cnt, size, i;
3391
3392         size = page_cnt * sizeof(*pp_virt_addr_tbl);
3393         pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
3394         if (!pp_virt_addr_tbl) {
3395                 DP_NOTICE(p_dev, true,
3396                           "Failed to allocate memory for the chain virtual addresses table\n");
3397                 return ECORE_NOMEM;
3398         }
3399         OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
3400
3401         /* The allocation of the PBL table is done with its full size, since it
3402          * is expected to be successive.
3403          * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3404          * failure, since pp_virt_addr_tbl was previously allocated, and it
3405          * should be saved to allow its freeing during the error flow.
3406          */
3407         size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3408
3409         if (ext_pbl == OSAL_NULL) {
3410                 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3411         } else {
3412                 p_pbl_virt = ext_pbl->p_pbl_virt;
3413                 p_pbl_phys = ext_pbl->p_pbl_phys;
3414                 p_chain->pbl.external = true;
3415         }
3416
3417         ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3418                                  pp_virt_addr_tbl);
3419         if (!p_pbl_virt) {
3420                 DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3421                 return ECORE_NOMEM;
3422         }
3423
3424         for (i = 0; i < page_cnt; i++) {
3425                 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3426                                                  ECORE_CHAIN_PAGE_SIZE);
3427                 if (!p_virt) {
3428                         DP_NOTICE(p_dev, true,
3429                                   "Failed to allocate chain memory\n");
3430                         return ECORE_NOMEM;
3431                 }
3432
3433                 if (i == 0) {
3434                         ecore_chain_init_mem(p_chain, p_virt, p_phys);
3435                         ecore_chain_reset(p_chain);
3436                 }
3437
3438                 /* Fill the PBL table with the physical address of the page */
3439                 *(dma_addr_t *)p_pbl_virt = p_phys;
3440                 /* Keep the virtual address of the page */
3441                 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3442
3443                 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3444         }
3445
3446         return ECORE_SUCCESS;
3447 }
3448
3449 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3450                                        enum ecore_chain_use_mode intended_use,
3451                                        enum ecore_chain_mode mode,
3452                                        enum ecore_chain_cnt_type cnt_type,
3453                                        u32 num_elems, osal_size_t elem_size,
3454                                        struct ecore_chain *p_chain,
3455                                        struct ecore_chain_ext_pbl *ext_pbl)
3456 {
3457         u32 page_cnt;
3458         enum _ecore_status_t rc = ECORE_SUCCESS;
3459
3460         if (mode == ECORE_CHAIN_MODE_SINGLE)
3461                 page_cnt = 1;
3462         else
3463                 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3464
3465         rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3466                                             page_cnt);
3467         if (rc) {
3468                 DP_NOTICE(p_dev, true,
3469                           "Cannot allocate a chain with the given arguments:\n"
3470                           "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3471                           intended_use, mode, cnt_type, num_elems, elem_size);
3472                 return rc;
3473         }
3474
3475         ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3476                                 mode, cnt_type, p_dev->dp_ctx);
3477
3478         switch (mode) {
3479         case ECORE_CHAIN_MODE_NEXT_PTR:
3480                 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3481                 break;
3482         case ECORE_CHAIN_MODE_SINGLE:
3483                 rc = ecore_chain_alloc_single(p_dev, p_chain);
3484                 break;
3485         case ECORE_CHAIN_MODE_PBL:
3486                 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
3487                 break;
3488         }
3489         if (rc)
3490                 goto nomem;
3491
3492         return ECORE_SUCCESS;
3493
3494  nomem:
3495         ecore_chain_free(p_dev, p_chain);
3496         return rc;
3497 }
3498
3499 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3500                                        u16 src_id, u16 *dst_id)
3501 {
3502         if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3503                 u16 min, max;
3504
3505                 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3506                 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3507                 DP_NOTICE(p_hwfn, true,
3508                           "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3509                           src_id, min, max);
3510
3511                 return ECORE_INVAL;
3512         }
3513
3514         *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3515
3516         return ECORE_SUCCESS;
3517 }
3518
3519 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3520                                     u8 src_id, u8 *dst_id)
3521 {
3522         if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3523                 u8 min, max;
3524
3525                 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3526                 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3527                 DP_NOTICE(p_hwfn, true,
3528                           "vport id [%d] is not valid, available indices [%d - %d]\n",
3529                           src_id, min, max);
3530
3531                 return ECORE_INVAL;
3532         }
3533
3534         *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3535
3536         return ECORE_SUCCESS;
3537 }
3538
3539 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3540                                       u8 src_id, u8 *dst_id)
3541 {
3542         if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3543                 u8 min, max;
3544
3545                 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3546                 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3547                 DP_NOTICE(p_hwfn, true,
3548                           "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3549                           src_id, min, max);
3550
3551                 return ECORE_INVAL;
3552         }
3553
3554         *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3555
3556         return ECORE_SUCCESS;
3557 }
3558
3559 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3560                                               struct ecore_ptt *p_ptt,
3561                                               u8 *p_filter)
3562 {
3563         u32 high, low, en;
3564         int i;
3565
3566         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3567                 return ECORE_SUCCESS;
3568
3569         high = p_filter[1] | (p_filter[0] << 8);
3570         low = p_filter[5] | (p_filter[4] << 8) |
3571             (p_filter[3] << 16) | (p_filter[2] << 24);
3572
3573         /* Find a free entry and utilize it */
3574         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3575                 en = ecore_rd(p_hwfn, p_ptt,
3576                               NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3577                 if (en)
3578                         continue;
3579                 ecore_wr(p_hwfn, p_ptt,
3580                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3581                          2 * i * sizeof(u32), low);
3582                 ecore_wr(p_hwfn, p_ptt,
3583                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3584                          (2 * i + 1) * sizeof(u32), high);
3585                 ecore_wr(p_hwfn, p_ptt,
3586                          NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3587                 ecore_wr(p_hwfn, p_ptt,
3588                          NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3589                          i * sizeof(u32), 0);
3590                 ecore_wr(p_hwfn, p_ptt,
3591                          NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3592                 break;
3593         }
3594         if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3595                 DP_NOTICE(p_hwfn, false,
3596                           "Failed to find an empty LLH filter to utilize\n");
3597                 return ECORE_INVAL;
3598         }
3599
3600         DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3601                    "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
3602                    p_filter[0], p_filter[1], p_filter[2],
3603                    p_filter[3], p_filter[4], p_filter[5], i);
3604
3605         return ECORE_SUCCESS;
3606 }
3607
3608 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
3609                                  struct ecore_ptt *p_ptt, u8 *p_filter)
3610 {
3611         u32 high, low;
3612         int i;
3613
3614         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3615                 return;
3616
3617         high = p_filter[1] | (p_filter[0] << 8);
3618         low = p_filter[5] | (p_filter[4] << 8) |
3619             (p_filter[3] << 16) | (p_filter[2] << 24);
3620
3621         /* Find the entry and clean it */
3622         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3623                 if (ecore_rd(p_hwfn, p_ptt,
3624                              NIG_REG_LLH_FUNC_FILTER_VALUE +
3625                              2 * i * sizeof(u32)) != low)
3626                         continue;
3627                 if (ecore_rd(p_hwfn, p_ptt,
3628                              NIG_REG_LLH_FUNC_FILTER_VALUE +
3629                              (2 * i + 1) * sizeof(u32)) != high)
3630                         continue;
3631
3632                 ecore_wr(p_hwfn, p_ptt,
3633                          NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3634                 ecore_wr(p_hwfn, p_ptt,
3635                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3636                          2 * i * sizeof(u32), 0);
3637                 ecore_wr(p_hwfn, p_ptt,
3638                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3639                          (2 * i + 1) * sizeof(u32), 0);
3640                 break;
3641         }
3642         if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3643                 DP_NOTICE(p_hwfn, false,
3644                           "Tried to remove a non-configured filter\n");
3645 }
3646
3647 enum _ecore_status_t
3648 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
3649                               struct ecore_ptt *p_ptt,
3650                               u16 source_port_or_eth_type,
3651                               u16 dest_port,
3652                               enum ecore_llh_port_filter_type_t type)
3653 {
3654         u32 high, low, en;
3655         int i;
3656
3657         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3658                 return ECORE_SUCCESS;
3659
3660         high = 0;
3661         low = 0;
3662         switch (type) {
3663         case ECORE_LLH_FILTER_ETHERTYPE:
3664                 high = source_port_or_eth_type;
3665                 break;
3666         case ECORE_LLH_FILTER_TCP_SRC_PORT:
3667         case ECORE_LLH_FILTER_UDP_SRC_PORT:
3668                 low = source_port_or_eth_type << 16;
3669                 break;
3670         case ECORE_LLH_FILTER_TCP_DEST_PORT:
3671         case ECORE_LLH_FILTER_UDP_DEST_PORT:
3672                 low = dest_port;
3673                 break;
3674         case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3675         case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3676                 low = (source_port_or_eth_type << 16) | dest_port;
3677                 break;
3678         default:
3679                 DP_NOTICE(p_hwfn, true,
3680                           "Non valid LLH protocol filter type %d\n", type);
3681                 return ECORE_INVAL;
3682         }
3683         /* Find a free entry and utilize it */
3684         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3685                 en = ecore_rd(p_hwfn, p_ptt,
3686                               NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3687                 if (en)
3688                         continue;
3689                 ecore_wr(p_hwfn, p_ptt,
3690                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3691                          2 * i * sizeof(u32), low);
3692                 ecore_wr(p_hwfn, p_ptt,
3693                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3694                          (2 * i + 1) * sizeof(u32), high);
3695                 ecore_wr(p_hwfn, p_ptt,
3696                          NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3697                 ecore_wr(p_hwfn, p_ptt,
3698                          NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3699                          i * sizeof(u32), 1 << type);
3700                 ecore_wr(p_hwfn, p_ptt,
3701                          NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3702                 break;
3703         }
3704         if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3705                 DP_NOTICE(p_hwfn, false,
3706                           "Failed to find an empty LLH filter to utilize\n");
3707                 return ECORE_NORESOURCES;
3708         }
3709         switch (type) {
3710         case ECORE_LLH_FILTER_ETHERTYPE:
3711                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3712                            "ETH type %x is added at %d\n",
3713                            source_port_or_eth_type, i);
3714                 break;
3715         case ECORE_LLH_FILTER_TCP_SRC_PORT:
3716                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3717                            "TCP src port %x is added at %d\n",
3718                            source_port_or_eth_type, i);
3719                 break;
3720         case ECORE_LLH_FILTER_UDP_SRC_PORT:
3721                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3722                            "UDP src port %x is added at %d\n",
3723                            source_port_or_eth_type, i);
3724                 break;
3725         case ECORE_LLH_FILTER_TCP_DEST_PORT:
3726                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3727                            "TCP dst port %x is added at %d\n", dest_port, i);
3728                 break;
3729         case ECORE_LLH_FILTER_UDP_DEST_PORT:
3730                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3731                            "UDP dst port %x is added at %d\n", dest_port, i);
3732                 break;
3733         case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3734                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3735                            "TCP src/dst ports %x/%x are added at %d\n",
3736                            source_port_or_eth_type, dest_port, i);
3737                 break;
3738         case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3739                 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3740                            "UDP src/dst ports %x/%x are added at %d\n",
3741                            source_port_or_eth_type, dest_port, i);
3742                 break;
3743         }
3744         return ECORE_SUCCESS;
3745 }
3746
3747 void
3748 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
3749                                  struct ecore_ptt *p_ptt,
3750                                  u16 source_port_or_eth_type,
3751                                  u16 dest_port,
3752                                  enum ecore_llh_port_filter_type_t type)
3753 {
3754         u32 high, low;
3755         int i;
3756
3757         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3758                 return;
3759
3760         high = 0;
3761         low = 0;
3762         switch (type) {
3763         case ECORE_LLH_FILTER_ETHERTYPE:
3764                 high = source_port_or_eth_type;
3765                 break;
3766         case ECORE_LLH_FILTER_TCP_SRC_PORT:
3767         case ECORE_LLH_FILTER_UDP_SRC_PORT:
3768                 low = source_port_or_eth_type << 16;
3769                 break;
3770         case ECORE_LLH_FILTER_TCP_DEST_PORT:
3771         case ECORE_LLH_FILTER_UDP_DEST_PORT:
3772                 low = dest_port;
3773                 break;
3774         case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3775         case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3776                 low = (source_port_or_eth_type << 16) | dest_port;
3777                 break;
3778         default:
3779                 DP_NOTICE(p_hwfn, true,
3780                           "Non valid LLH protocol filter type %d\n", type);
3781                 return;
3782         }
3783
3784         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3785                 if (!ecore_rd(p_hwfn, p_ptt,
3786                               NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3787                         continue;
3788                 if (!ecore_rd(p_hwfn, p_ptt,
3789                               NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3790                         continue;
3791                 if (!(ecore_rd(p_hwfn, p_ptt,
3792                                NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3793                                i * sizeof(u32)) & (1 << type)))
3794                         continue;
3795                 if (ecore_rd(p_hwfn, p_ptt,
3796                              NIG_REG_LLH_FUNC_FILTER_VALUE +
3797                              2 * i * sizeof(u32)) != low)
3798                         continue;
3799                 if (ecore_rd(p_hwfn, p_ptt,
3800                              NIG_REG_LLH_FUNC_FILTER_VALUE +
3801                              (2 * i + 1) * sizeof(u32)) != high)
3802                         continue;
3803
3804                 ecore_wr(p_hwfn, p_ptt,
3805                          NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3806                 ecore_wr(p_hwfn, p_ptt,
3807                          NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3808                 ecore_wr(p_hwfn, p_ptt,
3809                          NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3810                          i * sizeof(u32), 0);
3811                 ecore_wr(p_hwfn, p_ptt,
3812                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3813                          2 * i * sizeof(u32), 0);
3814                 ecore_wr(p_hwfn, p_ptt,
3815                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3816                          (2 * i + 1) * sizeof(u32), 0);
3817                 break;
3818         }
3819
3820         if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3821                 DP_NOTICE(p_hwfn, false,
3822                           "Tried to remove a non-configured filter\n");
3823 }
3824
3825 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
3826                                  struct ecore_ptt *p_ptt)
3827 {
3828         int i;
3829
3830         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3831                 return;
3832
3833         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3834                 ecore_wr(p_hwfn, p_ptt,
3835                          NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3836                 ecore_wr(p_hwfn, p_ptt,
3837                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3838                          2 * i * sizeof(u32), 0);
3839                 ecore_wr(p_hwfn, p_ptt,
3840                          NIG_REG_LLH_FUNC_FILTER_VALUE +
3841                          (2 * i + 1) * sizeof(u32), 0);
3842         }
3843 }
3844
3845 enum _ecore_status_t
3846 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
3847                                   struct ecore_ptt *p_ptt)
3848 {
3849         if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
3850                 ecore_wr(p_hwfn, p_ptt,
3851                          NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
3852                          1 << p_hwfn->abs_pf_id / 2);
3853                 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
3854                 return ECORE_SUCCESS;
3855         }
3856
3857         DP_NOTICE(p_hwfn, false,
3858                   "This function can't be set as default\n");
3859         return ECORE_INVAL;
3860 }
3861
3862 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
3863                                                struct ecore_ptt *p_ptt,
3864                                                u32 hw_addr, void *p_eth_qzone,
3865                                                osal_size_t eth_qzone_size,
3866                                                u8 timeset)
3867 {
3868         struct coalescing_timeset *p_coal_timeset;
3869
3870         if (IS_VF(p_hwfn->p_dev)) {
3871                 DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
3872                 return ECORE_INVAL;
3873         }
3874
3875         if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
3876                 DP_NOTICE(p_hwfn, true,
3877                           "Coalescing configuration not enabled\n");
3878                 return ECORE_INVAL;
3879         }
3880
3881         p_coal_timeset = p_eth_qzone;
3882         OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
3883         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3884         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3885         ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3886
3887         return ECORE_SUCCESS;
3888 }
3889
3890 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
3891                                             struct ecore_ptt *p_ptt,
3892                                             u16 coalesce, u16 qid, u16 sb_id)
3893 {
3894         struct ustorm_eth_queue_zone eth_qzone;
3895         u8 timeset, timer_res;
3896         u16 fw_qid = 0;
3897         u32 address;
3898         enum _ecore_status_t rc;
3899
3900         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3901         if (coalesce <= 0x7F) {
3902                 timer_res = 0;
3903         } else if (coalesce <= 0xFF) {
3904                 timer_res = 1;
3905         } else if (coalesce <= 0x1FF) {
3906                 timer_res = 2;
3907         } else {
3908                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3909                 return ECORE_INVAL;
3910         }
3911         timeset = (u8)(coalesce >> timer_res);
3912
3913         rc = ecore_fw_l2_queue(p_hwfn, qid, &fw_qid);
3914         if (rc != ECORE_SUCCESS)
3915                 return rc;
3916
3917         rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3918         if (rc != ECORE_SUCCESS)
3919                 goto out;
3920
3921         address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3922
3923         rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3924                                 sizeof(struct ustorm_eth_queue_zone), timeset);
3925         if (rc != ECORE_SUCCESS)
3926                 goto out;
3927
3928         p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
3929  out:
3930         return rc;
3931 }
3932
3933 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
3934                                             struct ecore_ptt *p_ptt,
3935                                             u16 coalesce, u16 qid, u16 sb_id)
3936 {
3937         struct xstorm_eth_queue_zone eth_qzone;
3938         u8 timeset, timer_res;
3939         u16 fw_qid = 0;
3940         u32 address;
3941         enum _ecore_status_t rc;
3942
3943         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3944         if (coalesce <= 0x7F) {
3945                 timer_res = 0;
3946         } else if (coalesce <= 0xFF) {
3947                 timer_res = 1;
3948         } else if (coalesce <= 0x1FF) {
3949                 timer_res = 2;
3950         } else {
3951                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3952                 return ECORE_INVAL;
3953         }
3954
3955         timeset = (u8)(coalesce >> timer_res);
3956
3957         rc = ecore_fw_l2_queue(p_hwfn, qid, &fw_qid);
3958         if (rc != ECORE_SUCCESS)
3959                 return rc;
3960
3961         rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3962         if (rc != ECORE_SUCCESS)
3963                 goto out;
3964
3965         address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3966
3967         rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3968                                 sizeof(struct xstorm_eth_queue_zone), timeset);
3969         if (rc != ECORE_SUCCESS)
3970                 goto out;
3971
3972         p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
3973  out:
3974         return rc;
3975 }
3976
3977 /* Calculate final WFQ values for all vports and configure it.
3978  * After this configuration each vport must have
3979  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
3980  */
3981 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3982                                                struct ecore_ptt *p_ptt,
3983                                                u32 min_pf_rate)
3984 {
3985         struct init_qm_vport_params *vport_params;
3986         int i;
3987
3988         vport_params = p_hwfn->qm_info.qm_vport_params;
3989
3990         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3991                 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3992
3993                 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
3994                     min_pf_rate;
3995                 ecore_init_vport_wfq(p_hwfn, p_ptt,
3996                                      vport_params[i].first_tx_pq_id,
3997                                      vport_params[i].vport_wfq);
3998         }
3999 }
4000
4001 static void
4002 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
4003 {
4004         int i;
4005
4006         for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
4007                 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
4008 }
4009
4010 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
4011                                              struct ecore_ptt *p_ptt,
4012                                              u32 min_pf_rate)
4013 {
4014         struct init_qm_vport_params *vport_params;
4015         int i;
4016
4017         vport_params = p_hwfn->qm_info.qm_vport_params;
4018
4019         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4020                 ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
4021                 ecore_init_vport_wfq(p_hwfn, p_ptt,
4022                                      vport_params[i].first_tx_pq_id,
4023                                      vport_params[i].vport_wfq);
4024         }
4025 }
4026
4027 /* This function performs several validations for WFQ
4028  * configuration and required min rate for a given vport
4029  * 1. req_rate must be greater than one percent of min_pf_rate.
4030  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
4031  *    rates to get less than one percent of min_pf_rate.
4032  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
4033  */
4034 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
4035                                                  u16 vport_id, u32 req_rate,
4036                                                  u32 min_pf_rate)
4037 {
4038         u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
4039         int non_requested_count = 0, req_count = 0, i, num_vports;
4040
4041         num_vports = p_hwfn->qm_info.num_vports;
4042
4043 /* Accounting for the vports which are configured for WFQ explicitly */
4044
4045         for (i = 0; i < num_vports; i++) {
4046                 u32 tmp_speed;
4047
4048                 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
4049                         req_count++;
4050                         tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4051                         total_req_min_rate += tmp_speed;
4052                 }
4053         }
4054
4055         /* Include current vport data as well */
4056         req_count++;
4057         total_req_min_rate += req_rate;
4058         non_requested_count = num_vports - req_count;
4059
4060         /* validate possible error cases */
4061         if (req_rate > min_pf_rate) {
4062                 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4063                            "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4064                            vport_id, req_rate, min_pf_rate);
4065                 return ECORE_INVAL;
4066         }
4067
4068         if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
4069                 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4070                            "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4071                            vport_id, req_rate, min_pf_rate);
4072                 return ECORE_INVAL;
4073         }
4074
4075         /* TBD - for number of vports greater than 100 */
4076         if (num_vports > ECORE_WFQ_UNIT) {
4077                 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4078                            "Number of vports is greater than %d\n",
4079                            ECORE_WFQ_UNIT);
4080                 return ECORE_INVAL;
4081         }
4082
4083         if (total_req_min_rate > min_pf_rate) {
4084                 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4085                            "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4086                            total_req_min_rate, min_pf_rate);
4087                 return ECORE_INVAL;
4088         }
4089
4090         /* Data left for non requested vports */
4091         total_left_rate = min_pf_rate - total_req_min_rate;
4092         left_rate_per_vp = total_left_rate / non_requested_count;
4093
4094         /* validate if non requested get < 1% of min bw */
4095         if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
4096                 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4097                            "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4098                            left_rate_per_vp, min_pf_rate);
4099                 return ECORE_INVAL;
4100         }
4101
4102         /* now req_rate for given vport passes all scenarios.
4103          * assign final wfq rates to all vports.
4104          */
4105         p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4106         p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4107
4108         for (i = 0; i < num_vports; i++) {
4109                 if (p_hwfn->qm_info.wfq_data[i].configured)
4110                         continue;
4111
4112                 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4113         }
4114
4115         return ECORE_SUCCESS;
4116 }
4117
4118 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4119                                        struct ecore_ptt *p_ptt,
4120                                        u16 vp_id, u32 rate)
4121 {
4122         struct ecore_mcp_link_state *p_link;
4123         int rc = ECORE_SUCCESS;
4124
4125         p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4126
4127         if (!p_link->min_pf_rate) {
4128                 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4129                 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4130                 return rc;
4131         }
4132
4133         rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4134
4135         if (rc == ECORE_SUCCESS)
4136                 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4137                                                    p_link->min_pf_rate);
4138         else
4139                 DP_NOTICE(p_hwfn, false,
4140                           "Validation failed while configuring min rate\n");
4141
4142         return rc;
4143 }
4144
4145 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4146                                                    struct ecore_ptt *p_ptt,
4147                                                    u32 min_pf_rate)
4148 {
4149         bool use_wfq = false;
4150         int rc = ECORE_SUCCESS;
4151         u16 i;
4152
4153         /* Validate all pre configured vports for wfq */
4154         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4155                 u32 rate;
4156
4157                 if (!p_hwfn->qm_info.wfq_data[i].configured)
4158                         continue;
4159
4160                 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4161                 use_wfq = true;
4162
4163                 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4164                 if (rc != ECORE_SUCCESS) {
4165                         DP_NOTICE(p_hwfn, false,
4166                                   "WFQ validation failed while configuring min rate\n");
4167                         break;
4168                 }
4169         }
4170
4171         if (rc == ECORE_SUCCESS && use_wfq)
4172                 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4173         else
4174                 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4175
4176         return rc;
4177 }
4178
4179 /* Main API for ecore clients to configure vport min rate.
4180  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4181  * rate - Speed in Mbps needs to be assigned to a given vport.
4182  */
4183 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4184 {
4185         int i, rc = ECORE_INVAL;
4186
4187         /* TBD - for multiple hardware functions - that is 100 gig */
4188         if (p_dev->num_hwfns > 1) {
4189                 DP_NOTICE(p_dev, false,
4190                           "WFQ configuration is not supported for this device\n");
4191                 return rc;
4192         }
4193
4194         for_each_hwfn(p_dev, i) {
4195                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4196                 struct ecore_ptt *p_ptt;
4197
4198                 p_ptt = ecore_ptt_acquire(p_hwfn);
4199                 if (!p_ptt)
4200                         return ECORE_TIMEOUT;
4201
4202                 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4203
4204                 if (rc != ECORE_SUCCESS) {
4205                         ecore_ptt_release(p_hwfn, p_ptt);
4206                         return rc;
4207                 }
4208
4209                 ecore_ptt_release(p_hwfn, p_ptt);
4210         }
4211
4212         return rc;
4213 }
4214
4215 /* API to configure WFQ from mcp link change */
4216 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4217                                            u32 min_pf_rate)
4218 {
4219         int i;
4220
4221         /* TBD - for multiple hardware functions - that is 100 gig */
4222         if (p_dev->num_hwfns > 1) {
4223                 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4224                            "WFQ configuration is not supported for this device\n");
4225                 return;
4226         }
4227
4228         for_each_hwfn(p_dev, i) {
4229                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4230
4231                 __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4232                                                         p_hwfn->p_dpc_ptt,
4233                                                         min_pf_rate);
4234         }
4235 }
4236
4237 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4238                                        struct ecore_ptt *p_ptt,
4239                                        struct ecore_mcp_link_state *p_link,
4240                                        u8 max_bw)
4241 {
4242         int rc = ECORE_SUCCESS;
4243
4244         p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4245
4246         if (!p_link->line_speed && (max_bw != 100))
4247                 return rc;
4248
4249         p_link->speed = (p_link->line_speed * max_bw) / 100;
4250         p_hwfn->qm_info.pf_rl = p_link->speed;
4251
4252         /* Since the limiter also affects Tx-switched traffic, we don't want it
4253          * to limit such traffic in case there's no actual limit.
4254          * In that case, set limit to imaginary high boundary.
4255          */
4256         if (max_bw == 100)
4257                 p_hwfn->qm_info.pf_rl = 100000;
4258
4259         rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4260                               p_hwfn->qm_info.pf_rl);
4261
4262         DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4263                    "Configured MAX bandwidth to be %08x Mb/sec\n",
4264                    p_link->speed);
4265
4266         return rc;
4267 }
4268
4269 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4270 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4271 {
4272         int i, rc = ECORE_INVAL;
4273
4274         if (max_bw < 1 || max_bw > 100) {
4275                 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4276                 return rc;
4277         }
4278
4279         for_each_hwfn(p_dev, i) {
4280                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4281                 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4282                 struct ecore_mcp_link_state *p_link;
4283                 struct ecore_ptt *p_ptt;
4284
4285                 p_link = &p_lead->mcp_info->link_output;
4286
4287                 p_ptt = ecore_ptt_acquire(p_hwfn);
4288                 if (!p_ptt)
4289                         return ECORE_TIMEOUT;
4290
4291                 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4292                                                         p_link, max_bw);
4293
4294                 ecore_ptt_release(p_hwfn, p_ptt);
4295
4296                 if (rc != ECORE_SUCCESS)
4297                         break;
4298         }
4299
4300         return rc;
4301 }
4302
4303 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4304                                        struct ecore_ptt *p_ptt,
4305                                        struct ecore_mcp_link_state *p_link,
4306                                        u8 min_bw)
4307 {
4308         int rc = ECORE_SUCCESS;
4309
4310         p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4311         p_hwfn->qm_info.pf_wfq = min_bw;
4312
4313         if (!p_link->line_speed)
4314                 return rc;
4315
4316         p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4317
4318         rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4319
4320         DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4321                    "Configured MIN bandwidth to be %d Mb/sec\n",
4322                    p_link->min_pf_rate);
4323
4324         return rc;
4325 }
4326
4327 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4328 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4329 {
4330         int i, rc = ECORE_INVAL;
4331
4332         if (min_bw < 1 || min_bw > 100) {
4333                 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4334                 return rc;
4335         }
4336
4337         for_each_hwfn(p_dev, i) {
4338                 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4339                 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4340                 struct ecore_mcp_link_state *p_link;
4341                 struct ecore_ptt *p_ptt;
4342
4343                 p_link = &p_lead->mcp_info->link_output;
4344
4345                 p_ptt = ecore_ptt_acquire(p_hwfn);
4346                 if (!p_ptt)
4347                         return ECORE_TIMEOUT;
4348
4349                 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4350                                                         p_link, min_bw);
4351                 if (rc != ECORE_SUCCESS) {
4352                         ecore_ptt_release(p_hwfn, p_ptt);
4353                         return rc;
4354                 }
4355
4356                 if (p_link->min_pf_rate) {
4357                         u32 min_rate = p_link->min_pf_rate;
4358
4359                         rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4360                                                                      p_ptt,
4361                                                                      min_rate);
4362                 }
4363
4364                 ecore_ptt_release(p_hwfn, p_ptt);
4365         }
4366
4367         return rc;
4368 }
4369
4370 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4371 {
4372         struct ecore_mcp_link_state *p_link;
4373
4374         p_link = &p_hwfn->mcp_info->link_output;
4375
4376         if (p_link->min_pf_rate)
4377                 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4378                                                  p_link->min_pf_rate);
4379
4380         OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4381                     sizeof(*p_hwfn->qm_info.wfq_data) *
4382                     p_hwfn->qm_info.num_vports);
4383 }
4384
4385 int ecore_device_num_engines(struct ecore_dev *p_dev)
4386 {
4387         return ECORE_IS_BB(p_dev) ? 2 : 1;
4388 }
4389
4390 int ecore_device_num_ports(struct ecore_dev *p_dev)
4391 {
4392         /* in CMT always only one port */
4393         if (p_dev->num_hwfns > 1)
4394                 return 1;
4395
4396         return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4397 }
4398
4399 void ecore_set_fw_mac_addr(__le16 *fw_msb,
4400                           __le16 *fw_mid,
4401                           __le16 *fw_lsb,
4402                           u8 *mac)
4403 {
4404         ((u8 *)fw_msb)[0] = mac[1];
4405         ((u8 *)fw_msb)[1] = mac[0];
4406         ((u8 *)fw_mid)[0] = mac[3];
4407         ((u8 *)fw_mid)[1] = mac[2];
4408         ((u8 *)fw_lsb)[0] = mac[5];
4409         ((u8 *)fw_lsb)[1] = mac[4];
4410 }