net/qede: fix Tx completion
[dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include <rte_net.h>
8 #include "qede_rxtx.h"
9
10 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
11 {
12         struct rte_mbuf *new_mb = NULL;
13         struct eth_rx_bd *rx_bd;
14         dma_addr_t mapping;
15         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
16
17         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
18         if (unlikely(!new_mb)) {
19                 PMD_RX_LOG(ERR, rxq,
20                            "Failed to allocate rx buffer "
21                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
22                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
23                            rte_mempool_avail_count(rxq->mb_pool),
24                            rte_mempool_in_use_count(rxq->mb_pool));
25                 return -ENOMEM;
26         }
27         rxq->sw_rx_ring[idx] = new_mb;
28         mapping = rte_mbuf_data_iova_default(new_mb);
29         /* Advance PROD and get BD pointer */
30         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
31         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
32         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
33         rxq->sw_rx_prod++;
34         return 0;
35 }
36
37 #define QEDE_MAX_BULK_ALLOC_COUNT 512
38
39 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
40 {
41         struct rte_mbuf *mbuf = NULL;
42         struct eth_rx_bd *rx_bd;
43         dma_addr_t mapping;
44         int i, ret = 0;
45         uint16_t idx;
46         uint16_t mask = NUM_RX_BDS(rxq);
47
48         if (count > QEDE_MAX_BULK_ALLOC_COUNT)
49                 count = QEDE_MAX_BULK_ALLOC_COUNT;
50
51         idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
52
53         if (count > mask - idx + 1)
54                 count = mask - idx + 1;
55
56         ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)&rxq->sw_rx_ring[idx],
57                                    count);
58
59         if (unlikely(ret)) {
60                 PMD_RX_LOG(ERR, rxq,
61                            "Failed to allocate %d rx buffers "
62                             "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
63                             count,
64                             rxq->sw_rx_prod & NUM_RX_BDS(rxq),
65                             rxq->sw_rx_cons & NUM_RX_BDS(rxq),
66                             rte_mempool_avail_count(rxq->mb_pool),
67                             rte_mempool_in_use_count(rxq->mb_pool));
68                 return -ENOMEM;
69         }
70
71         for (i = 0; i < count; i++) {
72                 rte_prefetch0(rxq->sw_rx_ring[(idx + 1) & NUM_RX_BDS(rxq)]);
73                 mbuf = rxq->sw_rx_ring[idx & NUM_RX_BDS(rxq)];
74
75                 mapping = rte_mbuf_data_iova_default(mbuf);
76                 rx_bd = (struct eth_rx_bd *)
77                         ecore_chain_produce(&rxq->rx_bd_ring);
78                 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
79                 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
80                 idx++;
81         }
82         rxq->sw_rx_prod = idx;
83
84         return 0;
85 }
86
87 /* Criterias for calculating Rx buffer size -
88  * 1) rx_buf_size should not exceed the size of mbuf
89  * 2) In scattered_rx mode - minimum rx_buf_size should be
90  *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
91  * 3) In regular mode - minimum rx_buf_size should be
92  *    (MTU + Maximum L2 Header Size + 2)
93  *    In above cases +2 corresponds to 2 bytes padding in front of L2
94  *    header.
95  * 4) rx_buf_size should be cacheline-size aligned. So considering
96  *    criteria 1, we need to adjust the size to floor instead of ceil,
97  *    so that we don't exceed mbuf size while ceiling rx_buf_size.
98  */
99 int
100 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
101                       uint16_t max_frame_size)
102 {
103         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
104         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
105         int rx_buf_size;
106
107         if (dev->data->scattered_rx) {
108                 /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
109                  * buffers can be used for single packet. So need to make sure
110                  * mbuf size is sufficient enough for this.
111                  */
112                 if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
113                      (max_frame_size + QEDE_ETH_OVERHEAD)) {
114                         DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
115                                mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
116                         return -EINVAL;
117                 }
118
119                 rx_buf_size = RTE_MAX(mbufsz,
120                                       (max_frame_size + QEDE_ETH_OVERHEAD) /
121                                        ETH_RX_MAX_BUFF_PER_PKT);
122         } else {
123                 rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
124         }
125
126         /* Align to cache-line size if needed */
127         return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
128 }
129
130 static struct qede_rx_queue *
131 qede_alloc_rx_queue_mem(struct rte_eth_dev *dev,
132                         uint16_t queue_idx,
133                         uint16_t nb_desc,
134                         unsigned int socket_id,
135                         struct rte_mempool *mp,
136                         uint16_t bufsz)
137 {
138         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
139         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
140         struct qede_rx_queue *rxq;
141         size_t size;
142         int rc;
143
144         /* First allocate the rx queue data structure */
145         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
146                                  RTE_CACHE_LINE_SIZE, socket_id);
147
148         if (!rxq) {
149                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
150                           socket_id);
151                 return NULL;
152         }
153
154         rxq->qdev = qdev;
155         rxq->mb_pool = mp;
156         rxq->nb_rx_desc = nb_desc;
157         rxq->queue_id = queue_idx;
158         rxq->port_id = dev->data->port_id;
159
160
161         rxq->rx_buf_size = bufsz;
162
163         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
164                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
165
166         /* Allocate the parallel driver ring for Rx buffers */
167         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
168         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
169                                              RTE_CACHE_LINE_SIZE, socket_id);
170         if (!rxq->sw_rx_ring) {
171                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
172                        " socket %u\n", socket_id);
173                 rte_free(rxq);
174                 return NULL;
175         }
176
177         /* Allocate FW Rx ring  */
178         rc = qdev->ops->common->chain_alloc(edev,
179                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
180                                             ECORE_CHAIN_MODE_NEXT_PTR,
181                                             ECORE_CHAIN_CNT_TYPE_U16,
182                                             rxq->nb_rx_desc,
183                                             sizeof(struct eth_rx_bd),
184                                             &rxq->rx_bd_ring,
185                                             NULL);
186
187         if (rc != ECORE_SUCCESS) {
188                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
189                        " on socket %u\n", socket_id);
190                 rte_free(rxq->sw_rx_ring);
191                 rte_free(rxq);
192                 return NULL;
193         }
194
195         /* Allocate FW completion ring */
196         rc = qdev->ops->common->chain_alloc(edev,
197                                             ECORE_CHAIN_USE_TO_CONSUME,
198                                             ECORE_CHAIN_MODE_PBL,
199                                             ECORE_CHAIN_CNT_TYPE_U16,
200                                             rxq->nb_rx_desc,
201                                             sizeof(union eth_rx_cqe),
202                                             &rxq->rx_comp_ring,
203                                             NULL);
204
205         if (rc != ECORE_SUCCESS) {
206                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
207                        " on socket %u\n", socket_id);
208                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
209                 rte_free(rxq->sw_rx_ring);
210                 rte_free(rxq);
211                 return NULL;
212         }
213
214         return rxq;
215 }
216
217 int
218 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid,
219                     uint16_t nb_desc, unsigned int socket_id,
220                     __rte_unused const struct rte_eth_rxconf *rx_conf,
221                     struct rte_mempool *mp)
222 {
223         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
224         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
225         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
226         struct qede_rx_queue *rxq;
227         uint16_t max_rx_pktlen;
228         uint16_t bufsz;
229         int rc;
230
231         PMD_INIT_FUNC_TRACE(edev);
232
233         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
234         if (!rte_is_power_of_2(nb_desc)) {
235                 DP_ERR(edev, "Ring size %u is not power of 2\n",
236                           nb_desc);
237                 return -EINVAL;
238         }
239
240         /* Free memory prior to re-allocation if needed... */
241         if (dev->data->rx_queues[qid] != NULL) {
242                 qede_rx_queue_release(dev->data->rx_queues[qid]);
243                 dev->data->rx_queues[qid] = NULL;
244         }
245
246         max_rx_pktlen = dev->data->mtu + RTE_ETHER_HDR_LEN;
247
248         /* Fix up RX buffer size */
249         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
250         /* cache align the mbuf size to simplify rx_buf_size calculation */
251         bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
252         if ((rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER)     ||
253             (max_rx_pktlen + QEDE_ETH_OVERHEAD) > bufsz) {
254                 if (!dev->data->scattered_rx) {
255                         DP_INFO(edev, "Forcing scatter-gather mode\n");
256                         dev->data->scattered_rx = 1;
257                 }
258         }
259
260         rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pktlen);
261         if (rc < 0)
262                 return rc;
263
264         bufsz = rc;
265
266         if (ECORE_IS_CMT(edev)) {
267                 rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc,
268                                               socket_id, mp, bufsz);
269                 if (!rxq)
270                         return -ENOMEM;
271
272                 qdev->fp_array[qid * 2].rxq = rxq;
273                 rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc,
274                                               socket_id, mp, bufsz);
275                 if (!rxq)
276                         return -ENOMEM;
277
278                 qdev->fp_array[qid * 2 + 1].rxq = rxq;
279                 /* provide per engine fp struct as rx queue */
280                 dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid];
281         } else {
282                 rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc,
283                                               socket_id, mp, bufsz);
284                 if (!rxq)
285                         return -ENOMEM;
286
287                 dev->data->rx_queues[qid] = rxq;
288                 qdev->fp_array[qid].rxq = rxq;
289         }
290
291         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
292                   qid, nb_desc, rxq->rx_buf_size, socket_id);
293
294         return 0;
295 }
296
297 static void
298 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
299                     struct qede_rx_queue *rxq)
300 {
301         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
302         ecore_chain_reset(&rxq->rx_bd_ring);
303         ecore_chain_reset(&rxq->rx_comp_ring);
304         rxq->sw_rx_prod = 0;
305         rxq->sw_rx_cons = 0;
306         *rxq->hw_cons_ptr = 0;
307 }
308
309 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
310 {
311         uint16_t i;
312
313         if (rxq->sw_rx_ring) {
314                 for (i = 0; i < rxq->nb_rx_desc; i++) {
315                         if (rxq->sw_rx_ring[i]) {
316                                 rte_pktmbuf_free(rxq->sw_rx_ring[i]);
317                                 rxq->sw_rx_ring[i] = NULL;
318                         }
319                 }
320         }
321 }
322
323 static void _qede_rx_queue_release(struct qede_dev *qdev,
324                                    struct ecore_dev *edev,
325                                    struct qede_rx_queue *rxq)
326 {
327         qede_rx_queue_release_mbufs(rxq);
328         qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
329         qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
330         rte_free(rxq->sw_rx_ring);
331         rte_free(rxq);
332 }
333
334 void qede_rx_queue_release(void *rx_queue)
335 {
336         struct qede_rx_queue *rxq = rx_queue;
337         struct qede_fastpath_cmt *fp_cmt;
338         struct qede_dev *qdev;
339         struct ecore_dev *edev;
340
341         if (rxq) {
342                 qdev = rxq->qdev;
343                 edev = QEDE_INIT_EDEV(qdev);
344                 PMD_INIT_FUNC_TRACE(edev);
345                 if (ECORE_IS_CMT(edev)) {
346                         fp_cmt = rx_queue;
347                         _qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq);
348                         _qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq);
349                 } else {
350                         _qede_rx_queue_release(qdev, edev, rxq);
351                 }
352         }
353 }
354
355 /* Stops a given RX queue in the HW */
356 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
357 {
358         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
359         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
360         struct ecore_hwfn *p_hwfn;
361         struct qede_rx_queue *rxq;
362         int hwfn_index;
363         int rc;
364
365         if (rx_queue_id < qdev->num_rx_queues) {
366                 rxq = qdev->fp_array[rx_queue_id].rxq;
367                 hwfn_index = rx_queue_id % edev->num_hwfns;
368                 p_hwfn = &edev->hwfns[hwfn_index];
369                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
370                                 true, false);
371                 if (rc != ECORE_SUCCESS) {
372                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
373                         return -1;
374                 }
375                 qede_rx_queue_release_mbufs(rxq);
376                 qede_rx_queue_reset(qdev, rxq);
377                 eth_dev->data->rx_queue_state[rx_queue_id] =
378                         RTE_ETH_QUEUE_STATE_STOPPED;
379                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
380         } else {
381                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
382                 rc = -EINVAL;
383         }
384
385         return rc;
386 }
387
388 static struct qede_tx_queue *
389 qede_alloc_tx_queue_mem(struct rte_eth_dev *dev,
390                         uint16_t queue_idx,
391                         uint16_t nb_desc,
392                         unsigned int socket_id,
393                         const struct rte_eth_txconf *tx_conf)
394 {
395         struct qede_dev *qdev = dev->data->dev_private;
396         struct ecore_dev *edev = &qdev->edev;
397         struct qede_tx_queue *txq;
398         int rc;
399         size_t sw_tx_ring_size;
400
401         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
402                                  RTE_CACHE_LINE_SIZE, socket_id);
403
404         if (txq == NULL) {
405                 DP_ERR(edev,
406                        "Unable to allocate memory for txq on socket %u",
407                        socket_id);
408                 return NULL;
409         }
410
411         txq->nb_tx_desc = nb_desc;
412         txq->qdev = qdev;
413         txq->port_id = dev->data->port_id;
414
415         rc = qdev->ops->common->chain_alloc(edev,
416                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
417                                             ECORE_CHAIN_MODE_PBL,
418                                             ECORE_CHAIN_CNT_TYPE_U16,
419                                             txq->nb_tx_desc,
420                                             sizeof(union eth_tx_bd_types),
421                                             &txq->tx_pbl,
422                                             NULL);
423         if (rc != ECORE_SUCCESS) {
424                 DP_ERR(edev,
425                        "Unable to allocate memory for txbd ring on socket %u",
426                        socket_id);
427                 qede_tx_queue_release(txq);
428                 return NULL;
429         }
430
431         /* Allocate software ring */
432         sw_tx_ring_size = sizeof(txq->sw_tx_ring) * txq->nb_tx_desc;
433         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
434                                              sw_tx_ring_size,
435                                              RTE_CACHE_LINE_SIZE, socket_id);
436
437         if (!txq->sw_tx_ring) {
438                 DP_ERR(edev,
439                        "Unable to allocate memory for txbd ring on socket %u",
440                        socket_id);
441                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
442                 qede_tx_queue_release(txq);
443                 return NULL;
444         }
445
446         txq->queue_id = queue_idx;
447
448         txq->nb_tx_avail = txq->nb_tx_desc;
449
450         txq->tx_free_thresh =
451             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
452             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
453
454         DP_INFO(edev,
455                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
456                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
457         return txq;
458 }
459
460 int
461 qede_tx_queue_setup(struct rte_eth_dev *dev,
462                     uint16_t queue_idx,
463                     uint16_t nb_desc,
464                     unsigned int socket_id,
465                     const struct rte_eth_txconf *tx_conf)
466 {
467         struct qede_dev *qdev = dev->data->dev_private;
468         struct ecore_dev *edev = &qdev->edev;
469         struct qede_tx_queue *txq;
470
471         PMD_INIT_FUNC_TRACE(edev);
472
473         if (!rte_is_power_of_2(nb_desc)) {
474                 DP_ERR(edev, "Ring size %u is not power of 2\n",
475                        nb_desc);
476                 return -EINVAL;
477         }
478
479         /* Free memory prior to re-allocation if needed... */
480         if (dev->data->tx_queues[queue_idx] != NULL) {
481                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
482                 dev->data->tx_queues[queue_idx] = NULL;
483         }
484
485         if (ECORE_IS_CMT(edev)) {
486                 txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc,
487                                               socket_id, tx_conf);
488                 if (!txq)
489                         return -ENOMEM;
490
491                 qdev->fp_array[queue_idx * 2].txq = txq;
492                 txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc,
493                                               socket_id, tx_conf);
494                 if (!txq)
495                         return -ENOMEM;
496
497                 qdev->fp_array[(queue_idx * 2) + 1].txq = txq;
498                 dev->data->tx_queues[queue_idx] =
499                                         &qdev->fp_array_cmt[queue_idx];
500         } else {
501                 txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc,
502                                               socket_id, tx_conf);
503                 if (!txq)
504                         return -ENOMEM;
505
506                 dev->data->tx_queues[queue_idx] = txq;
507                 qdev->fp_array[queue_idx].txq = txq;
508         }
509
510         return 0;
511 }
512
513 static void
514 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
515                     struct qede_tx_queue *txq)
516 {
517         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
518         ecore_chain_reset(&txq->tx_pbl);
519         txq->sw_tx_cons = 0;
520         txq->sw_tx_prod = 0;
521         *txq->hw_cons_ptr = 0;
522 }
523
524 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
525 {
526         uint16_t i;
527
528         if (txq->sw_tx_ring) {
529                 for (i = 0; i < txq->nb_tx_desc; i++) {
530                         if (txq->sw_tx_ring[i]) {
531                                 rte_pktmbuf_free(txq->sw_tx_ring[i]);
532                                 txq->sw_tx_ring[i] = NULL;
533                         }
534                 }
535         }
536 }
537
538 static void _qede_tx_queue_release(struct qede_dev *qdev,
539                                    struct ecore_dev *edev,
540                                    struct qede_tx_queue *txq)
541 {
542         qede_tx_queue_release_mbufs(txq);
543         qdev->ops->common->chain_free(edev, &txq->tx_pbl);
544         rte_free(txq->sw_tx_ring);
545         rte_free(txq);
546 }
547
548 void qede_tx_queue_release(void *tx_queue)
549 {
550         struct qede_tx_queue *txq = tx_queue;
551         struct qede_fastpath_cmt *fp_cmt;
552         struct qede_dev *qdev;
553         struct ecore_dev *edev;
554
555         if (txq) {
556                 qdev = txq->qdev;
557                 edev = QEDE_INIT_EDEV(qdev);
558                 PMD_INIT_FUNC_TRACE(edev);
559
560                 if (ECORE_IS_CMT(edev)) {
561                         fp_cmt = tx_queue;
562                         _qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq);
563                         _qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq);
564                 } else {
565                         _qede_tx_queue_release(qdev, edev, txq);
566                 }
567         }
568 }
569
570 /* This function allocates fast-path status block memory */
571 static int
572 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
573                   uint16_t sb_id)
574 {
575         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
576         struct status_block *sb_virt;
577         dma_addr_t sb_phys;
578         int rc;
579
580         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
581                                           sizeof(struct status_block));
582         if (!sb_virt) {
583                 DP_ERR(edev, "Status block allocation failed\n");
584                 return -ENOMEM;
585         }
586         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
587                                         sb_phys, sb_id);
588         if (rc) {
589                 DP_ERR(edev, "Status block initialization failed\n");
590                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
591                                        sizeof(struct status_block));
592                 return rc;
593         }
594
595         return 0;
596 }
597
598 int qede_alloc_fp_resc(struct qede_dev *qdev)
599 {
600         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
601         struct qede_fastpath *fp;
602         uint32_t num_sbs;
603         uint16_t sb_idx;
604         int i;
605
606         PMD_INIT_FUNC_TRACE(edev);
607
608         if (IS_VF(edev))
609                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
610         else
611                 num_sbs = ecore_cxt_get_proto_cid_count
612                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
613
614         if (num_sbs == 0) {
615                 DP_ERR(edev, "No status blocks available\n");
616                 return -EINVAL;
617         }
618
619         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
620                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
621
622         if (!qdev->fp_array) {
623                 DP_ERR(edev, "fp array allocation failed\n");
624                 return -ENOMEM;
625         }
626
627         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
628                         sizeof(*qdev->fp_array));
629
630         if (ECORE_IS_CMT(edev)) {
631                 qdev->fp_array_cmt = rte_calloc("fp_cmt",
632                                                 QEDE_RXTX_MAX(qdev) / 2,
633                                                 sizeof(*qdev->fp_array_cmt),
634                                                 RTE_CACHE_LINE_SIZE);
635
636                 if (!qdev->fp_array_cmt) {
637                         DP_ERR(edev, "fp array for CMT allocation failed\n");
638                         return -ENOMEM;
639                 }
640
641                 memset((void *)qdev->fp_array_cmt, 0,
642                        (QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt));
643
644                 /* Establish the mapping of fp_array with fp_array_cmt */
645                 for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) {
646                         qdev->fp_array_cmt[i].qdev = qdev;
647                         qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2];
648                         qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1];
649                 }
650         }
651
652         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
653                 fp = &qdev->fp_array[sb_idx];
654                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
655                                 RTE_CACHE_LINE_SIZE);
656                 if (!fp->sb_info) {
657                         DP_ERR(edev, "FP sb_info allocation fails\n");
658                         return -1;
659                 }
660                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
661                         DP_ERR(edev, "FP status block allocation fails\n");
662                         return -1;
663                 }
664                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
665                                 fp->sb_info->igu_sb_id);
666         }
667
668         return 0;
669 }
670
671 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
672 {
673         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
674         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
675         struct qede_fastpath *fp;
676         uint16_t sb_idx;
677         uint8_t i;
678
679         PMD_INIT_FUNC_TRACE(edev);
680
681         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
682                 fp = &qdev->fp_array[sb_idx];
683                 if (fp->sb_info) {
684                         DP_INFO(edev, "Free sb_info index 0x%x\n",
685                                         fp->sb_info->igu_sb_id);
686                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
687                                 fp->sb_info->sb_phys,
688                                 sizeof(struct status_block));
689                         rte_free(fp->sb_info);
690                         fp->sb_info = NULL;
691                 }
692         }
693
694         /* Free packet buffers and ring memories */
695         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
696                 if (eth_dev->data->rx_queues[i]) {
697                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
698                         eth_dev->data->rx_queues[i] = NULL;
699                 }
700         }
701
702         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
703                 if (eth_dev->data->tx_queues[i]) {
704                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
705                         eth_dev->data->tx_queues[i] = NULL;
706                 }
707         }
708
709         rte_free(qdev->fp_array);
710         qdev->fp_array = NULL;
711
712         rte_free(qdev->fp_array_cmt);
713         qdev->fp_array_cmt = NULL;
714 }
715
716 static inline void
717 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
718                     struct qede_rx_queue *rxq)
719 {
720         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
721         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
722         struct eth_rx_prod_data rx_prods;
723
724         /* Update producers */
725         memset(&rx_prods, 0, sizeof(rx_prods));
726         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
727         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
728
729         /* Make sure that the BD and SGE data is updated before updating the
730          * producers since FW might read the BD/SGE right after the producer
731          * is updated.
732          */
733         rte_wmb();
734
735         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
736                         (uint32_t *)&rx_prods);
737
738         /* mmiowb is needed to synchronize doorbell writes from more than one
739          * processor. It guarantees that the write arrives to the device before
740          * the napi lock is released and another qede_poll is called (possibly
741          * on another CPU). Without this barrier, the next doorbell can bypass
742          * this doorbell. This is applicable to IA64/Altix systems.
743          */
744         rte_wmb();
745
746         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
747 }
748
749 /* Starts a given RX queue in HW */
750 static int
751 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
752 {
753         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
754         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
755         struct ecore_queue_start_common_params params;
756         struct ecore_rxq_start_ret_params ret_params;
757         struct qede_rx_queue *rxq;
758         struct qede_fastpath *fp;
759         struct ecore_hwfn *p_hwfn;
760         dma_addr_t p_phys_table;
761         uint16_t page_cnt;
762         uint16_t j;
763         int hwfn_index;
764         int rc;
765
766         if (rx_queue_id < qdev->num_rx_queues) {
767                 fp = &qdev->fp_array[rx_queue_id];
768                 rxq = fp->rxq;
769                 /* Allocate buffers for the Rx ring */
770                 for (j = 0; j < rxq->nb_rx_desc; j++) {
771                         rc = qede_alloc_rx_buffer(rxq);
772                         if (rc) {
773                                 DP_ERR(edev, "RX buffer allocation failed"
774                                                 " for rxq = %u\n", rx_queue_id);
775                                 return -ENOMEM;
776                         }
777                 }
778                 /* disable interrupts */
779                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
780                 /* Prepare ramrod */
781                 memset(&params, 0, sizeof(params));
782                 params.queue_id = rx_queue_id / edev->num_hwfns;
783                 params.vport_id = 0;
784                 params.stats_id = params.vport_id;
785                 params.p_sb = fp->sb_info;
786                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
787                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
788                 params.sb_idx = RX_PI;
789                 hwfn_index = rx_queue_id % edev->num_hwfns;
790                 p_hwfn = &edev->hwfns[hwfn_index];
791                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
792                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
793                 memset(&ret_params, 0, sizeof(ret_params));
794                 rc = ecore_eth_rx_queue_start(p_hwfn,
795                                 p_hwfn->hw_info.opaque_fid,
796                                 &params, fp->rxq->rx_buf_size,
797                                 fp->rxq->rx_bd_ring.p_phys_addr,
798                                 p_phys_table, page_cnt,
799                                 &ret_params);
800                 if (rc) {
801                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
802                                         rx_queue_id, rc);
803                         return -1;
804                 }
805                 /* Update with the returned parameters */
806                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
807                 fp->rxq->handle = ret_params.p_handle;
808
809                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_pi_array[RX_PI];
810                 qede_update_rx_prod(qdev, fp->rxq);
811                 eth_dev->data->rx_queue_state[rx_queue_id] =
812                         RTE_ETH_QUEUE_STATE_STARTED;
813                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
814         } else {
815                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
816                 rc = -EINVAL;
817         }
818
819         return rc;
820 }
821
822 static int
823 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
824 {
825         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
826         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
827         struct ecore_queue_start_common_params params;
828         struct ecore_txq_start_ret_params ret_params;
829         struct ecore_hwfn *p_hwfn;
830         dma_addr_t p_phys_table;
831         struct qede_tx_queue *txq;
832         struct qede_fastpath *fp;
833         uint16_t page_cnt;
834         int hwfn_index;
835         int rc;
836
837         if (tx_queue_id < qdev->num_tx_queues) {
838                 fp = &qdev->fp_array[tx_queue_id];
839                 txq = fp->txq;
840                 memset(&params, 0, sizeof(params));
841                 params.queue_id = tx_queue_id / edev->num_hwfns;
842                 params.vport_id = 0;
843                 params.stats_id = params.vport_id;
844                 params.p_sb = fp->sb_info;
845                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
846                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
847                 params.sb_idx = TX_PI(0); /* tc = 0 */
848                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
849                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
850                 hwfn_index = tx_queue_id % edev->num_hwfns;
851                 p_hwfn = &edev->hwfns[hwfn_index];
852                 if (qdev->dev_info.is_legacy)
853                         fp->txq->is_legacy = true;
854                 rc = ecore_eth_tx_queue_start(p_hwfn,
855                                 p_hwfn->hw_info.opaque_fid,
856                                 &params, 0 /* tc */,
857                                 p_phys_table, page_cnt,
858                                 &ret_params);
859                 if (rc != ECORE_SUCCESS) {
860                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
861                                         tx_queue_id, rc);
862                         return -1;
863                 }
864                 txq->doorbell_addr = ret_params.p_doorbell;
865                 txq->handle = ret_params.p_handle;
866
867                 txq->hw_cons_ptr = &fp->sb_info->sb_pi_array[TX_PI(0)];
868                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
869                                 DB_DEST_XCM);
870                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
871                                 DB_AGG_CMD_SET);
872                 SET_FIELD(txq->tx_db.data.params,
873                                 ETH_DB_DATA_AGG_VAL_SEL,
874                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
875                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
876                 eth_dev->data->tx_queue_state[tx_queue_id] =
877                         RTE_ETH_QUEUE_STATE_STARTED;
878                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
879         } else {
880                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
881                 rc = -EINVAL;
882         }
883
884         return rc;
885 }
886
887 static inline void
888 qede_free_tx_pkt(struct qede_tx_queue *txq)
889 {
890         struct rte_mbuf *mbuf;
891         uint16_t nb_segs;
892         uint16_t idx;
893
894         idx = TX_CONS(txq);
895         mbuf = txq->sw_tx_ring[idx];
896         if (mbuf) {
897                 nb_segs = mbuf->nb_segs;
898                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
899                 while (nb_segs) {
900                         /* It's like consuming rxbuf in recv() */
901                         ecore_chain_consume(&txq->tx_pbl);
902                         txq->nb_tx_avail++;
903                         nb_segs--;
904                 }
905                 rte_pktmbuf_free(mbuf);
906                 txq->sw_tx_ring[idx] = NULL;
907                 txq->sw_tx_cons++;
908                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
909         } else {
910                 ecore_chain_consume(&txq->tx_pbl);
911                 txq->nb_tx_avail++;
912         }
913 }
914
915 static inline void
916 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
917                       struct qede_tx_queue *txq)
918 {
919         uint16_t hw_bd_cons;
920 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
921         uint16_t sw_tx_cons;
922 #endif
923
924         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
925         /* read barrier prevents speculative execution on stale data */
926         rte_rmb();
927
928 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
929         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
930         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
931                    abs(hw_bd_cons - sw_tx_cons));
932 #endif
933         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
934                 qede_free_tx_pkt(txq);
935 }
936
937 static int qede_drain_txq(struct qede_dev *qdev,
938                           struct qede_tx_queue *txq, bool allow_drain)
939 {
940         struct ecore_dev *edev = &qdev->edev;
941         int rc, cnt = 1000;
942
943         while (txq->sw_tx_cons != txq->sw_tx_prod) {
944                 qede_process_tx_compl(edev, txq);
945                 if (!cnt) {
946                         if (allow_drain) {
947                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
948                                           "requesting MCP to drain\n",
949                                           txq->queue_id);
950                                 rc = qdev->ops->common->drain(edev);
951                                 if (rc)
952                                         return rc;
953                                 return qede_drain_txq(qdev, txq, false);
954                         }
955                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
956                                   "PROD=%d, CONS=%d\n",
957                                   txq->queue_id, txq->sw_tx_prod,
958                                   txq->sw_tx_cons);
959                         return -1;
960                 }
961                 cnt--;
962                 DELAY(1000);
963                 rte_compiler_barrier();
964         }
965
966         /* FW finished processing, wait for HW to transmit all tx packets */
967         DELAY(2000);
968
969         return 0;
970 }
971
972 /* Stops a given TX queue in the HW */
973 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
974 {
975         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
976         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
977         struct ecore_hwfn *p_hwfn;
978         struct qede_tx_queue *txq;
979         int hwfn_index;
980         int rc;
981
982         if (tx_queue_id < qdev->num_tx_queues) {
983                 txq = qdev->fp_array[tx_queue_id].txq;
984                 /* Drain txq */
985                 if (qede_drain_txq(qdev, txq, true))
986                         return -1; /* For the lack of retcodes */
987                 /* Stop txq */
988                 hwfn_index = tx_queue_id % edev->num_hwfns;
989                 p_hwfn = &edev->hwfns[hwfn_index];
990                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
991                 if (rc != ECORE_SUCCESS) {
992                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
993                         return -1;
994                 }
995                 qede_tx_queue_release_mbufs(txq);
996                 qede_tx_queue_reset(qdev, txq);
997                 eth_dev->data->tx_queue_state[tx_queue_id] =
998                         RTE_ETH_QUEUE_STATE_STOPPED;
999                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
1000         } else {
1001                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
1002                 rc = -EINVAL;
1003         }
1004
1005         return rc;
1006 }
1007
1008 int qede_start_queues(struct rte_eth_dev *eth_dev)
1009 {
1010         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1011         uint8_t id;
1012         int rc = -1;
1013
1014         for (id = 0; id < qdev->num_rx_queues; id++) {
1015                 rc = qede_rx_queue_start(eth_dev, id);
1016                 if (rc != ECORE_SUCCESS)
1017                         return -1;
1018         }
1019
1020         for (id = 0; id < qdev->num_tx_queues; id++) {
1021                 rc = qede_tx_queue_start(eth_dev, id);
1022                 if (rc != ECORE_SUCCESS)
1023                         return -1;
1024         }
1025
1026         return rc;
1027 }
1028
1029 void qede_stop_queues(struct rte_eth_dev *eth_dev)
1030 {
1031         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1032         uint8_t id;
1033
1034         /* Stopping RX/TX queues */
1035         for (id = 0; id < qdev->num_tx_queues; id++)
1036                 qede_tx_queue_stop(eth_dev, id);
1037
1038         for (id = 0; id < qdev->num_rx_queues; id++)
1039                 qede_rx_queue_stop(eth_dev, id);
1040 }
1041
1042 static inline bool qede_tunn_exist(uint16_t flag)
1043 {
1044         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1045                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
1046 }
1047
1048 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
1049 {
1050         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1051                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
1052 }
1053
1054 /*
1055  * qede_check_tunn_csum_l4:
1056  * Returns:
1057  * 1 : If L4 csum is enabled AND if the validation has failed.
1058  * 0 : Otherwise
1059  */
1060 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
1061 {
1062         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1063              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
1064                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1065                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
1066
1067         return 0;
1068 }
1069
1070 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
1071 {
1072         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1073              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
1074                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1075                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
1076
1077         return 0;
1078 }
1079
1080 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
1081 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
1082 {
1083         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
1084         struct rte_ether_hdr *eth_hdr;
1085         struct rte_ipv4_hdr *ipv4_hdr;
1086         struct rte_ipv6_hdr *ipv6_hdr;
1087         struct rte_vlan_hdr *vlan_hdr;
1088         uint16_t ethertype;
1089         bool vlan_tagged = 0;
1090         uint16_t len;
1091
1092         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1093         len = sizeof(struct rte_ether_hdr);
1094         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
1095
1096          /* Note: Valid only if VLAN stripping is disabled */
1097         if (ethertype == RTE_ETHER_TYPE_VLAN) {
1098                 vlan_tagged = 1;
1099                 vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
1100                 len += sizeof(struct rte_vlan_hdr);
1101                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
1102         }
1103
1104         if (ethertype == RTE_ETHER_TYPE_IPV4) {
1105                 packet_type |= RTE_PTYPE_L3_IPV4;
1106                 ipv4_hdr = rte_pktmbuf_mtod_offset(m,
1107                                         struct rte_ipv4_hdr *, len);
1108                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
1109                         packet_type |= RTE_PTYPE_L4_TCP;
1110                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
1111                         packet_type |= RTE_PTYPE_L4_UDP;
1112         } else if (ethertype == RTE_ETHER_TYPE_IPV6) {
1113                 packet_type |= RTE_PTYPE_L3_IPV6;
1114                 ipv6_hdr = rte_pktmbuf_mtod_offset(m,
1115                                                 struct rte_ipv6_hdr *, len);
1116                 if (ipv6_hdr->proto == IPPROTO_TCP)
1117                         packet_type |= RTE_PTYPE_L4_TCP;
1118                 else if (ipv6_hdr->proto == IPPROTO_UDP)
1119                         packet_type |= RTE_PTYPE_L4_UDP;
1120         }
1121
1122         if (vlan_tagged)
1123                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
1124         else
1125                 packet_type |= RTE_PTYPE_L2_ETHER;
1126
1127         return packet_type;
1128 }
1129
1130 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
1131 {
1132         uint16_t val;
1133
1134         /* Lookup table */
1135         static const uint32_t
1136         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1137                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
1138                                        RTE_PTYPE_INNER_L2_ETHER,
1139                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
1140                                        RTE_PTYPE_INNER_L2_ETHER,
1141                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
1142                                            RTE_PTYPE_INNER_L4_TCP       |
1143                                            RTE_PTYPE_INNER_L2_ETHER,
1144                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
1145                                            RTE_PTYPE_INNER_L4_TCP       |
1146                                            RTE_PTYPE_INNER_L2_ETHER,
1147                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
1148                                            RTE_PTYPE_INNER_L4_UDP       |
1149                                            RTE_PTYPE_INNER_L2_ETHER,
1150                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
1151                                            RTE_PTYPE_INNER_L4_UDP       |
1152                                            RTE_PTYPE_INNER_L2_ETHER,
1153                 /* Frags with no VLAN */
1154                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
1155                                             RTE_PTYPE_INNER_L4_FRAG     |
1156                                             RTE_PTYPE_INNER_L2_ETHER,
1157                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
1158                                             RTE_PTYPE_INNER_L4_FRAG     |
1159                                             RTE_PTYPE_INNER_L2_ETHER,
1160                 /* VLANs */
1161                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
1162                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1163                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
1164                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
1165                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1166                                                 RTE_PTYPE_INNER_L4_TCP  |
1167                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1168                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1169                                                 RTE_PTYPE_INNER_L4_TCP  |
1170                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1171                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1172                                                 RTE_PTYPE_INNER_L4_UDP  |
1173                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1174                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1175                                                 RTE_PTYPE_INNER_L4_UDP  |
1176                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1177                 /* Frags with VLAN */
1178                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1179                                                  RTE_PTYPE_INNER_L4_FRAG |
1180                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1181                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1182                                                  RTE_PTYPE_INNER_L4_FRAG |
1183                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1184         };
1185
1186         /* Bits (0..3) provides L3/L4 protocol type */
1187         /* Bits (4,5) provides frag and VLAN info */
1188         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1189                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1190                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1191                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1192                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1193                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1194                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1195                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1196
1197         if (val < QEDE_PKT_TYPE_MAX)
1198                 return ptype_lkup_tbl[val];
1199
1200         return RTE_PTYPE_UNKNOWN;
1201 }
1202
1203 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1204 {
1205         uint16_t val;
1206
1207         /* Lookup table */
1208         static const uint32_t
1209         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1210                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1211                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1212                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
1213                                            RTE_PTYPE_L4_TCP     |
1214                                            RTE_PTYPE_L2_ETHER,
1215                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
1216                                            RTE_PTYPE_L4_TCP     |
1217                                            RTE_PTYPE_L2_ETHER,
1218                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
1219                                            RTE_PTYPE_L4_UDP     |
1220                                            RTE_PTYPE_L2_ETHER,
1221                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
1222                                            RTE_PTYPE_L4_UDP     |
1223                                            RTE_PTYPE_L2_ETHER,
1224                 /* Frags with no VLAN */
1225                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1226                                             RTE_PTYPE_L4_FRAG   |
1227                                             RTE_PTYPE_L2_ETHER,
1228                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1229                                             RTE_PTYPE_L4_FRAG   |
1230                                             RTE_PTYPE_L2_ETHER,
1231                 /* VLANs */
1232                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1233                                             RTE_PTYPE_L2_ETHER_VLAN,
1234                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1235                                             RTE_PTYPE_L2_ETHER_VLAN,
1236                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1237                                                 RTE_PTYPE_L4_TCP        |
1238                                                 RTE_PTYPE_L2_ETHER_VLAN,
1239                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1240                                                 RTE_PTYPE_L4_TCP        |
1241                                                 RTE_PTYPE_L2_ETHER_VLAN,
1242                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1243                                                 RTE_PTYPE_L4_UDP        |
1244                                                 RTE_PTYPE_L2_ETHER_VLAN,
1245                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1246                                                 RTE_PTYPE_L4_UDP        |
1247                                                 RTE_PTYPE_L2_ETHER_VLAN,
1248                 /* Frags with VLAN */
1249                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1250                                                  RTE_PTYPE_L4_FRAG      |
1251                                                  RTE_PTYPE_L2_ETHER_VLAN,
1252                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1253                                                  RTE_PTYPE_L4_FRAG      |
1254                                                  RTE_PTYPE_L2_ETHER_VLAN,
1255         };
1256
1257         /* Bits (0..3) provides L3/L4 protocol type */
1258         /* Bits (4,5) provides frag and VLAN info */
1259         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1260                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1261                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1262                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1263                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1264                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1265                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1266                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1267
1268         if (val < QEDE_PKT_TYPE_MAX)
1269                 return ptype_lkup_tbl[val];
1270
1271         return RTE_PTYPE_UNKNOWN;
1272 }
1273
1274 static inline uint8_t
1275 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1276 {
1277         struct rte_ipv4_hdr *ip;
1278         uint16_t pkt_csum;
1279         uint16_t calc_csum;
1280         uint16_t val;
1281
1282         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1283                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1284
1285         if (unlikely(val)) {
1286                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1287                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1288                         ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
1289                                            sizeof(struct rte_ether_hdr));
1290                         pkt_csum = ip->hdr_checksum;
1291                         ip->hdr_checksum = 0;
1292                         calc_csum = rte_ipv4_cksum(ip);
1293                         ip->hdr_checksum = pkt_csum;
1294                         return (calc_csum != pkt_csum);
1295                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1296                         return 1;
1297                 }
1298         }
1299         return 0;
1300 }
1301
1302 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1303 {
1304         ecore_chain_consume(&rxq->rx_bd_ring);
1305         rxq->sw_rx_cons++;
1306 }
1307
1308 static inline void
1309 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1310                 struct qede_rx_queue *rxq, struct rte_mbuf *curr_cons)
1311 {
1312         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1313         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
1314         dma_addr_t new_mapping;
1315
1316         rxq->sw_rx_ring[idx] = curr_cons;
1317
1318         new_mapping = rte_mbuf_data_iova_default(curr_cons);
1319
1320         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1321         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1322
1323         rxq->sw_rx_prod++;
1324 }
1325
1326 static inline void
1327 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1328                         struct qede_dev *qdev, uint8_t count)
1329 {
1330         struct rte_mbuf *curr_cons;
1331
1332         for (; count > 0; count--) {
1333                 curr_cons = rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1334                 qede_reuse_page(qdev, rxq, curr_cons);
1335                 qede_rx_bd_ring_consume(rxq);
1336         }
1337 }
1338
1339 static inline void
1340 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1341                                      struct qede_rx_queue *rxq,
1342                                      uint8_t agg_index, uint16_t len)
1343 {
1344         struct qede_agg_info *tpa_info;
1345         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1346         uint16_t cons_idx;
1347
1348         /* Under certain conditions it is possible that FW may not consume
1349          * additional or new BD. So decision to consume the BD must be made
1350          * based on len_list[0].
1351          */
1352         if (rte_le_to_cpu_16(len)) {
1353                 tpa_info = &rxq->tpa_info[agg_index];
1354                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1355                 curr_frag = rxq->sw_rx_ring[cons_idx];
1356                 assert(curr_frag);
1357                 curr_frag->nb_segs = 1;
1358                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1359                 curr_frag->data_len = curr_frag->pkt_len;
1360                 tpa_info->tpa_tail->next = curr_frag;
1361                 tpa_info->tpa_tail = curr_frag;
1362                 qede_rx_bd_ring_consume(rxq);
1363                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1364                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1365                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1366                         rxq->rx_alloc_errors++;
1367                 }
1368         }
1369 }
1370
1371 static inline void
1372 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1373                              struct qede_rx_queue *rxq,
1374                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1375 {
1376         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1377                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1378         /* only len_list[0] will have value */
1379         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1380                                              cqe->len_list[0]);
1381 }
1382
1383 static inline void
1384 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1385                             struct qede_rx_queue *rxq,
1386                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1387 {
1388         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1389
1390         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1391                                              cqe->len_list[0]);
1392         /* Update total length and frags based on end TPA */
1393         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1394         /* TODO:  Add Sanity Checks */
1395         rx_mb->nb_segs = cqe->num_of_bds;
1396         rx_mb->pkt_len = cqe->total_packet_len;
1397
1398         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1399                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1400                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1401                    rx_mb->pkt_len);
1402 }
1403
1404 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1405 {
1406         uint32_t val;
1407
1408         /* Lookup table */
1409         static const uint32_t
1410         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1411                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1412                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1413                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1414                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1415                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1416                                 RTE_PTYPE_TUNNEL_GENEVE,
1417                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1418                                 RTE_PTYPE_TUNNEL_GRE,
1419                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1420                                 RTE_PTYPE_TUNNEL_VXLAN,
1421                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1422                                 RTE_PTYPE_TUNNEL_GENEVE,
1423                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1424                                 RTE_PTYPE_TUNNEL_GRE,
1425                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1426                                 RTE_PTYPE_TUNNEL_VXLAN,
1427                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1428                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1429                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1430                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1431                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1432                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1433                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1434                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1435                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1436                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1437                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1438                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1439                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1440                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1441                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1442                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1443                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1444                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1445                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1446                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1447                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1448                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1449                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1450                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1451         };
1452
1453         /* Cover bits[4-0] to include tunn_type and next protocol */
1454         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1455                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1456                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1457                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1458
1459         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1460                 return ptype_tunn_lkup_tbl[val];
1461         else
1462                 return RTE_PTYPE_UNKNOWN;
1463 }
1464
1465 static inline int
1466 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1467                      uint8_t num_segs, uint16_t pkt_len)
1468 {
1469         struct qede_rx_queue *rxq = p_rxq;
1470         struct qede_dev *qdev = rxq->qdev;
1471         register struct rte_mbuf *seg1 = NULL;
1472         register struct rte_mbuf *seg2 = NULL;
1473         uint16_t sw_rx_index;
1474         uint16_t cur_size;
1475
1476         seg1 = rx_mb;
1477         while (num_segs) {
1478                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1479                                                         pkt_len;
1480                 if (unlikely(!cur_size)) {
1481                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1482                                    " left for mapping jumbo\n", num_segs);
1483                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1484                         return -EINVAL;
1485                 }
1486                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1487                 seg2 = rxq->sw_rx_ring[sw_rx_index];
1488                 qede_rx_bd_ring_consume(rxq);
1489                 pkt_len -= cur_size;
1490                 seg2->data_len = cur_size;
1491                 seg1->next = seg2;
1492                 seg1 = seg1->next;
1493                 num_segs--;
1494                 rxq->rx_segs++;
1495         }
1496
1497         return 0;
1498 }
1499
1500 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1501 static inline void
1502 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1503                  uint8_t bitfield)
1504 {
1505         PMD_RX_LOG(INFO, rxq,
1506                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1507                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1508                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1509                 m->data_len, bitfield, m->hash.rss,
1510                 (unsigned long)m->ol_flags,
1511                 rte_get_ptype_l2_name(m->packet_type),
1512                 rte_get_ptype_l3_name(m->packet_type),
1513                 rte_get_ptype_l4_name(m->packet_type),
1514                 rte_get_ptype_tunnel_name(m->packet_type),
1515                 rte_get_ptype_inner_l2_name(m->packet_type),
1516                 rte_get_ptype_inner_l3_name(m->packet_type),
1517                 rte_get_ptype_inner_l4_name(m->packet_type));
1518 }
1519 #endif
1520
1521 uint16_t
1522 qede_recv_pkts_regular(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1523 {
1524         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1525         register struct rte_mbuf *rx_mb = NULL;
1526         struct qede_rx_queue *rxq = p_rxq;
1527         struct qede_dev *qdev = rxq->qdev;
1528         struct ecore_dev *edev = &qdev->edev;
1529         union eth_rx_cqe *cqe;
1530         uint64_t ol_flags;
1531         enum eth_rx_cqe_type cqe_type;
1532         int rss_enable = qdev->rss_enable;
1533         int rx_alloc_count = 0;
1534         uint32_t packet_type;
1535         uint32_t rss_hash;
1536         uint16_t vlan_tci, port_id;
1537         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index, num_rx_bds;
1538         uint16_t rx_pkt = 0;
1539         uint16_t pkt_len = 0;
1540         uint16_t len; /* Length of first BD */
1541         uint16_t preload_idx;
1542         uint16_t parse_flag;
1543 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1544         uint8_t bitfield_val;
1545 #endif
1546         uint8_t offset, flags, bd_num;
1547
1548
1549         /* Allocate buffers that we used in previous loop */
1550         if (rxq->rx_alloc_count) {
1551                 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1552                              rxq->rx_alloc_count))) {
1553                         struct rte_eth_dev *dev;
1554
1555                         PMD_RX_LOG(ERR, rxq,
1556                                    "New buffer allocation failed,"
1557                                    "dropping incoming packetn");
1558                         dev = &rte_eth_devices[rxq->port_id];
1559                         dev->data->rx_mbuf_alloc_failed +=
1560                                                         rxq->rx_alloc_count;
1561                         rxq->rx_alloc_errors += rxq->rx_alloc_count;
1562                         return 0;
1563                 }
1564                 qede_update_rx_prod(qdev, rxq);
1565                 rxq->rx_alloc_count = 0;
1566         }
1567
1568         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1569         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1570
1571         rte_rmb();
1572
1573         if (hw_comp_cons == sw_comp_cons)
1574                 return 0;
1575
1576         num_rx_bds =  NUM_RX_BDS(rxq);
1577         port_id = rxq->port_id;
1578
1579         while (sw_comp_cons != hw_comp_cons) {
1580                 ol_flags = 0;
1581                 packet_type = RTE_PTYPE_UNKNOWN;
1582                 vlan_tci = 0;
1583                 rss_hash = 0;
1584
1585                 /* Get the CQE from the completion ring */
1586                 cqe =
1587                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1588                 cqe_type = cqe->fast_path_regular.type;
1589                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1590
1591                 if (likely(cqe_type == ETH_RX_CQE_TYPE_REGULAR)) {
1592                         fp_cqe = &cqe->fast_path_regular;
1593                 } else {
1594                         if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) {
1595                                 PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1596                                 ecore_eth_cqe_completion
1597                                         (&edev->hwfns[rxq->queue_id %
1598                                                       edev->num_hwfns],
1599                                          (struct eth_slow_path_rx_cqe *)cqe);
1600                         }
1601                         goto next_cqe;
1602                 }
1603
1604                 /* Get the data from the SW ring */
1605                 sw_rx_index = rxq->sw_rx_cons & num_rx_bds;
1606                 rx_mb = rxq->sw_rx_ring[sw_rx_index];
1607                 assert(rx_mb != NULL);
1608
1609                 parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1610                 offset = fp_cqe->placement_offset;
1611                 len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1612                 pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1613                 vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1614                 rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1615                 bd_num = fp_cqe->bd_num;
1616 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1617                 bitfield_val = fp_cqe->bitfields;
1618 #endif
1619
1620                 if (unlikely(qede_tunn_exist(parse_flag))) {
1621                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1622                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1623                                 PMD_RX_LOG(ERR, rxq,
1624                                             "L4 csum failed, flags = 0x%x\n",
1625                                             parse_flag);
1626                                 rxq->rx_hw_errors++;
1627                                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1628                         } else {
1629                                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1630                         }
1631
1632                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1633                                 PMD_RX_LOG(ERR, rxq,
1634                                         "Outer L3 csum failed, flags = 0x%x\n",
1635                                         parse_flag);
1636                                 rxq->rx_hw_errors++;
1637                                 ol_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1638                         } else {
1639                                 ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1640                         }
1641
1642                         flags = fp_cqe->tunnel_pars_flags.flags;
1643
1644                         /* Tunnel_type */
1645                         packet_type =
1646                                 qede_rx_cqe_to_tunn_pkt_type(flags);
1647
1648                         /* Inner header */
1649                         packet_type |=
1650                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1651
1652                         /* Outer L3/L4 types is not available in CQE */
1653                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1654
1655                         /* Outer L3/L4 types is not available in CQE.
1656                          * Need to add offset to parse correctly,
1657                          */
1658                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1659                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1660                 } else {
1661                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1662                 }
1663
1664                 /* Common handling for non-tunnel packets and for inner
1665                  * headers in the case of tunnel.
1666                  */
1667                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1668                         PMD_RX_LOG(ERR, rxq,
1669                                     "L4 csum failed, flags = 0x%x\n",
1670                                     parse_flag);
1671                         rxq->rx_hw_errors++;
1672                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1673                 } else {
1674                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1675                 }
1676                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1677                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1678                                    parse_flag);
1679                         rxq->rx_hw_errors++;
1680                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1681                 } else {
1682                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1683                 }
1684
1685                 if (unlikely(CQE_HAS_VLAN(parse_flag) ||
1686                              CQE_HAS_OUTER_VLAN(parse_flag))) {
1687                         /* Note: FW doesn't indicate Q-in-Q packet */
1688                         ol_flags |= RTE_MBUF_F_RX_VLAN;
1689                         if (qdev->vlan_strip_flg) {
1690                                 ol_flags |= RTE_MBUF_F_RX_VLAN_STRIPPED;
1691                                 rx_mb->vlan_tci = vlan_tci;
1692                         }
1693                 }
1694
1695                 if (rss_enable) {
1696                         ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
1697                         rx_mb->hash.rss = rss_hash;
1698                 }
1699
1700                 rx_alloc_count++;
1701                 qede_rx_bd_ring_consume(rxq);
1702
1703                 /* Prefetch next mbuf while processing current one. */
1704                 preload_idx = rxq->sw_rx_cons & num_rx_bds;
1705                 rte_prefetch0(rxq->sw_rx_ring[preload_idx]);
1706
1707                 /* Update rest of the MBUF fields */
1708                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1709                 rx_mb->port = port_id;
1710                 rx_mb->ol_flags = ol_flags;
1711                 rx_mb->data_len = len;
1712                 rx_mb->packet_type = packet_type;
1713 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1714                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1715 #endif
1716                 rx_mb->nb_segs = bd_num;
1717                 rx_mb->pkt_len = pkt_len;
1718
1719                 rx_pkts[rx_pkt] = rx_mb;
1720                 rx_pkt++;
1721
1722 next_cqe:
1723                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1724                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1725                 if (rx_pkt == nb_pkts) {
1726                         PMD_RX_LOG(DEBUG, rxq,
1727                                    "Budget reached nb_pkts=%u received=%u",
1728                                    rx_pkt, nb_pkts);
1729                         break;
1730                 }
1731         }
1732
1733         /* Request number of buffers to be allocated in next loop */
1734         rxq->rx_alloc_count = rx_alloc_count;
1735
1736         rxq->rcv_pkts += rx_pkt;
1737         rxq->rx_segs += rx_pkt;
1738         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1739
1740         return rx_pkt;
1741 }
1742
1743 uint16_t
1744 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1745 {
1746         struct qede_rx_queue *rxq = p_rxq;
1747         struct qede_dev *qdev = rxq->qdev;
1748         struct ecore_dev *edev = &qdev->edev;
1749         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1750         uint16_t rx_pkt = 0;
1751         union eth_rx_cqe *cqe;
1752         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1753         register struct rte_mbuf *rx_mb = NULL;
1754         register struct rte_mbuf *seg1 = NULL;
1755         enum eth_rx_cqe_type cqe_type;
1756         uint16_t pkt_len = 0; /* Sum of all BD segments */
1757         uint16_t len; /* Length of first BD */
1758         uint8_t num_segs = 1;
1759         uint16_t preload_idx;
1760         uint16_t parse_flag;
1761 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1762         uint8_t bitfield_val;
1763 #endif
1764         uint8_t tunn_parse_flag;
1765         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1766         uint64_t ol_flags;
1767         uint32_t packet_type;
1768         uint16_t vlan_tci;
1769         bool tpa_start_flg;
1770         uint8_t offset, tpa_agg_idx, flags;
1771         struct qede_agg_info *tpa_info = NULL;
1772         uint32_t rss_hash;
1773         int rx_alloc_count = 0;
1774
1775
1776         /* Allocate buffers that we used in previous loop */
1777         if (rxq->rx_alloc_count) {
1778                 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1779                              rxq->rx_alloc_count))) {
1780                         struct rte_eth_dev *dev;
1781
1782                         PMD_RX_LOG(ERR, rxq,
1783                                    "New buffer allocation failed,"
1784                                    "dropping incoming packetn");
1785                         dev = &rte_eth_devices[rxq->port_id];
1786                         dev->data->rx_mbuf_alloc_failed +=
1787                                                         rxq->rx_alloc_count;
1788                         rxq->rx_alloc_errors += rxq->rx_alloc_count;
1789                         return 0;
1790                 }
1791                 qede_update_rx_prod(qdev, rxq);
1792                 rxq->rx_alloc_count = 0;
1793         }
1794
1795         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1796         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1797
1798         rte_rmb();
1799
1800         if (hw_comp_cons == sw_comp_cons)
1801                 return 0;
1802
1803         while (sw_comp_cons != hw_comp_cons) {
1804                 ol_flags = 0;
1805                 packet_type = RTE_PTYPE_UNKNOWN;
1806                 vlan_tci = 0;
1807                 tpa_start_flg = false;
1808                 rss_hash = 0;
1809
1810                 /* Get the CQE from the completion ring */
1811                 cqe =
1812                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1813                 cqe_type = cqe->fast_path_regular.type;
1814                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1815
1816                 switch (cqe_type) {
1817                 case ETH_RX_CQE_TYPE_REGULAR:
1818                         fp_cqe = &cqe->fast_path_regular;
1819                 break;
1820                 case ETH_RX_CQE_TYPE_TPA_START:
1821                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1822                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1823                         tpa_start_flg = true;
1824                         /* Mark it as LRO packet */
1825                         ol_flags |= RTE_MBUF_F_RX_LRO;
1826                         /* In split mode,  seg_len is same as len_on_first_bd
1827                          * and bw_ext_bd_len_list will be empty since there are
1828                          * no additional buffers
1829                          */
1830                         PMD_RX_LOG(INFO, rxq,
1831                          "TPA start[%d] - len_on_first_bd %d header %d"
1832                          " [bd_list[0] %d], [seg_len %d]\n",
1833                          cqe_start_tpa->tpa_agg_index,
1834                          rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1835                          cqe_start_tpa->header_len,
1836                          rte_le_to_cpu_16(cqe_start_tpa->bw_ext_bd_len_list[0]),
1837                          rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1838
1839                 break;
1840                 case ETH_RX_CQE_TYPE_TPA_CONT:
1841                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1842                                                      &cqe->fast_path_tpa_cont);
1843                         goto next_cqe;
1844                 case ETH_RX_CQE_TYPE_TPA_END:
1845                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1846                                                     &cqe->fast_path_tpa_end);
1847                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1848                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1849                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1850                         goto tpa_end;
1851                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1852                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1853                         ecore_eth_cqe_completion(
1854                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1855                                 (struct eth_slow_path_rx_cqe *)cqe);
1856                         /* fall-thru */
1857                 default:
1858                         goto next_cqe;
1859                 }
1860
1861                 /* Get the data from the SW ring */
1862                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1863                 rx_mb = rxq->sw_rx_ring[sw_rx_index];
1864                 assert(rx_mb != NULL);
1865
1866                 /* Handle regular CQE or TPA start CQE */
1867                 if (!tpa_start_flg) {
1868                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1869                         offset = fp_cqe->placement_offset;
1870                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1871                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1872                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1873                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1874 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1875                         bitfield_val = fp_cqe->bitfields;
1876 #endif
1877                 } else {
1878                         parse_flag =
1879                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1880                         offset = cqe_start_tpa->placement_offset;
1881                         /* seg_len = len_on_first_bd */
1882                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1883                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1884 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1885                         bitfield_val = cqe_start_tpa->bitfields;
1886 #endif
1887                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1888                 }
1889                 if (qede_tunn_exist(parse_flag)) {
1890                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1891                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1892                                 PMD_RX_LOG(ERR, rxq,
1893                                             "L4 csum failed, flags = 0x%x\n",
1894                                             parse_flag);
1895                                 rxq->rx_hw_errors++;
1896                                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1897                         } else {
1898                                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1899                         }
1900
1901                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1902                                 PMD_RX_LOG(ERR, rxq,
1903                                         "Outer L3 csum failed, flags = 0x%x\n",
1904                                         parse_flag);
1905                                   rxq->rx_hw_errors++;
1906                                 ol_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1907                         } else {
1908                                 ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1909                         }
1910
1911                         if (tpa_start_flg)
1912                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1913                         else
1914                                 flags = fp_cqe->tunnel_pars_flags.flags;
1915                         tunn_parse_flag = flags;
1916
1917                         /* Tunnel_type */
1918                         packet_type =
1919                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1920
1921                         /* Inner header */
1922                         packet_type |=
1923                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1924
1925                         /* Outer L3/L4 types is not available in CQE */
1926                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1927
1928                         /* Outer L3/L4 types is not available in CQE.
1929                          * Need to add offset to parse correctly,
1930                          */
1931                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1932                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1933                 } else {
1934                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1935                 }
1936
1937                 /* Common handling for non-tunnel packets and for inner
1938                  * headers in the case of tunnel.
1939                  */
1940                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1941                         PMD_RX_LOG(ERR, rxq,
1942                                     "L4 csum failed, flags = 0x%x\n",
1943                                     parse_flag);
1944                         rxq->rx_hw_errors++;
1945                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1946                 } else {
1947                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1948                 }
1949                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1950                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1951                                    parse_flag);
1952                         rxq->rx_hw_errors++;
1953                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1954                 } else {
1955                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1956                 }
1957
1958                 if (CQE_HAS_VLAN(parse_flag) ||
1959                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1960                         /* Note: FW doesn't indicate Q-in-Q packet */
1961                         ol_flags |= RTE_MBUF_F_RX_VLAN;
1962                         if (qdev->vlan_strip_flg) {
1963                                 ol_flags |= RTE_MBUF_F_RX_VLAN_STRIPPED;
1964                                 rx_mb->vlan_tci = vlan_tci;
1965                         }
1966                 }
1967
1968                 /* RSS Hash */
1969                 if (qdev->rss_enable) {
1970                         ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
1971                         rx_mb->hash.rss = rss_hash;
1972                 }
1973
1974                 rx_alloc_count++;
1975                 qede_rx_bd_ring_consume(rxq);
1976
1977                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1978                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1979                                    " len on first: %04x Total Len: %04x",
1980                                    fp_cqe->bd_num, len, pkt_len);
1981                         num_segs = fp_cqe->bd_num - 1;
1982                         seg1 = rx_mb;
1983                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1984                                                  pkt_len - len))
1985                                 goto next_cqe;
1986
1987                         rx_alloc_count += num_segs;
1988                         rxq->rx_segs += num_segs;
1989                 }
1990                 rxq->rx_segs++; /* for the first segment */
1991
1992                 /* Prefetch next mbuf while processing current one. */
1993                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1994                 rte_prefetch0(rxq->sw_rx_ring[preload_idx]);
1995
1996                 /* Update rest of the MBUF fields */
1997                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1998                 rx_mb->port = rxq->port_id;
1999                 rx_mb->ol_flags = ol_flags;
2000                 rx_mb->data_len = len;
2001                 rx_mb->packet_type = packet_type;
2002 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
2003                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
2004 #endif
2005                 if (!tpa_start_flg) {
2006                         rx_mb->nb_segs = fp_cqe->bd_num;
2007                         rx_mb->pkt_len = pkt_len;
2008                 } else {
2009                         /* store ref to the updated mbuf */
2010                         tpa_info->tpa_head = rx_mb;
2011                         tpa_info->tpa_tail = tpa_info->tpa_head;
2012                 }
2013                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
2014 tpa_end:
2015                 if (!tpa_start_flg) {
2016                         rx_pkts[rx_pkt] = rx_mb;
2017                         rx_pkt++;
2018                 }
2019 next_cqe:
2020                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
2021                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2022                 if (rx_pkt == nb_pkts) {
2023                         PMD_RX_LOG(DEBUG, rxq,
2024                                    "Budget reached nb_pkts=%u received=%u",
2025                                    rx_pkt, nb_pkts);
2026                         break;
2027                 }
2028         }
2029
2030         /* Request number of buffers to be allocated in next loop */
2031         rxq->rx_alloc_count = rx_alloc_count;
2032
2033         rxq->rcv_pkts += rx_pkt;
2034
2035         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
2036
2037         return rx_pkt;
2038 }
2039
2040 uint16_t
2041 qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2042 {
2043         struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
2044         uint16_t eng0_pkts, eng1_pkts;
2045
2046         eng0_pkts = nb_pkts / 2;
2047
2048         eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts);
2049
2050         eng1_pkts = nb_pkts - eng0_pkts;
2051
2052         eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts,
2053                                    eng1_pkts);
2054
2055         return eng0_pkts + eng1_pkts;
2056 }
2057
2058 /* Populate scatter gather buffer descriptor fields */
2059 static inline uint16_t
2060 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
2061                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
2062                   uint16_t start_seg)
2063 {
2064         struct qede_tx_queue *txq = p_txq;
2065         struct eth_tx_bd *tx_bd = NULL;
2066         dma_addr_t mapping;
2067         uint16_t nb_segs = 0;
2068
2069         /* Check for scattered buffers */
2070         while (m_seg) {
2071                 if (start_seg == 0) {
2072                         if (!*bd2) {
2073                                 *bd2 = (struct eth_tx_2nd_bd *)
2074                                         ecore_chain_produce(&txq->tx_pbl);
2075                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
2076                                 nb_segs++;
2077                         }
2078                         mapping = rte_mbuf_data_iova(m_seg);
2079                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
2080                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
2081                 } else if (start_seg == 1) {
2082                         if (!*bd3) {
2083                                 *bd3 = (struct eth_tx_3rd_bd *)
2084                                         ecore_chain_produce(&txq->tx_pbl);
2085                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
2086                                 nb_segs++;
2087                         }
2088                         mapping = rte_mbuf_data_iova(m_seg);
2089                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
2090                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
2091                 } else {
2092                         tx_bd = (struct eth_tx_bd *)
2093                                 ecore_chain_produce(&txq->tx_pbl);
2094                         memset(tx_bd, 0, sizeof(*tx_bd));
2095                         nb_segs++;
2096                         mapping = rte_mbuf_data_iova(m_seg);
2097                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
2098                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
2099                 }
2100                 start_seg++;
2101                 m_seg = m_seg->next;
2102         }
2103
2104         /* Return total scattered buffers */
2105         return nb_segs;
2106 }
2107
2108 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2109 static inline void
2110 print_tx_bd_info(struct qede_tx_queue *txq,
2111                  struct eth_tx_1st_bd *bd1,
2112                  struct eth_tx_2nd_bd *bd2,
2113                  struct eth_tx_3rd_bd *bd3,
2114                  uint64_t tx_ol_flags)
2115 {
2116         char ol_buf[256] = { 0 }; /* for verbose prints */
2117
2118         if (bd1)
2119                 PMD_TX_LOG(INFO, txq,
2120                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
2121                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
2122                    bd1->data.bd_flags.bitfields,
2123                    rte_cpu_to_le_16(bd1->data.bitfields));
2124         if (bd2)
2125                 PMD_TX_LOG(INFO, txq,
2126                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
2127                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
2128                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
2129         if (bd3)
2130                 PMD_TX_LOG(INFO, txq,
2131                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
2132                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
2133                    rte_cpu_to_le_16(bd3->nbytes),
2134                    rte_cpu_to_le_16(bd3->data.bitfields),
2135                    rte_cpu_to_le_16(bd3->data.lso_mss),
2136                    bd3->data.tunn_l4_hdr_start_offset_w,
2137                    bd3->data.tunn_hdr_size_w);
2138
2139         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
2140         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
2141 }
2142 #endif
2143
2144 /* TX prepare to check packets meets TX conditions */
2145 uint16_t
2146 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2147 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
2148                     uint16_t nb_pkts)
2149 {
2150         struct qede_tx_queue *txq = p_txq;
2151 #else
2152 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
2153                     uint16_t nb_pkts)
2154 {
2155 #endif
2156         uint64_t ol_flags;
2157         struct rte_mbuf *m;
2158         uint16_t i;
2159 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2160         int ret;
2161 #endif
2162
2163         for (i = 0; i < nb_pkts; i++) {
2164                 m = tx_pkts[i];
2165                 ol_flags = m->ol_flags;
2166                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2167                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
2168                                 rte_errno = EINVAL;
2169                                 break;
2170                         }
2171                         /* TBD: confirm its ~9700B for both ? */
2172                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
2173                                 rte_errno = EINVAL;
2174                                 break;
2175                         }
2176                 } else {
2177                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
2178                                 rte_errno = EINVAL;
2179                                 break;
2180                         }
2181                 }
2182                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
2183                         /* We support only limited tunnel protocols */
2184                         if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2185                                 uint64_t temp;
2186
2187                                 temp = ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK;
2188                                 if (temp == RTE_MBUF_F_TX_TUNNEL_VXLAN ||
2189                                     temp == RTE_MBUF_F_TX_TUNNEL_GENEVE ||
2190                                     temp == RTE_MBUF_F_TX_TUNNEL_MPLSINUDP ||
2191                                     temp == RTE_MBUF_F_TX_TUNNEL_GRE)
2192                                         continue;
2193                         }
2194
2195                         rte_errno = ENOTSUP;
2196                         break;
2197                 }
2198
2199 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2200                 ret = rte_validate_tx_offload(m);
2201                 if (ret != 0) {
2202                         rte_errno = -ret;
2203                         break;
2204                 }
2205 #endif
2206         }
2207
2208 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2209         if (unlikely(i != nb_pkts))
2210                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
2211                            nb_pkts - i);
2212 #endif
2213         return i;
2214 }
2215
2216 #define MPLSINUDP_HDR_SIZE                      (12)
2217
2218 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2219 static inline void
2220 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
2221                                struct qede_tx_queue *txq)
2222 {
2223         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
2224                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
2225         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
2226                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
2227                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
2228         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
2229                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
2230                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
2231         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
2232                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
2233                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
2234 }
2235 #endif
2236
2237 uint16_t
2238 qede_xmit_pkts_regular(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2239 {
2240         struct qede_tx_queue *txq = p_txq;
2241         struct qede_dev *qdev = txq->qdev;
2242         struct ecore_dev *edev = &qdev->edev;
2243         struct eth_tx_1st_bd *bd1;
2244         struct eth_tx_2nd_bd *bd2;
2245         struct eth_tx_3rd_bd *bd3;
2246         struct rte_mbuf *m_seg = NULL;
2247         struct rte_mbuf *mbuf;
2248         struct rte_mbuf **sw_tx_ring;
2249         uint16_t nb_tx_pkts;
2250         uint16_t bd_prod;
2251         uint16_t idx;
2252         uint16_t nb_frags = 0;
2253         uint16_t nb_pkt_sent = 0;
2254         uint8_t nbds;
2255         uint64_t tx_ol_flags;
2256         /* BD1 */
2257         uint16_t bd1_bf;
2258         uint8_t bd1_bd_flags_bf;
2259
2260         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
2261                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
2262                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
2263                 qede_process_tx_compl(edev, txq);
2264         }
2265
2266         nb_tx_pkts  = nb_pkts;
2267         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2268         sw_tx_ring = txq->sw_tx_ring;
2269
2270         while (nb_tx_pkts--) {
2271                 /* Init flags/values */
2272                 nbds = 0;
2273                 bd1 = NULL;
2274                 bd2 = NULL;
2275                 bd3 = NULL;
2276                 bd1_bf = 0;
2277                 bd1_bd_flags_bf = 0;
2278                 nb_frags = 0;
2279
2280                 mbuf = *tx_pkts++;
2281                 assert(mbuf);
2282
2283
2284                 /* Check minimum TX BDS availability against available BDs */
2285                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
2286                         break;
2287
2288                 tx_ol_flags = mbuf->ol_flags;
2289                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2290
2291                 if (unlikely(txq->nb_tx_avail <
2292                                 ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2293                         break;
2294                 bd1_bf |=
2295                        (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2296                         << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2297
2298                 /* Offload the IP checksum in the hardware */
2299                 if (tx_ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
2300                         bd1_bd_flags_bf |=
2301                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2302
2303                 /* L4 checksum offload (tcp or udp) */
2304                 if ((tx_ol_flags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IPV6)) &&
2305                     (tx_ol_flags & (RTE_MBUF_F_TX_UDP_CKSUM | RTE_MBUF_F_TX_TCP_CKSUM)))
2306                         bd1_bd_flags_bf |=
2307                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2308
2309                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2310                 idx = TX_PROD(txq);
2311                 sw_tx_ring[idx] = mbuf;
2312
2313                 /* BD1 */
2314                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2315                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2316                 nbds++;
2317
2318                 /* Map MBUF linear data for DMA and set in the BD1 */
2319                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2320                                      mbuf->data_len);
2321                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2322                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2323
2324                 /* Handle fragmented MBUF */
2325                 if (unlikely(mbuf->nb_segs > 1)) {
2326                         m_seg = mbuf->next;
2327
2328                         /* Encode scatter gather buffer descriptors */
2329                         nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3,
2330                                                      nbds - 1);
2331                 }
2332
2333                 bd1->data.nbds = nbds + nb_frags;
2334
2335                 txq->nb_tx_avail -= bd1->data.nbds;
2336                 txq->sw_tx_prod++;
2337                 bd_prod =
2338                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2339 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2340                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2341 #endif
2342                 nb_pkt_sent++;
2343                 txq->xmit_pkts++;
2344         }
2345
2346         /* Write value of prod idx into bd_prod */
2347         txq->tx_db.data.bd_prod = bd_prod;
2348         rte_wmb();
2349         rte_compiler_barrier();
2350         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2351         rte_wmb();
2352
2353         /* Check again for Tx completions */
2354         qede_process_tx_compl(edev, txq);
2355
2356         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2357                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2358
2359         return nb_pkt_sent;
2360 }
2361
2362 uint16_t
2363 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2364 {
2365         struct qede_tx_queue *txq = p_txq;
2366         struct qede_dev *qdev = txq->qdev;
2367         struct ecore_dev *edev = &qdev->edev;
2368         struct rte_mbuf *mbuf;
2369         struct rte_mbuf *m_seg = NULL;
2370         uint16_t nb_tx_pkts;
2371         uint16_t bd_prod;
2372         uint16_t idx;
2373         uint16_t nb_frags;
2374         uint16_t nb_pkt_sent = 0;
2375         uint8_t nbds;
2376         bool lso_flg;
2377         bool mplsoudp_flg;
2378         __rte_unused bool tunn_flg;
2379         bool tunn_ipv6_ext_flg;
2380         struct eth_tx_1st_bd *bd1;
2381         struct eth_tx_2nd_bd *bd2;
2382         struct eth_tx_3rd_bd *bd3;
2383         uint64_t tx_ol_flags;
2384         uint16_t hdr_size;
2385         /* BD1 */
2386         uint16_t bd1_bf;
2387         uint8_t bd1_bd_flags_bf;
2388         uint16_t vlan;
2389         /* BD2 */
2390         uint16_t bd2_bf1;
2391         uint16_t bd2_bf2;
2392         /* BD3 */
2393         uint16_t mss;
2394         uint16_t bd3_bf;
2395
2396         uint8_t tunn_l4_hdr_start_offset;
2397         uint8_t tunn_hdr_size;
2398         uint8_t inner_l2_hdr_size;
2399         uint16_t inner_l4_hdr_offset;
2400
2401         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
2402                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
2403                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
2404                 qede_process_tx_compl(edev, txq);
2405         }
2406
2407         nb_tx_pkts  = nb_pkts;
2408         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2409         while (nb_tx_pkts--) {
2410                 /* Init flags/values */
2411                 tunn_flg = false;
2412                 lso_flg = false;
2413                 nbds = 0;
2414                 vlan = 0;
2415                 bd1 = NULL;
2416                 bd2 = NULL;
2417                 bd3 = NULL;
2418                 hdr_size = 0;
2419                 bd1_bf = 0;
2420                 bd1_bd_flags_bf = 0;
2421                 bd2_bf1 = 0;
2422                 bd2_bf2 = 0;
2423                 mss = 0;
2424                 bd3_bf = 0;
2425                 mplsoudp_flg = false;
2426                 tunn_ipv6_ext_flg = false;
2427                 tunn_hdr_size = 0;
2428                 tunn_l4_hdr_start_offset = 0;
2429
2430                 mbuf = *tx_pkts++;
2431                 assert(mbuf);
2432
2433                 /* Check minimum TX BDS availability against available BDs */
2434                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
2435                         break;
2436
2437                 tx_ol_flags = mbuf->ol_flags;
2438                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2439
2440                 /* TX prepare would have already checked supported tunnel Tx
2441                  * offloads. Don't rely on pkt_type marked by Rx, instead use
2442                  * tx_ol_flags to decide.
2443                  */
2444                 tunn_flg = !!(tx_ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK);
2445
2446                 if (tunn_flg) {
2447                         /* Check against max which is Tunnel IPv6 + ext */
2448                         if (unlikely(txq->nb_tx_avail <
2449                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
2450                                         break;
2451
2452                         /* First indicate its a tunnel pkt */
2453                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
2454                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2455                         /* Legacy FW had flipped behavior in regard to this bit
2456                          * i.e. it needed to set to prevent FW from touching
2457                          * encapsulated packets when it didn't need to.
2458                          */
2459                         if (unlikely(txq->is_legacy)) {
2460                                 bd1_bf ^= 1 <<
2461                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2462                         }
2463
2464                         /* Outer IP checksum offload */
2465                         if (tx_ol_flags & (RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2466                                            RTE_MBUF_F_TX_OUTER_IPV4)) {
2467                                 bd1_bd_flags_bf |=
2468                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
2469                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
2470                         }
2471
2472                         /**
2473                          * Currently, only inner checksum offload in MPLS-in-UDP
2474                          * tunnel with one MPLS label is supported. Both outer
2475                          * and inner layers  lengths need to be provided in
2476                          * mbuf.
2477                          */
2478                         if ((tx_ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ==
2479                                                 RTE_MBUF_F_TX_TUNNEL_MPLSINUDP) {
2480                                 mplsoudp_flg = true;
2481 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2482                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
2483 #endif
2484                                 /* Outer L4 offset in two byte words */
2485                                 tunn_l4_hdr_start_offset =
2486                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
2487                                 /* Tunnel header size in two byte words */
2488                                 tunn_hdr_size = (mbuf->outer_l2_len +
2489                                                 mbuf->outer_l3_len +
2490                                                 MPLSINUDP_HDR_SIZE) / 2;
2491                                 /* Inner L2 header size in two byte words */
2492                                 inner_l2_hdr_size = (mbuf->l2_len -
2493                                                 MPLSINUDP_HDR_SIZE) / 2;
2494                                 /* Inner L4 header offset from the beginning
2495                                  * of inner packet in two byte words
2496                                  */
2497                                 inner_l4_hdr_offset = (mbuf->l2_len -
2498                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
2499
2500                                 /* Inner L2 size and address type */
2501                                 bd2_bf1 |= (inner_l2_hdr_size &
2502                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
2503                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
2504                                 bd2_bf1 |= (UNICAST_ADDRESS &
2505                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
2506                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
2507                                 /* Treated as IPv6+Ext */
2508                                 bd2_bf1 |=
2509                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
2510
2511                                 /* Mark inner IPv6 if present */
2512                                 if (tx_ol_flags & RTE_MBUF_F_TX_IPV6)
2513                                         bd2_bf1 |=
2514                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
2515
2516                                 /* Inner L4 offsets */
2517                                 if ((tx_ol_flags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IPV6)) &&
2518                                      (tx_ol_flags & (RTE_MBUF_F_TX_UDP_CKSUM |
2519                                                         RTE_MBUF_F_TX_TCP_CKSUM))) {
2520                                         /* Determines if BD3 is needed */
2521                                         tunn_ipv6_ext_flg = true;
2522                                         if ((tx_ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
2523                                                         RTE_MBUF_F_TX_UDP_CKSUM) {
2524                                                 bd2_bf1 |=
2525                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
2526                                         }
2527
2528                                         /* TODO other pseudo checksum modes are
2529                                          * not supported
2530                                          */
2531                                         bd2_bf1 |=
2532                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
2533                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
2534                                         bd2_bf2 |= (inner_l4_hdr_offset &
2535                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
2536                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
2537                                 }
2538                         } /* End MPLSoUDP */
2539                 } /* End Tunnel handling */
2540
2541                 if (tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2542                         lso_flg = true;
2543                         if (unlikely(txq->nb_tx_avail <
2544                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
2545                                 break;
2546                         /* For LSO, packet header and payload must reside on
2547                          * buffers pointed by different BDs. Using BD1 for HDR
2548                          * and BD2 onwards for data.
2549                          */
2550                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2551                         if (tunn_flg)
2552                                 hdr_size += mbuf->outer_l2_len +
2553                                             mbuf->outer_l3_len;
2554
2555                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2556                         bd1_bd_flags_bf |=
2557                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2558                         /* RTE_MBUF_F_TX_TCP_SEG implies RTE_MBUF_F_TX_TCP_CKSUM */
2559                         bd1_bd_flags_bf |=
2560                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2561                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2562                         /* Using one header BD */
2563                         bd3_bf |= rte_cpu_to_le_16(1 <<
2564                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2565                 } else {
2566                         if (unlikely(txq->nb_tx_avail <
2567                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2568                                 break;
2569                         bd1_bf |=
2570                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2571                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2572                 }
2573
2574                 /* Descriptor based VLAN insertion */
2575                 if (tx_ol_flags & RTE_MBUF_F_TX_VLAN) {
2576                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2577                         bd1_bd_flags_bf |=
2578                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2579                 }
2580
2581                 /* Offload the IP checksum in the hardware */
2582                 if (tx_ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2583                         bd1_bd_flags_bf |=
2584                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2585                         /* There's no DPDK flag to request outer-L4 csum
2586                          * offload. But in the case of tunnel if inner L3 or L4
2587                          * csum offload is requested then we need to force
2588                          * recalculation of L4 tunnel header csum also.
2589                          */
2590                         if (tunn_flg && ((tx_ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) !=
2591                                                         RTE_MBUF_F_TX_TUNNEL_GRE)) {
2592                                 bd1_bd_flags_bf |=
2593                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2594                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2595                         }
2596                 }
2597
2598                 /* L4 checksum offload (tcp or udp) */
2599                 if ((tx_ol_flags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IPV6)) &&
2600                     (tx_ol_flags & (RTE_MBUF_F_TX_UDP_CKSUM | RTE_MBUF_F_TX_TCP_CKSUM))) {
2601                         bd1_bd_flags_bf |=
2602                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2603                         /* There's no DPDK flag to request outer-L4 csum
2604                          * offload. But in the case of tunnel if inner L3 or L4
2605                          * csum offload is requested then we need to force
2606                          * recalculation of L4 tunnel header csum also.
2607                          */
2608                         if (tunn_flg) {
2609                                 bd1_bd_flags_bf |=
2610                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2611                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2612                         }
2613                 }
2614
2615                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2616                 idx = TX_PROD(txq);
2617                 txq->sw_tx_ring[idx] = mbuf;
2618
2619                 /* BD1 */
2620                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2621                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2622                 nbds++;
2623
2624                 /* Map MBUF linear data for DMA and set in the BD1 */
2625                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2626                                      mbuf->data_len);
2627                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2628                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2629                 bd1->data.vlan = vlan;
2630
2631                 if (lso_flg || mplsoudp_flg) {
2632                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2633                                                         (&txq->tx_pbl);
2634                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2635                         nbds++;
2636
2637                         /* BD1 */
2638                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2639                                              hdr_size);
2640                         /* BD2 */
2641                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2642                                              rte_mbuf_data_iova(mbuf)),
2643                                              mbuf->data_len - hdr_size);
2644                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2645                         if (mplsoudp_flg) {
2646                                 bd2->data.bitfields2 =
2647                                         rte_cpu_to_le_16(bd2_bf2);
2648                                 /* Outer L3 size */
2649                                 bd2->data.tunn_ip_size =
2650                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2651                         }
2652                         /* BD3 */
2653                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2654                                 bd3 = (struct eth_tx_3rd_bd *)
2655                                         ecore_chain_produce(&txq->tx_pbl);
2656                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2657                                 nbds++;
2658                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2659                                 if (lso_flg)
2660                                         bd3->data.lso_mss = mss;
2661                                 if (mplsoudp_flg) {
2662                                         bd3->data.tunn_l4_hdr_start_offset_w =
2663                                                 tunn_l4_hdr_start_offset;
2664                                         bd3->data.tunn_hdr_size_w =
2665                                                 tunn_hdr_size;
2666                                 }
2667                         }
2668                 }
2669
2670                 /* Handle fragmented MBUF */
2671                 m_seg = mbuf->next;
2672
2673                 /* Encode scatter gather buffer descriptors if required */
2674                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2675                 bd1->data.nbds = nbds + nb_frags;
2676
2677                 txq->nb_tx_avail -= bd1->data.nbds;
2678                 txq->sw_tx_prod++;
2679                 bd_prod =
2680                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2681 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2682                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2683 #endif
2684                 nb_pkt_sent++;
2685                 txq->xmit_pkts++;
2686         }
2687
2688         /* Write value of prod idx into bd_prod */
2689         txq->tx_db.data.bd_prod = bd_prod;
2690         rte_wmb();
2691         rte_compiler_barrier();
2692         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2693         rte_wmb();
2694
2695         /* Check again for Tx completions */
2696         qede_process_tx_compl(edev, txq);
2697
2698         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2699                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2700
2701         return nb_pkt_sent;
2702 }
2703
2704 uint16_t
2705 qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2706 {
2707         struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
2708         uint16_t eng0_pkts, eng1_pkts;
2709
2710         eng0_pkts = nb_pkts / 2;
2711
2712         eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts);
2713
2714         eng1_pkts = nb_pkts - eng0_pkts;
2715
2716         eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts,
2717                                    eng1_pkts);
2718
2719         return eng0_pkts + eng1_pkts;
2720 }
2721
2722 /* this function does a fake walk through over completion queue
2723  * to calculate number of BDs used by HW.
2724  * At the end, it restores the state of completion queue.
2725  */
2726 static uint16_t
2727 qede_parse_fp_cqe(struct qede_rx_queue *rxq)
2728 {
2729         uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
2730         union eth_rx_cqe *cqe, *orig_cqe = NULL;
2731
2732         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
2733         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2734
2735         if (hw_comp_cons == sw_comp_cons)
2736                 return 0;
2737
2738         /* Get the CQE from the completion ring */
2739         cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2740         orig_cqe = cqe;
2741
2742         while (sw_comp_cons != hw_comp_cons) {
2743                 switch (cqe->fast_path_regular.type) {
2744                 case ETH_RX_CQE_TYPE_REGULAR:
2745                         bd_count += cqe->fast_path_regular.bd_num;
2746                         break;
2747                 case ETH_RX_CQE_TYPE_TPA_END:
2748                         bd_count += cqe->fast_path_tpa_end.num_of_bds;
2749                         break;
2750                 default:
2751                         break;
2752                 }
2753
2754                 cqe =
2755                 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2756                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2757         }
2758
2759         /* revert comp_ring to original state */
2760         ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
2761
2762         return bd_count;
2763 }
2764
2765 int
2766 qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
2767 {
2768         uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
2769         uint16_t produced, consumed;
2770         struct qede_rx_queue *rxq = p_rxq;
2771
2772         if (offset > rxq->nb_rx_desc)
2773                 return -EINVAL;
2774
2775         sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
2776         sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
2777
2778         /* find BDs used by HW from completion queue elements */
2779         hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
2780
2781         if (hw_bd_cons < sw_bd_cons)
2782                 /* wraparound case */
2783                 consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
2784         else
2785                 consumed = hw_bd_cons - sw_bd_cons;
2786
2787         if (offset <= consumed)
2788                 return RTE_ETH_RX_DESC_DONE;
2789
2790         if (sw_bd_prod < sw_bd_cons)
2791                 /* wraparound case */
2792                 produced = (0xffff - sw_bd_cons) + sw_bd_prod;
2793         else
2794                 produced = sw_bd_prod - sw_bd_cons;
2795
2796         if (offset <= produced)
2797                 return RTE_ETH_RX_DESC_AVAIL;
2798
2799         return RTE_ETH_RX_DESC_UNAVAIL;
2800 }