2 * Copyright (c) 2016 QLogic Corporation.
6 * See LICENSE.qede_pmd for copyright and licensing details.
11 static bool gro_disable = 1; /* mod_param */
13 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
15 struct rte_mbuf *new_mb = NULL;
16 struct eth_rx_bd *rx_bd;
18 uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
20 new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
21 if (unlikely(!new_mb)) {
23 "Failed to allocate rx buffer "
24 "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
25 idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
26 rte_mempool_avail_count(rxq->mb_pool),
27 rte_mempool_in_use_count(rxq->mb_pool));
30 rxq->sw_rx_ring[idx].mbuf = new_mb;
31 rxq->sw_rx_ring[idx].page_offset = 0;
32 mapping = rte_mbuf_data_dma_addr_default(new_mb);
33 /* Advance PROD and get BD pointer */
34 rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
35 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
36 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
41 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
45 if (rxq->sw_rx_ring != NULL) {
46 for (i = 0; i < rxq->nb_rx_desc; i++) {
47 if (rxq->sw_rx_ring[i].mbuf != NULL) {
48 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
49 rxq->sw_rx_ring[i].mbuf = NULL;
55 void qede_rx_queue_release(void *rx_queue)
57 struct qede_rx_queue *rxq = rx_queue;
60 qede_rx_queue_release_mbufs(rxq);
61 rte_free(rxq->sw_rx_ring);
62 rxq->sw_rx_ring = NULL;
68 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
72 PMD_TX_LOG(DEBUG, txq, "releasing %u mbufs", txq->nb_tx_desc);
74 if (txq->sw_tx_ring) {
75 for (i = 0; i < txq->nb_tx_desc; i++) {
76 if (txq->sw_tx_ring[i].mbuf) {
77 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
78 txq->sw_tx_ring[i].mbuf = NULL;
85 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
86 uint16_t nb_desc, unsigned int socket_id,
87 const struct rte_eth_rxconf *rx_conf,
88 struct rte_mempool *mp)
90 struct qede_dev *qdev = dev->data->dev_private;
91 struct ecore_dev *edev = &qdev->edev;
92 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
93 struct qede_rx_queue *rxq;
94 uint16_t max_rx_pkt_len;
100 PMD_INIT_FUNC_TRACE(edev);
102 /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
103 if (!rte_is_power_of_2(nb_desc)) {
104 DP_ERR(edev, "Ring size %u is not power of 2\n",
109 /* Free memory prior to re-allocation if needed... */
110 if (dev->data->rx_queues[queue_idx] != NULL) {
111 qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
112 dev->data->rx_queues[queue_idx] = NULL;
115 /* First allocate the rx queue data structure */
116 rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
117 RTE_CACHE_LINE_SIZE, socket_id);
120 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
127 rxq->nb_rx_desc = nb_desc;
128 rxq->queue_id = queue_idx;
129 rxq->port_id = dev->data->port_id;
130 max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
131 qdev->mtu = max_rx_pkt_len;
133 /* Fix up RX buffer size */
134 bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
135 if ((rxmode->enable_scatter) ||
136 (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
137 if (!dev->data->scattered_rx) {
138 DP_INFO(edev, "Forcing scatter-gather mode\n");
139 dev->data->scattered_rx = 1;
142 if (dev->data->scattered_rx)
143 rxq->rx_buf_size = bufsz + QEDE_ETH_OVERHEAD;
145 rxq->rx_buf_size = qdev->mtu + QEDE_ETH_OVERHEAD;
146 /* Align to cache-line size if needed */
147 rxq->rx_buf_size = QEDE_CEIL_TO_CACHE_LINE_SIZE(rxq->rx_buf_size);
149 DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
150 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
152 /* Allocate the parallel driver ring for Rx buffers */
153 size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
154 rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
155 RTE_CACHE_LINE_SIZE, socket_id);
156 if (!rxq->sw_rx_ring) {
157 DP_NOTICE(edev, false,
158 "Unable to alloc memory for sw_rx_ring on socket %u\n",
165 /* Allocate FW Rx ring */
166 rc = qdev->ops->common->chain_alloc(edev,
167 ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
168 ECORE_CHAIN_MODE_NEXT_PTR,
169 ECORE_CHAIN_CNT_TYPE_U16,
171 sizeof(struct eth_rx_bd),
175 if (rc != ECORE_SUCCESS) {
176 DP_NOTICE(edev, false,
177 "Unable to alloc memory for rxbd ring on socket %u\n",
179 rte_free(rxq->sw_rx_ring);
180 rxq->sw_rx_ring = NULL;
186 /* Allocate FW completion ring */
187 rc = qdev->ops->common->chain_alloc(edev,
188 ECORE_CHAIN_USE_TO_CONSUME,
189 ECORE_CHAIN_MODE_PBL,
190 ECORE_CHAIN_CNT_TYPE_U16,
192 sizeof(union eth_rx_cqe),
196 if (rc != ECORE_SUCCESS) {
197 DP_NOTICE(edev, false,
198 "Unable to alloc memory for cqe ring on socket %u\n",
200 /* TBD: Freeing RX BD ring */
201 rte_free(rxq->sw_rx_ring);
202 rxq->sw_rx_ring = NULL;
207 /* Allocate buffers for the Rx ring */
208 for (i = 0; i < rxq->nb_rx_desc; i++) {
209 rc = qede_alloc_rx_buffer(rxq);
211 DP_NOTICE(edev, false,
212 "RX buffer allocation failed at idx=%d\n", i);
217 dev->data->rx_queues[queue_idx] = rxq;
219 DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
220 queue_idx, nb_desc, qdev->mtu, socket_id);
224 qede_rx_queue_release(rxq);
228 void qede_tx_queue_release(void *tx_queue)
230 struct qede_tx_queue *txq = tx_queue;
233 qede_tx_queue_release_mbufs(txq);
234 if (txq->sw_tx_ring) {
235 rte_free(txq->sw_tx_ring);
236 txq->sw_tx_ring = NULL;
244 qede_tx_queue_setup(struct rte_eth_dev *dev,
247 unsigned int socket_id,
248 const struct rte_eth_txconf *tx_conf)
250 struct qede_dev *qdev = dev->data->dev_private;
251 struct ecore_dev *edev = &qdev->edev;
252 struct qede_tx_queue *txq;
255 PMD_INIT_FUNC_TRACE(edev);
257 if (!rte_is_power_of_2(nb_desc)) {
258 DP_ERR(edev, "Ring size %u is not power of 2\n",
263 /* Free memory prior to re-allocation if needed... */
264 if (dev->data->tx_queues[queue_idx] != NULL) {
265 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
266 dev->data->tx_queues[queue_idx] = NULL;
269 txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
270 RTE_CACHE_LINE_SIZE, socket_id);
274 "Unable to allocate memory for txq on socket %u",
279 txq->nb_tx_desc = nb_desc;
281 txq->port_id = dev->data->port_id;
283 rc = qdev->ops->common->chain_alloc(edev,
284 ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
285 ECORE_CHAIN_MODE_PBL,
286 ECORE_CHAIN_CNT_TYPE_U16,
288 sizeof(union eth_tx_bd_types),
291 if (rc != ECORE_SUCCESS) {
293 "Unable to allocate memory for txbd ring on socket %u",
295 qede_tx_queue_release(txq);
299 /* Allocate software ring */
300 txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
301 (sizeof(struct qede_tx_entry) *
303 RTE_CACHE_LINE_SIZE, socket_id);
305 if (!txq->sw_tx_ring) {
307 "Unable to allocate memory for txbd ring on socket %u",
309 qede_tx_queue_release(txq);
313 txq->queue_id = queue_idx;
315 txq->nb_tx_avail = txq->nb_tx_desc;
317 txq->tx_free_thresh =
318 tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
319 (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
321 dev->data->tx_queues[queue_idx] = txq;
324 "txq %u num_desc %u tx_free_thresh %u socket %u\n",
325 queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
330 /* This function inits fp content and resets the SB, RXQ and TXQ arrays */
331 static void qede_init_fp(struct qede_dev *qdev)
333 struct qede_fastpath *fp;
334 uint8_t i, rss_id, tc;
335 int fp_rx = qdev->fp_num_rx, rxq = 0, txq = 0;
337 memset((void *)qdev->fp_array, 0, (QEDE_QUEUE_CNT(qdev) *
338 sizeof(*qdev->fp_array)));
339 memset((void *)qdev->sb_array, 0, (QEDE_QUEUE_CNT(qdev) *
340 sizeof(*qdev->sb_array)));
342 fp = &qdev->fp_array[i];
344 fp->type = QEDE_FASTPATH_RX;
347 fp->type = QEDE_FASTPATH_TX;
351 fp->sb_info = &qdev->sb_array[i];
352 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", "qdev", i);
355 qdev->gro_disable = gro_disable;
358 void qede_free_fp_arrays(struct qede_dev *qdev)
360 /* It asseumes qede_free_mem_load() is called before */
361 if (qdev->fp_array != NULL) {
362 rte_free(qdev->fp_array);
363 qdev->fp_array = NULL;
366 if (qdev->sb_array != NULL) {
367 rte_free(qdev->sb_array);
368 qdev->sb_array = NULL;
372 int qede_alloc_fp_array(struct qede_dev *qdev)
374 struct qede_fastpath *fp;
375 struct ecore_dev *edev = &qdev->edev;
378 qdev->fp_array = rte_calloc("fp", QEDE_QUEUE_CNT(qdev),
379 sizeof(*qdev->fp_array),
380 RTE_CACHE_LINE_SIZE);
382 if (!qdev->fp_array) {
383 DP_ERR(edev, "fp array allocation failed\n");
387 qdev->sb_array = rte_calloc("sb", QEDE_QUEUE_CNT(qdev),
388 sizeof(*qdev->sb_array),
389 RTE_CACHE_LINE_SIZE);
391 if (!qdev->sb_array) {
392 DP_ERR(edev, "sb array allocation failed\n");
393 rte_free(qdev->fp_array);
400 /* This function allocates fast-path status block memory */
402 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
405 struct ecore_dev *edev = &qdev->edev;
406 struct status_block *sb_virt;
410 sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, sizeof(*sb_virt));
413 DP_ERR(edev, "Status block allocation failed\n");
417 rc = qdev->ops->common->sb_init(edev, sb_info,
418 sb_virt, sb_phys, sb_id,
419 QED_SB_TYPE_L2_QUEUE);
421 DP_ERR(edev, "Status block initialization failed\n");
422 /* TBD: No dma_free_coherent possible */
429 int qede_alloc_fp_resc(struct qede_dev *qdev)
431 struct ecore_dev *edev = &qdev->edev;
432 struct qede_fastpath *fp;
439 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
441 num_sbs = ecore_cxt_get_proto_cid_count
442 (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
445 DP_ERR(edev, "No status blocks available\n");
450 qede_free_fp_arrays(qdev);
452 rc = qede_alloc_fp_array(qdev);
458 for (i = 0; i < QEDE_QUEUE_CNT(qdev); i++) {
459 fp = &qdev->fp_array[i];
461 sb_idx = i % num_sbs;
464 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
465 qede_free_fp_arrays(qdev);
473 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
475 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
477 qede_free_mem_load(eth_dev);
478 qede_free_fp_arrays(qdev);
482 qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
484 uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
485 uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
486 struct eth_rx_prod_data rx_prods = { 0 };
488 /* Update producers */
489 rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
490 rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
492 /* Make sure that the BD and SGE data is updated before updating the
493 * producers since FW might read the BD/SGE right after the producer
498 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
499 (uint32_t *)&rx_prods);
501 /* mmiowb is needed to synchronize doorbell writes from more than one
502 * processor. It guarantees that the write arrives to the device before
503 * the napi lock is released and another qede_poll is called (possibly
504 * on another CPU). Without this barrier, the next doorbell can bypass
505 * this doorbell. This is applicable to IA64/Altix systems.
509 PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u", bd_prod, cqe_prod);
512 static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
514 struct qede_dev *qdev = eth_dev->data->dev_private;
515 struct ecore_dev *edev = &qdev->edev;
516 struct ecore_queue_start_common_params q_params;
517 struct qed_dev_info *qed_info = &qdev->dev_info.common;
518 struct qed_update_vport_params vport_update_params;
519 struct qede_tx_queue *txq;
520 struct qede_fastpath *fp;
521 dma_addr_t p_phys_table;
524 int vlan_removal_en = 1;
528 fp = &qdev->fp_array[i];
529 if (fp->type & QEDE_FASTPATH_RX) {
530 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->
532 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->
535 memset(&q_params, 0, sizeof(q_params));
536 q_params.queue_id = i;
537 q_params.vport_id = 0;
538 q_params.sb = fp->sb_info->igu_sb_id;
539 q_params.sb_idx = RX_PI;
541 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
543 rc = qdev->ops->q_rx_start(edev, i, &q_params,
544 fp->rxq->rx_buf_size,
545 fp->rxq->rx_bd_ring.p_phys_addr,
548 &fp->rxq->hw_rxq_prod_addr);
550 DP_ERR(edev, "Start rxq #%d failed %d\n",
551 fp->rxq->queue_id, rc);
555 fp->rxq->hw_cons_ptr =
556 &fp->sb_info->sb_virt->pi_array[RX_PI];
558 qede_update_rx_prod(qdev, fp->rxq);
561 if (!(fp->type & QEDE_FASTPATH_TX))
563 for (tc = 0; tc < qdev->num_tc; tc++) {
565 txq_index = tc * QEDE_RSS_COUNT(qdev) + i;
567 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
568 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
570 memset(&q_params, 0, sizeof(q_params));
571 q_params.queue_id = txq->queue_id;
572 q_params.vport_id = 0;
573 q_params.sb = fp->sb_info->igu_sb_id;
574 q_params.sb_idx = TX_PI(tc);
576 rc = qdev->ops->q_tx_start(edev, i, &q_params,
578 page_cnt, /* **pp_doorbell */
579 &txq->doorbell_addr);
581 DP_ERR(edev, "Start txq %u failed %d\n",
587 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
588 SET_FIELD(txq->tx_db.data.params,
589 ETH_DB_DATA_DEST, DB_DEST_XCM);
590 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
592 SET_FIELD(txq->tx_db.data.params,
593 ETH_DB_DATA_AGG_VAL_SEL,
594 DQ_XCM_ETH_TX_BD_PROD_CMD);
596 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
600 /* Prepare and send the vport enable */
601 memset(&vport_update_params, 0, sizeof(vport_update_params));
602 /* Update MTU via vport update */
603 vport_update_params.mtu = qdev->mtu;
604 vport_update_params.vport_id = 0;
605 vport_update_params.update_vport_active_flg = 1;
606 vport_update_params.vport_active_flg = 1;
609 if (qed_info->mf_mode == MF_NPAR && qed_info->tx_switching) {
610 /* TBD: Check SRIOV enabled for VF */
611 vport_update_params.update_tx_switching_flg = 1;
612 vport_update_params.tx_switching_flg = 1;
615 rc = qdev->ops->vport_update(edev, &vport_update_params);
617 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
624 static bool qede_tunn_exist(uint16_t flag)
626 return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
627 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
631 * qede_check_tunn_csum_l4:
633 * 1 : If L4 csum is enabled AND if the validation has failed.
636 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
638 if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
639 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
640 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
641 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
646 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
648 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
649 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
650 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
651 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
656 static inline uint8_t
657 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
664 val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
665 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
668 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
669 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
670 ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
671 sizeof(struct ether_hdr));
672 pkt_csum = ip->hdr_checksum;
673 ip->hdr_checksum = 0;
674 calc_csum = rte_ipv4_cksum(ip);
675 ip->hdr_checksum = pkt_csum;
676 return (calc_csum != pkt_csum);
677 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
684 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
686 ecore_chain_consume(&rxq->rx_bd_ring);
691 qede_reuse_page(struct qede_dev *qdev,
692 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
694 struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
695 uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
696 struct qede_rx_entry *curr_prod;
697 dma_addr_t new_mapping;
699 curr_prod = &rxq->sw_rx_ring[idx];
700 *curr_prod = *curr_cons;
702 new_mapping = rte_mbuf_data_dma_addr_default(curr_prod->mbuf) +
703 curr_prod->page_offset;
705 rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
706 rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
712 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
713 struct qede_dev *qdev, uint8_t count)
715 struct qede_rx_entry *curr_cons;
717 for (; count > 0; count--) {
718 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
719 qede_reuse_page(qdev, rxq, curr_cons);
720 qede_rx_bd_ring_consume(rxq);
724 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
729 static const uint32_t
730 ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
731 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4,
732 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6,
733 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
734 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
735 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
736 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
739 /* Bits (0..3) provides L3/L4 protocol type */
740 val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
741 PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
742 (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
743 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT)) & flags;
745 if (val < QEDE_PKT_TYPE_MAX)
746 return ptype_lkup_tbl[val] | RTE_PTYPE_L2_ETHER;
748 return RTE_PTYPE_UNKNOWN;
751 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
756 static const uint32_t
757 ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
758 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
759 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
760 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
761 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
762 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
763 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L2_ETHER,
764 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
765 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L2_ETHER,
766 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
767 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L2_ETHER,
768 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
769 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L2_ETHER,
770 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
771 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L2_ETHER,
772 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
773 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L2_ETHER,
774 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
775 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
776 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
777 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
778 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
779 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
780 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
781 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
782 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
783 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
784 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
785 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
786 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
787 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
788 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
789 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
790 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
791 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
792 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
793 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
794 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
795 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
796 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
797 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
800 /* Cover bits[4-0] to include tunn_type and next protocol */
801 val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
802 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
803 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
804 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
806 if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
807 return ptype_tunn_lkup_tbl[val];
809 return RTE_PTYPE_UNKNOWN;
813 qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb,
814 uint8_t num_segs, uint16_t pkt_len)
816 struct qede_rx_queue *rxq = p_rxq;
817 struct qede_dev *qdev = rxq->qdev;
818 struct ecore_dev *edev = &qdev->edev;
819 register struct rte_mbuf *seg1 = NULL;
820 register struct rte_mbuf *seg2 = NULL;
821 uint16_t sw_rx_index;
826 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
828 if (unlikely(!cur_size)) {
829 PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
830 " left for mapping jumbo", num_segs);
831 qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
834 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
835 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
836 qede_rx_bd_ring_consume(rxq);
838 seg2->data_len = cur_size;
849 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
851 struct qede_rx_queue *rxq = p_rxq;
852 struct qede_dev *qdev = rxq->qdev;
853 struct ecore_dev *edev = &qdev->edev;
854 struct qede_fastpath *fp = &qdev->fp_array[rxq->queue_id];
855 uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
857 union eth_rx_cqe *cqe;
858 struct eth_fast_path_rx_reg_cqe *fp_cqe;
859 register struct rte_mbuf *rx_mb = NULL;
860 register struct rte_mbuf *seg1 = NULL;
861 enum eth_rx_cqe_type cqe_type;
862 uint16_t pkt_len; /* Sum of all BD segments */
863 uint16_t len; /* Length of first BD */
864 uint8_t num_segs = 1;
866 uint16_t preload_idx;
869 enum rss_hash_type htype;
870 uint8_t tunn_parse_flag;
873 hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
874 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
878 if (hw_comp_cons == sw_comp_cons)
881 while (sw_comp_cons != hw_comp_cons) {
882 /* Get the CQE from the completion ring */
884 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
885 cqe_type = cqe->fast_path_regular.type;
887 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
888 PMD_RX_LOG(DEBUG, rxq, "Got a slowath CQE");
890 qdev->ops->eth_cqe_completion(edev, fp->id,
891 (struct eth_slow_path_rx_cqe *)cqe);
895 /* Get the data from the SW ring */
896 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
897 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
898 assert(rx_mb != NULL);
901 fp_cqe = &cqe->fast_path_regular;
903 len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
904 pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
905 pad = fp_cqe->placement_offset;
906 assert((len + pad) <= rx_mb->buf_len);
908 PMD_RX_LOG(DEBUG, rxq,
909 "CQE type = 0x%x, flags = 0x%x, vlan = 0x%x"
910 " len = %u, parsing_flags = %d",
911 cqe_type, fp_cqe->bitfields,
912 rte_le_to_cpu_16(fp_cqe->vlan_tag),
913 len, rte_le_to_cpu_16(fp_cqe->pars_flags.flags));
915 /* If this is an error packet then drop it */
917 rte_le_to_cpu_16(cqe->fast_path_regular.pars_flags.flags);
921 if (qede_tunn_exist(parse_flag)) {
922 PMD_RX_LOG(DEBUG, rxq, "Rx tunneled packet");
923 if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
925 "L4 csum failed, flags = 0x%x",
928 rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
931 fp_cqe->tunnel_pars_flags.flags;
933 qede_rx_cqe_to_tunn_pkt_type(
937 PMD_RX_LOG(DEBUG, rxq, "Rx non-tunneled packet");
938 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
940 "L4 csum failed, flags = 0x%x",
943 rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
944 } else if (unlikely(qede_check_notunn_csum_l3(rx_mb,
947 "IP csum failed, flags = 0x%x",
950 rx_mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
953 qede_rx_cqe_to_pkt_type(parse_flag);
957 PMD_RX_LOG(INFO, rxq, "packet_type 0x%x", rx_mb->packet_type);
959 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
961 "New buffer allocation failed,"
962 "dropping incoming packet");
963 qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
964 rte_eth_devices[rxq->port_id].
965 data->rx_mbuf_alloc_failed++;
966 rxq->rx_alloc_errors++;
969 qede_rx_bd_ring_consume(rxq);
970 if (fp_cqe->bd_num > 1) {
971 PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
972 " len on first: %04x Total Len: %04x",
973 fp_cqe->bd_num, len, pkt_len);
974 num_segs = fp_cqe->bd_num - 1;
976 if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
979 for (j = 0; j < num_segs; j++) {
980 if (qede_alloc_rx_buffer(rxq)) {
982 "Buffer allocation failed");
983 rte_eth_devices[rxq->port_id].
984 data->rx_mbuf_alloc_failed++;
985 rxq->rx_alloc_errors++;
991 rxq->rx_segs++; /* for the first segment */
993 /* Prefetch next mbuf while processing current one. */
994 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
995 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
997 /* Update rest of the MBUF fields */
998 rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM;
999 rx_mb->nb_segs = fp_cqe->bd_num;
1000 rx_mb->data_len = len;
1001 rx_mb->pkt_len = pkt_len;
1002 rx_mb->port = rxq->port_id;
1004 htype = (uint8_t)GET_FIELD(fp_cqe->bitfields,
1005 ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
1006 if (qdev->rss_enable && htype) {
1007 rx_mb->ol_flags |= PKT_RX_RSS_HASH;
1008 rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash);
1009 PMD_RX_LOG(DEBUG, rxq, "Hash result 0x%x",
1013 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1015 if (CQE_HAS_VLAN(parse_flag)) {
1016 rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1017 rx_mb->ol_flags |= PKT_RX_VLAN_PKT;
1020 if (CQE_HAS_OUTER_VLAN(parse_flag)) {
1021 /* FW does not provide indication of Outer VLAN tag,
1022 * which is always stripped, so vlan_tci_outer is set
1023 * to 0. Here vlan_tag represents inner VLAN tag.
1025 rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1026 rx_mb->ol_flags |= PKT_RX_QINQ_PKT;
1027 rx_mb->vlan_tci_outer = 0;
1030 rx_pkts[rx_pkt] = rx_mb;
1033 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1034 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1035 if (rx_pkt == nb_pkts) {
1036 PMD_RX_LOG(DEBUG, rxq,
1037 "Budget reached nb_pkts=%u received=%u",
1043 qede_update_rx_prod(qdev, rxq);
1045 rxq->rcv_pkts += rx_pkt;
1047 PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1053 qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq)
1055 uint16_t nb_segs, idx = TX_CONS(txq);
1056 struct eth_tx_bd *tx_data_bd;
1057 struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf;
1059 if (unlikely(!mbuf)) {
1060 PMD_TX_LOG(ERR, txq, "null mbuf");
1061 PMD_TX_LOG(ERR, txq,
1062 "tx_desc %u tx_avail %u tx_cons %u tx_prod %u",
1063 txq->nb_tx_desc, txq->nb_tx_avail, idx,
1068 nb_segs = mbuf->nb_segs;
1070 /* It's like consuming rxbuf in recv() */
1071 ecore_chain_consume(&txq->tx_pbl);
1075 rte_pktmbuf_free(mbuf);
1076 txq->sw_tx_ring[idx].mbuf = NULL;
1081 static inline uint16_t
1082 qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
1084 uint16_t tx_compl = 0;
1085 uint16_t hw_bd_cons;
1087 hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
1088 rte_compiler_barrier();
1090 while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) {
1091 if (qede_free_tx_pkt(edev, txq)) {
1092 PMD_TX_LOG(ERR, txq,
1093 "hw_bd_cons = %u, chain_cons = %u",
1095 ecore_chain_get_cons_idx(&txq->tx_pbl));
1098 txq->sw_tx_cons++; /* Making TXD available */
1102 PMD_TX_LOG(DEBUG, txq, "Tx compl %u sw_tx_cons %u avail %u",
1103 tx_compl, txq->sw_tx_cons, txq->nb_tx_avail);
1107 /* Populate scatter gather buffer descriptor fields */
1108 static inline uint8_t
1109 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1110 struct eth_tx_1st_bd *bd1)
1112 struct qede_tx_queue *txq = p_txq;
1113 struct eth_tx_2nd_bd *bd2 = NULL;
1114 struct eth_tx_3rd_bd *bd3 = NULL;
1115 struct eth_tx_bd *tx_bd = NULL;
1117 uint8_t nb_segs = 1; /* min one segment per packet */
1119 /* Check for scattered buffers */
1122 bd2 = (struct eth_tx_2nd_bd *)
1123 ecore_chain_produce(&txq->tx_pbl);
1124 memset(bd2, 0, sizeof(*bd2));
1125 mapping = rte_mbuf_data_dma_addr(m_seg);
1126 QEDE_BD_SET_ADDR_LEN(bd2, mapping, m_seg->data_len);
1127 PMD_TX_LOG(DEBUG, txq, "BD2 len %04x",
1129 } else if (nb_segs == 2) {
1130 bd3 = (struct eth_tx_3rd_bd *)
1131 ecore_chain_produce(&txq->tx_pbl);
1132 memset(bd3, 0, sizeof(*bd3));
1133 mapping = rte_mbuf_data_dma_addr(m_seg);
1134 QEDE_BD_SET_ADDR_LEN(bd3, mapping, m_seg->data_len);
1135 PMD_TX_LOG(DEBUG, txq, "BD3 len %04x",
1138 tx_bd = (struct eth_tx_bd *)
1139 ecore_chain_produce(&txq->tx_pbl);
1140 memset(tx_bd, 0, sizeof(*tx_bd));
1141 mapping = rte_mbuf_data_dma_addr(m_seg);
1142 QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1143 PMD_TX_LOG(DEBUG, txq, "BD len %04x",
1147 m_seg = m_seg->next;
1150 /* Return total scattered buffers */
1155 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1157 struct qede_tx_queue *txq = p_txq;
1158 struct qede_dev *qdev = txq->qdev;
1159 struct ecore_dev *edev = &qdev->edev;
1160 struct qede_fastpath *fp;
1161 struct eth_tx_1st_bd *bd1;
1162 struct rte_mbuf *mbuf;
1163 struct rte_mbuf *m_seg = NULL;
1164 uint16_t nb_tx_pkts;
1169 uint16_t nb_pkt_sent = 0;
1171 fp = &qdev->fp_array[QEDE_RSS_COUNT(qdev) + txq->queue_id];
1173 if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1174 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1175 nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1176 (void)qede_process_tx_compl(edev, txq);
1179 nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail /
1180 ETH_TX_MAX_BDS_PER_NON_LSO_PACKET));
1181 if (unlikely(nb_tx_pkts == 0)) {
1182 PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u",
1183 nb_pkts, txq->nb_tx_avail);
1187 tx_count = nb_tx_pkts;
1188 while (nb_tx_pkts--) {
1189 /* Fill the entry in the SW ring and the BDs in the FW ring */
1192 txq->sw_tx_ring[idx].mbuf = mbuf;
1193 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
1194 bd1->data.bd_flags.bitfields =
1195 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1196 /* FW 8.10.x specific change */
1197 bd1->data.bitfields =
1198 (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
1199 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1200 /* Map MBUF linear data for DMA and set in the first BD */
1201 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
1203 PMD_TX_LOG(INFO, txq, "BD1 len %04x", mbuf->data_len);
1205 if (RTE_ETH_IS_TUNNEL_PKT(mbuf->packet_type)) {
1206 PMD_TX_LOG(INFO, txq, "Tx tunnel packet");
1207 /* First indicate its a tunnel pkt */
1208 bd1->data.bd_flags.bitfields |=
1209 ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1210 ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1212 /* Legacy FW had flipped behavior in regard to this bit
1213 * i.e. it needed to set to prevent FW from touching
1214 * encapsulated packets when it didn't need to.
1216 if (unlikely(txq->is_legacy))
1217 bd1->data.bitfields ^=
1218 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1220 /* Outer IP checksum offload */
1221 if (mbuf->ol_flags & PKT_TX_OUTER_IP_CKSUM) {
1222 PMD_TX_LOG(INFO, txq, "OuterIP csum offload");
1223 bd1->data.bd_flags.bitfields |=
1224 ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1225 ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1228 /* Outer UDP checksum offload */
1229 bd1->data.bd_flags.bitfields |=
1230 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
1231 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1234 /* Descriptor based VLAN insertion */
1235 if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1236 PMD_TX_LOG(INFO, txq, "Insert VLAN 0x%x",
1238 bd1->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
1239 bd1->data.bd_flags.bitfields |=
1240 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1243 /* Offload the IP checksum in the hardware */
1244 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1245 PMD_TX_LOG(INFO, txq, "IP csum offload");
1246 bd1->data.bd_flags.bitfields |=
1247 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1250 /* L4 checksum offload (tcp or udp) */
1251 if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
1252 PMD_TX_LOG(INFO, txq, "L4 csum offload");
1253 bd1->data.bd_flags.bitfields |=
1254 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1255 /* IPv6 + extn. -> later */
1258 /* Handle fragmented MBUF */
1260 /* Encode scatter gather buffer descriptors if required */
1261 nb_frags = qede_encode_sg_bd(txq, m_seg, bd1);
1262 bd1->data.nbds = nb_frags;
1263 txq->nb_tx_avail -= nb_frags;
1265 rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
1267 rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1270 PMD_TX_LOG(INFO, txq, "nbds = %d pkt_len = %04x",
1271 bd1->data.nbds, mbuf->pkt_len);
1274 /* Write value of prod idx into bd_prod */
1275 txq->tx_db.data.bd_prod = bd_prod;
1277 rte_compiler_barrier();
1278 DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
1281 /* Check again for Tx completions */
1282 (void)qede_process_tx_compl(edev, txq);
1284 PMD_TX_LOG(DEBUG, txq, "to_send=%u can_send=%u sent=%u core=%d",
1285 nb_pkts, tx_count, nb_pkt_sent, rte_lcore_id());
1290 static void qede_init_fp_queue(struct rte_eth_dev *eth_dev)
1292 struct qede_dev *qdev = eth_dev->data->dev_private;
1293 struct qede_fastpath *fp;
1294 uint8_t i, rss_id, txq_index, tc;
1295 int rxq = 0, txq = 0;
1298 fp = &qdev->fp_array[i];
1299 if (fp->type & QEDE_FASTPATH_RX) {
1300 fp->rxq = eth_dev->data->rx_queues[i];
1301 fp->rxq->queue_id = rxq++;
1304 if (fp->type & QEDE_FASTPATH_TX) {
1305 for (tc = 0; tc < qdev->num_tc; tc++) {
1306 txq_index = tc * QEDE_TSS_COUNT(qdev) + txq;
1308 eth_dev->data->tx_queues[txq_index];
1309 fp->txqs[tc]->queue_id = txq_index;
1310 if (qdev->dev_info.is_legacy)
1311 fp->txqs[tc]->is_legacy = true;
1318 int qede_dev_start(struct rte_eth_dev *eth_dev)
1320 struct qede_dev *qdev = eth_dev->data->dev_private;
1321 struct ecore_dev *edev = &qdev->edev;
1322 struct qed_link_output link_output;
1323 struct qede_fastpath *fp;
1326 DP_INFO(edev, "Device state is %d\n", qdev->state);
1328 if (qdev->state == QEDE_DEV_START) {
1329 DP_INFO(edev, "Port is already started\n");
1333 if (qdev->state == QEDE_DEV_CONFIG)
1334 qede_init_fp_queue(eth_dev);
1336 rc = qede_start_queues(eth_dev, true);
1338 DP_ERR(edev, "Failed to start queues\n");
1343 /* Bring-up the link */
1344 qede_dev_set_link_state(eth_dev, true);
1347 if (qede_reset_fp_rings(qdev))
1350 /* Start/resume traffic */
1351 qdev->ops->fastpath_start(edev);
1353 qdev->state = QEDE_DEV_START;
1355 DP_INFO(edev, "dev_state is QEDE_DEV_START\n");
1360 static int qede_drain_txq(struct qede_dev *qdev,
1361 struct qede_tx_queue *txq, bool allow_drain)
1363 struct ecore_dev *edev = &qdev->edev;
1366 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1367 qede_process_tx_compl(edev, txq);
1370 DP_NOTICE(edev, false,
1371 "Tx queue[%u] is stuck,"
1372 "requesting MCP to drain\n",
1374 rc = qdev->ops->common->drain(edev);
1377 return qede_drain_txq(qdev, txq, false);
1380 DP_NOTICE(edev, false,
1381 "Timeout waiting for tx queue[%d]:"
1382 "PROD=%d, CONS=%d\n",
1383 txq->queue_id, txq->sw_tx_prod,
1389 rte_compiler_barrier();
1392 /* FW finished processing, wait for HW to transmit all tx packets */
1398 static int qede_stop_queues(struct qede_dev *qdev)
1400 struct qed_update_vport_params vport_update_params;
1401 struct ecore_dev *edev = &qdev->edev;
1404 /* Disable the vport */
1405 memset(&vport_update_params, 0, sizeof(vport_update_params));
1406 vport_update_params.vport_id = 0;
1407 vport_update_params.update_vport_active_flg = 1;
1408 vport_update_params.vport_active_flg = 0;
1409 vport_update_params.update_rss_flg = 0;
1411 DP_INFO(edev, "Deactivate vport\n");
1413 rc = qdev->ops->vport_update(edev, &vport_update_params);
1415 DP_ERR(edev, "Failed to update vport\n");
1419 DP_INFO(edev, "Flushing tx queues\n");
1421 /* Flush Tx queues. If needed, request drain from MCP */
1423 struct qede_fastpath *fp = &qdev->fp_array[i];
1425 if (fp->type & QEDE_FASTPATH_TX) {
1426 for (tc = 0; tc < qdev->num_tc; tc++) {
1427 struct qede_tx_queue *txq = fp->txqs[tc];
1429 rc = qede_drain_txq(qdev, txq, true);
1436 /* Stop all Queues in reverse order */
1437 for (i = QEDE_QUEUE_CNT(qdev) - 1; i >= 0; i--) {
1438 struct qed_stop_rxq_params rx_params;
1440 /* Stop the Tx Queue(s) */
1441 if (qdev->fp_array[i].type & QEDE_FASTPATH_TX) {
1442 for (tc = 0; tc < qdev->num_tc; tc++) {
1443 struct qed_stop_txq_params tx_params;
1446 tx_params.rss_id = i;
1447 val = qdev->fp_array[i].txqs[tc]->queue_id;
1448 tx_params.tx_queue_id = val;
1450 DP_INFO(edev, "Stopping tx queues\n");
1451 rc = qdev->ops->q_tx_stop(edev, &tx_params);
1453 DP_ERR(edev, "Failed to stop TXQ #%d\n",
1454 tx_params.tx_queue_id);
1460 /* Stop the Rx Queue */
1461 if (qdev->fp_array[i].type & QEDE_FASTPATH_RX) {
1462 memset(&rx_params, 0, sizeof(rx_params));
1463 rx_params.rss_id = i;
1464 rx_params.rx_queue_id = qdev->fp_array[i].rxq->queue_id;
1465 rx_params.eq_completion_only = 1;
1467 DP_INFO(edev, "Stopping rx queues\n");
1469 rc = qdev->ops->q_rx_stop(edev, &rx_params);
1471 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1480 int qede_reset_fp_rings(struct qede_dev *qdev)
1482 struct qede_fastpath *fp;
1483 struct qede_tx_queue *txq;
1487 for_each_queue(id) {
1488 fp = &qdev->fp_array[id];
1490 if (fp->type & QEDE_FASTPATH_RX) {
1491 DP_INFO(&qdev->edev,
1492 "Reset FP chain for RSS %u\n", id);
1493 qede_rx_queue_release_mbufs(fp->rxq);
1494 ecore_chain_reset(&fp->rxq->rx_bd_ring);
1495 ecore_chain_reset(&fp->rxq->rx_comp_ring);
1496 fp->rxq->sw_rx_prod = 0;
1497 fp->rxq->sw_rx_cons = 0;
1498 *fp->rxq->hw_cons_ptr = 0;
1499 for (i = 0; i < fp->rxq->nb_rx_desc; i++) {
1500 if (qede_alloc_rx_buffer(fp->rxq)) {
1502 "RX buffer allocation failed\n");
1507 if (fp->type & QEDE_FASTPATH_TX) {
1508 for (tc = 0; tc < qdev->num_tc; tc++) {
1510 qede_tx_queue_release_mbufs(txq);
1511 ecore_chain_reset(&txq->tx_pbl);
1512 txq->sw_tx_cons = 0;
1513 txq->sw_tx_prod = 0;
1514 *txq->hw_cons_ptr = 0;
1522 /* This function frees all memory of a single fp */
1523 void qede_free_mem_load(struct rte_eth_dev *eth_dev)
1525 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1526 struct qede_fastpath *fp;
1531 for_each_queue(id) {
1532 fp = &qdev->fp_array[id];
1533 if (fp->type & QEDE_FASTPATH_RX) {
1536 qede_rx_queue_release(fp->rxq);
1537 eth_dev->data->rx_queues[id] = NULL;
1539 for (tc = 0; tc < qdev->num_tc; tc++) {
1542 txq_idx = fp->txqs[tc]->queue_id;
1543 qede_tx_queue_release(fp->txqs[tc]);
1544 eth_dev->data->tx_queues[txq_idx] = NULL;
1550 void qede_dev_stop(struct rte_eth_dev *eth_dev)
1552 struct qede_dev *qdev = eth_dev->data->dev_private;
1553 struct ecore_dev *edev = &qdev->edev;
1555 DP_INFO(edev, "port %u\n", eth_dev->data->port_id);
1557 if (qdev->state != QEDE_DEV_START) {
1558 DP_INFO(edev, "Device not yet started\n");
1562 if (qede_stop_queues(qdev))
1563 DP_ERR(edev, "Didn't succeed to close queues\n");
1565 DP_INFO(edev, "Stopped queues\n");
1567 qdev->ops->fastpath_stop(edev);
1569 /* Bring the link down */
1570 qede_dev_set_link_state(eth_dev, false);
1572 qdev->state = QEDE_DEV_STOP;
1574 DP_INFO(edev, "dev_state is QEDE_DEV_STOP\n");