4207b1853e317583942b4c524e6640b145f62ea4
[dpdk.git] / drivers / net / qede / base / ecore_int.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include <rte_string_fns.h>
8
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_init_ops.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_int.h"
16 #include "reg_addr.h"
17 #include "ecore_hw.h"
18 #include "ecore_sriov.h"
19 #include "ecore_vf.h"
20 #include "ecore_hw_defs.h"
21 #include "ecore_hsi_common.h"
22 #include "ecore_mcp.h"
23
24 struct ecore_pi_info {
25         ecore_int_comp_cb_t comp_cb;
26         void *cookie;           /* Will be sent to the compl cb function */
27 };
28
29 struct ecore_sb_sp_info {
30         struct ecore_sb_info sb_info;
31
32         /* Per protocol index data */
33         struct ecore_pi_info pi_info_arr[MAX_PIS_PER_SB];
34         osal_size_t pi_info_arr_size;
35 };
36
37 enum ecore_attention_type {
38         ECORE_ATTN_TYPE_ATTN,
39         ECORE_ATTN_TYPE_PARITY,
40 };
41
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44
45 struct aeu_invert_reg_bit {
46         char bit_name[30];
47
48 #define ATTENTION_PARITY                (1 << 0)
49
50 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
51 #define ATTENTION_LENGTH_SHIFT          (4)
52 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
53                                          ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
55 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
56 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
57                                          ATTENTION_PARITY)
58
59 /* Multiple bits start with this offset */
60 #define ATTENTION_OFFSET_MASK           (0x000ff000)
61 #define ATTENTION_OFFSET_SHIFT          (12)
62
63 #define ATTENTION_BB_MASK               (0xf)
64 #define ATTENTION_BB_SHIFT              (20)
65 #define ATTENTION_BB(value)             ((value) << ATTENTION_BB_SHIFT)
66 #define ATTENTION_BB_DIFFERENT          (1 << 24)
67
68 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
69         unsigned int flags;
70
71         /* Callback to call if attention will be triggered */
72         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
73
74         enum block_id block_index;
75 };
76
77 struct aeu_invert_reg {
78         struct aeu_invert_reg_bit bits[32];
79 };
80
81 #define MAX_ATTN_GRPS           (8)
82 #define NUM_ATTN_REGS           (9)
83
84 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
85 {
86         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
87
88         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
89         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
90
91         return ECORE_SUCCESS;
92 }
93
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
102 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
103 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
104 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
117 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
118 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
119 {
120         u32 tmp =
121             ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
122                      PSWHST_REG_VF_DISABLED_ERROR_VALID);
123
124         /* Disabled VF access */
125         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
126                 u32 addr, data;
127
128                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
130                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
131                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
132                 DP_INFO(p_hwfn->p_dev,
133                         "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
134                         " Write [0x%02x] Addr [0x%08x]\n",
135                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
136                              >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
137                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
138                              >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
139                         (u8)((data &
140                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
141                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
142                         (u8)((data &
143                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
144                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
145                         (u8)((data &
146                               ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
147                               ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
148                         addr);
149         }
150
151         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152                        PSWHST_REG_INCORRECT_ACCESS_VALID);
153         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
154                 u32 addr, data, length;
155
156                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
158                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
160                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
161                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
162
163                 DP_INFO(p_hwfn->p_dev,
164                         "Incorrect access to %08x of length %08x - PF [%02x]"
165                         " VF [%04x] [valid %02x] client [%02x] write [%02x]"
166                         " Byte-Enable [%04x] [%08x]\n",
167                         addr, length,
168                         (u8)((data &
169                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
170                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
171                         (u8)((data &
172                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
173                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
174                         (u8)((data &
175                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
176                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
177                         (u8)((data &
178                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
179                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
180                         (u8)((data &
181                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
182                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
183                         (u8)((data &
184                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
185                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
186                         data);
187         }
188
189         /* TODO - We know 'some' of these are legal due to virtualization,
190          * but is it true for all of them?
191          */
192         return ECORE_SUCCESS;
193 }
194
195 /* Register GRC_REG_TIMEOUT_ATTN_ACCESS_VALID */
196 #define ECORE_GRC_ATTENTION_VALID_BIT_MASK      (0x1)
197 #define ECORE_GRC_ATTENTION_VALID_BIT_SHIFT     (0)
198
199 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
200 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
201 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
202 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
203 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
204 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
205 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
206 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
207 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
208 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
209 static const char *grc_timeout_attn_master_to_str(u8 master)
210 {
211         switch (master) {
212         case 1:
213                 return "PXP";
214         case 2:
215                 return "MCP";
216         case 3:
217                 return "MSDM";
218         case 4:
219                 return "PSDM";
220         case 5:
221                 return "YSDM";
222         case 6:
223                 return "USDM";
224         case 7:
225                 return "TSDM";
226         case 8:
227                 return "XSDM";
228         case 9:
229                 return "DBU";
230         case 10:
231                 return "DMAE";
232         default:
233                 return "Unknown";
234         }
235 }
236
237 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
238 {
239         enum _ecore_status_t rc = ECORE_SUCCESS;
240         u32 tmp, tmp2;
241
242         /* We've already cleared the timeout interrupt register, so we learn
243          * of interrupts via the validity register. If it is not a timeout do
244          * nothing. It is too late at this stage to differentiate spurious
245          * interrupt from fatal grc attention.
246          */
247         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
248                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
249         if (!(GET_FIELD(tmp, ECORE_GRC_ATTENTION_VALID_BIT)))
250                 goto out;
251
252         /* Read the GRC timeout information */
253         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
254                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
255         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
256                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
257
258         DP_NOTICE(p_hwfn->p_dev, false,
259                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
260                   tmp2, tmp,
261                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
262                                                        : "Read from",
263                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
264                   grc_timeout_attn_master_to_str(
265                         (tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
266                          ECORE_GRC_ATTENTION_MASTER_SHIFT),
267                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
268                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
269                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
270                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
271                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
272                   ECORE_GRC_ATTENTION_VF_SHIFT);
273
274         /* Clean the validity bit */
275         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
276                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
277 out:
278         return rc;
279 }
280
281 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
282 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
283 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
284 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
285 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
286 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
287 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
288 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
289 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
290 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
291 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
292 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
293 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
294
295 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
296                                                    struct ecore_ptt *p_ptt,
297                                                    bool is_hw_init)
298 {
299         u32 tmp;
300         char str[512] = {0};
301
302         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
303         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
304                 u32 addr_lo, addr_hi, details;
305
306                 addr_lo = ecore_rd(p_hwfn, p_ptt,
307                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
308                 addr_hi = ecore_rd(p_hwfn, p_ptt,
309                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
310                 details = ecore_rd(p_hwfn, p_ptt,
311                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
312                 OSAL_SNPRINTF(str, 512,
313                          "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
314                           addr_hi, addr_lo, details,
315                           (u8)((details &
316                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
317                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
318                           (u8)((details &
319                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
320                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
321                           (u8)((details &
322                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
323                           tmp,
324                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
325                                 1 : 0),
326                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
327                                 1 : 0),
328                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
329                                 1 : 0));
330                 if (is_hw_init)
331                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
332                 else
333                         DP_NOTICE(p_hwfn, false, "%s", str);
334         }
335
336         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
337         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
338                 u32 addr_lo, addr_hi, details;
339
340                 addr_lo = ecore_rd(p_hwfn, p_ptt,
341                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
342                 addr_hi = ecore_rd(p_hwfn, p_ptt,
343                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
344                 details = ecore_rd(p_hwfn, p_ptt,
345                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
346
347                 DP_NOTICE(p_hwfn, false,
348                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
349                           addr_hi, addr_lo, details,
350                           (u8)((details &
351                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
352                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
353                           (u8)((details &
354                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
355                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
356                           (u8)((details &
357                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
358                           tmp,
359                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
360                                 1 : 0),
361                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
362                                 1 : 0),
363                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
364                                 1 : 0));
365         }
366
367         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
368         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
369                 DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
370
371         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
372         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
373                 u32 addr_hi, addr_lo;
374
375                 addr_lo = ecore_rd(p_hwfn, p_ptt,
376                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
377                 addr_hi = ecore_rd(p_hwfn, p_ptt,
378                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
379
380                 DP_NOTICE(p_hwfn, false,
381                           "ICPL erorr - %08x [Address %08x:%08x]\n",
382                           tmp, addr_hi, addr_lo);
383         }
384
385         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
386         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
387                 u32 addr_hi, addr_lo, details;
388
389                 addr_lo = ecore_rd(p_hwfn, p_ptt,
390                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
391                 addr_hi = ecore_rd(p_hwfn, p_ptt,
392                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
393                 details = ecore_rd(p_hwfn, p_ptt,
394                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
395
396                 DP_NOTICE(p_hwfn, false,
397                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
398                           details, tmp, addr_hi, addr_lo);
399         }
400
401         /* Clear the indications */
402         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
403
404         return ECORE_SUCCESS;
405 }
406
407 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
408 {
409         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
410 }
411
412 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
413 {
414         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
415
416         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
417
418         return ECORE_INVAL;
419 }
420
421 static enum _ecore_status_t
422 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
423 {
424         DP_INFO(p_hwfn, "General attention 35!\n");
425
426         return ECORE_SUCCESS;
427 }
428
429 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
430 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
431 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
432 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
433 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
434
435 #define ECORE_DB_REC_COUNT                      1000
436 #define ECORE_DB_REC_INTERVAL                   100
437
438 static enum _ecore_status_t ecore_db_rec_flush_queue(struct ecore_hwfn *p_hwfn,
439                                                      struct ecore_ptt *p_ptt)
440 {
441         u32 count = ECORE_DB_REC_COUNT;
442         u32 usage = 1;
443
444         /* wait for usage to zero or count to run out. This is necessary since
445          * EDPM doorbell transactions can take multiple 64b cycles, and as such
446          * can "split" over the pci. Possibly, the doorbell drop can happen with
447          * half an EDPM in the queue and other half dropped. Another EDPM
448          * doorbell to the same address (from doorbell recovery mechanism or
449          * from the doorbelling entity) could have first half dropped and second
450          * half interperted as continuation of the first. To prevent such
451          * malformed doorbells from reaching the device, flush the queue before
452          * releaseing the overflow sticky indication.
453          */
454         while (count-- && usage) {
455                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
456                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
457         }
458
459         /* should have been depleted by now */
460         if (usage) {
461                 DP_NOTICE(p_hwfn->p_dev, false,
462                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
463                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
464                 return ECORE_TIMEOUT;
465         }
466
467         return ECORE_SUCCESS;
468 }
469
470 enum _ecore_status_t ecore_db_rec_handler(struct ecore_hwfn *p_hwfn,
471                                           struct ecore_ptt *p_ptt)
472 {
473         u32 overflow;
474         enum _ecore_status_t rc;
475
476         overflow = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
477         DP_NOTICE(p_hwfn, false, "PF Overflow sticky 0x%x\n", overflow);
478         if (!overflow) {
479                 ecore_db_recovery_execute(p_hwfn, DB_REC_ONCE);
480                 return ECORE_SUCCESS;
481         }
482
483         if (ecore_edpm_enabled(p_hwfn)) {
484                 rc = ecore_db_rec_flush_queue(p_hwfn, p_ptt);
485                 if (rc != ECORE_SUCCESS)
486                         return rc;
487         }
488
489         /* flush any pedning (e)dpm as they may never arrive */
490         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
491
492         /* release overflow sticky indication (stop silently dropping
493          * everything)
494          */
495         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
496
497         /* repeat all last doorbells (doorbell drop recovery) */
498         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
499
500         return ECORE_SUCCESS;
501 }
502
503 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
504 {
505         u32 int_sts, first_drop_reason, details, address, all_drops_reason;
506         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
507         enum _ecore_status_t rc;
508
509         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
510         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
511                   int_sts);
512
513         /* int_sts may be zero since all PFs were interrupted for doorbell
514          * overflow but another one already handled it. Can abort here. If
515          * This PF also requires overflow recovery we will be interrupted again
516          */
517         if (!int_sts)
518                 return ECORE_SUCCESS;
519
520         /* check if db_drop or overflow happened */
521         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
522                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
523                 /* obtain data about db drop/overflow */
524                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
525                                   DORQ_REG_DB_DROP_REASON) &
526                                   ECORE_DORQ_ATTENTION_REASON_MASK;
527                 details = ecore_rd(p_hwfn, p_ptt,
528                                    DORQ_REG_DB_DROP_DETAILS);
529                 address = ecore_rd(p_hwfn, p_ptt,
530                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
531                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
532                                             DORQ_REG_DB_DROP_DETAILS_REASON);
533
534                 /* log info */
535                 DP_NOTICE(p_hwfn->p_dev, false,
536                           "Doorbell drop occurred\n"
537                           "Address\t\t0x%08x\t(second BAR address)\n"
538                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
539                           "Size\t\t0x%04x\t\t(in bytes)\n"
540                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
541                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
542                           address,
543                           GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
544                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
545                           first_drop_reason, all_drops_reason);
546
547                 rc = ecore_db_rec_handler(p_hwfn, p_ptt);
548                 OSAL_DB_REC_OCCURRED(p_hwfn);
549                 if (rc != ECORE_SUCCESS)
550                         return rc;
551
552                 /* clear the doorbell drop details and prepare for next drop */
553                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
554
555                 /* mark interrupt as handeld (note: even if drop was due to a
556                  * different reason than overflow we mark as handled)
557                  */
558                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
559                          DORQ_REG_INT_STS_DB_DROP |
560                          DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
561
562                 /* if there are no indications otherthan drop indications,
563                  * success
564                  */
565                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
566                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
567                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
568                         return ECORE_SUCCESS;
569         }
570
571         /* some other indication was present - non recoverable */
572         DP_INFO(p_hwfn, "DORQ fatal attention\n");
573
574         return ECORE_INVAL;
575 }
576
577 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
578 {
579 #ifndef ASIC_ONLY
580         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
581                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
582                                    TM_REG_INT_STS_1);
583
584                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
585                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
586                         return ECORE_INVAL;
587
588                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
589                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
590                         DP_INFO(p_hwfn,
591                                 "TM attention on emulation - most likely"
592                                 " results of clock-ratios\n");
593                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
594                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
595                     TM_REG_INT_MASK_1_PEND_TASK_SCAN;
596                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
597
598                 return ECORE_SUCCESS;
599         }
600 #endif
601
602         return ECORE_INVAL;
603 }
604
605 /* Instead of major changes to the data-structure, we have a some 'special'
606  * identifiers for sources that changed meaning between adapters.
607  */
608 enum aeu_invert_reg_special_type {
609         AEU_INVERT_REG_SPECIAL_CNIG_0,
610         AEU_INVERT_REG_SPECIAL_CNIG_1,
611         AEU_INVERT_REG_SPECIAL_CNIG_2,
612         AEU_INVERT_REG_SPECIAL_CNIG_3,
613         AEU_INVERT_REG_SPECIAL_MCP_UMP_TX,
614         AEU_INVERT_REG_SPECIAL_MCP_SCPAD,
615         AEU_INVERT_REG_SPECIAL_MAX,
616 };
617
618 static struct aeu_invert_reg_bit
619 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
620         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
621         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
622         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
623         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
624         {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
625         {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
626 };
627
628 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
629 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
630         {
631          {                      /* After Invert 1 */
632           {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
633            MAX_BLOCK_ID},
634           }
635          },
636
637         {
638          {                      /* After Invert 2 */
639           {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
640           {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
641           {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
642            BLOCK_PGLUE_B},
643           {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
644           {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
645           {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
646           {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
647           {"SW timers #%d",
648            (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
649            OSAL_NULL, MAX_BLOCK_ID},
650           {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
651            BLOCK_PGLCS},
652           }
653          },
654
655         {
656          {                      /* After Invert 3 */
657           {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
658            MAX_BLOCK_ID},
659           }
660          },
661
662         {
663          {                      /* After Invert 4 */
664           {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
665            ecore_fw_assertion, MAX_BLOCK_ID},
666           {"General Attention %d",
667            (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
668            OSAL_NULL, MAX_BLOCK_ID},
669           {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
670            ecore_general_attention_35, MAX_BLOCK_ID},
671           {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
672                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
673                          OSAL_NULL, BLOCK_NWS},
674           {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
675                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
676                             OSAL_NULL, BLOCK_NWS},
677           {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
678                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
679                          OSAL_NULL, BLOCK_NWM},
680           {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
681                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
682                             OSAL_NULL, BLOCK_NWM},
683           {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
684           {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
685           {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
686           {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
687           {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
688           {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
689                         {"OPTE", ATTENTION_PAR, OSAL_NULL, BLOCK_OPTE},
690                         {"MCP", ATTENTION_PAR, OSAL_NULL, BLOCK_MCP},
691                         {"MS", ATTENTION_SINGLE, OSAL_NULL, BLOCK_MS},
692                         {"UMAC", ATTENTION_SINGLE, OSAL_NULL, BLOCK_UMAC},
693                         {"LED", ATTENTION_SINGLE, OSAL_NULL, BLOCK_LED},
694                         {"BMBN", ATTENTION_SINGLE, OSAL_NULL, BLOCK_BMBN},
695           {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
696           {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
697                         {"BMB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
698           {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
699           {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
700           {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
701           }
702          },
703
704         {
705          {                      /* After Invert 5 */
706           {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
707           {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
708           {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
709           {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
710           {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
711           {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
712           {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
713           {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
714           {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
715           {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
716           {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
717           {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
718           {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
719           {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
720           {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
721           {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
722           }
723          },
724
725         {
726          {                      /* After Invert 6 */
727           {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
728           {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
729           {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
730           {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
731           {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
732           {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
733           {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
734           {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
735           {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
736           {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
737           {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
738           {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
739           {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
740           {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
741           {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
742           {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
743           }
744          },
745
746         {
747          {                      /* After Invert 7 */
748           {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
749           {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
750           {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
751           {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
752           {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
753           {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
754           {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
755           {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
756           {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
757           {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
758           {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
759           {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
760           {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
761           {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
762           {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
763           {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
764           {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
765           }
766          },
767
768         {
769          {                      /* After Invert 8 */
770           {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
771           {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
772           {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
773           {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
774           {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
775           {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
776           {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
777           {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
778           {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
779           {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
780           {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
781           {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
782           {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
783           {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
784           {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
785           {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
786           {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
787           {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
788           {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
789           {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
790           {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
791            MAX_BLOCK_ID},
792           }
793          },
794
795         {
796          {                      /* After Invert 9 */
797           {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
798           {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
799            MAX_BLOCK_ID},
800           {"AVS", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
801            ATTENTION_BB(AEU_INVERT_REG_SPECIAL_MCP_UMP_TX), OSAL_NULL,
802            BLOCK_AVS_WRAP},
803           {"AVS", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
804            ATTENTION_BB(AEU_INVERT_REG_SPECIAL_MCP_SCPAD), OSAL_NULL,
805            BLOCK_AVS_WRAP},
806           {"PCIe core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
807           {"PCIe link up", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
808           {"PCIe hot reset", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
809           {"Reserved %d", (9 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
810             MAX_BLOCK_ID},
811           }
812          },
813
814 };
815
816 static struct aeu_invert_reg_bit *
817 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
818                         struct aeu_invert_reg_bit *p_bit)
819 {
820         if (!ECORE_IS_BB(p_hwfn->p_dev))
821                 return p_bit;
822
823         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
824                 return p_bit;
825
826         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
827                                   ATTENTION_BB_SHIFT];
828 }
829
830 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
831                                      struct aeu_invert_reg_bit *p_bit)
832 {
833         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
834                   ATTENTION_PARITY);
835 }
836
837 #define ATTN_STATE_BITS         (0xfff)
838 #define ATTN_BITS_MASKABLE      (0x3ff)
839 struct ecore_sb_attn_info {
840         /* Virtual & Physical address of the SB */
841         struct atten_status_block *sb_attn;
842         dma_addr_t sb_phys;
843
844         /* Last seen running index */
845         u16 index;
846
847         /* A mask of the AEU bits resulting in a parity error */
848         u32 parity_mask[NUM_ATTN_REGS];
849
850         /* A pointer to the attention description structure */
851         struct aeu_invert_reg *p_aeu_desc;
852
853         /* Previously asserted attentions, which are still unasserted */
854         u16 known_attn;
855
856         /* Cleanup address for the link's general hw attention */
857         u32 mfw_attn_addr;
858 };
859
860 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
861                                  struct ecore_sb_attn_info *p_sb_desc)
862 {
863         u16 rc = 0, index;
864
865         OSAL_MMIOWB(p_hwfn->p_dev);
866
867         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
868         if (p_sb_desc->index != index) {
869                 p_sb_desc->index = index;
870                 rc = ECORE_SB_ATT_IDX;
871         }
872
873         OSAL_MMIOWB(p_hwfn->p_dev);
874
875         return rc;
876 }
877
878 /**
879  * @brief ecore_int_assertion - handles asserted attention bits
880  *
881  * @param p_hwfn
882  * @param asserted_bits newly asserted bits
883  * @return enum _ecore_status_t
884  */
885 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
886                                                 u16 asserted_bits)
887 {
888         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
889         u32 igu_mask;
890
891         /* Mask the source of the attention in the IGU */
892         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
893                             IGU_REG_ATTENTION_ENABLE);
894         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
895                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
896         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
897         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
898
899         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
900                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
901                    sb_attn_sw->known_attn,
902                    sb_attn_sw->known_attn | asserted_bits);
903         sb_attn_sw->known_attn |= asserted_bits;
904
905         /* Handle MCP events */
906         if (asserted_bits & 0x100) {
907                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
908                 /* Clean the MCP attention */
909                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
910                          sb_attn_sw->mfw_attn_addr, 0);
911         }
912
913         /* FIXME - this will change once we'll have GOOD gtt definitions */
914         DIRECT_REG_WR(p_hwfn,
915                       (u8 OSAL_IOMEM *) p_hwfn->regview +
916                       GTT_BAR0_MAP_REG_IGU_CMD +
917                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
918                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
919
920         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
921                    asserted_bits);
922
923         return ECORE_SUCCESS;
924 }
925
926 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
927                                  enum block_id id, enum dbg_attn_type type,
928                                  bool b_clear)
929 {
930         /* @DPDK */
931         DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
932 }
933
934 /**
935  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
936  * cause of the attention
937  *
938  * @param p_hwfn
939  * @param p_aeu - descriptor of an AEU bit which caused the attention
940  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
941  *  this bit to this group.
942  * @param bit_index - index of this bit in the aeu_en_reg
943  *
944  * @return enum _ecore_status_t
945  */
946 static enum _ecore_status_t
947 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
948                               struct aeu_invert_reg_bit *p_aeu,
949                               u32 aeu_en_reg,
950                               const char *p_bit_name,
951                               u32 bitmask)
952 {
953         enum _ecore_status_t rc = ECORE_INVAL;
954         bool b_fatal = false;
955
956         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
957                 p_bit_name, bitmask);
958
959         /* Call callback before clearing the interrupt status */
960         if (p_aeu->cb) {
961                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
962                         p_bit_name);
963                 rc = p_aeu->cb(p_hwfn);
964         }
965
966         if (rc != ECORE_SUCCESS)
967                 b_fatal = true;
968
969         /* Print HW block interrupt registers */
970         if (p_aeu->block_index != MAX_BLOCK_ID) {
971                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
972                                      ATTN_TYPE_INTERRUPT, !b_fatal);
973 }
974
975         /* @DPDK */
976         /* Reach assertion if attention is fatal */
977         if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
978 #ifndef ASIC_ONLY
979                 DP_NOTICE(p_hwfn, !CHIP_REV_IS_EMUL(p_hwfn->p_dev),
980                           "`%s': Fatal attention\n", p_bit_name);
981 #else
982                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
983                           p_bit_name);
984 #endif
985
986                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
987         }
988
989         /* Prevent this Attention from being asserted in the future */
990         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
991 #ifndef ASIC_ONLY
992             CHIP_REV_IS_EMUL(p_hwfn->p_dev) ||
993 #endif
994             p_hwfn->p_dev->attn_clr_en) {
995                 u32 val;
996                 u32 mask = ~bitmask;
997                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
998                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
999                 DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
1000                         p_bit_name);
1001         }
1002
1003         return rc;
1004 }
1005
1006 /**
1007  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
1008  *
1009  * @param p_hwfn
1010  * @param p_aeu - descriptor of an AEU bit which caused the parity
1011  * @param aeu_en_reg - address of the AEU enable register
1012  * @param bit_index
1013  */
1014 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
1015                                          struct aeu_invert_reg_bit *p_aeu,
1016                                          u32 aeu_en_reg, u8 bit_index)
1017 {
1018         u32 block_id = p_aeu->block_index, mask, val;
1019
1020         DP_NOTICE(p_hwfn->p_dev, false,
1021                   "%s parity attention is set [address 0x%08x, bit %d]\n",
1022                   p_aeu->bit_name, aeu_en_reg, bit_index);
1023
1024         if (block_id != MAX_BLOCK_ID) {
1025                 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
1026
1027                 /* In A0, there's a single parity bit for several blocks */
1028                 if (block_id == BLOCK_BTB) {
1029                         ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
1030                                              ATTN_TYPE_PARITY, false);
1031                         ecore_int_attn_print(p_hwfn, BLOCK_MCP,
1032                                              ATTN_TYPE_PARITY, false);
1033                 }
1034         }
1035
1036         /* Prevent this parity error from being re-asserted */
1037         mask = ~(0x1 << bit_index);
1038         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1039         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1040         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1041                 p_aeu->bit_name);
1042 }
1043
1044 #define MISC_REG_AEU_AFTER_INVERT_IGU(n) \
1045         (MISC_REG_AEU_AFTER_INVERT_1_IGU + (n) * 0x4)
1046
1047 #define MISC_REG_AEU_ENABLE_IGU_OUT(n, group) \
1048         (MISC_REG_AEU_ENABLE1_IGU_OUT_0 + (n) * 0x4 + \
1049          (group) * 0x4 * NUM_ATTN_REGS)
1050
1051 /**
1052  * @brief - handles deassertion of previously asserted attentions.
1053  *
1054  * @param p_hwfn
1055  * @param deasserted_bits - newly deasserted bits
1056  * @return enum _ecore_status_t
1057  *
1058  */
1059 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1060                                                   u16 deasserted_bits)
1061 {
1062         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1063         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1064         u8 i, j, k, bit_idx;
1065         enum _ecore_status_t rc = ECORE_SUCCESS;
1066
1067         /* Read the attention registers in the AEU */
1068         for (i = 0; i < NUM_ATTN_REGS; i++) {
1069                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1070                                           MISC_REG_AEU_AFTER_INVERT_IGU(i));
1071                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1072                            "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1073         }
1074
1075         /* Handle parity attentions first */
1076         for (i = 0; i < NUM_ATTN_REGS; i++) {
1077                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1078                 u32 parities;
1079
1080                 aeu_en = MISC_REG_AEU_ENABLE_IGU_OUT(i, 0);
1081                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1082                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1083
1084                 /* Skip register in which no parity bit is currently set */
1085                 if (!parities)
1086                         continue;
1087
1088                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1089                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1090
1091                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1092                             !!(parities & (1 << bit_idx)))
1093                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
1094                                                              aeu_en, bit_idx);
1095
1096                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1097                 }
1098         }
1099
1100         /* Find non-parity cause for attention and act */
1101         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1102                 struct aeu_invert_reg_bit *p_aeu;
1103
1104                 /* Handle only groups whose attention is currently deasserted */
1105                 if (!(deasserted_bits & (1 << k)))
1106                         continue;
1107
1108                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1109                         u32 bits;
1110
1111                         aeu_en = MISC_REG_AEU_ENABLE_IGU_OUT(i, k);
1112                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1113                         bits = aeu_inv_arr[i] & en;
1114
1115                         /* Skip if no bit from this group is currently set */
1116                         if (!bits)
1117                                 continue;
1118
1119                         /* Find all set bits from current register which belong
1120                          * to current group, making them responsible for the
1121                          * previous assertion.
1122                          */
1123                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1124                                 unsigned long int bitmask;
1125                                 u8 bit, bit_len;
1126
1127                                 /* Need to account bits with changed meaning */
1128                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1129
1130                                 bit = bit_idx;
1131                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1132                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1133                                         /* Skip Parity */
1134                                         bit++;
1135                                         bit_len--;
1136                                 }
1137
1138                                 /* Find the bits relating to HW-block, then
1139                                  * shift so they'll become LSB.
1140                                  */
1141                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1142                                 bitmask >>= bit;
1143
1144                                 if (bitmask) {
1145                                         u32 flags = p_aeu->flags;
1146                                         char bit_name[30];
1147                                         u8 num;
1148
1149                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1150                                                                 bit_len);
1151
1152                                         /* Some bits represent more than a
1153                                          * a single interrupt. Correctly print
1154                                          * their name.
1155                                          */
1156                                         if (ATTENTION_LENGTH(flags) > 2 ||
1157                                             ((flags & ATTENTION_PAR_INT) &&
1158                                             ATTENTION_LENGTH(flags) > 1))
1159                                                 OSAL_SNPRINTF(bit_name, 30,
1160                                                               p_aeu->bit_name,
1161                                                               num);
1162                                         else
1163                                                 strlcpy(bit_name,
1164                                                         p_aeu->bit_name,
1165                                                         sizeof(bit_name));
1166
1167                                         /* We now need to pass bitmask in its
1168                                          * correct position.
1169                                          */
1170                                         bitmask <<= bit;
1171
1172                                         /* Handle source of the attention */
1173                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1174                                                                       p_aeu,
1175                                                                       aeu_en,
1176                                                                       bit_name,
1177                                                                       bitmask);
1178                                 }
1179
1180                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1181                         }
1182                 }
1183         }
1184
1185         /* Clear IGU indication for the deasserted bits */
1186         /* FIXME - this will change once we'll have GOOD gtt definitions */
1187         DIRECT_REG_WR(p_hwfn,
1188                       (u8 OSAL_IOMEM *) p_hwfn->regview +
1189                       GTT_BAR0_MAP_REG_IGU_CMD +
1190                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1191                         IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1192
1193         /* Unmask deasserted attentions in IGU */
1194         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1195                             IGU_REG_ATTENTION_ENABLE);
1196         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1197         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1198
1199         /* Clear deassertion from inner state */
1200         sb_attn_sw->known_attn &= ~deasserted_bits;
1201
1202         return rc;
1203 }
1204
1205 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1206 {
1207         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1208         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1209         u16 index = 0, asserted_bits, deasserted_bits;
1210         u32 attn_bits = 0, attn_acks = 0;
1211         enum _ecore_status_t rc = ECORE_SUCCESS;
1212
1213         /* Read current attention bits/acks - safeguard against attentions
1214          * by guaranting work on a synchronized timeframe
1215          */
1216         do {
1217                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1218                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1219                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1220         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1221         p_sb_attn->sb_index = index;
1222
1223         /* Attention / Deassertion are meaningful (and in correct state)
1224          * only when they differ and consistent with known state - deassertion
1225          * when previous attention & current ack, and assertion when current
1226          * attention with no previous attention
1227          */
1228         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1229             ~p_sb_attn_sw->known_attn;
1230         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1231             p_sb_attn_sw->known_attn;
1232
1233         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1234                 DP_INFO(p_hwfn,
1235                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1236                         index, attn_bits, attn_acks, asserted_bits,
1237                         deasserted_bits, p_sb_attn_sw->known_attn);
1238         else if (asserted_bits == 0x100)
1239                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1240         else
1241                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1242                            "MFW indication [deassertion]\n");
1243
1244         if (asserted_bits) {
1245                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1246                 if (rc)
1247                         return rc;
1248         }
1249
1250         if (deasserted_bits)
1251                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1252
1253         return rc;
1254 }
1255
1256 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1257                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1258 {
1259         struct igu_prod_cons_update igu_ack;
1260
1261         OSAL_MEMSET(&igu_ack, 0, sizeof(struct igu_prod_cons_update));
1262         igu_ack.sb_id_and_flags =
1263             ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1264              (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1265              (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1266              (IGU_SEG_ACCESS_ATTN <<
1267               IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1268
1269         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1270
1271         /* Both segments (interrupts & acks) are written to same place address;
1272          * Need to guarantee all commands will be received (in-order) by HW.
1273          */
1274         OSAL_MMIOWB(p_hwfn->p_dev);
1275         OSAL_BARRIER(p_hwfn->p_dev);
1276 }
1277
1278 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1279 {
1280         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1281         struct ecore_pi_info *pi_info = OSAL_NULL;
1282         struct ecore_sb_attn_info *sb_attn;
1283         struct ecore_sb_info *sb_info;
1284         u16 rc = 0;
1285
1286         if (!p_hwfn)
1287                 return;
1288
1289         if (!p_hwfn->p_sp_sb) {
1290                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1291                 return;
1292         }
1293
1294         sb_info = &p_hwfn->p_sp_sb->sb_info;
1295         if (!sb_info) {
1296                 DP_ERR(p_hwfn->p_dev,
1297                        "Status block is NULL - cannot ack interrupts\n");
1298                 return;
1299         }
1300
1301         if (!p_hwfn->p_sb_attn) {
1302                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1303                 return;
1304         }
1305         sb_attn = p_hwfn->p_sb_attn;
1306
1307         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1308                    p_hwfn, p_hwfn->my_id);
1309
1310         /* Disable ack for def status block. Required both for msix +
1311          * inta in non-mask mode, in inta does no harm.
1312          */
1313         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1314
1315         /* Gather Interrupts/Attentions information */
1316         if (!sb_info->sb_virt) {
1317                 DP_ERR(p_hwfn->p_dev,
1318                        "Interrupt Status block is NULL -"
1319                        " cannot check for new interrupts!\n");
1320         } else {
1321                 u32 tmp_index = sb_info->sb_ack;
1322                 rc = ecore_sb_update_sb_idx(sb_info);
1323                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1324                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1325                            tmp_index, sb_info->sb_ack);
1326         }
1327
1328         if (!sb_attn || !sb_attn->sb_attn) {
1329                 DP_ERR(p_hwfn->p_dev,
1330                        "Attentions Status block is NULL -"
1331                        " cannot check for new attentions!\n");
1332         } else {
1333                 u16 tmp_index = sb_attn->index;
1334
1335                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1336                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1337                            "Attention indices: 0x%08x --> 0x%08x\n",
1338                            tmp_index, sb_attn->index);
1339         }
1340
1341         /* Check if we expect interrupts at this time. if not just ack them */
1342         if (!(rc & ECORE_SB_EVENT_MASK)) {
1343                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1344                 return;
1345         }
1346
1347 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1348
1349         if (!p_hwfn->p_dpc_ptt) {
1350                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1351                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1352                 return;
1353         }
1354
1355         if (rc & ECORE_SB_ATT_IDX)
1356                 ecore_int_attentions(p_hwfn);
1357
1358         if (rc & ECORE_SB_IDX) {
1359                 osal_size_t pi;
1360
1361                 /* Since we only looked at the SB index, it's possible more
1362                  * than a single protocol-index on the SB incremented.
1363                  * Iterate over all configured protocol indices and check
1364                  * whether something happened for each.
1365                  */
1366                 for (pi = 0; pi < p_hwfn->p_sp_sb->pi_info_arr_size; pi++) {
1367                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1368                         if (pi_info->comp_cb != OSAL_NULL)
1369                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1370                 }
1371         }
1372
1373         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1374                 /* This should be done before the interrupts are enabled,
1375                  * since otherwise a new attention will be generated.
1376                  */
1377                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1378         }
1379
1380         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1381 }
1382
1383 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1384 {
1385         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1386
1387         if (!p_sb)
1388                 return;
1389
1390         if (p_sb->sb_attn) {
1391                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1392                                        p_sb->sb_phys,
1393                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1394         }
1395         OSAL_FREE(p_hwfn->p_dev, p_sb);
1396 }
1397
1398 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1399                                     struct ecore_ptt *p_ptt)
1400 {
1401         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1402
1403         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1404
1405         sb_info->index = 0;
1406         sb_info->known_attn = 0;
1407
1408         /* Configure Attention Status Block in IGU */
1409         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1410                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1411         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1412                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1413 }
1414
1415 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1416                                    struct ecore_ptt *p_ptt,
1417                                    void *sb_virt_addr, dma_addr_t sb_phy_addr)
1418 {
1419         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1420         int i, j, k;
1421
1422         sb_info->sb_attn = sb_virt_addr;
1423         sb_info->sb_phys = sb_phy_addr;
1424
1425         /* Set the pointer to the AEU descriptors */
1426         sb_info->p_aeu_desc = aeu_descs;
1427
1428         /* Calculate Parity Masks */
1429         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1430         for (i = 0; i < NUM_ATTN_REGS; i++) {
1431                 /* j is array index, k is bit index */
1432                 for (j = 0, k = 0; k < 32; j++) {
1433                         struct aeu_invert_reg_bit *p_aeu;
1434
1435                         p_aeu = &aeu_descs[i].bits[j];
1436                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1437                                 sb_info->parity_mask[i] |= 1 << k;
1438
1439                         k += ATTENTION_LENGTH(p_aeu->flags);
1440                 }
1441                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1442                            "Attn Mask [Reg %d]: 0x%08x\n",
1443                            i, sb_info->parity_mask[i]);
1444         }
1445
1446         /* Set the address of cleanup for the mcp attention */
1447         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1448             MISC_REG_AEU_GENERAL_ATTN_0;
1449
1450         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1451 }
1452
1453 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1454                                                     struct ecore_ptt *p_ptt)
1455 {
1456         struct ecore_dev *p_dev = p_hwfn->p_dev;
1457         struct ecore_sb_attn_info *p_sb;
1458         dma_addr_t p_phys = 0;
1459         void *p_virt;
1460
1461         /* SB struct */
1462         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1463         if (!p_sb) {
1464                 DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1465                 return ECORE_NOMEM;
1466         }
1467
1468         /* SB ring  */
1469         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1470                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1471         if (!p_virt) {
1472                 DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1473                 OSAL_FREE(p_dev, p_sb);
1474                 return ECORE_NOMEM;
1475         }
1476
1477         /* Attention setup */
1478         p_hwfn->p_sb_attn = p_sb;
1479         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1480
1481         return ECORE_SUCCESS;
1482 }
1483
1484 /* coalescing timeout = timeset << (timer_res + 1) */
1485 #define ECORE_CAU_DEF_RX_USECS 24
1486 #define ECORE_CAU_DEF_TX_USECS 48
1487
1488 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1489                              struct cau_sb_entry *p_sb_entry,
1490                              u8 pf_id, u16 vf_number, u8 vf_valid)
1491 {
1492         struct ecore_dev *p_dev = p_hwfn->p_dev;
1493         u32 cau_state;
1494         u8 timer_res;
1495
1496         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1497
1498         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1499         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1500         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1501         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1502         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1503
1504         cau_state = CAU_HC_DISABLE_STATE;
1505
1506         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1507                 cau_state = CAU_HC_ENABLE_STATE;
1508                 if (!p_dev->rx_coalesce_usecs)
1509                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1510                 if (!p_dev->tx_coalesce_usecs)
1511                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1512         }
1513
1514         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1515         if (p_dev->rx_coalesce_usecs <= 0x7F)
1516                 timer_res = 0;
1517         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1518                 timer_res = 1;
1519         else
1520                 timer_res = 2;
1521         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1522
1523         if (p_dev->tx_coalesce_usecs <= 0x7F)
1524                 timer_res = 0;
1525         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1526                 timer_res = 1;
1527         else
1528                 timer_res = 2;
1529         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1530
1531         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1532         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1533 }
1534
1535 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1536                                    struct ecore_ptt *p_ptt,
1537                                    u16 igu_sb_id, u32 pi_index,
1538                                    enum ecore_coalescing_fsm coalescing_fsm,
1539                                    u8 timeset)
1540 {
1541         struct cau_pi_entry pi_entry;
1542         u32 sb_offset, pi_offset;
1543
1544         if (IS_VF(p_hwfn->p_dev))
1545                 return;/* @@@TBD MichalK- VF CAU... */
1546
1547         sb_offset = igu_sb_id * PIS_PER_SB;
1548         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1549
1550         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1551         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1552                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1553         else
1554                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1555
1556         pi_offset = sb_offset + pi_index;
1557         if (p_hwfn->hw_init_done) {
1558                 ecore_wr(p_hwfn, p_ptt,
1559                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1560                          *((u32 *)&(pi_entry)));
1561         } else {
1562                 STORE_RT_REG(p_hwfn,
1563                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1564                              *((u32 *)&(pi_entry)));
1565         }
1566 }
1567
1568 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1569                            struct ecore_ptt *p_ptt,
1570                            struct ecore_sb_info *p_sb, u32 pi_index,
1571                            enum ecore_coalescing_fsm coalescing_fsm,
1572                            u8 timeset)
1573 {
1574         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1575                                pi_index, coalescing_fsm, timeset);
1576 }
1577
1578 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1579                            struct ecore_ptt *p_ptt,
1580                            dma_addr_t sb_phys, u16 igu_sb_id,
1581                            u16 vf_number, u8 vf_valid)
1582 {
1583         struct cau_sb_entry sb_entry;
1584
1585         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1586                                 vf_number, vf_valid);
1587
1588         if (p_hwfn->hw_init_done) {
1589                 /* Wide-bus, initialize via DMAE */
1590                 u64 phys_addr = (u64)sb_phys;
1591
1592                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1593                                     (u64)(osal_uintptr_t)&phys_addr,
1594                                     CAU_REG_SB_ADDR_MEMORY +
1595                                     igu_sb_id * sizeof(u64), 2,
1596                                     OSAL_NULL /* default parameters */);
1597                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1598                                     (u64)(osal_uintptr_t)&sb_entry,
1599                                     CAU_REG_SB_VAR_MEMORY +
1600                                     igu_sb_id * sizeof(u64), 2,
1601                                     OSAL_NULL /* default parameters */);
1602         } else {
1603                 /* Initialize Status Block Address */
1604                 STORE_RT_REG_AGG(p_hwfn,
1605                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1606                                  igu_sb_id * 2, sb_phys);
1607
1608                 STORE_RT_REG_AGG(p_hwfn,
1609                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1610                                  igu_sb_id * 2, sb_entry);
1611         }
1612
1613         /* Configure pi coalescing if set */
1614         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1615                 /* eth will open queues for all tcs, so configure all of them
1616                  * properly, rather than just the active ones
1617                  */
1618                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1619
1620                 u8 timeset, timer_res;
1621                 u8 i;
1622
1623                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1624                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1625                         timer_res = 0;
1626                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1627                         timer_res = 1;
1628                 else
1629                         timer_res = 2;
1630                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1631                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1632                                        ECORE_COAL_RX_STATE_MACHINE,
1633                                        timeset);
1634
1635                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1636                         timer_res = 0;
1637                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1638                         timer_res = 1;
1639                 else
1640                         timer_res = 2;
1641                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1642                 for (i = 0; i < num_tc; i++) {
1643                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1644                                                igu_sb_id, TX_PI(i),
1645                                                ECORE_COAL_TX_STATE_MACHINE,
1646                                                timeset);
1647                 }
1648         }
1649 }
1650
1651 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1652                         struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1653 {
1654         /* zero status block and ack counter */
1655         sb_info->sb_ack = 0;
1656         OSAL_MEMSET(sb_info->sb_virt, 0, sb_info->sb_size);
1657
1658         if (IS_PF(p_hwfn->p_dev))
1659                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1660                                       sb_info->igu_sb_id, 0, 0);
1661 }
1662
1663 struct ecore_igu_block *
1664 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1665 {
1666         struct ecore_igu_block *p_block;
1667         u16 igu_id;
1668
1669         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1670              igu_id++) {
1671                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1672
1673                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1674                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1675                         continue;
1676
1677                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1678                     b_is_pf)
1679                         return p_block;
1680         }
1681
1682         return OSAL_NULL;
1683 }
1684
1685 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1686                                   u16 vector_id)
1687 {
1688         struct ecore_igu_block *p_block;
1689         u16 igu_id;
1690
1691         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1692              igu_id++) {
1693                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1694
1695                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1696                     !p_block->is_pf ||
1697                     p_block->vector_number != vector_id)
1698                         continue;
1699
1700                 return igu_id;
1701         }
1702
1703         return ECORE_SB_INVALID_IDX;
1704 }
1705
1706 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1707 {
1708         u16 igu_sb_id;
1709
1710         /* Assuming continuous set of IGU SBs dedicated for given PF */
1711         if (sb_id == ECORE_SP_SB_ID)
1712                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1713         else if (IS_PF(p_hwfn->p_dev))
1714                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1715         else
1716                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1717
1718         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1719                 DP_NOTICE(p_hwfn, true,
1720                           "Slowpath SB vector %04x doesn't exist\n",
1721                           sb_id);
1722         else if (sb_id == ECORE_SP_SB_ID)
1723                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1724                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1725         else
1726                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1727                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1728
1729         return igu_sb_id;
1730 }
1731
1732 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1733                                        struct ecore_ptt *p_ptt,
1734                                        struct ecore_sb_info *sb_info,
1735                                        void *sb_virt_addr,
1736                                        dma_addr_t sb_phy_addr, u16 sb_id)
1737 {
1738         sb_info->sb_virt = sb_virt_addr;
1739         struct status_block *sb_virt;
1740
1741         sb_virt = (struct status_block *)sb_info->sb_virt;
1742
1743         sb_info->sb_size = sizeof(*sb_virt);
1744         sb_info->sb_pi_array = sb_virt->pi_array;
1745         sb_info->sb_prod_index = &sb_virt->prod_index;
1746
1747         sb_info->sb_phys = sb_phy_addr;
1748
1749         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1750
1751         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1752                 return ECORE_INVAL;
1753
1754         /* Let the igu info reference the client's SB info */
1755         if (sb_id != ECORE_SP_SB_ID) {
1756                 if (IS_PF(p_hwfn->p_dev)) {
1757                         struct ecore_igu_info *p_info;
1758                         struct ecore_igu_block *p_block;
1759
1760                         p_info = p_hwfn->hw_info.p_igu_info;
1761                         p_block = &p_info->entry[sb_info->igu_sb_id];
1762
1763                         p_block->sb_info = sb_info;
1764                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1765                         p_info->usage.free_cnt--;
1766                 } else {
1767                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1768                 }
1769         }
1770 #ifdef ECORE_CONFIG_DIRECT_HWFN
1771         sb_info->p_hwfn = p_hwfn;
1772 #endif
1773         sb_info->p_dev = p_hwfn->p_dev;
1774
1775         /* The igu address will hold the absolute address that needs to be
1776          * written to for a specific status block
1777          */
1778         if (IS_PF(p_hwfn->p_dev))
1779                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1780                                      GTT_BAR0_MAP_REG_IGU_CMD +
1781                                      (sb_info->igu_sb_id << 3);
1782
1783         else
1784                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1785                     PXP_VF_BAR0_START_IGU +
1786                                      ((IGU_CMD_INT_ACK_BASE +
1787                                        sb_info->igu_sb_id) << 3);
1788
1789         sb_info->flags |= ECORE_SB_INFO_INIT;
1790
1791         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1792
1793         return ECORE_SUCCESS;
1794 }
1795
1796 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1797                                           struct ecore_sb_info *sb_info,
1798                                           u16 sb_id)
1799 {
1800         struct ecore_igu_info *p_info;
1801         struct ecore_igu_block *p_block;
1802
1803         if (sb_info == OSAL_NULL)
1804                 return ECORE_SUCCESS;
1805
1806         /* zero status block and ack counter */
1807         sb_info->sb_ack = 0;
1808         OSAL_MEMSET(sb_info->sb_virt, 0, sb_info->sb_size);
1809
1810         if (IS_VF(p_hwfn->p_dev)) {
1811                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1812                 return ECORE_SUCCESS;
1813         }
1814
1815         p_info = p_hwfn->hw_info.p_igu_info;
1816         p_block = &p_info->entry[sb_info->igu_sb_id];
1817
1818         /* Vector 0 is reserved to Default SB */
1819         if (p_block->vector_number == 0) {
1820                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1821                 return ECORE_INVAL;
1822         }
1823
1824         /* Lose reference to client's SB info, and fix counters */
1825         p_block->sb_info = OSAL_NULL;
1826         p_block->status |= ECORE_IGU_STATUS_FREE;
1827         p_info->usage.free_cnt++;
1828
1829         return ECORE_SUCCESS;
1830 }
1831
1832 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1833 {
1834         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1835
1836         if (!p_sb)
1837                 return;
1838
1839         if (p_sb->sb_info.sb_virt) {
1840                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1841                                        p_sb->sb_info.sb_virt,
1842                                        p_sb->sb_info.sb_phys,
1843                                        SB_ALIGNED_SIZE(p_hwfn));
1844         }
1845
1846         OSAL_FREE(p_hwfn->p_dev, p_sb);
1847 }
1848
1849 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1850                                                   struct ecore_ptt *p_ptt)
1851 {
1852         struct ecore_sb_sp_info *p_sb;
1853         dma_addr_t p_phys = 0;
1854         void *p_virt;
1855
1856         /* SB struct */
1857         p_sb = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1858         if (!p_sb) {
1859                 DP_NOTICE(p_hwfn, false,
1860                           "Failed to allocate `struct ecore_sb_info'\n");
1861                 return ECORE_NOMEM;
1862         }
1863
1864         /* SB ring  */
1865         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1866                                          &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1867         if (!p_virt) {
1868                 DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1869                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1870                 return ECORE_NOMEM;
1871         }
1872
1873         /* Status Block setup */
1874         p_hwfn->p_sp_sb = p_sb;
1875         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1876                           p_virt, p_phys, ECORE_SP_SB_ID);
1877
1878         p_sb->pi_info_arr_size = PIS_PER_SB;
1879
1880         return ECORE_SUCCESS;
1881 }
1882
1883 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1884                                            ecore_int_comp_cb_t comp_cb,
1885                                            void *cookie,
1886                                            u8 *sb_idx, __le16 **p_fw_cons)
1887 {
1888         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1889         enum _ecore_status_t rc = ECORE_NOMEM;
1890         u8 pi;
1891
1892         /* Look for a free index */
1893         for (pi = 0; pi < p_sp_sb->pi_info_arr_size; pi++) {
1894                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1895                         continue;
1896
1897                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1898                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1899                 *sb_idx = pi;
1900                 *p_fw_cons = &p_sp_sb->sb_info.sb_pi_array[pi];
1901                 rc = ECORE_SUCCESS;
1902                 break;
1903         }
1904
1905         return rc;
1906 }
1907
1908 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1909 {
1910         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1911
1912         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1913                 return ECORE_NOMEM;
1914
1915         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1916         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1917         return ECORE_SUCCESS;
1918 }
1919
1920 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1921 {
1922         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1923 }
1924
1925 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1926                               struct ecore_ptt *p_ptt,
1927                               enum ecore_int_mode int_mode)
1928 {
1929         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1930
1931 #ifndef ASIC_ONLY
1932         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1933                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1934                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1935         }
1936 #endif
1937
1938         p_hwfn->p_dev->int_mode = int_mode;
1939         switch (p_hwfn->p_dev->int_mode) {
1940         case ECORE_INT_MODE_INTA:
1941                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1942                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1943                 break;
1944
1945         case ECORE_INT_MODE_MSI:
1946                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1947                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1948                 break;
1949
1950         case ECORE_INT_MODE_MSIX:
1951                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1952                 break;
1953         case ECORE_INT_MODE_POLL:
1954                 break;
1955         }
1956
1957         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1958 }
1959
1960 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1961                                       struct ecore_ptt *p_ptt)
1962 {
1963 #ifndef ASIC_ONLY
1964         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1965                 DP_INFO(p_hwfn,
1966                         "FPGA - Don't enable Attentions in IGU and MISC\n");
1967                 return;
1968         }
1969 #endif
1970
1971         /* Configure AEU signal change to produce attentions */
1972         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1973         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1974         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1975         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1976
1977         /* Flush the writes to IGU */
1978         OSAL_MMIOWB(p_hwfn->p_dev);
1979
1980         /* Unmask AEU signals toward IGU */
1981         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1982 }
1983
1984 enum _ecore_status_t
1985 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1986                           enum ecore_int_mode int_mode)
1987 {
1988         enum _ecore_status_t rc = ECORE_SUCCESS;
1989
1990         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1991
1992         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1993                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1994                 if (rc != ECORE_SUCCESS) {
1995                         DP_NOTICE(p_hwfn, true,
1996                                   "Slowpath IRQ request failed\n");
1997                         return ECORE_NORESOURCES;
1998                 }
1999                 p_hwfn->b_int_requested = true;
2000         }
2001
2002         /* Enable interrupt Generation */
2003         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
2004
2005         p_hwfn->b_int_enabled = 1;
2006
2007         return rc;
2008 }
2009
2010 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
2011                                struct ecore_ptt *p_ptt)
2012 {
2013         p_hwfn->b_int_enabled = 0;
2014
2015         if (IS_VF(p_hwfn->p_dev))
2016                 return;
2017
2018         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2019 }
2020
2021 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
2022 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
2023                                      struct ecore_ptt *p_ptt,
2024                                      u32 igu_sb_id,
2025                                      bool cleanup_set,
2026                                      u16 opaque_fid)
2027 {
2028         u32 data = 0, cmd_ctrl = 0, sb_bit, sb_bit_addr, pxp_addr;
2029         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH, val;
2030         u8 type = 0;
2031
2032         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
2033                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
2034
2035         /* USE Control Command Register to perform cleanup. There is an
2036          * option to do this using IGU bar, but then it can't be used for VFs.
2037          */
2038
2039         /* Set the data field */
2040         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
2041         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
2042         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
2043
2044         /* Set the control register */
2045         pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
2046         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
2047         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
2048         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2049
2050         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2051
2052         OSAL_BARRIER(p_hwfn->p_dev);
2053
2054         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2055
2056         /* Flush the write to IGU */
2057         OSAL_MMIOWB(p_hwfn->p_dev);
2058
2059         /* calculate where to read the status bit from */
2060         sb_bit = 1 << (igu_sb_id % 32);
2061         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2062
2063         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2064
2065         /* Now wait for the command to complete */
2066         while (--sleep_cnt) {
2067                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2068                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2069                         break;
2070                 OSAL_MSLEEP(5);
2071         }
2072
2073         if (!sleep_cnt)
2074                 DP_NOTICE(p_hwfn, true,
2075                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2076                           val, igu_sb_id);
2077 }
2078
2079 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2080                                        struct ecore_ptt *p_ptt,
2081                                        u16 igu_sb_id, u16 opaque, bool b_set)
2082 {
2083         struct ecore_igu_block *p_block;
2084         int pi, i;
2085
2086         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2087         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2088                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2089                    igu_sb_id, p_block->function_id, p_block->is_pf,
2090                    p_block->vector_number);
2091
2092         /* Set */
2093         if (b_set)
2094                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2095
2096         /* Clear */
2097         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2098
2099         /* Wait for the IGU SB to cleanup */
2100         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2101                 u32 val;
2102
2103                 val = ecore_rd(p_hwfn, p_ptt,
2104                                IGU_REG_WRITE_DONE_PENDING +
2105                                ((igu_sb_id / 32) * 4));
2106                 if (val & (1 << (igu_sb_id % 32)))
2107                         OSAL_UDELAY(10);
2108                 else
2109                         break;
2110         }
2111         if (i == IGU_CLEANUP_SLEEP_LENGTH)
2112                 DP_NOTICE(p_hwfn, true,
2113                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2114                           igu_sb_id);
2115
2116         /* Clear the CAU for the SB */
2117         for (pi = 0; pi < PIS_PER_SB; pi++)
2118                 ecore_wr(p_hwfn, p_ptt,
2119                          CAU_REG_PI_MEMORY +
2120                          (igu_sb_id * PIS_PER_SB + pi) * 4,
2121                          0);
2122 }
2123
2124 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2125                                 struct ecore_ptt *p_ptt,
2126                                 bool b_set, bool b_slowpath)
2127 {
2128         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2129         struct ecore_igu_block *p_block;
2130         u16 igu_sb_id = 0;
2131         u32 val = 0;
2132
2133         /* @@@TBD MichalK temporary... should be moved to init-tool... */
2134         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2135         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2136         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2137         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2138         /* end temporary */
2139
2140         for (igu_sb_id = 0;
2141              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2142              igu_sb_id++) {
2143                 p_block = &p_info->entry[igu_sb_id];
2144
2145                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2146                     !p_block->is_pf ||
2147                     (p_block->status & ECORE_IGU_STATUS_DSB))
2148                         continue;
2149
2150                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2151                                                   p_hwfn->hw_info.opaque_fid,
2152                                                   b_set);
2153         }
2154
2155         if (b_slowpath)
2156                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2157                                                   p_info->igu_dsb_id,
2158                                                   p_hwfn->hw_info.opaque_fid,
2159                                                   b_set);
2160 }
2161
2162 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2163                             struct ecore_ptt *p_ptt)
2164 {
2165         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2166         struct ecore_igu_block *p_block;
2167         int pf_sbs, vf_sbs;
2168         u16 igu_sb_id;
2169         u32 val, rval;
2170
2171         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2172                 /* We're using an old MFW - have to prevent any switching
2173                  * of SBs between PF and VFs as later driver wouldn't be
2174                  * able to tell which belongs to which.
2175                  */
2176                 p_info->b_allow_pf_vf_change = false;
2177         } else {
2178                 /* Use the numbers the MFW have provided -
2179                  * don't forget MFW accounts for the default SB as well.
2180                  */
2181                 p_info->b_allow_pf_vf_change = true;
2182
2183                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2184                         DP_INFO(p_hwfn,
2185                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2186                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2187                                 p_info->usage.cnt);
2188                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2189                 }
2190
2191                 /* TODO - how do we learn about VF SBs from MFW? */
2192                 if (IS_PF_SRIOV(p_hwfn)) {
2193                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2194
2195                         if (vfs != p_info->usage.iov_cnt)
2196                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2197                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2198                                            p_info->usage.iov_cnt, vfs);
2199
2200                         /* At this point we know how many SBs we have totally
2201                          * in IGU + number of PF SBs. So we can validate that
2202                          * we'd have sufficient for VF.
2203                          */
2204                         if (vfs > p_info->usage.free_cnt +
2205                                   p_info->usage.free_cnt_iov -
2206                                   p_info->usage.cnt) {
2207                                 DP_NOTICE(p_hwfn, true,
2208                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2209                                           p_info->usage.free_cnt +
2210                                           p_info->usage.free_cnt_iov,
2211                                           p_info->usage.cnt, vfs);
2212                                 return ECORE_INVAL;
2213                         }
2214                 }
2215         }
2216
2217         /* Cap the number of VFs SBs by the number of VFs */
2218         if (IS_PF_SRIOV(p_hwfn))
2219                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2220
2221         /* Mark all SBs as free, now in the right PF/VFs division */
2222         p_info->usage.free_cnt = p_info->usage.cnt;
2223         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2224         p_info->usage.orig = p_info->usage.cnt;
2225         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2226
2227         /* We now proceed to re-configure the IGU cam to reflect the initial
2228          * configuration. We can start with the Default SB.
2229          */
2230         pf_sbs = p_info->usage.cnt;
2231         vf_sbs = p_info->usage.iov_cnt;
2232
2233         for (igu_sb_id = p_info->igu_dsb_id;
2234              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2235              igu_sb_id++) {
2236                 p_block = &p_info->entry[igu_sb_id];
2237                 val = 0;
2238
2239                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2240                         continue;
2241
2242                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2243                         p_block->function_id = p_hwfn->rel_pf_id;
2244                         p_block->is_pf = 1;
2245                         p_block->vector_number = 0;
2246                         p_block->status = ECORE_IGU_STATUS_VALID |
2247                                           ECORE_IGU_STATUS_PF |
2248                                           ECORE_IGU_STATUS_DSB;
2249                 } else if (pf_sbs) {
2250                         pf_sbs--;
2251                         p_block->function_id = p_hwfn->rel_pf_id;
2252                         p_block->is_pf = 1;
2253                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2254                         p_block->status = ECORE_IGU_STATUS_VALID |
2255                                           ECORE_IGU_STATUS_PF |
2256                                           ECORE_IGU_STATUS_FREE;
2257                 } else if (vf_sbs) {
2258                         p_block->function_id =
2259                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2260                                 p_info->usage.iov_cnt - vf_sbs;
2261                         p_block->is_pf = 0;
2262                         p_block->vector_number = 0;
2263                         p_block->status = ECORE_IGU_STATUS_VALID |
2264                                           ECORE_IGU_STATUS_FREE;
2265                         vf_sbs--;
2266                 } else {
2267                         p_block->function_id = 0;
2268                         p_block->is_pf = 0;
2269                         p_block->vector_number = 0;
2270                 }
2271
2272                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2273                           p_block->function_id);
2274                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2275                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2276                           p_block->vector_number);
2277
2278                 /* VF entries would be enabled when VF is initializaed */
2279                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2280
2281                 rval = ecore_rd(p_hwfn, p_ptt,
2282                                 IGU_REG_MAPPING_MEMORY +
2283                                 sizeof(u32) * igu_sb_id);
2284
2285                 if (rval != val) {
2286                         ecore_wr(p_hwfn, p_ptt,
2287                                  IGU_REG_MAPPING_MEMORY +
2288                                  sizeof(u32) * igu_sb_id,
2289                                  val);
2290
2291                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2292                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2293                                    igu_sb_id, p_block->function_id,
2294                                    p_block->is_pf, p_block->vector_number,
2295                                    rval, val);
2296                 }
2297         }
2298
2299         return 0;
2300 }
2301
2302 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2303                                     struct ecore_ptt *p_ptt)
2304 {
2305         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2306
2307         /* Return all the usage indications to default prior to the reset;
2308          * The reset expects the !orig to reflect the initial status of the
2309          * SBs, and would re-calculate the originals based on those.
2310          */
2311         p_cnt->cnt = p_cnt->orig;
2312         p_cnt->free_cnt = p_cnt->orig;
2313         p_cnt->iov_cnt = p_cnt->iov_orig;
2314         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2315         p_cnt->orig = 0;
2316         p_cnt->iov_orig = 0;
2317
2318         /* TODO - we probably need to re-configure the CAU as well... */
2319         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2320 }
2321
2322 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2323                                          struct ecore_ptt *p_ptt,
2324                                          u16 igu_sb_id)
2325 {
2326         u32 val = ecore_rd(p_hwfn, p_ptt,
2327                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2328         struct ecore_igu_block *p_block;
2329
2330         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2331
2332         /* Fill the block information */
2333         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2334         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2335         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2336
2337         p_block->igu_sb_id = igu_sb_id;
2338 }
2339
2340 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2341                                             struct ecore_ptt *p_ptt)
2342 {
2343         struct ecore_igu_info *p_igu_info;
2344         struct ecore_igu_block *p_block;
2345         u32 min_vf = 0, max_vf = 0;
2346         u16 igu_sb_id;
2347
2348         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2349                                                  GFP_KERNEL,
2350                                                  sizeof(*p_igu_info));
2351         if (!p_hwfn->hw_info.p_igu_info)
2352                 return ECORE_NOMEM;
2353         p_igu_info = p_hwfn->hw_info.p_igu_info;
2354
2355         /* Distinguish between existent and onn-existent default SB */
2356         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2357
2358         /* Find the range of VF ids whose SB belong to this PF */
2359         if (p_hwfn->p_dev->p_iov_info) {
2360                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2361
2362                 min_vf = p_iov->first_vf_in_pf;
2363                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2364         }
2365
2366         for (igu_sb_id = 0;
2367              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2368              igu_sb_id++) {
2369                 /* Read current entry; Notice it might not belong to this PF */
2370                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2371                 p_block = &p_igu_info->entry[igu_sb_id];
2372
2373                 if ((p_block->is_pf) &&
2374                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2375                         p_block->status = ECORE_IGU_STATUS_PF |
2376                                           ECORE_IGU_STATUS_VALID |
2377                                           ECORE_IGU_STATUS_FREE;
2378
2379                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2380                                 p_igu_info->usage.cnt++;
2381                 } else if (!(p_block->is_pf) &&
2382                            (p_block->function_id >= min_vf) &&
2383                            (p_block->function_id < max_vf)) {
2384                         /* Available for VFs of this PF */
2385                         p_block->status = ECORE_IGU_STATUS_VALID |
2386                                           ECORE_IGU_STATUS_FREE;
2387
2388                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2389                                 p_igu_info->usage.iov_cnt++;
2390                 }
2391
2392                 /* Mark the First entry belonging to the PF or its VFs
2393                  * as the default SB [we'll reset IGU prior to first usage].
2394                  */
2395                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2396                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2397                         p_igu_info->igu_dsb_id = igu_sb_id;
2398                         p_block->status |= ECORE_IGU_STATUS_DSB;
2399                 }
2400
2401                 /* While this isn't suitable for all clients, limit number
2402                  * of prints by having each PF print only its entries with the
2403                  * exception of PF0 which would print everything.
2404                  */
2405                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2406                     (p_hwfn->abs_pf_id == 0))
2407                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2408                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2409                                    igu_sb_id, p_block->function_id,
2410                                    p_block->is_pf, p_block->vector_number);
2411         }
2412
2413         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2414                 DP_NOTICE(p_hwfn, true,
2415                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2416                           p_igu_info->igu_dsb_id);
2417                 return ECORE_INVAL;
2418         }
2419
2420         /* All non default SB are considered free at this point */
2421         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2422         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2423
2424         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2425                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2426                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2427                    p_igu_info->usage.iov_cnt);
2428
2429         return ECORE_SUCCESS;
2430 }
2431
2432 enum _ecore_status_t
2433 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2434                           u16 sb_id, bool b_to_vf)
2435 {
2436         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2437         struct ecore_igu_block *p_block = OSAL_NULL;
2438         u16 igu_sb_id = 0, vf_num = 0;
2439         u32 val = 0;
2440
2441         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2442                 return ECORE_INVAL;
2443
2444         if (sb_id == ECORE_SP_SB_ID)
2445                 return ECORE_INVAL;
2446
2447         if (!p_info->b_allow_pf_vf_change) {
2448                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2449                 return ECORE_INVAL;
2450         }
2451
2452         /* If we're moving a SB from PF to VF, the client had to specify
2453          * which vector it wants to move.
2454          */
2455         if (b_to_vf) {
2456                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2457                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2458                         return ECORE_INVAL;
2459         }
2460
2461         /* If we're moving a SB from VF to PF, need to validate there isn't
2462          * already a line configured for that vector.
2463          */
2464         if (!b_to_vf) {
2465                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2466                     ECORE_SB_INVALID_IDX)
2467                         return ECORE_INVAL;
2468         }
2469
2470         /* We need to validate that the SB can actually be relocated.
2471          * This would also handle the previous case where we've explicitly
2472          * stated which IGU SB needs to move.
2473          */
2474         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2475              igu_sb_id++) {
2476                 p_block = &p_info->entry[igu_sb_id];
2477
2478                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2479                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2480                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2481                         if (b_to_vf)
2482                                 return ECORE_INVAL;
2483                         else
2484                                 continue;
2485                 }
2486
2487                 break;
2488         }
2489
2490         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2491                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2492                            "Failed to find a free SB to move\n");
2493                 return ECORE_INVAL;
2494         }
2495
2496         /* At this point, p_block points to the SB we want to relocate */
2497         if (b_to_vf) {
2498                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2499
2500                 /* It doesn't matter which VF number we choose, since we're
2501                  * going to disable the line; But let's keep it in range.
2502                  */
2503                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2504
2505                 p_block->function_id = (u8)vf_num;
2506                 p_block->is_pf = 0;
2507                 p_block->vector_number = 0;
2508
2509                 p_info->usage.cnt--;
2510                 p_info->usage.free_cnt--;
2511                 p_info->usage.iov_cnt++;
2512                 p_info->usage.free_cnt_iov++;
2513
2514                 /* TODO - if SBs aren't really the limiting factor,
2515                  * then it might not be accurate [in the since that
2516                  * we might not need decrement the feature].
2517                  */
2518                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2519                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2520         } else {
2521                 p_block->status |= ECORE_IGU_STATUS_PF;
2522                 p_block->function_id = p_hwfn->rel_pf_id;
2523                 p_block->is_pf = 1;
2524                 p_block->vector_number = sb_id + 1;
2525
2526                 p_info->usage.cnt++;
2527                 p_info->usage.free_cnt++;
2528                 p_info->usage.iov_cnt--;
2529                 p_info->usage.free_cnt_iov--;
2530
2531                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2532                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2533         }
2534
2535         /* Update the IGU and CAU with the new configuration */
2536         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2537                   p_block->function_id);
2538         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2539         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2540         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2541                   p_block->vector_number);
2542
2543         ecore_wr(p_hwfn, p_ptt,
2544                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2545                  val);
2546
2547         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2548                               igu_sb_id, vf_num,
2549                               p_block->is_pf ? 0 : 1);
2550
2551         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2552                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2553                    igu_sb_id, p_block->function_id,
2554                    p_block->is_pf, p_block->vector_number);
2555
2556         return ECORE_SUCCESS;
2557 }
2558
2559 /**
2560  * @brief Initialize igu runtime registers
2561  *
2562  * @param p_hwfn
2563  */
2564 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2565 {
2566         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2567
2568         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2569 }
2570
2571 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2572                           IGU_CMD_INT_ACK_BASE)
2573 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2574                           IGU_CMD_INT_ACK_BASE)
2575 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2576 {
2577         u32 intr_status_hi = 0, intr_status_lo = 0;
2578         u64 intr_status = 0;
2579
2580         intr_status_lo = REG_RD(p_hwfn,
2581                                 GTT_BAR0_MAP_REG_IGU_CMD +
2582                                 LSB_IGU_CMD_ADDR * 8);
2583         intr_status_hi = REG_RD(p_hwfn,
2584                                 GTT_BAR0_MAP_REG_IGU_CMD +
2585                                 MSB_IGU_CMD_ADDR * 8);
2586         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2587
2588         return intr_status;
2589 }
2590
2591 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2592 {
2593         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2594         p_hwfn->b_sp_dpc_enabled = true;
2595 }
2596
2597 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2598 {
2599         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2600         if (!p_hwfn->sp_dpc)
2601                 return ECORE_NOMEM;
2602
2603         return ECORE_SUCCESS;
2604 }
2605
2606 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2607 {
2608         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2609 }
2610
2611 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2612                                      struct ecore_ptt *p_ptt)
2613 {
2614         enum _ecore_status_t rc = ECORE_SUCCESS;
2615
2616         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2617         if (rc != ECORE_SUCCESS) {
2618                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2619                 return rc;
2620         }
2621
2622         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2623         if (rc != ECORE_SUCCESS) {
2624                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2625                 return rc;
2626         }
2627
2628         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2629         if (rc != ECORE_SUCCESS)
2630                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2631
2632         return rc;
2633 }
2634
2635 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2636 {
2637         ecore_int_sp_sb_free(p_hwfn);
2638         ecore_int_sb_attn_free(p_hwfn);
2639         ecore_int_sp_dpc_free(p_hwfn);
2640 }
2641
2642 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2643 {
2644         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2645                 return;
2646
2647         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2648         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2649         ecore_int_sp_dpc_setup(p_hwfn);
2650 }
2651
2652 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2653                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2654 {
2655         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2656
2657         if (!p_igu_info || !p_sb_cnt_info)
2658                 return;
2659
2660         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2661                     sizeof(*p_sb_cnt_info));
2662 }
2663
2664 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2665 {
2666         int i;
2667
2668         for_each_hwfn(p_dev, i)
2669                 p_dev->hwfns[i].b_int_requested = false;
2670 }
2671
2672 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2673 {
2674         p_dev->attn_clr_en = clr_enable;
2675 }
2676
2677 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2678                                              struct ecore_ptt *p_ptt,
2679                                              u8 timer_res, u16 sb_id, bool tx)
2680 {
2681         struct cau_sb_entry sb_entry;
2682         enum _ecore_status_t rc;
2683
2684         if (!p_hwfn->hw_init_done) {
2685                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2686                 return ECORE_INVAL;
2687         }
2688
2689         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2690                                  sb_id * sizeof(u64),
2691                                  (u64)(osal_uintptr_t)&sb_entry, 2,
2692                                  OSAL_NULL /* default parameters */);
2693         if (rc != ECORE_SUCCESS) {
2694                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2695                 return rc;
2696         }
2697
2698         if (tx)
2699                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2700         else
2701                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2702
2703         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2704                                  (u64)(osal_uintptr_t)&sb_entry,
2705                                  CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2706                                  OSAL_NULL /* default parameters */);
2707         if (rc != ECORE_SUCCESS) {
2708                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2709                 return rc;
2710         }
2711
2712         return rc;
2713 }
2714
2715 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2716                                           struct ecore_ptt *p_ptt,
2717                                           struct ecore_sb_info *p_sb,
2718                                           struct ecore_sb_info_dbg *p_info)
2719 {
2720         u16 sbid = p_sb->igu_sb_id;
2721         u32 i;
2722
2723         if (IS_VF(p_hwfn->p_dev))
2724                 return ECORE_INVAL;
2725
2726         if (sbid >= NUM_OF_SBS(p_hwfn->p_dev))
2727                 return ECORE_INVAL;
2728
2729         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2730                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2731         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2732                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2733
2734         for (i = 0; i < PIS_PER_SB; i++)
2735                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2736                                               CAU_REG_PI_MEMORY +
2737                                               sbid * 4 * PIS_PER_SB +
2738                                               i * 4);
2739
2740         return ECORE_SUCCESS;
2741 }
2742
2743 void ecore_pf_flr_igu_cleanup(struct ecore_hwfn *p_hwfn)
2744 {
2745         struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2746         struct ecore_ptt *p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2747                                                              RESERVED_PTT_DPC);
2748         int i;
2749
2750         /* Do not reorder the following cleanup sequence */
2751         /* Ack all attentions */
2752         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ACK_BITS, 0xfff);
2753
2754         /* Clear driver attention */
2755         ecore_wr(p_hwfn,  p_dpc_ptt,
2756                 ((p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0), 0);
2757
2758         /* Clear per-PF IGU registers to restore them as if the IGU
2759          * was reset for this PF
2760          */
2761         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2762         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2763         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2764
2765         /* Execute IGU clean up*/
2766         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_FUNCTIONAL_CLEANUP, 1);
2767
2768         /* Clear Stats */
2769         ecore_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_OF_INTA_ASSERTED, 0);
2770
2771         for (i = 0; i < IGU_REG_PBA_STS_PF_SIZE; i++)
2772                 ecore_wr(p_hwfn, p_ptt, IGU_REG_PBA_STS_PF + i * 4, 0);
2773 }