946d96caccd952c7b41ccab27a848be8bd878fe5
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28
29 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
30 #include "sfc_ef10_rx_ev.h"
31
32 #define sfc_ef10_rx_err(dpq, ...) \
33         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
34
35 /**
36  * Maximum number of descriptors/buffers in the Rx ring.
37  * It should guarantee that corresponding event queue never overfill.
38  * EF10 native datapath uses event queue of the same size as Rx queue.
39  * Maximum number of events on datapath can be estimated as number of
40  * Rx queue entries (one event per Rx buffer in the worst case) plus
41  * Rx error and flush events.
42  */
43 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
44         ((_ndesc) - 1 /* head must not step on tail */ - \
45          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
46          1 /* Rx error */ - 1 /* flush */)
47
48 struct sfc_ef10_rx_sw_desc {
49         struct rte_mbuf                 *mbuf;
50 };
51
52 struct sfc_ef10_rxq {
53         /* Used on data path */
54         unsigned int                    flags;
55 #define SFC_EF10_RXQ_STARTED            0x1
56 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
57 #define SFC_EF10_RXQ_EXCEPTION          0x4
58 #define SFC_EF10_RXQ_RSS_HASH           0x8
59         unsigned int                    ptr_mask;
60         unsigned int                    prepared;
61         unsigned int                    completed;
62         unsigned int                    evq_read_ptr;
63         efx_qword_t                     *evq_hw_ring;
64         struct sfc_ef10_rx_sw_desc      *sw_ring;
65         uint64_t                        rearm_data;
66         uint16_t                        prefix_size;
67
68         /* Used on refill */
69         uint16_t                        buf_size;
70         unsigned int                    added;
71         unsigned int                    max_fill_level;
72         unsigned int                    refill_threshold;
73         struct rte_mempool              *refill_mb_pool;
74         efx_qword_t                     *rxq_hw_ring;
75         volatile void                   *doorbell;
76
77         /* Datapath receive queue anchor */
78         struct sfc_dp_rxq               dp;
79 };
80
81 static inline struct sfc_ef10_rxq *
82 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
83 {
84         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
85 }
86
87 static void
88 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
89 {
90         const unsigned int ptr_mask = rxq->ptr_mask;
91         const uint32_t buf_size = rxq->buf_size;
92         unsigned int free_space;
93         unsigned int bulks;
94         void *objs[SFC_RX_REFILL_BULK];
95         unsigned int added = rxq->added;
96
97         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
98
99         free_space = rxq->max_fill_level - (added - rxq->completed);
100
101         if (free_space < rxq->refill_threshold)
102                 return;
103
104         bulks = free_space / RTE_DIM(objs);
105         /* refill_threshold guarantees that bulks is positive */
106         SFC_ASSERT(bulks > 0);
107
108         do {
109                 unsigned int id;
110                 unsigned int i;
111
112                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
113                                                   RTE_DIM(objs)) < 0)) {
114                         struct rte_eth_dev_data *dev_data =
115                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
116
117                         /*
118                          * It is hardly a safe way to increment counter
119                          * from different contexts, but all PMDs do it.
120                          */
121                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
122                         /* Return if we have posted nothing yet */
123                         if (added == rxq->added)
124                                 return;
125                         /* Push posted */
126                         break;
127                 }
128
129                 for (i = 0, id = added & ptr_mask;
130                      i < RTE_DIM(objs);
131                      ++i, ++id) {
132                         struct rte_mbuf *m = objs[i];
133                         struct sfc_ef10_rx_sw_desc *rxd;
134                         rte_iova_t phys_addr;
135
136                         SFC_ASSERT((id & ~ptr_mask) == 0);
137                         rxd = &rxq->sw_ring[id];
138                         rxd->mbuf = m;
139
140                         /*
141                          * Avoid writing to mbuf. It is cheaper to do it
142                          * when we receive packet and fill in nearby
143                          * structure members.
144                          */
145
146                         phys_addr = rte_mbuf_data_iova_default(m);
147                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
148                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
149                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
150                 }
151
152                 added += RTE_DIM(objs);
153         } while (--bulks > 0);
154
155         SFC_ASSERT(rxq->added != added);
156         rxq->added = added;
157         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
158 }
159
160 static void
161 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
162 {
163         struct rte_mbuf *next_mbuf;
164
165         /* Prefetch next bunch of software descriptors */
166         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
167                 rte_prefetch0(&rxq->sw_ring[next_id]);
168
169         /*
170          * It looks strange to prefetch depending on previous prefetch
171          * data, but measurements show that it is really efficient and
172          * increases packet rate.
173          */
174         next_mbuf = rxq->sw_ring[next_id].mbuf;
175         if (likely(next_mbuf != NULL)) {
176                 /* Prefetch the next mbuf structure */
177                 rte_mbuf_prefetch_part1(next_mbuf);
178
179                 /* Prefetch pseudo header of the next packet */
180                 /* data_off is not filled in yet */
181                 /* Yes, data could be not ready yet, but we hope */
182                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
183                               RTE_PKTMBUF_HEADROOM);
184         }
185 }
186
187 static uint16_t
188 sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
189                      uint16_t nb_pkts)
190 {
191         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared);
192         unsigned int completed = rxq->completed;
193         unsigned int i;
194
195         rxq->prepared -= n_rx_pkts;
196         rxq->completed = completed + n_rx_pkts;
197
198         for (i = 0; i < n_rx_pkts; ++i, ++completed)
199                 rx_pkts[i] = rxq->sw_ring[completed & rxq->ptr_mask].mbuf;
200
201         return n_rx_pkts;
202 }
203
204 static uint16_t
205 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
206 {
207         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
208 }
209
210 static uint32_t
211 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
212 {
213         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
214 }
215
216 static uint16_t
217 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
218                           struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
219 {
220         const unsigned int ptr_mask = rxq->ptr_mask;
221         unsigned int completed = rxq->completed;
222         unsigned int ready;
223         struct sfc_ef10_rx_sw_desc *rxd;
224         struct rte_mbuf *m;
225         struct rte_mbuf *m0;
226         uint16_t n_rx_pkts;
227         const uint8_t *pseudo_hdr;
228         uint16_t pkt_len;
229
230         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) &
231                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
232         SFC_ASSERT(ready > 0);
233
234         if (rx_ev.eq_u64[0] &
235             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
236                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
237                 SFC_ASSERT(rxq->prepared == 0);
238                 rxq->completed += ready;
239                 while (ready-- > 0) {
240                         rxd = &rxq->sw_ring[completed++ & ptr_mask];
241                         rte_mbuf_raw_free(rxd->mbuf);
242                 }
243                 return 0;
244         }
245
246         n_rx_pkts = RTE_MIN(ready, nb_pkts);
247         rxq->prepared = ready - n_rx_pkts;
248         rxq->completed += n_rx_pkts;
249
250         rxd = &rxq->sw_ring[completed++ & ptr_mask];
251
252         sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
253
254         m = rxd->mbuf;
255
256         *rx_pkts++ = m;
257
258         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
259         m->rearm_data[0] = rxq->rearm_data;
260
261         /* Classify packet based on Rx event */
262         /* Mask RSS hash offload flag if RSS is not enabled */
263         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
264                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
265                                    ~0ull : ~PKT_RX_RSS_HASH);
266
267         /* data_off already moved past pseudo header */
268         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
269
270         /*
271          * Always get RSS hash from pseudo header to avoid
272          * condition/branching. If it is valid or not depends on
273          * PKT_RX_RSS_HASH in m->ol_flags.
274          */
275         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
276
277         if (ready == 1)
278                 pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
279                         rxq->prefix_size;
280         else
281                 pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
282         SFC_ASSERT(pkt_len > 0);
283         rte_pktmbuf_data_len(m) = pkt_len;
284         rte_pktmbuf_pkt_len(m) = pkt_len;
285
286         SFC_ASSERT(m->next == NULL);
287
288         /* Remember mbuf to copy offload flags and packet type from */
289         m0 = m;
290         for (--ready; ready > 0; --ready) {
291                 rxd = &rxq->sw_ring[completed++ & ptr_mask];
292
293                 sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
294
295                 m = rxd->mbuf;
296
297                 if (ready > rxq->prepared)
298                         *rx_pkts++ = m;
299
300                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
301                                  sizeof(rxq->rearm_data));
302                 m->rearm_data[0] = rxq->rearm_data;
303
304                 /* Event-dependent information is the same */
305                 m->ol_flags = m0->ol_flags;
306                 m->packet_type = m0->packet_type;
307
308                 /* data_off already moved past pseudo header */
309                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
310
311                 /*
312                  * Always get RSS hash from pseudo header to avoid
313                  * condition/branching. If it is valid or not depends on
314                  * PKT_RX_RSS_HASH in m->ol_flags.
315                  */
316                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
317
318                 pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
319                 SFC_ASSERT(pkt_len > 0);
320                 rte_pktmbuf_data_len(m) = pkt_len;
321                 rte_pktmbuf_pkt_len(m) = pkt_len;
322
323                 SFC_ASSERT(m->next == NULL);
324         }
325
326         return n_rx_pkts;
327 }
328
329 static bool
330 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
331 {
332         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
333
334         if (!sfc_ef10_ev_present(*rx_ev))
335                 return false;
336
337         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
338                      FSE_AZ_EV_CODE_RX_EV)) {
339                 /*
340                  * Do not move read_ptr to keep the event for exception
341                  * handling by the control path.
342                  */
343                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
344                 sfc_ef10_rx_err(&rxq->dp.dpq,
345                                 "RxQ exception at EvQ read ptr %#x",
346                                 rxq->evq_read_ptr);
347                 return false;
348         }
349
350         rxq->evq_read_ptr++;
351         return true;
352 }
353
354 static uint16_t
355 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
356 {
357         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
358         unsigned int evq_old_read_ptr;
359         uint16_t n_rx_pkts;
360         efx_qword_t rx_ev;
361
362         n_rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts);
363
364         if (unlikely(rxq->flags &
365                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
366                 goto done;
367
368         evq_old_read_ptr = rxq->evq_read_ptr;
369         while (n_rx_pkts != nb_pkts && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
370                 /*
371                  * DROP_EVENT is an internal to the NIC, software should
372                  * never see it and, therefore, may ignore it.
373                  */
374
375                 n_rx_pkts += sfc_ef10_rx_process_event(rxq, rx_ev,
376                                                        rx_pkts + n_rx_pkts,
377                                                        nb_pkts - n_rx_pkts);
378         }
379
380         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
381                            rxq->evq_read_ptr);
382
383         /* It is not a problem if we refill in the case of exception */
384         sfc_ef10_rx_qrefill(rxq);
385
386 done:
387         return n_rx_pkts;
388 }
389
390 const uint32_t *
391 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
392 {
393         static const uint32_t ef10_native_ptypes[] = {
394                 RTE_PTYPE_L2_ETHER,
395                 RTE_PTYPE_L2_ETHER_ARP,
396                 RTE_PTYPE_L2_ETHER_VLAN,
397                 RTE_PTYPE_L2_ETHER_QINQ,
398                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
399                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
400                 RTE_PTYPE_L4_FRAG,
401                 RTE_PTYPE_L4_TCP,
402                 RTE_PTYPE_L4_UDP,
403                 RTE_PTYPE_UNKNOWN
404         };
405         static const uint32_t ef10_overlay_ptypes[] = {
406                 RTE_PTYPE_L2_ETHER,
407                 RTE_PTYPE_L2_ETHER_ARP,
408                 RTE_PTYPE_L2_ETHER_VLAN,
409                 RTE_PTYPE_L2_ETHER_QINQ,
410                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
411                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
412                 RTE_PTYPE_L4_FRAG,
413                 RTE_PTYPE_L4_TCP,
414                 RTE_PTYPE_L4_UDP,
415                 RTE_PTYPE_TUNNEL_VXLAN,
416                 RTE_PTYPE_TUNNEL_NVGRE,
417                 RTE_PTYPE_INNER_L2_ETHER,
418                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
419                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
420                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
421                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
422                 RTE_PTYPE_INNER_L4_FRAG,
423                 RTE_PTYPE_INNER_L4_TCP,
424                 RTE_PTYPE_INNER_L4_UDP,
425                 RTE_PTYPE_UNKNOWN
426         };
427
428         /*
429          * The function returns static set of supported packet types,
430          * so we can't build it dynamically based on supported tunnel
431          * encapsulations and should limit to known sets.
432          */
433         switch (tunnel_encaps) {
434         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
435               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
436               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
437                 return ef10_overlay_ptypes;
438         default:
439                 SFC_GENERIC_LOG(ERR,
440                         "Unexpected set of supported tunnel encapsulations: %#x",
441                         tunnel_encaps);
442                 /* FALLTHROUGH */
443         case 0:
444                 return ef10_native_ptypes;
445         }
446 }
447
448 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
449 static unsigned int
450 sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
451 {
452         /*
453          * Correct implementation requires EvQ polling and events
454          * processing (keeping all ready mbufs in prepared).
455          */
456         return -ENOTSUP;
457 }
458
459 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
460 static int
461 sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
462                          __rte_unused uint16_t offset)
463 {
464         return -ENOTSUP;
465 }
466
467
468 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
469 static void
470 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
471 {
472         /*
473          * Number of descriptors just defines maximum number of pushed
474          * descriptors (fill level).
475          */
476         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
477         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
478 }
479
480
481 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
482 static int
483 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
484                            __rte_unused struct rte_mempool *mb_pool,
485                            unsigned int *rxq_entries,
486                            unsigned int *evq_entries,
487                            unsigned int *rxq_max_fill_level)
488 {
489         /*
490          * rte_ethdev API guarantees that the number meets min, max and
491          * alignment requirements.
492          */
493         if (nb_rx_desc <= EFX_RXQ_MINNDESCS)
494                 *rxq_entries = EFX_RXQ_MINNDESCS;
495         else
496                 *rxq_entries = rte_align32pow2(nb_rx_desc);
497
498         *evq_entries = *rxq_entries;
499
500         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
501                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
502         return 0;
503 }
504
505
506 static uint64_t
507 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
508 {
509         struct rte_mbuf m;
510
511         memset(&m, 0, sizeof(m));
512
513         rte_mbuf_refcnt_set(&m, 1);
514         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
515         m.nb_segs = 1;
516         m.port = port_id;
517
518         /* rearm_data covers structure members filled in above */
519         rte_compiler_barrier();
520         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
521         return m.rearm_data[0];
522 }
523
524 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
525 static int
526 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
527                     const struct rte_pci_addr *pci_addr, int socket_id,
528                     const struct sfc_dp_rx_qcreate_info *info,
529                     struct sfc_dp_rxq **dp_rxqp)
530 {
531         struct sfc_ef10_rxq *rxq;
532         int rc;
533
534         rc = EINVAL;
535         if (info->rxq_entries != info->evq_entries)
536                 goto fail_rxq_args;
537
538         rc = ENOMEM;
539         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
540                                  RTE_CACHE_LINE_SIZE, socket_id);
541         if (rxq == NULL)
542                 goto fail_rxq_alloc;
543
544         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
545
546         rc = ENOMEM;
547         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
548                                          info->rxq_entries,
549                                          sizeof(*rxq->sw_ring),
550                                          RTE_CACHE_LINE_SIZE, socket_id);
551         if (rxq->sw_ring == NULL)
552                 goto fail_desc_alloc;
553
554         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
555         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
556                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
557         rxq->ptr_mask = info->rxq_entries - 1;
558         rxq->evq_hw_ring = info->evq_hw_ring;
559         rxq->max_fill_level = info->max_fill_level;
560         rxq->refill_threshold = info->refill_threshold;
561         rxq->rearm_data =
562                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
563         rxq->prefix_size = info->prefix_size;
564         rxq->buf_size = info->buf_size;
565         rxq->refill_mb_pool = info->refill_mb_pool;
566         rxq->rxq_hw_ring = info->rxq_hw_ring;
567         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
568                         ER_DZ_RX_DESC_UPD_REG_OFST +
569                         (info->hw_index << info->vi_window_shift);
570
571         *dp_rxqp = &rxq->dp;
572         return 0;
573
574 fail_desc_alloc:
575         rte_free(rxq);
576
577 fail_rxq_alloc:
578 fail_rxq_args:
579         return rc;
580 }
581
582 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
583 static void
584 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
585 {
586         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
587
588         rte_free(rxq->sw_ring);
589         rte_free(rxq);
590 }
591
592 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
593 static int
594 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
595 {
596         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
597
598         SFC_ASSERT(rxq->prepared == 0);
599         SFC_ASSERT(rxq->completed == 0);
600         SFC_ASSERT(rxq->added == 0);
601
602         sfc_ef10_rx_qrefill(rxq);
603
604         rxq->evq_read_ptr = evq_read_ptr;
605
606         rxq->flags |= SFC_EF10_RXQ_STARTED;
607         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
608
609         return 0;
610 }
611
612 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
613 static void
614 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
615 {
616         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
617
618         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
619
620         *evq_read_ptr = rxq->evq_read_ptr;
621 }
622
623 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
624 static bool
625 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
626 {
627         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
628
629         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
630
631         /*
632          * It is safe to ignore Rx event since we free all mbufs on
633          * queue purge anyway.
634          */
635
636         return false;
637 }
638
639 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
640 static void
641 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
642 {
643         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
644         unsigned int i;
645         struct sfc_ef10_rx_sw_desc *rxd;
646
647         rxq->prepared = 0;
648
649         for (i = rxq->completed; i != rxq->added; ++i) {
650                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
651                 rte_mbuf_raw_free(rxd->mbuf);
652                 rxd->mbuf = NULL;
653         }
654
655         rxq->completed = rxq->added = 0;
656
657         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
658 }
659
660 struct sfc_dp_rx sfc_ef10_rx = {
661         .dp = {
662                 .name           = SFC_KVARG_DATAPATH_EF10,
663                 .type           = SFC_DP_RX,
664                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
665         },
666         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
667                                   SFC_DP_RX_FEAT_TUNNELS |
668                                   SFC_DP_RX_FEAT_CHECKSUM,
669         .get_dev_info           = sfc_ef10_rx_get_dev_info,
670         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
671         .qcreate                = sfc_ef10_rx_qcreate,
672         .qdestroy               = sfc_ef10_rx_qdestroy,
673         .qstart                 = sfc_ef10_rx_qstart,
674         .qstop                  = sfc_ef10_rx_qstop,
675         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
676         .qpurge                 = sfc_ef10_rx_qpurge,
677         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
678         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
679         .qdesc_status           = sfc_ef10_rx_qdesc_status,
680         .pkt_burst              = sfc_ef10_recv_pkts,
681 };