1 /* SPDX-License-Identifier: BSD-3-Clause
3 * Copyright(c) 2019-2020 Xilinx, Inc.
4 * Copyright(c) 2016-2019 Solarflare Communications Inc.
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
22 #include "sfc_debug.h"
24 #include "sfc_kvargs.h"
30 #include "sfc_dp_rx.h"
32 uint32_t sfc_logtype_driver;
34 static struct sfc_dp_list sfc_dp_head =
35 TAILQ_HEAD_INITIALIZER(sfc_dp_head);
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 efx_nic_fw_info_t enfi;
50 * Return value of the callback is likely supposed to be
51 * equal to or greater than 0, nevertheless, if an error
52 * occurs, it will be desirable to pass it to the caller
54 if ((fw_version == NULL) || (fw_size == 0))
57 rc = efx_nic_get_fw_version(sa->nic, &enfi);
61 ret = snprintf(fw_version, fw_size,
62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
68 if (enfi.enfi_dpcpu_fw_ids_valid) {
69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 fw_size - dpcpu_fw_ids_offset,
74 " rx%" PRIx16 " tx%" PRIx16,
75 enfi.enfi_rx_dpcpu_fw_id,
76 enfi.enfi_tx_dpcpu_fw_id);
83 if (fw_size < (size_t)(++ret))
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 struct sfc_rss *rss = &sas->rss;
96 uint64_t txq_offloads_def = 0;
98 sfc_log_init(sa, "entry");
100 dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 dev_info->max_mtu = EFX_MAC_SDU_MAX;
103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
105 /* Autonegotiation may be disabled */
106 dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
108 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
110 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
112 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
114 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
116 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
118 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
120 dev_info->max_rx_queues = sa->rxq_max;
121 dev_info->max_tx_queues = sa->txq_max;
123 /* By default packets are dropped if no descriptors are available */
124 dev_info->default_rxconf.rx_drop_en = 1;
126 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 * rx_offload_capa includes both device and queue offloads since
130 * the latter may be requested on a per device basis which makes
131 * sense when some offloads are needed to be set on all queues.
133 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
134 dev_info->rx_queue_offload_capa;
136 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 * tx_offload_capa includes both device and queue offloads since
140 * the latter may be requested on a per device basis which makes
141 * sense when some offloads are needed to be set on all queues.
143 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
144 dev_info->tx_queue_offload_capa;
146 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
147 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
149 dev_info->default_txconf.offloads |= txq_offloads_def;
151 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
155 for (i = 0; i < rss->hf_map_nb_entries; ++i)
156 rte_hf |= rss->hf_map[i].rte;
158 dev_info->reta_size = EFX_RSS_TBL_SIZE;
159 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
160 dev_info->flow_type_rss_offloads = rte_hf;
163 /* Initialize to hardware limits */
164 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
165 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
166 /* The RXQ hardware requires that the descriptor count is a power
167 * of 2, but rx_desc_lim cannot properly describe that constraint.
169 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
171 /* Initialize to hardware limits */
172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
173 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
175 * The TXQ hardware requires that the descriptor count is a power
176 * of 2, but tx_desc_lim cannot properly describe that constraint
178 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
180 if (sap->dp_rx->get_dev_info != NULL)
181 sap->dp_rx->get_dev_info(dev_info);
182 if (sap->dp_tx->get_dev_info != NULL)
183 sap->dp_tx->get_dev_info(dev_info);
185 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
186 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
191 static const uint32_t *
192 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
194 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
196 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
200 sfc_dev_configure(struct rte_eth_dev *dev)
202 struct rte_eth_dev_data *dev_data = dev->data;
203 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
206 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
207 dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 sfc_adapter_lock(sa);
211 case SFC_ADAPTER_CONFIGURED:
213 case SFC_ADAPTER_INITIALIZED:
214 rc = sfc_configure(sa);
217 sfc_err(sa, "unexpected adapter state %u to configure",
222 sfc_adapter_unlock(sa);
224 sfc_log_init(sa, "done %d", rc);
230 sfc_dev_start(struct rte_eth_dev *dev)
232 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
235 sfc_log_init(sa, "entry");
237 sfc_adapter_lock(sa);
239 sfc_adapter_unlock(sa);
241 sfc_log_init(sa, "done %d", rc);
247 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
250 struct rte_eth_link current_link;
253 sfc_log_init(sa, "entry");
255 if (sa->state != SFC_ADAPTER_STARTED) {
256 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link);
257 } else if (wait_to_complete) {
258 efx_link_mode_t link_mode;
260 if (efx_port_poll(sa->nic, &link_mode) != 0)
261 link_mode = EFX_LINK_UNKNOWN;
262 sfc_port_link_mode_to_info(link_mode, ¤t_link);
265 sfc_ev_mgmt_qpoll(sa);
266 rte_eth_linkstatus_get(dev, ¤t_link);
269 ret = rte_eth_linkstatus_set(dev, ¤t_link);
271 sfc_notice(sa, "Link status is %s",
272 current_link.link_status ? "UP" : "DOWN");
278 sfc_dev_stop(struct rte_eth_dev *dev)
280 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
282 sfc_log_init(sa, "entry");
284 sfc_adapter_lock(sa);
286 sfc_adapter_unlock(sa);
288 sfc_log_init(sa, "done");
292 sfc_dev_set_link_up(struct rte_eth_dev *dev)
294 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
297 sfc_log_init(sa, "entry");
299 sfc_adapter_lock(sa);
301 sfc_adapter_unlock(sa);
308 sfc_dev_set_link_down(struct rte_eth_dev *dev)
310 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
312 sfc_log_init(sa, "entry");
314 sfc_adapter_lock(sa);
316 sfc_adapter_unlock(sa);
322 sfc_dev_close(struct rte_eth_dev *dev)
324 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
326 sfc_log_init(sa, "entry");
328 sfc_adapter_lock(sa);
330 case SFC_ADAPTER_STARTED:
332 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
334 case SFC_ADAPTER_CONFIGURED:
336 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
338 case SFC_ADAPTER_INITIALIZED:
341 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
346 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE.
347 * Rollback primary process sfc_eth_dev_init() below.
350 sfc_eth_dev_clear_ops(dev);
355 sfc_kvargs_cleanup(sa);
357 sfc_adapter_unlock(sa);
358 sfc_adapter_lock_fini(sa);
360 sfc_log_init(sa, "done");
362 /* Required for logging, so cleanup last */
365 dev->process_private = NULL;
370 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
373 struct sfc_port *port;
375 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
376 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
377 const char *desc = (allmulti) ? "all-multi" : "promiscuous";
380 sfc_adapter_lock(sa);
383 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
385 if (*toggle != enabled) {
388 if (sfc_sa2shared(sa)->isolated) {
389 sfc_warn(sa, "isolated mode is active on the port");
390 sfc_warn(sa, "the change is to be applied on the next "
391 "start provided that isolated mode is "
392 "disabled prior the next start");
393 } else if ((sa->state == SFC_ADAPTER_STARTED) &&
394 ((rc = sfc_set_rx_mode(sa)) != 0)) {
395 *toggle = !(enabled);
396 sfc_warn(sa, "Failed to %s %s mode, rc = %d",
397 ((enabled) ? "enable" : "disable"), desc, rc);
400 * For promiscuous and all-multicast filters a
401 * permission failure should be reported as an
402 * unsupported filter.
409 sfc_adapter_unlock(sa);
414 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
416 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
423 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
425 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
432 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
434 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
441 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
443 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
450 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
451 uint16_t nb_rx_desc, unsigned int socket_id,
452 const struct rte_eth_rxconf *rx_conf,
453 struct rte_mempool *mb_pool)
455 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
456 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
459 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
460 rx_queue_id, nb_rx_desc, socket_id);
462 sfc_adapter_lock(sa);
464 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
469 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
471 sfc_adapter_unlock(sa);
476 sfc_adapter_unlock(sa);
482 sfc_rx_queue_release(void *queue)
484 struct sfc_dp_rxq *dp_rxq = queue;
486 struct sfc_adapter *sa;
487 unsigned int sw_index;
492 rxq = sfc_rxq_by_dp_rxq(dp_rxq);
494 sfc_adapter_lock(sa);
496 sw_index = dp_rxq->dpq.queue_id;
498 sfc_log_init(sa, "RxQ=%u", sw_index);
500 sfc_rx_qfini(sa, sw_index);
502 sfc_adapter_unlock(sa);
506 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
507 uint16_t nb_tx_desc, unsigned int socket_id,
508 const struct rte_eth_txconf *tx_conf)
510 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
511 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
514 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
515 tx_queue_id, nb_tx_desc, socket_id);
517 sfc_adapter_lock(sa);
519 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
523 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
525 sfc_adapter_unlock(sa);
529 sfc_adapter_unlock(sa);
535 sfc_tx_queue_release(void *queue)
537 struct sfc_dp_txq *dp_txq = queue;
539 unsigned int sw_index;
540 struct sfc_adapter *sa;
545 txq = sfc_txq_by_dp_txq(dp_txq);
546 sw_index = dp_txq->dpq.queue_id;
548 SFC_ASSERT(txq->evq != NULL);
551 sfc_log_init(sa, "TxQ = %u", sw_index);
553 sfc_adapter_lock(sa);
555 sfc_tx_qfini(sa, sw_index);
557 sfc_adapter_unlock(sa);
561 * Some statistics are computed as A - B where A and B each increase
562 * monotonically with some hardware counter(s) and the counters are read
565 * If packet X is counted in A, but not counted in B yet, computed value is
568 * If packet X is not counted in A at the moment of reading the counter,
569 * but counted in B at the moment of reading the counter, computed value
572 * However, counter which grows backward is worse evil than slightly wrong
573 * value. So, let's try to guarantee that it never happens except may be
574 * the case when the MAC stats are zeroed as a result of a NIC reset.
577 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
579 if ((int64_t)(newval - *stat) > 0 || newval == 0)
584 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
586 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
587 struct sfc_port *port = &sa->port;
591 rte_spinlock_lock(&port->mac_stats_lock);
593 ret = sfc_port_update_mac_stats(sa);
597 mac_stats = port->mac_stats_buf;
599 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
600 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
602 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
603 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
604 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
606 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
607 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
608 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
610 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
611 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
612 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
614 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
615 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
616 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
617 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
618 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
620 stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
621 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
622 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
624 * Take into account stats which are whenever supported
625 * on EF10. If some stat is not supported by current
626 * firmware variant or HW revision, it is guaranteed
627 * to be zero in mac_stats.
630 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
631 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
632 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
633 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
634 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
635 mac_stats[EFX_MAC_PM_TRUNC_QBB] +
636 mac_stats[EFX_MAC_PM_DISCARD_QBB] +
637 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
638 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
639 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
641 mac_stats[EFX_MAC_RX_FCS_ERRORS] +
642 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
643 mac_stats[EFX_MAC_RX_JABBER_PKTS];
644 /* no oerrors counters supported on EF10 */
646 /* Exclude missed, errors and pauses from Rx packets */
647 sfc_update_diff_stat(&port->ipackets,
648 mac_stats[EFX_MAC_RX_PKTS] -
649 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
650 stats->imissed - stats->ierrors);
651 stats->ipackets = port->ipackets;
655 rte_spinlock_unlock(&port->mac_stats_lock);
656 SFC_ASSERT(ret >= 0);
661 sfc_stats_reset(struct rte_eth_dev *dev)
663 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
664 struct sfc_port *port = &sa->port;
667 if (sa->state != SFC_ADAPTER_STARTED) {
669 * The operation cannot be done if port is not started; it
670 * will be scheduled to be done during the next port start
672 port->mac_stats_reset_pending = B_TRUE;
676 rc = sfc_port_reset_mac_stats(sa);
678 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
685 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
686 unsigned int xstats_count)
688 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
689 struct sfc_port *port = &sa->port;
695 rte_spinlock_lock(&port->mac_stats_lock);
697 rc = sfc_port_update_mac_stats(sa);
704 mac_stats = port->mac_stats_buf;
706 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
707 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
708 if (xstats != NULL && nstats < (int)xstats_count) {
709 xstats[nstats].id = nstats;
710 xstats[nstats].value = mac_stats[i];
717 rte_spinlock_unlock(&port->mac_stats_lock);
723 sfc_xstats_get_names(struct rte_eth_dev *dev,
724 struct rte_eth_xstat_name *xstats_names,
725 unsigned int xstats_count)
727 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
728 struct sfc_port *port = &sa->port;
730 unsigned int nstats = 0;
732 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
733 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
734 if (xstats_names != NULL && nstats < xstats_count)
735 strlcpy(xstats_names[nstats].name,
736 efx_mac_stat_name(sa->nic, i),
737 sizeof(xstats_names[0].name));
746 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
747 uint64_t *values, unsigned int n)
749 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
750 struct sfc_port *port = &sa->port;
752 unsigned int nb_supported = 0;
753 unsigned int nb_written = 0;
758 if (unlikely(values == NULL) ||
759 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
760 return port->mac_stats_nb_supported;
762 rte_spinlock_lock(&port->mac_stats_lock);
764 rc = sfc_port_update_mac_stats(sa);
771 mac_stats = port->mac_stats_buf;
773 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
774 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
777 if ((ids == NULL) || (ids[nb_written] == nb_supported))
778 values[nb_written++] = mac_stats[i];
786 rte_spinlock_unlock(&port->mac_stats_lock);
792 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
793 struct rte_eth_xstat_name *xstats_names,
794 const uint64_t *ids, unsigned int size)
796 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
797 struct sfc_port *port = &sa->port;
798 unsigned int nb_supported = 0;
799 unsigned int nb_written = 0;
802 if (unlikely(xstats_names == NULL) ||
803 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
804 return port->mac_stats_nb_supported;
806 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
807 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
810 if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
811 char *name = xstats_names[nb_written++].name;
813 strlcpy(name, efx_mac_stat_name(sa->nic, i),
814 sizeof(xstats_names[0].name));
824 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
826 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
827 unsigned int wanted_fc, link_fc;
829 memset(fc_conf, 0, sizeof(*fc_conf));
831 sfc_adapter_lock(sa);
833 if (sa->state == SFC_ADAPTER_STARTED)
834 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
836 link_fc = sa->port.flow_ctrl;
840 fc_conf->mode = RTE_FC_NONE;
842 case EFX_FCNTL_RESPOND:
843 fc_conf->mode = RTE_FC_RX_PAUSE;
845 case EFX_FCNTL_GENERATE:
846 fc_conf->mode = RTE_FC_TX_PAUSE;
848 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
849 fc_conf->mode = RTE_FC_FULL;
852 sfc_err(sa, "%s: unexpected flow control value %#x",
856 fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
858 sfc_adapter_unlock(sa);
864 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
866 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
867 struct sfc_port *port = &sa->port;
871 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
872 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
873 fc_conf->mac_ctrl_frame_fwd != 0) {
874 sfc_err(sa, "unsupported flow control settings specified");
879 switch (fc_conf->mode) {
883 case RTE_FC_RX_PAUSE:
884 fcntl = EFX_FCNTL_RESPOND;
886 case RTE_FC_TX_PAUSE:
887 fcntl = EFX_FCNTL_GENERATE;
890 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
897 sfc_adapter_lock(sa);
899 if (sa->state == SFC_ADAPTER_STARTED) {
900 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
902 goto fail_mac_fcntl_set;
905 port->flow_ctrl = fcntl;
906 port->flow_ctrl_autoneg = fc_conf->autoneg;
908 sfc_adapter_unlock(sa);
913 sfc_adapter_unlock(sa);
920 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
922 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
923 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
924 boolean_t scatter_enabled;
928 for (i = 0; i < sas->rxq_count; i++) {
929 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
932 scatter_enabled = (sas->rxq_info[i].type_flags &
933 EFX_RXQ_FLAG_SCATTER);
935 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
936 encp->enc_rx_prefix_size,
937 scatter_enabled, &error)) {
938 sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
948 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
950 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
951 size_t pdu = EFX_MAC_PDU(mtu);
955 sfc_log_init(sa, "mtu=%u", mtu);
958 if (pdu < EFX_MAC_PDU_MIN) {
959 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
960 (unsigned int)mtu, (unsigned int)pdu,
964 if (pdu > EFX_MAC_PDU_MAX) {
965 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
966 (unsigned int)mtu, (unsigned int)pdu,
967 (unsigned int)EFX_MAC_PDU_MAX);
971 sfc_adapter_lock(sa);
973 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
975 goto fail_check_scatter;
977 if (pdu != sa->port.pdu) {
978 if (sa->state == SFC_ADAPTER_STARTED) {
981 old_pdu = sa->port.pdu;
992 * The driver does not use it, but other PMDs update jumbo frame
993 * flag and max_rx_pkt_len when MTU is set.
995 if (mtu > RTE_ETHER_MAX_LEN) {
996 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
997 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1000 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1002 sfc_adapter_unlock(sa);
1004 sfc_log_init(sa, "done");
1008 sa->port.pdu = old_pdu;
1009 if (sfc_start(sa) != 0)
1010 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1011 "PDU max size - port is stopped",
1012 (unsigned int)pdu, (unsigned int)old_pdu);
1015 sfc_adapter_unlock(sa);
1018 sfc_log_init(sa, "failed %d", rc);
1023 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1025 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1026 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1027 struct sfc_port *port = &sa->port;
1028 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1031 sfc_adapter_lock(sa);
1034 * Copy the address to the device private data so that
1035 * it could be recalled in the case of adapter restart.
1037 rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1040 * Neither of the two following checks can return
1041 * an error. The new MAC address is preserved in
1042 * the device private data and can be activated
1043 * on the next port start if the user prevents
1044 * isolated mode from being enabled.
1046 if (sfc_sa2shared(sa)->isolated) {
1047 sfc_warn(sa, "isolated mode is active on the port");
1048 sfc_warn(sa, "will not set MAC address");
1052 if (sa->state != SFC_ADAPTER_STARTED) {
1053 sfc_notice(sa, "the port is not started");
1054 sfc_notice(sa, "the new MAC address will be set on port start");
1059 if (encp->enc_allow_set_mac_with_installed_filters) {
1060 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1062 sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1067 * Changing the MAC address by means of MCDI request
1068 * has no effect on received traffic, therefore
1069 * we also need to update unicast filters
1071 rc = sfc_set_rx_mode_unchecked(sa);
1073 sfc_err(sa, "cannot set filter (rc = %u)", rc);
1074 /* Rollback the old address */
1075 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1076 (void)sfc_set_rx_mode_unchecked(sa);
1079 sfc_warn(sa, "cannot set MAC address with filters installed");
1080 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1081 sfc_warn(sa, "(some traffic may be dropped)");
1084 * Since setting MAC address with filters installed is not
1085 * allowed on the adapter, the new MAC address will be set
1086 * by means of adapter restart. sfc_start() shall retrieve
1087 * the new address from the device private data and set it.
1092 sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1097 rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1099 sfc_adapter_unlock(sa);
1101 SFC_ASSERT(rc >= 0);
1107 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1108 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1110 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1111 struct sfc_port *port = &sa->port;
1112 uint8_t *mc_addrs = port->mcast_addrs;
1116 if (sfc_sa2shared(sa)->isolated) {
1117 sfc_err(sa, "isolated mode is active on the port");
1118 sfc_err(sa, "will not set multicast address list");
1122 if (mc_addrs == NULL)
1125 if (nb_mc_addr > port->max_mcast_addrs) {
1126 sfc_err(sa, "too many multicast addresses: %u > %u",
1127 nb_mc_addr, port->max_mcast_addrs);
1131 for (i = 0; i < nb_mc_addr; ++i) {
1132 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1134 mc_addrs += EFX_MAC_ADDR_LEN;
1137 port->nb_mcast_addrs = nb_mc_addr;
1139 if (sa->state != SFC_ADAPTER_STARTED)
1142 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1143 port->nb_mcast_addrs);
1145 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1147 SFC_ASSERT(rc >= 0);
1152 * The function is used by the secondary process as well. It must not
1153 * use any process-local pointers from the adapter data.
1156 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1157 struct rte_eth_rxq_info *qinfo)
1159 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1160 struct sfc_rxq_info *rxq_info;
1162 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1164 rxq_info = &sas->rxq_info[rx_queue_id];
1166 qinfo->mp = rxq_info->refill_mb_pool;
1167 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1168 qinfo->conf.rx_drop_en = 1;
1169 qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1170 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1171 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1172 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1173 qinfo->scattered_rx = 1;
1175 qinfo->nb_desc = rxq_info->entries;
1179 * The function is used by the secondary process as well. It must not
1180 * use any process-local pointers from the adapter data.
1183 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1184 struct rte_eth_txq_info *qinfo)
1186 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1187 struct sfc_txq_info *txq_info;
1189 SFC_ASSERT(tx_queue_id < sas->txq_count);
1191 txq_info = &sas->txq_info[tx_queue_id];
1193 memset(qinfo, 0, sizeof(*qinfo));
1195 qinfo->conf.offloads = txq_info->offloads;
1196 qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1197 qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1198 qinfo->nb_desc = txq_info->entries;
1202 * The function is used by the secondary process as well. It must not
1203 * use any process-local pointers from the adapter data.
1206 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1208 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1209 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1210 struct sfc_rxq_info *rxq_info;
1212 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1213 rxq_info = &sas->rxq_info[rx_queue_id];
1215 if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1218 return sap->dp_rx->qdesc_npending(rxq_info->dp);
1222 * The function is used by the secondary process as well. It must not
1223 * use any process-local pointers from the adapter data.
1226 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1228 struct sfc_dp_rxq *dp_rxq = queue;
1229 const struct sfc_dp_rx *dp_rx;
1231 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1233 return offset < dp_rx->qdesc_npending(dp_rxq);
1237 * The function is used by the secondary process as well. It must not
1238 * use any process-local pointers from the adapter data.
1241 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1243 struct sfc_dp_rxq *dp_rxq = queue;
1244 const struct sfc_dp_rx *dp_rx;
1246 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1248 return dp_rx->qdesc_status(dp_rxq, offset);
1252 * The function is used by the secondary process as well. It must not
1253 * use any process-local pointers from the adapter data.
1256 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1258 struct sfc_dp_txq *dp_txq = queue;
1259 const struct sfc_dp_tx *dp_tx;
1261 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1263 return dp_tx->qdesc_status(dp_txq, offset);
1267 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1269 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1270 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1273 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1275 sfc_adapter_lock(sa);
1278 if (sa->state != SFC_ADAPTER_STARTED)
1279 goto fail_not_started;
1281 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1282 goto fail_not_setup;
1284 rc = sfc_rx_qstart(sa, rx_queue_id);
1286 goto fail_rx_qstart;
1288 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1290 sfc_adapter_unlock(sa);
1297 sfc_adapter_unlock(sa);
1303 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1305 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1306 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1308 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1310 sfc_adapter_lock(sa);
1311 sfc_rx_qstop(sa, rx_queue_id);
1313 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1315 sfc_adapter_unlock(sa);
1321 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1323 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1324 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1327 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1329 sfc_adapter_lock(sa);
1332 if (sa->state != SFC_ADAPTER_STARTED)
1333 goto fail_not_started;
1335 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1336 goto fail_not_setup;
1338 rc = sfc_tx_qstart(sa, tx_queue_id);
1340 goto fail_tx_qstart;
1342 sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1344 sfc_adapter_unlock(sa);
1351 sfc_adapter_unlock(sa);
1357 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1359 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1360 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1362 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1364 sfc_adapter_lock(sa);
1366 sfc_tx_qstop(sa, tx_queue_id);
1368 sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1370 sfc_adapter_unlock(sa);
1374 static efx_tunnel_protocol_t
1375 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1378 case RTE_TUNNEL_TYPE_VXLAN:
1379 return EFX_TUNNEL_PROTOCOL_VXLAN;
1380 case RTE_TUNNEL_TYPE_GENEVE:
1381 return EFX_TUNNEL_PROTOCOL_GENEVE;
1383 return EFX_TUNNEL_NPROTOS;
1387 enum sfc_udp_tunnel_op_e {
1388 SFC_UDP_TUNNEL_ADD_PORT,
1389 SFC_UDP_TUNNEL_DEL_PORT,
1393 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1394 struct rte_eth_udp_tunnel *tunnel_udp,
1395 enum sfc_udp_tunnel_op_e op)
1397 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1398 efx_tunnel_protocol_t tunnel_proto;
1401 sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1402 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1403 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1404 tunnel_udp->udp_port, tunnel_udp->prot_type);
1407 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1408 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1410 goto fail_bad_proto;
1413 sfc_adapter_lock(sa);
1416 case SFC_UDP_TUNNEL_ADD_PORT:
1417 rc = efx_tunnel_config_udp_add(sa->nic,
1418 tunnel_udp->udp_port,
1421 case SFC_UDP_TUNNEL_DEL_PORT:
1422 rc = efx_tunnel_config_udp_remove(sa->nic,
1423 tunnel_udp->udp_port,
1434 if (sa->state == SFC_ADAPTER_STARTED) {
1435 rc = efx_tunnel_reconfigure(sa->nic);
1438 * Configuration is accepted by FW and MC reboot
1439 * is initiated to apply the changes. MC reboot
1440 * will be handled in a usual way (MC reboot
1441 * event on management event queue and adapter
1445 } else if (rc != 0) {
1446 goto fail_reconfigure;
1450 sfc_adapter_unlock(sa);
1454 /* Remove/restore entry since the change makes the trouble */
1456 case SFC_UDP_TUNNEL_ADD_PORT:
1457 (void)efx_tunnel_config_udp_remove(sa->nic,
1458 tunnel_udp->udp_port,
1461 case SFC_UDP_TUNNEL_DEL_PORT:
1462 (void)efx_tunnel_config_udp_add(sa->nic,
1463 tunnel_udp->udp_port,
1470 sfc_adapter_unlock(sa);
1478 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1479 struct rte_eth_udp_tunnel *tunnel_udp)
1481 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1485 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1486 struct rte_eth_udp_tunnel *tunnel_udp)
1488 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1492 * The function is used by the secondary process as well. It must not
1493 * use any process-local pointers from the adapter data.
1496 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1497 struct rte_eth_rss_conf *rss_conf)
1499 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1500 struct sfc_rss *rss = &sas->rss;
1502 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1506 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1507 * hence, conversion is done here to derive a correct set of ETH_RSS
1508 * flags which corresponds to the active EFX configuration stored
1509 * locally in 'sfc_adapter' and kept up-to-date
1511 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1512 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1513 if (rss_conf->rss_key != NULL)
1514 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1520 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1521 struct rte_eth_rss_conf *rss_conf)
1523 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1524 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1525 unsigned int efx_hash_types;
1528 if (sfc_sa2shared(sa)->isolated)
1531 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1532 sfc_err(sa, "RSS is not available");
1536 if (rss->channels == 0) {
1537 sfc_err(sa, "RSS is not configured");
1541 if ((rss_conf->rss_key != NULL) &&
1542 (rss_conf->rss_key_len != sizeof(rss->key))) {
1543 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1548 sfc_adapter_lock(sa);
1550 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1552 goto fail_rx_hf_rte_to_efx;
1554 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1555 rss->hash_alg, efx_hash_types, B_TRUE);
1557 goto fail_scale_mode_set;
1559 if (rss_conf->rss_key != NULL) {
1560 if (sa->state == SFC_ADAPTER_STARTED) {
1561 rc = efx_rx_scale_key_set(sa->nic,
1562 EFX_RSS_CONTEXT_DEFAULT,
1566 goto fail_scale_key_set;
1569 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1572 rss->hash_types = efx_hash_types;
1574 sfc_adapter_unlock(sa);
1579 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1580 EFX_RX_HASHALG_TOEPLITZ,
1581 rss->hash_types, B_TRUE) != 0)
1582 sfc_err(sa, "failed to restore RSS mode");
1584 fail_scale_mode_set:
1585 fail_rx_hf_rte_to_efx:
1586 sfc_adapter_unlock(sa);
1591 * The function is used by the secondary process as well. It must not
1592 * use any process-local pointers from the adapter data.
1595 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1596 struct rte_eth_rss_reta_entry64 *reta_conf,
1599 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1600 struct sfc_rss *rss = &sas->rss;
1603 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1606 if (rss->channels == 0)
1609 if (reta_size != EFX_RSS_TBL_SIZE)
1612 for (entry = 0; entry < reta_size; entry++) {
1613 int grp = entry / RTE_RETA_GROUP_SIZE;
1614 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1616 if ((reta_conf[grp].mask >> grp_idx) & 1)
1617 reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1624 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1625 struct rte_eth_rss_reta_entry64 *reta_conf,
1628 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1629 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1630 unsigned int *rss_tbl_new;
1635 if (sfc_sa2shared(sa)->isolated)
1638 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1639 sfc_err(sa, "RSS is not available");
1643 if (rss->channels == 0) {
1644 sfc_err(sa, "RSS is not configured");
1648 if (reta_size != EFX_RSS_TBL_SIZE) {
1649 sfc_err(sa, "RETA size is wrong (should be %u)",
1654 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1655 if (rss_tbl_new == NULL)
1658 sfc_adapter_lock(sa);
1660 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1662 for (entry = 0; entry < reta_size; entry++) {
1663 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1664 struct rte_eth_rss_reta_entry64 *grp;
1666 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1668 if (grp->mask & (1ull << grp_idx)) {
1669 if (grp->reta[grp_idx] >= rss->channels) {
1671 goto bad_reta_entry;
1673 rss_tbl_new[entry] = grp->reta[grp_idx];
1677 if (sa->state == SFC_ADAPTER_STARTED) {
1678 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1679 rss_tbl_new, EFX_RSS_TBL_SIZE);
1681 goto fail_scale_tbl_set;
1684 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1688 sfc_adapter_unlock(sa);
1690 rte_free(rss_tbl_new);
1692 SFC_ASSERT(rc >= 0);
1697 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1698 enum rte_filter_op filter_op,
1701 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1704 sfc_log_init(sa, "entry");
1706 switch (filter_type) {
1707 case RTE_ETH_FILTER_NONE:
1708 sfc_err(sa, "Global filters configuration not supported");
1710 case RTE_ETH_FILTER_MACVLAN:
1711 sfc_err(sa, "MACVLAN filters not supported");
1713 case RTE_ETH_FILTER_ETHERTYPE:
1714 sfc_err(sa, "EtherType filters not supported");
1716 case RTE_ETH_FILTER_FLEXIBLE:
1717 sfc_err(sa, "Flexible filters not supported");
1719 case RTE_ETH_FILTER_SYN:
1720 sfc_err(sa, "SYN filters not supported");
1722 case RTE_ETH_FILTER_NTUPLE:
1723 sfc_err(sa, "NTUPLE filters not supported");
1725 case RTE_ETH_FILTER_TUNNEL:
1726 sfc_err(sa, "Tunnel filters not supported");
1728 case RTE_ETH_FILTER_FDIR:
1729 sfc_err(sa, "Flow Director filters not supported");
1731 case RTE_ETH_FILTER_HASH:
1732 sfc_err(sa, "Hash filters not supported");
1734 case RTE_ETH_FILTER_GENERIC:
1735 if (filter_op != RTE_ETH_FILTER_GET) {
1738 *(const void **)arg = &sfc_flow_ops;
1743 sfc_err(sa, "Unknown filter type %u", filter_type);
1747 sfc_log_init(sa, "exit: %d", -rc);
1748 SFC_ASSERT(rc >= 0);
1753 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1755 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1758 * If Rx datapath does not provide callback to check mempool,
1759 * all pools are supported.
1761 if (sap->dp_rx->pool_ops_supported == NULL)
1764 return sap->dp_rx->pool_ops_supported(pool);
1768 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1770 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1771 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1772 struct sfc_rxq_info *rxq_info;
1774 SFC_ASSERT(queue_id < sas->rxq_count);
1775 rxq_info = &sas->rxq_info[queue_id];
1777 return sap->dp_rx->intr_enable(rxq_info->dp);
1781 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1783 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1784 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1785 struct sfc_rxq_info *rxq_info;
1787 SFC_ASSERT(queue_id < sas->rxq_count);
1788 rxq_info = &sas->rxq_info[queue_id];
1790 return sap->dp_rx->intr_disable(rxq_info->dp);
1793 static const struct eth_dev_ops sfc_eth_dev_ops = {
1794 .dev_configure = sfc_dev_configure,
1795 .dev_start = sfc_dev_start,
1796 .dev_stop = sfc_dev_stop,
1797 .dev_set_link_up = sfc_dev_set_link_up,
1798 .dev_set_link_down = sfc_dev_set_link_down,
1799 .dev_close = sfc_dev_close,
1800 .promiscuous_enable = sfc_dev_promisc_enable,
1801 .promiscuous_disable = sfc_dev_promisc_disable,
1802 .allmulticast_enable = sfc_dev_allmulti_enable,
1803 .allmulticast_disable = sfc_dev_allmulti_disable,
1804 .link_update = sfc_dev_link_update,
1805 .stats_get = sfc_stats_get,
1806 .stats_reset = sfc_stats_reset,
1807 .xstats_get = sfc_xstats_get,
1808 .xstats_reset = sfc_stats_reset,
1809 .xstats_get_names = sfc_xstats_get_names,
1810 .dev_infos_get = sfc_dev_infos_get,
1811 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
1812 .mtu_set = sfc_dev_set_mtu,
1813 .rx_queue_start = sfc_rx_queue_start,
1814 .rx_queue_stop = sfc_rx_queue_stop,
1815 .tx_queue_start = sfc_tx_queue_start,
1816 .tx_queue_stop = sfc_tx_queue_stop,
1817 .rx_queue_setup = sfc_rx_queue_setup,
1818 .rx_queue_release = sfc_rx_queue_release,
1819 .rx_queue_count = sfc_rx_queue_count,
1820 .rx_descriptor_done = sfc_rx_descriptor_done,
1821 .rx_descriptor_status = sfc_rx_descriptor_status,
1822 .tx_descriptor_status = sfc_tx_descriptor_status,
1823 .rx_queue_intr_enable = sfc_rx_queue_intr_enable,
1824 .rx_queue_intr_disable = sfc_rx_queue_intr_disable,
1825 .tx_queue_setup = sfc_tx_queue_setup,
1826 .tx_queue_release = sfc_tx_queue_release,
1827 .flow_ctrl_get = sfc_flow_ctrl_get,
1828 .flow_ctrl_set = sfc_flow_ctrl_set,
1829 .mac_addr_set = sfc_mac_addr_set,
1830 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add,
1831 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del,
1832 .reta_update = sfc_dev_rss_reta_update,
1833 .reta_query = sfc_dev_rss_reta_query,
1834 .rss_hash_update = sfc_dev_rss_hash_update,
1835 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
1836 .filter_ctrl = sfc_dev_filter_ctrl,
1837 .set_mc_addr_list = sfc_set_mc_addr_list,
1838 .rxq_info_get = sfc_rx_queue_info_get,
1839 .txq_info_get = sfc_tx_queue_info_get,
1840 .fw_version_get = sfc_fw_version_get,
1841 .xstats_get_by_id = sfc_xstats_get_by_id,
1842 .xstats_get_names_by_id = sfc_xstats_get_names_by_id,
1843 .pool_ops_supported = sfc_pool_ops_supported,
1847 * Duplicate a string in potentially shared memory required for
1848 * multi-process support.
1850 * strdup() allocates from process-local heap/memory.
1853 sfc_strdup(const char *str)
1861 size = strlen(str) + 1;
1862 copy = rte_malloc(__func__, size, 0);
1864 rte_memcpy(copy, str, size);
1870 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1872 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1873 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1874 const struct sfc_dp_rx *dp_rx;
1875 const struct sfc_dp_tx *dp_tx;
1876 const efx_nic_cfg_t *encp;
1877 unsigned int avail_caps = 0;
1878 const char *rx_name = NULL;
1879 const char *tx_name = NULL;
1882 switch (sa->family) {
1883 case EFX_FAMILY_HUNTINGTON:
1884 case EFX_FAMILY_MEDFORD:
1885 case EFX_FAMILY_MEDFORD2:
1886 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1892 encp = efx_nic_cfg_get(sa->nic);
1893 if (encp->enc_rx_es_super_buffer_supported)
1894 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1896 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1897 sfc_kvarg_string_handler, &rx_name);
1899 goto fail_kvarg_rx_datapath;
1901 if (rx_name != NULL) {
1902 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1903 if (dp_rx == NULL) {
1904 sfc_err(sa, "Rx datapath %s not found", rx_name);
1908 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1910 "Insufficient Hw/FW capabilities to use Rx datapath %s",
1913 goto fail_dp_rx_caps;
1916 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1917 if (dp_rx == NULL) {
1918 sfc_err(sa, "Rx datapath by caps %#x not found",
1925 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1926 if (sas->dp_rx_name == NULL) {
1928 goto fail_dp_rx_name;
1931 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1933 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1934 sfc_kvarg_string_handler, &tx_name);
1936 goto fail_kvarg_tx_datapath;
1938 if (tx_name != NULL) {
1939 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1940 if (dp_tx == NULL) {
1941 sfc_err(sa, "Tx datapath %s not found", tx_name);
1945 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1947 "Insufficient Hw/FW capabilities to use Tx datapath %s",
1950 goto fail_dp_tx_caps;
1953 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1954 if (dp_tx == NULL) {
1955 sfc_err(sa, "Tx datapath by caps %#x not found",
1962 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1963 if (sas->dp_tx_name == NULL) {
1965 goto fail_dp_tx_name;
1968 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1970 sa->priv.dp_rx = dp_rx;
1971 sa->priv.dp_tx = dp_tx;
1973 dev->rx_pkt_burst = dp_rx->pkt_burst;
1974 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1975 dev->tx_pkt_burst = dp_tx->pkt_burst;
1977 dev->dev_ops = &sfc_eth_dev_ops;
1984 fail_kvarg_tx_datapath:
1985 rte_free(sas->dp_rx_name);
1986 sas->dp_rx_name = NULL;
1991 fail_kvarg_rx_datapath:
1996 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1998 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1999 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2001 dev->dev_ops = NULL;
2002 dev->tx_pkt_prepare = NULL;
2003 dev->rx_pkt_burst = NULL;
2004 dev->tx_pkt_burst = NULL;
2006 rte_free(sas->dp_tx_name);
2007 sas->dp_tx_name = NULL;
2008 sa->priv.dp_tx = NULL;
2010 rte_free(sas->dp_rx_name);
2011 sas->dp_rx_name = NULL;
2012 sa->priv.dp_rx = NULL;
2015 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2016 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
2017 .rx_queue_count = sfc_rx_queue_count,
2018 .rx_descriptor_done = sfc_rx_descriptor_done,
2019 .rx_descriptor_status = sfc_rx_descriptor_status,
2020 .tx_descriptor_status = sfc_tx_descriptor_status,
2021 .reta_query = sfc_dev_rss_reta_query,
2022 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
2023 .rxq_info_get = sfc_rx_queue_info_get,
2024 .txq_info_get = sfc_tx_queue_info_get,
2028 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2030 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2031 struct sfc_adapter_priv *sap;
2032 const struct sfc_dp_rx *dp_rx;
2033 const struct sfc_dp_tx *dp_tx;
2037 * Allocate process private data from heap, since it should not
2038 * be located in shared memory allocated using rte_malloc() API.
2040 sap = calloc(1, sizeof(*sap));
2043 goto fail_alloc_priv;
2046 sap->logtype_main = logtype_main;
2048 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2049 if (dp_rx == NULL) {
2050 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2051 "cannot find %s Rx datapath", sas->dp_rx_name);
2055 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2056 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2057 "%s Rx datapath does not support multi-process",
2060 goto fail_dp_rx_multi_process;
2063 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2064 if (dp_tx == NULL) {
2065 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2066 "cannot find %s Tx datapath", sas->dp_tx_name);
2070 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2071 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2072 "%s Tx datapath does not support multi-process",
2075 goto fail_dp_tx_multi_process;
2081 dev->process_private = sap;
2082 dev->rx_pkt_burst = dp_rx->pkt_burst;
2083 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2084 dev->tx_pkt_burst = dp_tx->pkt_burst;
2085 dev->dev_ops = &sfc_eth_dev_secondary_ops;
2089 fail_dp_tx_multi_process:
2091 fail_dp_rx_multi_process:
2100 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
2102 free(dev->process_private);
2103 dev->process_private = NULL;
2104 dev->dev_ops = NULL;
2105 dev->tx_pkt_prepare = NULL;
2106 dev->tx_pkt_burst = NULL;
2107 dev->rx_pkt_burst = NULL;
2111 sfc_register_dp(void)
2114 if (TAILQ_EMPTY(&sfc_dp_head)) {
2115 /* Prefer EF10 datapath */
2116 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2117 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2118 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2120 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2121 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2122 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2127 sfc_eth_dev_init(struct rte_eth_dev *dev)
2129 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2130 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2131 uint32_t logtype_main;
2132 struct sfc_adapter *sa;
2134 const efx_nic_cfg_t *encp;
2135 const struct rte_ether_addr *from;
2139 logtype_main = sfc_register_logtype(&pci_dev->addr,
2140 SFC_LOGTYPE_MAIN_STR,
2143 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2144 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2146 /* Required for logging */
2147 sas->pci_addr = pci_dev->addr;
2148 sas->port_id = dev->data->port_id;
2151 * Allocate process private data from heap, since it should not
2152 * be located in shared memory allocated using rte_malloc() API.
2154 sa = calloc(1, sizeof(*sa));
2160 dev->process_private = sa;
2162 /* Required for logging */
2163 sa->priv.shared = sas;
2164 sa->priv.logtype_main = logtype_main;
2168 /* Copy PCI device info to the dev->data */
2169 rte_eth_copy_pci_info(dev, pci_dev);
2171 rc = sfc_kvargs_parse(sa);
2173 goto fail_kvargs_parse;
2175 sfc_log_init(sa, "entry");
2177 dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2179 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2180 if (dev->data->mac_addrs == NULL) {
2182 goto fail_mac_addrs;
2185 sfc_adapter_lock_init(sa);
2186 sfc_adapter_lock(sa);
2188 sfc_log_init(sa, "probing");
2193 sfc_log_init(sa, "set device ops");
2194 rc = sfc_eth_dev_set_ops(dev);
2198 sfc_log_init(sa, "attaching");
2199 rc = sfc_attach(sa);
2203 encp = efx_nic_cfg_get(sa->nic);
2206 * The arguments are really reverse order in comparison to
2207 * Linux kernel. Copy from NIC config to Ethernet device data.
2209 from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2210 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2212 sfc_adapter_unlock(sa);
2214 sfc_log_init(sa, "done");
2218 sfc_eth_dev_clear_ops(dev);
2224 sfc_adapter_unlock(sa);
2225 sfc_adapter_lock_fini(sa);
2226 rte_free(dev->data->mac_addrs);
2227 dev->data->mac_addrs = NULL;
2230 sfc_kvargs_cleanup(sa);
2233 sfc_log_init(sa, "failed %d", rc);
2234 dev->process_private = NULL;
2243 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2245 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2246 sfc_eth_dev_secondary_clear_ops(dev);
2255 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2256 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2257 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2258 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2259 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2260 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2261 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2262 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2263 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2264 { .vendor_id = 0 /* sentinel */ }
2267 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2268 struct rte_pci_device *pci_dev)
2270 return rte_eth_dev_pci_generic_probe(pci_dev,
2271 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2274 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2276 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2279 static struct rte_pci_driver sfc_efx_pmd = {
2280 .id_table = pci_id_sfc_efx_map,
2282 RTE_PCI_DRV_INTR_LSC |
2283 RTE_PCI_DRV_NEED_MAPPING,
2284 .probe = sfc_eth_dev_pci_probe,
2285 .remove = sfc_eth_dev_pci_remove,
2288 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2289 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2290 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2291 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2292 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2293 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2294 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2295 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2296 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2297 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2299 RTE_INIT(sfc_driver_register_logtype)
2303 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2305 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;