net/qede: fix RSS
[dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "qede_rxtx.h"
10
11 static bool gro_disable = 1;    /* mod_param */
12
13 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
14 {
15         struct rte_mbuf *new_mb = NULL;
16         struct eth_rx_bd *rx_bd;
17         dma_addr_t mapping;
18         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
19
20         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
21         if (unlikely(!new_mb)) {
22                 PMD_RX_LOG(ERR, rxq,
23                            "Failed to allocate rx buffer "
24                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
25                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
26                            rte_mempool_avail_count(rxq->mb_pool),
27                            rte_mempool_in_use_count(rxq->mb_pool));
28                 return -ENOMEM;
29         }
30         rxq->sw_rx_ring[idx].mbuf = new_mb;
31         rxq->sw_rx_ring[idx].page_offset = 0;
32         mapping = rte_mbuf_data_dma_addr_default(new_mb);
33         /* Advance PROD and get BD pointer */
34         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
35         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
36         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
37         rxq->sw_rx_prod++;
38         return 0;
39 }
40
41 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
42 {
43         uint16_t i;
44
45         if (rxq->sw_rx_ring != NULL) {
46                 for (i = 0; i < rxq->nb_rx_desc; i++) {
47                         if (rxq->sw_rx_ring[i].mbuf != NULL) {
48                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
49                                 rxq->sw_rx_ring[i].mbuf = NULL;
50                         }
51                 }
52         }
53 }
54
55 void qede_rx_queue_release(void *rx_queue)
56 {
57         struct qede_rx_queue *rxq = rx_queue;
58
59         if (rxq != NULL) {
60                 qede_rx_queue_release_mbufs(rxq);
61                 rte_free(rxq->sw_rx_ring);
62                 rxq->sw_rx_ring = NULL;
63                 rte_free(rxq);
64                 rxq = NULL;
65         }
66 }
67
68 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
69 {
70         unsigned int i;
71
72         PMD_TX_LOG(DEBUG, txq, "releasing %u mbufs\n", txq->nb_tx_desc);
73
74         if (txq->sw_tx_ring) {
75                 for (i = 0; i < txq->nb_tx_desc; i++) {
76                         if (txq->sw_tx_ring[i].mbuf) {
77                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
78                                 txq->sw_tx_ring[i].mbuf = NULL;
79                         }
80                 }
81         }
82 }
83
84 int
85 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
86                     uint16_t nb_desc, unsigned int socket_id,
87                     const struct rte_eth_rxconf *rx_conf,
88                     struct rte_mempool *mp)
89 {
90         struct qede_dev *qdev = dev->data->dev_private;
91         struct ecore_dev *edev = &qdev->edev;
92         struct rte_eth_dev_data *eth_data = dev->data;
93         struct qede_rx_queue *rxq;
94         uint16_t pkt_len = (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len;
95         size_t size;
96         uint16_t data_size;
97         int rc;
98         int i;
99
100         PMD_INIT_FUNC_TRACE(edev);
101
102         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
103         if (!rte_is_power_of_2(nb_desc)) {
104                 DP_ERR(edev, "Ring size %u is not power of 2\n",
105                           nb_desc);
106                 return -EINVAL;
107         }
108
109         /* Free memory prior to re-allocation if needed... */
110         if (dev->data->rx_queues[queue_idx] != NULL) {
111                 qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
112                 dev->data->rx_queues[queue_idx] = NULL;
113         }
114
115         /* First allocate the rx queue data structure */
116         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
117                                  RTE_CACHE_LINE_SIZE, socket_id);
118
119         if (!rxq) {
120                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
121                           socket_id);
122                 return -ENOMEM;
123         }
124
125         rxq->qdev = qdev;
126         rxq->mb_pool = mp;
127         rxq->nb_rx_desc = nb_desc;
128         rxq->queue_id = queue_idx;
129         rxq->port_id = dev->data->port_id;
130
131         /* Sanity check */
132         data_size = (uint16_t)rte_pktmbuf_data_room_size(mp) -
133                                 RTE_PKTMBUF_HEADROOM;
134
135         if (pkt_len > data_size && !dev->data->scattered_rx) {
136                 DP_ERR(edev, "MTU %u should not exceed dataroom %u\n",
137                        pkt_len, data_size);
138                 rte_free(rxq);
139                 return -EINVAL;
140         }
141
142         if (dev->data->scattered_rx)
143                 rxq->rx_buf_size = data_size;
144         else
145                 rxq->rx_buf_size = pkt_len + QEDE_ETH_OVERHEAD;
146
147         qdev->mtu = pkt_len;
148
149         DP_INFO(edev, "MTU = %u ; RX buffer = %u\n",
150                 qdev->mtu, rxq->rx_buf_size);
151
152         if (pkt_len > ETHER_MAX_LEN) {
153                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
154                 DP_NOTICE(edev, false, "jumbo frame enabled\n");
155         } else {
156                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
157         }
158
159         /* Allocate the parallel driver ring for Rx buffers */
160         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
161         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
162                                              RTE_CACHE_LINE_SIZE, socket_id);
163         if (!rxq->sw_rx_ring) {
164                 DP_NOTICE(edev, false,
165                           "Unable to alloc memory for sw_rx_ring on socket %u\n",
166                           socket_id);
167                 rte_free(rxq);
168                 rxq = NULL;
169                 return -ENOMEM;
170         }
171
172         /* Allocate FW Rx ring  */
173         rc = qdev->ops->common->chain_alloc(edev,
174                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
175                                             ECORE_CHAIN_MODE_NEXT_PTR,
176                                             ECORE_CHAIN_CNT_TYPE_U16,
177                                             rxq->nb_rx_desc,
178                                             sizeof(struct eth_rx_bd),
179                                             &rxq->rx_bd_ring);
180
181         if (rc != ECORE_SUCCESS) {
182                 DP_NOTICE(edev, false,
183                           "Unable to alloc memory for rxbd ring on socket %u\n",
184                           socket_id);
185                 rte_free(rxq->sw_rx_ring);
186                 rxq->sw_rx_ring = NULL;
187                 rte_free(rxq);
188                 rxq = NULL;
189                 return -ENOMEM;
190         }
191
192         /* Allocate FW completion ring */
193         rc = qdev->ops->common->chain_alloc(edev,
194                                             ECORE_CHAIN_USE_TO_CONSUME,
195                                             ECORE_CHAIN_MODE_PBL,
196                                             ECORE_CHAIN_CNT_TYPE_U16,
197                                             rxq->nb_rx_desc,
198                                             sizeof(union eth_rx_cqe),
199                                             &rxq->rx_comp_ring);
200
201         if (rc != ECORE_SUCCESS) {
202                 DP_NOTICE(edev, false,
203                           "Unable to alloc memory for cqe ring on socket %u\n",
204                           socket_id);
205                 /* TBD: Freeing RX BD ring */
206                 rte_free(rxq->sw_rx_ring);
207                 rxq->sw_rx_ring = NULL;
208                 rte_free(rxq);
209                 return -ENOMEM;
210         }
211
212         /* Allocate buffers for the Rx ring */
213         for (i = 0; i < rxq->nb_rx_desc; i++) {
214                 rc = qede_alloc_rx_buffer(rxq);
215                 if (rc) {
216                         DP_NOTICE(edev, false,
217                                   "RX buffer allocation failed at idx=%d\n", i);
218                         goto err4;
219                 }
220         }
221
222         dev->data->rx_queues[queue_idx] = rxq;
223
224         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
225                   queue_idx, nb_desc, qdev->mtu, socket_id);
226
227         return 0;
228 err4:
229         qede_rx_queue_release(rxq);
230         return -ENOMEM;
231 }
232
233 void qede_tx_queue_release(void *tx_queue)
234 {
235         struct qede_tx_queue *txq = tx_queue;
236
237         if (txq != NULL) {
238                 qede_tx_queue_release_mbufs(txq);
239                 if (txq->sw_tx_ring) {
240                         rte_free(txq->sw_tx_ring);
241                         txq->sw_tx_ring = NULL;
242                 }
243                 rte_free(txq);
244         }
245         txq = NULL;
246 }
247
248 int
249 qede_tx_queue_setup(struct rte_eth_dev *dev,
250                     uint16_t queue_idx,
251                     uint16_t nb_desc,
252                     unsigned int socket_id,
253                     const struct rte_eth_txconf *tx_conf)
254 {
255         struct qede_dev *qdev = dev->data->dev_private;
256         struct ecore_dev *edev = &qdev->edev;
257         struct qede_tx_queue *txq;
258         int rc;
259
260         PMD_INIT_FUNC_TRACE(edev);
261
262         if (!rte_is_power_of_2(nb_desc)) {
263                 DP_ERR(edev, "Ring size %u is not power of 2\n",
264                        nb_desc);
265                 return -EINVAL;
266         }
267
268         /* Free memory prior to re-allocation if needed... */
269         if (dev->data->tx_queues[queue_idx] != NULL) {
270                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
271                 dev->data->tx_queues[queue_idx] = NULL;
272         }
273
274         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
275                                  RTE_CACHE_LINE_SIZE, socket_id);
276
277         if (txq == NULL) {
278                 DP_ERR(edev,
279                        "Unable to allocate memory for txq on socket %u",
280                        socket_id);
281                 return -ENOMEM;
282         }
283
284         txq->nb_tx_desc = nb_desc;
285         txq->qdev = qdev;
286         txq->port_id = dev->data->port_id;
287
288         rc = qdev->ops->common->chain_alloc(edev,
289                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
290                                             ECORE_CHAIN_MODE_PBL,
291                                             ECORE_CHAIN_CNT_TYPE_U16,
292                                             txq->nb_tx_desc,
293                                             sizeof(union eth_tx_bd_types),
294                                             &txq->tx_pbl);
295         if (rc != ECORE_SUCCESS) {
296                 DP_ERR(edev,
297                        "Unable to allocate memory for txbd ring on socket %u",
298                        socket_id);
299                 qede_tx_queue_release(txq);
300                 return -ENOMEM;
301         }
302
303         /* Allocate software ring */
304         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
305                                              (sizeof(struct qede_tx_entry) *
306                                               txq->nb_tx_desc),
307                                              RTE_CACHE_LINE_SIZE, socket_id);
308
309         if (!txq->sw_tx_ring) {
310                 DP_ERR(edev,
311                        "Unable to allocate memory for txbd ring on socket %u",
312                        socket_id);
313                 qede_tx_queue_release(txq);
314                 return -ENOMEM;
315         }
316
317         txq->queue_id = queue_idx;
318
319         txq->nb_tx_avail = txq->nb_tx_desc;
320
321         txq->tx_free_thresh =
322             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
323             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
324
325         dev->data->tx_queues[queue_idx] = txq;
326
327         DP_INFO(edev,
328                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
329                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
330
331         return 0;
332 }
333
334 /* This function inits fp content and resets the SB, RXQ and TXQ arrays */
335 static void qede_init_fp(struct qede_dev *qdev)
336 {
337         struct qede_fastpath *fp;
338         uint8_t i, rss_id, tc;
339         int fp_rx = qdev->fp_num_rx, rxq = 0, txq = 0;
340
341         memset((void *)qdev->fp_array, 0, (QEDE_QUEUE_CNT(qdev) *
342                                            sizeof(*qdev->fp_array)));
343         memset((void *)qdev->sb_array, 0, (QEDE_QUEUE_CNT(qdev) *
344                                            sizeof(*qdev->sb_array)));
345         for_each_queue(i) {
346                 fp = &qdev->fp_array[i];
347                 if (fp_rx) {
348                         fp->type = QEDE_FASTPATH_RX;
349                         fp_rx--;
350                 } else{
351                         fp->type = QEDE_FASTPATH_TX;
352                 }
353                 fp->qdev = qdev;
354                 fp->id = i;
355                 fp->sb_info = &qdev->sb_array[i];
356                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", "qdev", i);
357         }
358
359         qdev->gro_disable = gro_disable;
360 }
361
362 void qede_free_fp_arrays(struct qede_dev *qdev)
363 {
364         /* It asseumes qede_free_mem_load() is called before */
365         if (qdev->fp_array != NULL) {
366                 rte_free(qdev->fp_array);
367                 qdev->fp_array = NULL;
368         }
369
370         if (qdev->sb_array != NULL) {
371                 rte_free(qdev->sb_array);
372                 qdev->sb_array = NULL;
373         }
374 }
375
376 int qede_alloc_fp_array(struct qede_dev *qdev)
377 {
378         struct qede_fastpath *fp;
379         struct ecore_dev *edev = &qdev->edev;
380         int i;
381
382         qdev->fp_array = rte_calloc("fp", QEDE_QUEUE_CNT(qdev),
383                                     sizeof(*qdev->fp_array),
384                                     RTE_CACHE_LINE_SIZE);
385
386         if (!qdev->fp_array) {
387                 DP_ERR(edev, "fp array allocation failed\n");
388                 return -ENOMEM;
389         }
390
391         qdev->sb_array = rte_calloc("sb", QEDE_QUEUE_CNT(qdev),
392                                     sizeof(*qdev->sb_array),
393                                     RTE_CACHE_LINE_SIZE);
394
395         if (!qdev->sb_array) {
396                 DP_ERR(edev, "sb array allocation failed\n");
397                 rte_free(qdev->fp_array);
398                 return -ENOMEM;
399         }
400
401         return 0;
402 }
403
404 /* This function allocates fast-path status block memory */
405 static int
406 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
407                   uint16_t sb_id)
408 {
409         struct ecore_dev *edev = &qdev->edev;
410         struct status_block *sb_virt;
411         dma_addr_t sb_phys;
412         int rc;
413
414         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, sizeof(*sb_virt));
415
416         if (!sb_virt) {
417                 DP_ERR(edev, "Status block allocation failed\n");
418                 return -ENOMEM;
419         }
420
421         rc = qdev->ops->common->sb_init(edev, sb_info,
422                                         sb_virt, sb_phys, sb_id,
423                                         QED_SB_TYPE_L2_QUEUE);
424         if (rc) {
425                 DP_ERR(edev, "Status block initialization failed\n");
426                 /* TBD: No dma_free_coherent possible */
427                 return rc;
428         }
429
430         return 0;
431 }
432
433 int qede_alloc_fp_resc(struct qede_dev *qdev)
434 {
435         struct ecore_dev *edev = &qdev->edev;
436         struct qede_fastpath *fp;
437         uint32_t num_sbs;
438         int rc, i;
439
440         if (IS_VF(edev))
441                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
442         else
443                 num_sbs = (ecore_cxt_get_proto_cid_count
444                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL)) / 2;
445
446         if (num_sbs == 0) {
447                 DP_ERR(edev, "No status blocks available\n");
448                 return -EINVAL;
449         }
450
451         if (qdev->fp_array)
452                 qede_free_fp_arrays(qdev);
453
454         rc = qede_alloc_fp_array(qdev);
455         if (rc != 0)
456                 return rc;
457
458         qede_init_fp(qdev);
459
460         for (i = 0; i < QEDE_QUEUE_CNT(qdev); i++) {
461                 fp = &qdev->fp_array[i];
462                 if (qede_alloc_mem_sb(qdev, fp->sb_info, i % num_sbs)) {
463                         qede_free_fp_arrays(qdev);
464                         return -ENOMEM;
465                 }
466         }
467
468         return 0;
469 }
470
471 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
472 {
473         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
474
475         qede_free_mem_load(eth_dev);
476         qede_free_fp_arrays(qdev);
477 }
478
479 static inline void
480 qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
481 {
482         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
483         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
484         struct eth_rx_prod_data rx_prods = { 0 };
485
486         /* Update producers */
487         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
488         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
489
490         /* Make sure that the BD and SGE data is updated before updating the
491          * producers since FW might read the BD/SGE right after the producer
492          * is updated.
493          */
494         rte_wmb();
495
496         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
497                         (uint32_t *)&rx_prods);
498
499         /* mmiowb is needed to synchronize doorbell writes from more than one
500          * processor. It guarantees that the write arrives to the device before
501          * the napi lock is released and another qede_poll is called (possibly
502          * on another CPU). Without this barrier, the next doorbell can bypass
503          * this doorbell. This is applicable to IA64/Altix systems.
504          */
505         rte_wmb();
506
507         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u\n", bd_prod, cqe_prod);
508 }
509
510 static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
511 {
512         struct qede_dev *qdev = eth_dev->data->dev_private;
513         struct ecore_dev *edev = &qdev->edev;
514         struct ecore_queue_start_common_params q_params;
515         struct qed_dev_info *qed_info = &qdev->dev_info.common;
516         struct qed_update_vport_params vport_update_params;
517         struct qede_tx_queue *txq;
518         struct qede_fastpath *fp;
519         dma_addr_t p_phys_table;
520         int txq_index;
521         uint16_t page_cnt;
522         int vlan_removal_en = 1;
523         int rc, tc, i;
524
525         for_each_queue(i) {
526                 fp = &qdev->fp_array[i];
527                 if (fp->type & QEDE_FASTPATH_RX) {
528                         p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->
529                                                                 rx_comp_ring);
530                         page_cnt = ecore_chain_get_page_cnt(&fp->rxq->
531                                                                 rx_comp_ring);
532
533                         memset(&q_params, 0, sizeof(q_params));
534                         q_params.queue_id = i;
535                         q_params.vport_id = 0;
536                         q_params.sb = fp->sb_info->igu_sb_id;
537                         q_params.sb_idx = RX_PI;
538
539                         ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
540
541                         rc = qdev->ops->q_rx_start(edev, i, &q_params,
542                                            fp->rxq->rx_buf_size,
543                                            fp->rxq->rx_bd_ring.p_phys_addr,
544                                            p_phys_table,
545                                            page_cnt,
546                                            &fp->rxq->hw_rxq_prod_addr);
547                         if (rc) {
548                                 DP_ERR(edev, "Start rxq #%d failed %d\n",
549                                        fp->rxq->queue_id, rc);
550                                 return rc;
551                         }
552
553                         fp->rxq->hw_cons_ptr =
554                                         &fp->sb_info->sb_virt->pi_array[RX_PI];
555
556                         qede_update_rx_prod(qdev, fp->rxq);
557                 }
558
559                 if (!(fp->type & QEDE_FASTPATH_TX))
560                         continue;
561                 for (tc = 0; tc < qdev->num_tc; tc++) {
562                         txq = fp->txqs[tc];
563                         txq_index = tc * QEDE_RSS_COUNT(qdev) + i;
564
565                         p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
566                         page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
567
568                         memset(&q_params, 0, sizeof(q_params));
569                         q_params.queue_id = txq->queue_id;
570                         q_params.vport_id = 0;
571                         q_params.sb = fp->sb_info->igu_sb_id;
572                         q_params.sb_idx = TX_PI(tc);
573
574                         rc = qdev->ops->q_tx_start(edev, i, &q_params,
575                                                    p_phys_table,
576                                                    page_cnt, /* **pp_doorbell */
577                                                    &txq->doorbell_addr);
578                         if (rc) {
579                                 DP_ERR(edev, "Start txq %u failed %d\n",
580                                        txq_index, rc);
581                                 return rc;
582                         }
583
584                         txq->hw_cons_ptr =
585                             &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
586                         SET_FIELD(txq->tx_db.data.params,
587                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
588                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
589                                   DB_AGG_CMD_SET);
590                         SET_FIELD(txq->tx_db.data.params,
591                                   ETH_DB_DATA_AGG_VAL_SEL,
592                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
593
594                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
595                 }
596         }
597
598         /* Prepare and send the vport enable */
599         memset(&vport_update_params, 0, sizeof(vport_update_params));
600         /* Update MTU via vport update */
601         vport_update_params.mtu = qdev->mtu;
602         vport_update_params.vport_id = 0;
603         vport_update_params.update_vport_active_flg = 1;
604         vport_update_params.vport_active_flg = 1;
605
606         /* @DPDK */
607         if (qed_info->mf_mode == MF_NPAR && qed_info->tx_switching) {
608                 /* TBD: Check SRIOV enabled for VF */
609                 vport_update_params.update_tx_switching_flg = 1;
610                 vport_update_params.tx_switching_flg = 1;
611         }
612
613         rc = qdev->ops->vport_update(edev, &vport_update_params);
614         if (rc) {
615                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
616                 return rc;
617         }
618
619         return 0;
620 }
621
622 static bool qede_tunn_exist(uint16_t flag)
623 {
624         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
625                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
626 }
627
628 /*
629  * qede_check_tunn_csum_l4:
630  * Returns:
631  * 1 : If L4 csum is enabled AND if the validation has failed.
632  * 0 : Otherwise
633  */
634 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
635 {
636         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
637              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
638                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
639                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
640
641         return 0;
642 }
643
644 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
645 {
646         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
647              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
648                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
649                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
650
651         return 0;
652 }
653
654 static inline uint8_t
655 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
656 {
657         struct ipv4_hdr *ip;
658         uint16_t pkt_csum;
659         uint16_t calc_csum;
660         uint16_t val;
661
662         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
663                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
664
665         if (unlikely(val)) {
666                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
667                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
668                         ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
669                                            sizeof(struct ether_hdr));
670                         pkt_csum = ip->hdr_checksum;
671                         ip->hdr_checksum = 0;
672                         calc_csum = rte_ipv4_cksum(ip);
673                         ip->hdr_checksum = pkt_csum;
674                         return (calc_csum != pkt_csum);
675                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
676                         return 1;
677                 }
678         }
679         return 0;
680 }
681
682 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
683 {
684         ecore_chain_consume(&rxq->rx_bd_ring);
685         rxq->sw_rx_cons++;
686 }
687
688 static inline void
689 qede_reuse_page(struct qede_dev *qdev,
690                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
691 {
692         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
693         uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
694         struct qede_rx_entry *curr_prod;
695         dma_addr_t new_mapping;
696
697         curr_prod = &rxq->sw_rx_ring[idx];
698         *curr_prod = *curr_cons;
699
700         new_mapping = rte_mbuf_data_dma_addr_default(curr_prod->mbuf) +
701                       curr_prod->page_offset;
702
703         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
704         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
705
706         rxq->sw_rx_prod++;
707 }
708
709 static inline void
710 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
711                         struct qede_dev *qdev, uint8_t count)
712 {
713         struct qede_rx_entry *curr_cons;
714
715         for (; count > 0; count--) {
716                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
717                 qede_reuse_page(qdev, rxq, curr_cons);
718                 qede_rx_bd_ring_consume(rxq);
719         }
720 }
721
722 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
723 {
724         uint16_t val;
725
726         /* Lookup table */
727         static const uint32_t
728         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
729                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4,
730                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6,
731                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
732                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
733                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
734                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
735         };
736
737         /* Bits (0..3) provides L3/L4 protocol type */
738         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
739                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
740                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
741                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT)) & flags;
742
743         if (val < QEDE_PKT_TYPE_MAX)
744                 return ptype_lkup_tbl[val] | RTE_PTYPE_L2_ETHER;
745         else
746                 return RTE_PTYPE_UNKNOWN;
747 }
748
749 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
750 {
751         uint32_t val;
752
753         /* Lookup table */
754         static const uint32_t
755         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
756                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
757                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
758                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
759                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
760                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
761                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L2_ETHER,
762                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
763                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L2_ETHER,
764                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
765                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L2_ETHER,
766                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
767                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L2_ETHER,
768                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
769                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L2_ETHER,
770                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
771                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L2_ETHER,
772                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
773                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
774                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
775                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
776                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
777                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
778                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
779                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
780                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
781                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
782                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
783                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
784                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
785                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
786                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
787                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
788                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
789                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
790                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
791                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
792                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
793                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
794                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
795                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
796         };
797
798         /* Cover bits[4-0] to include tunn_type and next protocol */
799         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
800                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
801                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
802                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
803
804         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
805                 return ptype_tunn_lkup_tbl[val];
806         else
807                 return RTE_PTYPE_UNKNOWN;
808 }
809
810
811 int qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
812                          int num_segs, uint16_t pkt_len)
813 {
814         struct qede_rx_queue *rxq = p_rxq;
815         struct qede_dev *qdev = rxq->qdev;
816         struct ecore_dev *edev = &qdev->edev;
817         uint16_t sw_rx_index, cur_size;
818
819         register struct rte_mbuf *seg1 = NULL;
820         register struct rte_mbuf *seg2 = NULL;
821
822         seg1 = rx_mb;
823         while (num_segs) {
824                 cur_size = pkt_len > rxq->rx_buf_size ?
825                                 rxq->rx_buf_size : pkt_len;
826                 if (!cur_size) {
827                         PMD_RX_LOG(DEBUG, rxq,
828                                    "SG packet, len and num BD mismatch\n");
829                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
830                         return -EINVAL;
831                 }
832
833                 if (qede_alloc_rx_buffer(rxq)) {
834                         uint8_t index;
835
836                         PMD_RX_LOG(DEBUG, rxq, "Buffer allocation failed\n");
837                         index = rxq->port_id;
838                         rte_eth_devices[index].data->rx_mbuf_alloc_failed++;
839                         rxq->rx_alloc_errors++;
840                         return -ENOMEM;
841                 }
842
843                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
844                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
845                 qede_rx_bd_ring_consume(rxq);
846                 pkt_len -= cur_size;
847                 seg2->data_len = cur_size;
848                 seg1->next = seg2;
849                 seg1 = seg1->next;
850                 num_segs--;
851                 rxq->rx_segs++;
852                 continue;
853         }
854         seg1 = NULL;
855
856         if (pkt_len)
857                 PMD_RX_LOG(DEBUG, rxq,
858                            "Mapped all BDs of jumbo, but still have %d bytes\n",
859                            pkt_len);
860
861         return ECORE_SUCCESS;
862 }
863
864 uint16_t
865 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
866 {
867         struct qede_rx_queue *rxq = p_rxq;
868         struct qede_dev *qdev = rxq->qdev;
869         struct ecore_dev *edev = &qdev->edev;
870         struct qede_fastpath *fp = &qdev->fp_array[rxq->queue_id];
871         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
872         uint16_t rx_pkt = 0;
873         union eth_rx_cqe *cqe;
874         struct eth_fast_path_rx_reg_cqe *fp_cqe;
875         register struct rte_mbuf *rx_mb = NULL;
876         register struct rte_mbuf *seg1 = NULL;
877         enum eth_rx_cqe_type cqe_type;
878         uint16_t len, pad, preload_idx, pkt_len, parse_flag;
879         uint8_t csum_flag, num_segs;
880         enum rss_hash_type htype;
881         uint8_t tunn_parse_flag;
882         int ret;
883
884         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
885         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
886
887         rte_rmb();
888
889         if (hw_comp_cons == sw_comp_cons)
890                 return 0;
891
892         while (sw_comp_cons != hw_comp_cons) {
893                 /* Get the CQE from the completion ring */
894                 cqe =
895                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
896                 cqe_type = cqe->fast_path_regular.type;
897
898                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
899                         PMD_RX_LOG(DEBUG, rxq, "Got a slowath CQE\n");
900
901                         qdev->ops->eth_cqe_completion(edev, fp->id,
902                                 (struct eth_slow_path_rx_cqe *)cqe);
903                         goto next_cqe;
904                 }
905
906                 /* Get the data from the SW ring */
907                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
908                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
909                 assert(rx_mb != NULL);
910
911                 /* non GRO */
912                 fp_cqe = &cqe->fast_path_regular;
913
914                 len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
915                 pad = fp_cqe->placement_offset;
916                 assert((len + pad) <= rx_mb->buf_len);
917
918                 PMD_RX_LOG(DEBUG, rxq,
919                            "CQE type = 0x%x, flags = 0x%x, vlan = 0x%x"
920                            " len = %u, parsing_flags = %d\n",
921                            cqe_type, fp_cqe->bitfields,
922                            rte_le_to_cpu_16(fp_cqe->vlan_tag),
923                            len, rte_le_to_cpu_16(fp_cqe->pars_flags.flags));
924
925                 /* If this is an error packet then drop it */
926                 parse_flag =
927                     rte_le_to_cpu_16(cqe->fast_path_regular.pars_flags.flags);
928
929                 rx_mb->ol_flags = 0;
930
931                 if (qede_tunn_exist(parse_flag)) {
932                         PMD_RX_LOG(DEBUG, rxq, "Rx tunneled packet\n");
933                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
934                                 PMD_RX_LOG(ERR, rxq,
935                                             "L4 csum failed, flags = 0x%x\n",
936                                             parse_flag);
937                                 rxq->rx_hw_errors++;
938                                 rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
939                         } else {
940                                 tunn_parse_flag =
941                                                 fp_cqe->tunnel_pars_flags.flags;
942                                 rx_mb->packet_type =
943                                         qede_rx_cqe_to_tunn_pkt_type(
944                                                         tunn_parse_flag);
945                         }
946                 } else {
947                         PMD_RX_LOG(DEBUG, rxq, "Rx non-tunneled packet\n");
948                         if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
949                                 PMD_RX_LOG(ERR, rxq,
950                                             "L4 csum failed, flags = 0x%x\n",
951                                             parse_flag);
952                                 rxq->rx_hw_errors++;
953                                 rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
954                         } else if (unlikely(qede_check_notunn_csum_l3(rx_mb,
955                                                         parse_flag))) {
956                                 PMD_RX_LOG(ERR, rxq,
957                                            "IP csum failed, flags = 0x%x\n",
958                                            parse_flag);
959                                 rxq->rx_hw_errors++;
960                                 rx_mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
961                         } else {
962                                 rx_mb->packet_type =
963                                         qede_rx_cqe_to_pkt_type(parse_flag);
964                         }
965                 }
966
967                 PMD_RX_LOG(INFO, rxq, "packet_type 0x%x\n", rx_mb->packet_type);
968
969                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
970                         PMD_RX_LOG(ERR, rxq,
971                                    "New buffer allocation failed,"
972                                    "dropping incoming packet\n");
973                         qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
974                         rte_eth_devices[rxq->port_id].
975                             data->rx_mbuf_alloc_failed++;
976                         rxq->rx_alloc_errors++;
977                         break;
978                 }
979
980                 qede_rx_bd_ring_consume(rxq);
981
982                 if (fp_cqe->bd_num > 1) {
983                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
984                         num_segs = fp_cqe->bd_num - 1;
985
986                         rxq->rx_segs++;
987
988                         pkt_len -= len;
989                         seg1 = rx_mb;
990                         ret = qede_process_sg_pkts(p_rxq, seg1, num_segs,
991                                                    pkt_len);
992                         if (ret != ECORE_SUCCESS) {
993                                 qede_recycle_rx_bd_ring(rxq, qdev,
994                                                         fp_cqe->bd_num);
995                                 goto next_cqe;
996                         }
997                 }
998
999                 /* Prefetch next mbuf while processing current one. */
1000                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1001                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1002
1003                 /* Update rest of the MBUF fields */
1004                 rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM;
1005                 rx_mb->nb_segs = fp_cqe->bd_num;
1006                 rx_mb->data_len = len;
1007                 rx_mb->pkt_len = fp_cqe->pkt_len;
1008                 rx_mb->port = rxq->port_id;
1009
1010                 htype = (uint8_t)GET_FIELD(fp_cqe->bitfields,
1011                                 ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
1012                 if (qdev->rss_enable && htype) {
1013                         rx_mb->ol_flags |= PKT_RX_RSS_HASH;
1014                         rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash);
1015                         PMD_RX_LOG(DEBUG, rxq, "Hash result 0x%x\n",
1016                                    rx_mb->hash.rss);
1017                 }
1018
1019                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1020
1021                 if (CQE_HAS_VLAN(parse_flag)) {
1022                         rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1023                         rx_mb->ol_flags |= PKT_RX_VLAN_PKT;
1024                 }
1025
1026                 if (CQE_HAS_OUTER_VLAN(parse_flag)) {
1027                         /* FW does not provide indication of Outer VLAN tag,
1028                          * which is always stripped, so vlan_tci_outer is set
1029                          * to 0. Here vlan_tag represents inner VLAN tag.
1030                          */
1031                         rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1032                         rx_mb->ol_flags |= PKT_RX_QINQ_PKT;
1033                         rx_mb->vlan_tci_outer = 0;
1034                 }
1035
1036                 rx_pkts[rx_pkt] = rx_mb;
1037                 rx_pkt++;
1038 next_cqe:
1039                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1040                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1041                 if (rx_pkt == nb_pkts) {
1042                         PMD_RX_LOG(DEBUG, rxq,
1043                                    "Budget reached nb_pkts=%u received=%u\n",
1044                                    rx_pkt, nb_pkts);
1045                         break;
1046                 }
1047         }
1048
1049         qede_update_rx_prod(qdev, rxq);
1050
1051         rxq->rcv_pkts += rx_pkt;
1052
1053         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d\n", rx_pkt, rte_lcore_id());
1054
1055         return rx_pkt;
1056 }
1057
1058 static inline int
1059 qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq)
1060 {
1061         uint16_t nb_segs, idx = TX_CONS(txq);
1062         struct eth_tx_bd *tx_data_bd;
1063         struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf;
1064
1065         if (unlikely(!mbuf)) {
1066                 PMD_TX_LOG(ERR, txq, "null mbuf\n");
1067                 PMD_TX_LOG(ERR, txq,
1068                            "tx_desc %u tx_avail %u tx_cons %u tx_prod %u\n",
1069                            txq->nb_tx_desc, txq->nb_tx_avail, idx,
1070                            TX_PROD(txq));
1071                 return -1;
1072         }
1073
1074         nb_segs = mbuf->nb_segs;
1075         while (nb_segs) {
1076                 /* It's like consuming rxbuf in recv() */
1077                 ecore_chain_consume(&txq->tx_pbl);
1078                 txq->nb_tx_avail++;
1079                 nb_segs--;
1080         }
1081         rte_pktmbuf_free(mbuf);
1082         txq->sw_tx_ring[idx].mbuf = NULL;
1083
1084         return 0;
1085 }
1086
1087 static inline uint16_t
1088 qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
1089 {
1090         uint16_t tx_compl = 0;
1091         uint16_t hw_bd_cons;
1092
1093         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
1094         rte_compiler_barrier();
1095
1096         while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) {
1097                 if (qede_free_tx_pkt(edev, txq)) {
1098                         PMD_TX_LOG(ERR, txq,
1099                                    "hw_bd_cons = %u, chain_cons = %u\n",
1100                                    hw_bd_cons,
1101                                    ecore_chain_get_cons_idx(&txq->tx_pbl));
1102                         break;
1103                 }
1104                 txq->sw_tx_cons++;      /* Making TXD available */
1105                 tx_compl++;
1106         }
1107
1108         PMD_TX_LOG(DEBUG, txq, "Tx compl %u sw_tx_cons %u avail %u\n",
1109                    tx_compl, txq->sw_tx_cons, txq->nb_tx_avail);
1110         return tx_compl;
1111 }
1112
1113 /* Populate scatter gather buffer descriptor fields */
1114 static inline uint16_t qede_encode_sg_bd(struct qede_tx_queue *p_txq,
1115                                          struct rte_mbuf *m_seg,
1116                                          uint16_t count,
1117                                          struct eth_tx_1st_bd *bd1)
1118 {
1119         struct qede_tx_queue *txq = p_txq;
1120         struct eth_tx_2nd_bd *bd2 = NULL;
1121         struct eth_tx_3rd_bd *bd3 = NULL;
1122         struct eth_tx_bd *tx_bd = NULL;
1123         uint16_t nb_segs = count;
1124         dma_addr_t mapping;
1125
1126         /* Check for scattered buffers */
1127         while (m_seg) {
1128                 if (nb_segs == 1) {
1129                         bd2 = (struct eth_tx_2nd_bd *)
1130                                 ecore_chain_produce(&txq->tx_pbl);
1131                         memset(bd2, 0, sizeof(*bd2));
1132                         mapping = rte_mbuf_data_dma_addr(m_seg);
1133                         bd2->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
1134                         bd2->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
1135                         bd2->nbytes = rte_cpu_to_le_16(m_seg->data_len);
1136                 } else if (nb_segs == 2) {
1137                         bd3 = (struct eth_tx_3rd_bd *)
1138                                 ecore_chain_produce(&txq->tx_pbl);
1139                         memset(bd3, 0, sizeof(*bd3));
1140                         mapping = rte_mbuf_data_dma_addr(m_seg);
1141                         bd3->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
1142                         bd3->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
1143                         bd3->nbytes = rte_cpu_to_le_16(m_seg->data_len);
1144                 } else {
1145                         tx_bd = (struct eth_tx_bd *)
1146                                 ecore_chain_produce(&txq->tx_pbl);
1147                         memset(tx_bd, 0, sizeof(*tx_bd));
1148                         mapping = rte_mbuf_data_dma_addr(m_seg);
1149                         tx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
1150                         tx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
1151                         tx_bd->nbytes = rte_cpu_to_le_16(m_seg->data_len);
1152                 }
1153                 nb_segs++;
1154                 bd1->data.nbds = nb_segs;
1155                 m_seg = m_seg->next;
1156         }
1157
1158         /* Return total scattered buffers */
1159         return nb_segs;
1160 }
1161
1162 uint16_t
1163 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1164 {
1165         struct qede_tx_queue *txq = p_txq;
1166         struct qede_dev *qdev = txq->qdev;
1167         struct ecore_dev *edev = &qdev->edev;
1168         struct qede_fastpath *fp;
1169         struct eth_tx_1st_bd *bd1;
1170         struct rte_mbuf *m_seg = NULL;
1171         uint16_t nb_tx_pkts;
1172         uint16_t nb_pkt_sent = 0;
1173         uint16_t bd_prod;
1174         uint16_t idx;
1175         uint16_t tx_count;
1176         uint16_t nb_segs = 0;
1177
1178         fp = &qdev->fp_array[QEDE_RSS_COUNT(qdev) + txq->queue_id];
1179
1180         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1181                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u\n",
1182                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1183                 (void)qede_process_tx_compl(edev, txq);
1184         }
1185
1186         nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail /
1187                         ETH_TX_MAX_BDS_PER_NON_LSO_PACKET));
1188         if (unlikely(nb_tx_pkts == 0)) {
1189                 PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u\n",
1190                            nb_pkts, txq->nb_tx_avail);
1191                 return 0;
1192         }
1193
1194         tx_count = nb_tx_pkts;
1195         while (nb_tx_pkts--) {
1196                 /* Fill the entry in the SW ring and the BDs in the FW ring */
1197                 idx = TX_PROD(txq);
1198                 struct rte_mbuf *mbuf = *tx_pkts++;
1199
1200                 txq->sw_tx_ring[idx].mbuf = mbuf;
1201                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
1202                 /* Zero init struct fields */
1203                 bd1->data.bd_flags.bitfields = 0;
1204                 bd1->data.bitfields = 0;
1205
1206                 bd1->data.bd_flags.bitfields =
1207                         1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1208                 /* Map MBUF linear data for DMA and set in the first BD */
1209                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
1210                                      mbuf->pkt_len);
1211
1212                 if (RTE_ETH_IS_TUNNEL_PKT(mbuf->packet_type)) {
1213                         PMD_TX_LOG(INFO, txq, "Tx tunnel packet\n");
1214                         /* First indicate its a tunnel pkt */
1215                         bd1->data.bd_flags.bitfields |=
1216                                 ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1217                                 ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1218
1219                         /* Legacy FW had flipped behavior in regard to this bit
1220                          * i.e. it needed to set to prevent FW from touching
1221                          * encapsulated packets when it didn't need to.
1222                          */
1223                         if (unlikely(txq->is_legacy))
1224                                 bd1->data.bitfields ^=
1225                                         1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1226
1227                         /* Outer IP checksum offload */
1228                         if (mbuf->ol_flags & PKT_TX_OUTER_IP_CKSUM) {
1229                                 PMD_TX_LOG(INFO, txq, "OuterIP csum offload\n");
1230                                 bd1->data.bd_flags.bitfields |=
1231                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1232                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1233                         }
1234
1235                         /* Outer UDP checksum offload */
1236                         bd1->data.bd_flags.bitfields |=
1237                                 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
1238                                 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1239                 }
1240
1241                 /* Descriptor based VLAN insertion */
1242                 if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1243                         PMD_TX_LOG(INFO, txq, "Insert VLAN 0x%x\n",
1244                                    mbuf->vlan_tci);
1245                         bd1->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
1246                         bd1->data.bd_flags.bitfields |=
1247                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1248                 }
1249
1250                 /* Offload the IP checksum in the hardware */
1251                 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1252                         PMD_TX_LOG(INFO, txq, "IP csum offload\n");
1253                         bd1->data.bd_flags.bitfields |=
1254                             1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1255                 }
1256
1257                 /* L4 checksum offload (tcp or udp) */
1258                 if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
1259                         PMD_TX_LOG(INFO, txq, "L4 csum offload\n");
1260                         bd1->data.bd_flags.bitfields |=
1261                             1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1262                         /* IPv6 + extn. -> later */
1263                 }
1264
1265                 /* Handle fragmented MBUF */
1266                 m_seg = mbuf->next;
1267                 nb_segs++;
1268                 bd1->data.nbds = nb_segs;
1269                 /* Encode scatter gather buffer descriptors if required */
1270                 nb_segs = qede_encode_sg_bd(txq, m_seg, nb_segs, bd1);
1271                 txq->nb_tx_avail = txq->nb_tx_avail - nb_segs;
1272                 nb_segs = 0;
1273                 txq->sw_tx_prod++;
1274                 rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
1275                 bd_prod =
1276                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1277                 nb_pkt_sent++;
1278                 txq->xmit_pkts++;
1279         }
1280
1281         /* Write value of prod idx into bd_prod */
1282         txq->tx_db.data.bd_prod = bd_prod;
1283         rte_wmb();
1284         rte_compiler_barrier();
1285         DIRECT_REG_WR(edev, txq->doorbell_addr, txq->tx_db.raw);
1286         rte_wmb();
1287
1288         /* Check again for Tx completions */
1289         (void)qede_process_tx_compl(edev, txq);
1290
1291         PMD_TX_LOG(DEBUG, txq, "to_send=%u can_send=%u sent=%u core=%d\n",
1292                    nb_pkts, tx_count, nb_pkt_sent, rte_lcore_id());
1293
1294         return nb_pkt_sent;
1295 }
1296
1297 static void qede_init_fp_queue(struct rte_eth_dev *eth_dev)
1298 {
1299         struct qede_dev *qdev = eth_dev->data->dev_private;
1300         struct qede_fastpath *fp;
1301         uint8_t i, rss_id, txq_index, tc;
1302         int rxq = 0, txq = 0;
1303
1304         for_each_queue(i) {
1305                 fp = &qdev->fp_array[i];
1306                 if (fp->type & QEDE_FASTPATH_RX) {
1307                         fp->rxq = eth_dev->data->rx_queues[i];
1308                         fp->rxq->queue_id = rxq++;
1309                 }
1310
1311                 if (fp->type & QEDE_FASTPATH_TX) {
1312                         for (tc = 0; tc < qdev->num_tc; tc++) {
1313                                 txq_index = tc * QEDE_TSS_COUNT(qdev) + txq;
1314                                 fp->txqs[tc] =
1315                                         eth_dev->data->tx_queues[txq_index];
1316                                 fp->txqs[tc]->queue_id = txq_index;
1317                                 if (qdev->dev_info.is_legacy)
1318                                         fp->txqs[tc]->is_legacy = true;
1319                         }
1320                         txq++;
1321                 }
1322         }
1323 }
1324
1325 int qede_dev_start(struct rte_eth_dev *eth_dev)
1326 {
1327         struct qede_dev *qdev = eth_dev->data->dev_private;
1328         struct ecore_dev *edev = &qdev->edev;
1329         struct qed_link_output link_output;
1330         struct qede_fastpath *fp;
1331         int rc;
1332
1333         DP_INFO(edev, "Device state is %d\n", qdev->state);
1334
1335         if (qdev->state == QEDE_DEV_START) {
1336                 DP_INFO(edev, "Port is already started\n");
1337                 return 0;
1338         }
1339
1340         if (qdev->state == QEDE_DEV_CONFIG)
1341                 qede_init_fp_queue(eth_dev);
1342
1343         rc = qede_start_queues(eth_dev, true);
1344         if (rc) {
1345                 DP_ERR(edev, "Failed to start queues\n");
1346                 /* TBD: free */
1347                 return rc;
1348         }
1349
1350         /* Bring-up the link */
1351         qede_dev_set_link_state(eth_dev, true);
1352
1353         /* Reset ring */
1354         if (qede_reset_fp_rings(qdev))
1355                 return -ENOMEM;
1356
1357         /* Start/resume traffic */
1358         qdev->ops->fastpath_start(edev);
1359
1360         qdev->state = QEDE_DEV_START;
1361
1362         DP_INFO(edev, "dev_state is QEDE_DEV_START\n");
1363
1364         return 0;
1365 }
1366
1367 static int qede_drain_txq(struct qede_dev *qdev,
1368                           struct qede_tx_queue *txq, bool allow_drain)
1369 {
1370         struct ecore_dev *edev = &qdev->edev;
1371         int rc, cnt = 1000;
1372
1373         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1374                 qede_process_tx_compl(edev, txq);
1375                 if (!cnt) {
1376                         if (allow_drain) {
1377                                 DP_NOTICE(edev, false,
1378                                           "Tx queue[%u] is stuck,"
1379                                           "requesting MCP to drain\n",
1380                                           txq->queue_id);
1381                                 rc = qdev->ops->common->drain(edev);
1382                                 if (rc)
1383                                         return rc;
1384                                 return qede_drain_txq(qdev, txq, false);
1385                         }
1386
1387                         DP_NOTICE(edev, false,
1388                                   "Timeout waiting for tx queue[%d]:"
1389                                   "PROD=%d, CONS=%d\n",
1390                                   txq->queue_id, txq->sw_tx_prod,
1391                                   txq->sw_tx_cons);
1392                         return -ENODEV;
1393                 }
1394                 cnt--;
1395                 DELAY(1000);
1396                 rte_compiler_barrier();
1397         }
1398
1399         /* FW finished processing, wait for HW to transmit all tx packets */
1400         DELAY(2000);
1401
1402         return 0;
1403 }
1404
1405 static int qede_stop_queues(struct qede_dev *qdev)
1406 {
1407         struct qed_update_vport_params vport_update_params;
1408         struct ecore_dev *edev = &qdev->edev;
1409         int rc, tc, i;
1410
1411         /* Disable the vport */
1412         memset(&vport_update_params, 0, sizeof(vport_update_params));
1413         vport_update_params.vport_id = 0;
1414         vport_update_params.update_vport_active_flg = 1;
1415         vport_update_params.vport_active_flg = 0;
1416         vport_update_params.update_rss_flg = 0;
1417
1418         DP_INFO(edev, "Deactivate vport\n");
1419
1420         rc = qdev->ops->vport_update(edev, &vport_update_params);
1421         if (rc) {
1422                 DP_ERR(edev, "Failed to update vport\n");
1423                 return rc;
1424         }
1425
1426         DP_INFO(edev, "Flushing tx queues\n");
1427
1428         /* Flush Tx queues. If needed, request drain from MCP */
1429         for_each_queue(i) {
1430                 struct qede_fastpath *fp = &qdev->fp_array[i];
1431
1432                 if (fp->type & QEDE_FASTPATH_TX) {
1433                         for (tc = 0; tc < qdev->num_tc; tc++) {
1434                                 struct qede_tx_queue *txq = fp->txqs[tc];
1435
1436                                 rc = qede_drain_txq(qdev, txq, true);
1437                                 if (rc)
1438                                         return rc;
1439                         }
1440                 }
1441         }
1442
1443         /* Stop all Queues in reverse order */
1444         for (i = QEDE_QUEUE_CNT(qdev) - 1; i >= 0; i--) {
1445                 struct qed_stop_rxq_params rx_params;
1446
1447                 /* Stop the Tx Queue(s) */
1448                 if (qdev->fp_array[i].type & QEDE_FASTPATH_TX) {
1449                         for (tc = 0; tc < qdev->num_tc; tc++) {
1450                                 struct qed_stop_txq_params tx_params;
1451                                 u8 val;
1452
1453                                 tx_params.rss_id = i;
1454                                 val = qdev->fp_array[i].txqs[tc]->queue_id;
1455                                 tx_params.tx_queue_id = val;
1456
1457                                 DP_INFO(edev, "Stopping tx queues\n");
1458                                 rc = qdev->ops->q_tx_stop(edev, &tx_params);
1459                                 if (rc) {
1460                                         DP_ERR(edev, "Failed to stop TXQ #%d\n",
1461                                                tx_params.tx_queue_id);
1462                                         return rc;
1463                                 }
1464                         }
1465                 }
1466
1467                 /* Stop the Rx Queue */
1468                 if (qdev->fp_array[i].type & QEDE_FASTPATH_RX) {
1469                         memset(&rx_params, 0, sizeof(rx_params));
1470                         rx_params.rss_id = i;
1471                         rx_params.rx_queue_id = qdev->fp_array[i].rxq->queue_id;
1472                         rx_params.eq_completion_only = 1;
1473
1474                         DP_INFO(edev, "Stopping rx queues\n");
1475
1476                         rc = qdev->ops->q_rx_stop(edev, &rx_params);
1477                         if (rc) {
1478                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1479                                 return rc;
1480                         }
1481                 }
1482         }
1483
1484         return 0;
1485 }
1486
1487 int qede_reset_fp_rings(struct qede_dev *qdev)
1488 {
1489         struct qede_fastpath *fp;
1490         struct qede_tx_queue *txq;
1491         uint8_t tc;
1492         uint16_t id, i;
1493
1494         for_each_queue(id) {
1495                 fp = &qdev->fp_array[id];
1496
1497                 if (fp->type & QEDE_FASTPATH_RX) {
1498                         DP_INFO(&qdev->edev,
1499                                 "Reset FP chain for RSS %u\n", id);
1500                         qede_rx_queue_release_mbufs(fp->rxq);
1501                         ecore_chain_reset(&fp->rxq->rx_bd_ring);
1502                         ecore_chain_reset(&fp->rxq->rx_comp_ring);
1503                         fp->rxq->sw_rx_prod = 0;
1504                         fp->rxq->sw_rx_cons = 0;
1505                         *fp->rxq->hw_cons_ptr = 0;
1506                         for (i = 0; i < fp->rxq->nb_rx_desc; i++) {
1507                                 if (qede_alloc_rx_buffer(fp->rxq)) {
1508                                         DP_ERR(&qdev->edev,
1509                                                "RX buffer allocation failed\n");
1510                                         return -ENOMEM;
1511                                 }
1512                         }
1513                 }
1514                 if (fp->type & QEDE_FASTPATH_TX) {
1515                         for (tc = 0; tc < qdev->num_tc; tc++) {
1516                                 txq = fp->txqs[tc];
1517                                 qede_tx_queue_release_mbufs(txq);
1518                                 ecore_chain_reset(&txq->tx_pbl);
1519                                 txq->sw_tx_cons = 0;
1520                                 txq->sw_tx_prod = 0;
1521                                 *txq->hw_cons_ptr = 0;
1522                         }
1523                 }
1524         }
1525
1526         return 0;
1527 }
1528
1529 /* This function frees all memory of a single fp */
1530 void qede_free_mem_load(struct rte_eth_dev *eth_dev)
1531 {
1532         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1533         struct qede_fastpath *fp;
1534         uint16_t txq_idx;
1535         uint8_t id;
1536         uint8_t tc;
1537
1538         for_each_queue(id) {
1539                 fp = &qdev->fp_array[id];
1540                 if (fp->type & QEDE_FASTPATH_RX) {
1541                         if (!fp->rxq)
1542                                 continue;
1543                         qede_rx_queue_release(fp->rxq);
1544                         eth_dev->data->rx_queues[id] = NULL;
1545                 } else {
1546                         for (tc = 0; tc < qdev->num_tc; tc++) {
1547                                 if (!fp->txqs[tc])
1548                                         continue;
1549                                 txq_idx = fp->txqs[tc]->queue_id;
1550                                 qede_tx_queue_release(fp->txqs[tc]);
1551                                 eth_dev->data->tx_queues[txq_idx] = NULL;
1552                         }
1553                 }
1554         }
1555 }
1556
1557 void qede_dev_stop(struct rte_eth_dev *eth_dev)
1558 {
1559         struct qede_dev *qdev = eth_dev->data->dev_private;
1560         struct ecore_dev *edev = &qdev->edev;
1561
1562         DP_INFO(edev, "port %u\n", eth_dev->data->port_id);
1563
1564         if (qdev->state != QEDE_DEV_START) {
1565                 DP_INFO(edev, "Device not yet started\n");
1566                 return;
1567         }
1568
1569         if (qede_stop_queues(qdev))
1570                 DP_ERR(edev, "Didn't succeed to close queues\n");
1571
1572         DP_INFO(edev, "Stopped queues\n");
1573
1574         qdev->ops->fastpath_stop(edev);
1575
1576         /* Bring the link down */
1577         qede_dev_set_link_state(eth_dev, false);
1578
1579         qdev->state = QEDE_DEV_STOP;
1580
1581         DP_INFO(edev, "dev_state is QEDE_DEV_STOP\n");
1582 }