net/sfc: store PCI address for represented entities
[dpdk.git] / drivers / net / sfc / sfc_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 #include "sfc_repr.h"
32 #include "sfc_sw_stats.h"
33 #include "sfc_switch.h"
34
35 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
36 #define SFC_XSTAT_ID_INVALID_NAME '\0'
37
38 uint32_t sfc_logtype_driver;
39
40 static struct sfc_dp_list sfc_dp_head =
41         TAILQ_HEAD_INITIALIZER(sfc_dp_head);
42
43
44 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
45
46
47 static int
48 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
49 {
50         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
51         efx_nic_fw_info_t enfi;
52         int ret;
53         int rc;
54
55         rc = efx_nic_get_fw_version(sa->nic, &enfi);
56         if (rc != 0)
57                 return -rc;
58
59         ret = snprintf(fw_version, fw_size,
60                        "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
61                        enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
62                        enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
63         if (ret < 0)
64                 return ret;
65
66         if (enfi.enfi_dpcpu_fw_ids_valid) {
67                 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
68                 int ret_extra;
69
70                 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
71                                      fw_size - dpcpu_fw_ids_offset,
72                                      " rx%" PRIx16 " tx%" PRIx16,
73                                      enfi.enfi_rx_dpcpu_fw_id,
74                                      enfi.enfi_tx_dpcpu_fw_id);
75                 if (ret_extra < 0)
76                         return ret_extra;
77
78                 ret += ret_extra;
79         }
80
81         if (fw_size < (size_t)(++ret))
82                 return ret;
83         else
84                 return 0;
85 }
86
87 static int
88 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
89 {
90         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
91         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
92         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
93         struct sfc_rss *rss = &sas->rss;
94         struct sfc_mae *mae = &sa->mae;
95         uint64_t txq_offloads_def = 0;
96
97         sfc_log_init(sa, "entry");
98
99         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
100         dev_info->max_mtu = EFX_MAC_SDU_MAX;
101
102         dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
103
104         dev_info->max_vfs = sa->sriov.num_vfs;
105
106         /* Autonegotiation may be disabled */
107         dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
108         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
109                 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
110         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
111                 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
112         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
113                 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
114         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
115                 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
116         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
117                 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
118         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
119                 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
120
121         dev_info->max_rx_queues = sa->rxq_max;
122         dev_info->max_tx_queues = sa->txq_max;
123
124         /* By default packets are dropped if no descriptors are available */
125         dev_info->default_rxconf.rx_drop_en = 1;
126
127         dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
128
129         /*
130          * rx_offload_capa includes both device and queue offloads since
131          * the latter may be requested on a per device basis which makes
132          * sense when some offloads are needed to be set on all queues.
133          */
134         dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
135                                     dev_info->rx_queue_offload_capa;
136
137         dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
138
139         /*
140          * tx_offload_capa includes both device and queue offloads since
141          * the latter may be requested on a per device basis which makes
142          * sense when some offloads are needed to be set on all queues.
143          */
144         dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
145                                     dev_info->tx_queue_offload_capa;
146
147         if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
148                 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
149
150         dev_info->default_txconf.offloads |= txq_offloads_def;
151
152         if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
153                 uint64_t rte_hf = 0;
154                 unsigned int i;
155
156                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
157                         rte_hf |= rss->hf_map[i].rte;
158
159                 dev_info->reta_size = EFX_RSS_TBL_SIZE;
160                 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
161                 dev_info->flow_type_rss_offloads = rte_hf;
162         }
163
164         /* Initialize to hardware limits */
165         dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
166         dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
167         /* The RXQ hardware requires that the descriptor count is a power
168          * of 2, but rx_desc_lim cannot properly describe that constraint.
169          */
170         dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
171
172         /* Initialize to hardware limits */
173         dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
174         dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
175         /*
176          * The TXQ hardware requires that the descriptor count is a power
177          * of 2, but tx_desc_lim cannot properly describe that constraint
178          */
179         dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
180
181         if (sap->dp_rx->get_dev_info != NULL)
182                 sap->dp_rx->get_dev_info(dev_info);
183         if (sap->dp_tx->get_dev_info != NULL)
184                 sap->dp_tx->get_dev_info(dev_info);
185
186         dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
187                              RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
188
189         if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
190                 dev_info->switch_info.name = dev->device->driver->name;
191                 dev_info->switch_info.domain_id = mae->switch_domain_id;
192                 dev_info->switch_info.port_id = mae->switch_port_id;
193         }
194
195         return 0;
196 }
197
198 static const uint32_t *
199 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
200 {
201         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
202
203         return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
204 }
205
206 static int
207 sfc_dev_configure(struct rte_eth_dev *dev)
208 {
209         struct rte_eth_dev_data *dev_data = dev->data;
210         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
211         int rc;
212
213         sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
214                      dev_data->nb_rx_queues, dev_data->nb_tx_queues);
215
216         sfc_adapter_lock(sa);
217         switch (sa->state) {
218         case SFC_ETHDEV_CONFIGURED:
219                 /* FALLTHROUGH */
220         case SFC_ETHDEV_INITIALIZED:
221                 rc = sfc_configure(sa);
222                 break;
223         default:
224                 sfc_err(sa, "unexpected adapter state %u to configure",
225                         sa->state);
226                 rc = EINVAL;
227                 break;
228         }
229         sfc_adapter_unlock(sa);
230
231         sfc_log_init(sa, "done %d", rc);
232         SFC_ASSERT(rc >= 0);
233         return -rc;
234 }
235
236 static int
237 sfc_dev_start(struct rte_eth_dev *dev)
238 {
239         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
240         int rc;
241
242         sfc_log_init(sa, "entry");
243
244         sfc_adapter_lock(sa);
245         rc = sfc_start(sa);
246         sfc_adapter_unlock(sa);
247
248         sfc_log_init(sa, "done %d", rc);
249         SFC_ASSERT(rc >= 0);
250         return -rc;
251 }
252
253 static int
254 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
255 {
256         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
257         struct rte_eth_link current_link;
258         int ret;
259
260         sfc_log_init(sa, "entry");
261
262         if (sa->state != SFC_ETHDEV_STARTED) {
263                 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
264         } else if (wait_to_complete) {
265                 efx_link_mode_t link_mode;
266
267                 if (efx_port_poll(sa->nic, &link_mode) != 0)
268                         link_mode = EFX_LINK_UNKNOWN;
269                 sfc_port_link_mode_to_info(link_mode, &current_link);
270
271         } else {
272                 sfc_ev_mgmt_qpoll(sa);
273                 rte_eth_linkstatus_get(dev, &current_link);
274         }
275
276         ret = rte_eth_linkstatus_set(dev, &current_link);
277         if (ret == 0)
278                 sfc_notice(sa, "Link status is %s",
279                            current_link.link_status ? "UP" : "DOWN");
280
281         return ret;
282 }
283
284 static int
285 sfc_dev_stop(struct rte_eth_dev *dev)
286 {
287         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
288
289         sfc_log_init(sa, "entry");
290
291         sfc_adapter_lock(sa);
292         sfc_stop(sa);
293         sfc_adapter_unlock(sa);
294
295         sfc_log_init(sa, "done");
296
297         return 0;
298 }
299
300 static int
301 sfc_dev_set_link_up(struct rte_eth_dev *dev)
302 {
303         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
304         int rc;
305
306         sfc_log_init(sa, "entry");
307
308         sfc_adapter_lock(sa);
309         rc = sfc_start(sa);
310         sfc_adapter_unlock(sa);
311
312         SFC_ASSERT(rc >= 0);
313         return -rc;
314 }
315
316 static int
317 sfc_dev_set_link_down(struct rte_eth_dev *dev)
318 {
319         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
320
321         sfc_log_init(sa, "entry");
322
323         sfc_adapter_lock(sa);
324         sfc_stop(sa);
325         sfc_adapter_unlock(sa);
326
327         return 0;
328 }
329
330 static void
331 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
332 {
333         free(dev->process_private);
334         rte_eth_dev_release_port(dev);
335 }
336
337 static int
338 sfc_dev_close(struct rte_eth_dev *dev)
339 {
340         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
341
342         sfc_log_init(sa, "entry");
343
344         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
345                 sfc_eth_dev_secondary_clear_ops(dev);
346                 return 0;
347         }
348
349         sfc_pre_detach(sa);
350
351         sfc_adapter_lock(sa);
352         switch (sa->state) {
353         case SFC_ETHDEV_STARTED:
354                 sfc_stop(sa);
355                 SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
356                 /* FALLTHROUGH */
357         case SFC_ETHDEV_CONFIGURED:
358                 sfc_close(sa);
359                 SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
360                 /* FALLTHROUGH */
361         case SFC_ETHDEV_INITIALIZED:
362                 break;
363         default:
364                 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
365                 break;
366         }
367
368         /*
369          * Cleanup all resources.
370          * Rollback primary process sfc_eth_dev_init() below.
371          */
372
373         sfc_eth_dev_clear_ops(dev);
374
375         sfc_detach(sa);
376         sfc_unprobe(sa);
377
378         sfc_kvargs_cleanup(sa);
379
380         sfc_adapter_unlock(sa);
381         sfc_adapter_lock_fini(sa);
382
383         sfc_log_init(sa, "done");
384
385         /* Required for logging, so cleanup last */
386         sa->eth_dev = NULL;
387
388         free(sa);
389
390         return 0;
391 }
392
393 static int
394 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
395                    boolean_t enabled)
396 {
397         struct sfc_port *port;
398         boolean_t *toggle;
399         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
400         boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
401         const char *desc = (allmulti) ? "all-multi" : "promiscuous";
402         int rc = 0;
403
404         sfc_adapter_lock(sa);
405
406         port = &sa->port;
407         toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
408
409         if (*toggle != enabled) {
410                 *toggle = enabled;
411
412                 if (sfc_sa2shared(sa)->isolated) {
413                         sfc_warn(sa, "isolated mode is active on the port");
414                         sfc_warn(sa, "the change is to be applied on the next "
415                                      "start provided that isolated mode is "
416                                      "disabled prior the next start");
417                 } else if ((sa->state == SFC_ETHDEV_STARTED) &&
418                            ((rc = sfc_set_rx_mode(sa)) != 0)) {
419                         *toggle = !(enabled);
420                         sfc_warn(sa, "Failed to %s %s mode, rc = %d",
421                                  ((enabled) ? "enable" : "disable"), desc, rc);
422
423                         /*
424                          * For promiscuous and all-multicast filters a
425                          * permission failure should be reported as an
426                          * unsupported filter.
427                          */
428                         if (rc == EPERM)
429                                 rc = ENOTSUP;
430                 }
431         }
432
433         sfc_adapter_unlock(sa);
434         return rc;
435 }
436
437 static int
438 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
439 {
440         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
441
442         SFC_ASSERT(rc >= 0);
443         return -rc;
444 }
445
446 static int
447 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
448 {
449         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
450
451         SFC_ASSERT(rc >= 0);
452         return -rc;
453 }
454
455 static int
456 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
457 {
458         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
459
460         SFC_ASSERT(rc >= 0);
461         return -rc;
462 }
463
464 static int
465 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
466 {
467         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
468
469         SFC_ASSERT(rc >= 0);
470         return -rc;
471 }
472
473 static int
474 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
475                    uint16_t nb_rx_desc, unsigned int socket_id,
476                    const struct rte_eth_rxconf *rx_conf,
477                    struct rte_mempool *mb_pool)
478 {
479         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
480         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
481         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
482         struct sfc_rxq_info *rxq_info;
483         sfc_sw_index_t sw_index;
484         int rc;
485
486         sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
487                      ethdev_qid, nb_rx_desc, socket_id);
488
489         sfc_adapter_lock(sa);
490
491         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
492         rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
493                           rx_conf, mb_pool);
494         if (rc != 0)
495                 goto fail_rx_qinit;
496
497         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
498         dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
499
500         sfc_adapter_unlock(sa);
501
502         return 0;
503
504 fail_rx_qinit:
505         sfc_adapter_unlock(sa);
506         SFC_ASSERT(rc > 0);
507         return -rc;
508 }
509
510 static void
511 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
512 {
513         struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
514         struct sfc_rxq *rxq;
515         struct sfc_adapter *sa;
516         sfc_sw_index_t sw_index;
517
518         if (dp_rxq == NULL)
519                 return;
520
521         rxq = sfc_rxq_by_dp_rxq(dp_rxq);
522         sa = rxq->evq->sa;
523         sfc_adapter_lock(sa);
524
525         sw_index = dp_rxq->dpq.queue_id;
526
527         sfc_log_init(sa, "RxQ=%u", sw_index);
528
529         sfc_rx_qfini(sa, sw_index);
530
531         sfc_adapter_unlock(sa);
532 }
533
534 static int
535 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
536                    uint16_t nb_tx_desc, unsigned int socket_id,
537                    const struct rte_eth_txconf *tx_conf)
538 {
539         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
540         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
541         struct sfc_txq_info *txq_info;
542         sfc_sw_index_t sw_index;
543         int rc;
544
545         sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
546                      ethdev_qid, nb_tx_desc, socket_id);
547
548         sfc_adapter_lock(sa);
549
550         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
551         rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
552         if (rc != 0)
553                 goto fail_tx_qinit;
554
555         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
556         dev->data->tx_queues[ethdev_qid] = txq_info->dp;
557
558         sfc_adapter_unlock(sa);
559         return 0;
560
561 fail_tx_qinit:
562         sfc_adapter_unlock(sa);
563         SFC_ASSERT(rc > 0);
564         return -rc;
565 }
566
567 static void
568 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
569 {
570         struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
571         struct sfc_txq *txq;
572         sfc_sw_index_t sw_index;
573         struct sfc_adapter *sa;
574
575         if (dp_txq == NULL)
576                 return;
577
578         txq = sfc_txq_by_dp_txq(dp_txq);
579         sw_index = dp_txq->dpq.queue_id;
580
581         SFC_ASSERT(txq->evq != NULL);
582         sa = txq->evq->sa;
583
584         sfc_log_init(sa, "TxQ = %u", sw_index);
585
586         sfc_adapter_lock(sa);
587
588         sfc_tx_qfini(sa, sw_index);
589
590         sfc_adapter_unlock(sa);
591 }
592
593 static void
594 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
595 {
596         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
597         uint64_t pkts_sum = 0;
598         uint64_t bytes_sum = 0;
599         unsigned int i;
600
601         for (i = 0; i < sas->ethdev_rxq_count; ++i) {
602                 struct sfc_rxq_info *rxq_info;
603
604                 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
605                 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
606                         union sfc_pkts_bytes qstats;
607
608                         sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
609                         pkts_sum += qstats.pkts -
610                                         sa->sw_stats.reset_rx_pkts[i];
611                         bytes_sum += qstats.bytes -
612                                         sa->sw_stats.reset_rx_bytes[i];
613                 }
614         }
615
616         *pkts = pkts_sum;
617         *bytes = bytes_sum;
618 }
619
620 static void
621 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
622 {
623         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
624         uint64_t pkts_sum = 0;
625         uint64_t bytes_sum = 0;
626         unsigned int i;
627
628         for (i = 0; i < sas->ethdev_txq_count; ++i) {
629                 struct sfc_txq_info *txq_info;
630
631                 txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
632                 if (txq_info->state & SFC_TXQ_INITIALIZED) {
633                         union sfc_pkts_bytes qstats;
634
635                         sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
636                         pkts_sum += qstats.pkts -
637                                         sa->sw_stats.reset_tx_pkts[i];
638                         bytes_sum += qstats.bytes -
639                                         sa->sw_stats.reset_tx_bytes[i];
640                 }
641         }
642
643         *pkts = pkts_sum;
644         *bytes = bytes_sum;
645 }
646
647 /*
648  * Some statistics are computed as A - B where A and B each increase
649  * monotonically with some hardware counter(s) and the counters are read
650  * asynchronously.
651  *
652  * If packet X is counted in A, but not counted in B yet, computed value is
653  * greater than real.
654  *
655  * If packet X is not counted in A at the moment of reading the counter,
656  * but counted in B at the moment of reading the counter, computed value
657  * is less than real.
658  *
659  * However, counter which grows backward is worse evil than slightly wrong
660  * value. So, let's try to guarantee that it never happens except may be
661  * the case when the MAC stats are zeroed as a result of a NIC reset.
662  */
663 static void
664 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
665 {
666         if ((int64_t)(newval - *stat) > 0 || newval == 0)
667                 *stat = newval;
668 }
669
670 static int
671 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
672 {
673         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
674         bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
675         bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
676         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
677         struct sfc_port *port = &sa->port;
678         uint64_t *mac_stats;
679         int ret;
680
681         sfc_adapter_lock(sa);
682
683         if (have_dp_rx_stats)
684                 sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
685         if (have_dp_tx_stats)
686                 sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
687
688         ret = sfc_port_update_mac_stats(sa, B_FALSE);
689         if (ret != 0)
690                 goto unlock;
691
692         mac_stats = port->mac_stats_buf;
693
694         if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
695                                    EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
696                 if (!have_dp_rx_stats) {
697                         stats->ipackets =
698                                 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
699                                 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
700                                 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
701                         stats->ibytes =
702                                 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
703                                 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
704                                 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
705
706                         /* CRC is included in these stats, but shouldn't be */
707                         stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
708                 }
709                 if (!have_dp_tx_stats) {
710                         stats->opackets =
711                                 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
712                                 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
713                                 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
714                         stats->obytes =
715                                 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
716                                 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
717                                 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
718
719                         /* CRC is included in these stats, but shouldn't be */
720                         stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
721                 }
722                 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
723                 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
724         } else {
725                 if (!have_dp_tx_stats) {
726                         stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
727                         stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
728                                 mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
729                 }
730
731                 /*
732                  * Take into account stats which are whenever supported
733                  * on EF10. If some stat is not supported by current
734                  * firmware variant or HW revision, it is guaranteed
735                  * to be zero in mac_stats.
736                  */
737                 stats->imissed =
738                         mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
739                         mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
740                         mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
741                         mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
742                         mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
743                         mac_stats[EFX_MAC_PM_TRUNC_QBB] +
744                         mac_stats[EFX_MAC_PM_DISCARD_QBB] +
745                         mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
746                         mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
747                         mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
748                 stats->ierrors =
749                         mac_stats[EFX_MAC_RX_FCS_ERRORS] +
750                         mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
751                         mac_stats[EFX_MAC_RX_JABBER_PKTS];
752                 /* no oerrors counters supported on EF10 */
753
754                 if (!have_dp_rx_stats) {
755                         /* Exclude missed, errors and pauses from Rx packets */
756                         sfc_update_diff_stat(&port->ipackets,
757                                 mac_stats[EFX_MAC_RX_PKTS] -
758                                 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
759                                 stats->imissed - stats->ierrors);
760                         stats->ipackets = port->ipackets;
761                         stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
762                                 mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
763                 }
764         }
765
766 unlock:
767         sfc_adapter_unlock(sa);
768         SFC_ASSERT(ret >= 0);
769         return -ret;
770 }
771
772 static int
773 sfc_stats_reset(struct rte_eth_dev *dev)
774 {
775         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
776         struct sfc_port *port = &sa->port;
777         int rc;
778
779         sfc_adapter_lock(sa);
780
781         if (sa->state != SFC_ETHDEV_STARTED) {
782                 /*
783                  * The operation cannot be done if port is not started; it
784                  * will be scheduled to be done during the next port start
785                  */
786                 port->mac_stats_reset_pending = B_TRUE;
787                 sfc_adapter_unlock(sa);
788                 return 0;
789         }
790
791         rc = sfc_port_reset_mac_stats(sa);
792         if (rc != 0)
793                 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
794
795         sfc_sw_xstats_reset(sa);
796
797         sfc_adapter_unlock(sa);
798
799         SFC_ASSERT(rc >= 0);
800         return -rc;
801 }
802
803 static unsigned int
804 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
805 {
806         struct sfc_port *port = &sa->port;
807         unsigned int nb_supported;
808
809         sfc_adapter_lock(sa);
810         nb_supported = port->mac_stats_nb_supported +
811                        sfc_sw_xstats_get_nb_supported(sa);
812         sfc_adapter_unlock(sa);
813
814         return nb_supported;
815 }
816
817 static int
818 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
819                unsigned int xstats_count)
820 {
821         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
822         unsigned int nb_written = 0;
823         unsigned int nb_supported = 0;
824         int rc;
825
826         if (unlikely(xstats == NULL))
827                 return sfc_xstats_get_nb_supported(sa);
828
829         rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
830         if (rc < 0)
831                 return rc;
832
833         nb_supported = rc;
834         sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
835                                &nb_supported);
836
837         return nb_supported;
838 }
839
840 static int
841 sfc_xstats_get_names(struct rte_eth_dev *dev,
842                      struct rte_eth_xstat_name *xstats_names,
843                      unsigned int xstats_count)
844 {
845         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
846         struct sfc_port *port = &sa->port;
847         unsigned int i;
848         unsigned int nstats = 0;
849         unsigned int nb_written = 0;
850         int ret;
851
852         if (unlikely(xstats_names == NULL))
853                 return sfc_xstats_get_nb_supported(sa);
854
855         for (i = 0; i < EFX_MAC_NSTATS; ++i) {
856                 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
857                         if (nstats < xstats_count) {
858                                 strlcpy(xstats_names[nstats].name,
859                                         efx_mac_stat_name(sa->nic, i),
860                                         sizeof(xstats_names[0].name));
861                                 nb_written++;
862                         }
863                         nstats++;
864                 }
865         }
866
867         ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
868                                       &nb_written, &nstats);
869         if (ret != 0) {
870                 SFC_ASSERT(ret < 0);
871                 return ret;
872         }
873
874         return nstats;
875 }
876
877 static int
878 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
879                      uint64_t *values, unsigned int n)
880 {
881         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
882         struct sfc_port *port = &sa->port;
883         unsigned int nb_supported;
884         unsigned int i;
885         int rc;
886
887         if (unlikely(ids == NULL || values == NULL))
888                 return -EINVAL;
889
890         /*
891          * Values array could be filled in nonsequential order. Fill values with
892          * constant indicating invalid ID first.
893          */
894         for (i = 0; i < n; i++)
895                 values[i] = SFC_XSTAT_ID_INVALID_VAL;
896
897         rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
898         if (rc != 0)
899                 return rc;
900
901         nb_supported = port->mac_stats_nb_supported;
902         sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
903
904         /* Return number of written stats before invalid ID is encountered. */
905         for (i = 0; i < n; i++) {
906                 if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
907                         return i;
908         }
909
910         return n;
911 }
912
913 static int
914 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
915                            const uint64_t *ids,
916                            struct rte_eth_xstat_name *xstats_names,
917                            unsigned int size)
918 {
919         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
920         struct sfc_port *port = &sa->port;
921         unsigned int nb_supported;
922         unsigned int i;
923         int ret;
924
925         if (unlikely(xstats_names == NULL && ids != NULL) ||
926             unlikely(xstats_names != NULL && ids == NULL))
927                 return -EINVAL;
928
929         if (unlikely(xstats_names == NULL && ids == NULL))
930                 return sfc_xstats_get_nb_supported(sa);
931
932         /*
933          * Names array could be filled in nonsequential order. Fill names with
934          * string indicating invalid ID first.
935          */
936         for (i = 0; i < size; i++)
937                 xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
938
939         sfc_adapter_lock(sa);
940
941         SFC_ASSERT(port->mac_stats_nb_supported <=
942                    RTE_DIM(port->mac_stats_by_id));
943
944         for (i = 0; i < size; i++) {
945                 if (ids[i] < port->mac_stats_nb_supported) {
946                         strlcpy(xstats_names[i].name,
947                                 efx_mac_stat_name(sa->nic,
948                                                  port->mac_stats_by_id[ids[i]]),
949                                 sizeof(xstats_names[0].name));
950                 }
951         }
952
953         nb_supported = port->mac_stats_nb_supported;
954
955         sfc_adapter_unlock(sa);
956
957         ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
958                                             &nb_supported);
959         if (ret != 0) {
960                 SFC_ASSERT(ret < 0);
961                 return ret;
962         }
963
964         /* Return number of written names before invalid ID is encountered. */
965         for (i = 0; i < size; i++) {
966                 if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
967                         return i;
968         }
969
970         return size;
971 }
972
973 static int
974 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
975 {
976         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
977         unsigned int wanted_fc, link_fc;
978
979         memset(fc_conf, 0, sizeof(*fc_conf));
980
981         sfc_adapter_lock(sa);
982
983         if (sa->state == SFC_ETHDEV_STARTED)
984                 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
985         else
986                 link_fc = sa->port.flow_ctrl;
987
988         switch (link_fc) {
989         case 0:
990                 fc_conf->mode = RTE_FC_NONE;
991                 break;
992         case EFX_FCNTL_RESPOND:
993                 fc_conf->mode = RTE_FC_RX_PAUSE;
994                 break;
995         case EFX_FCNTL_GENERATE:
996                 fc_conf->mode = RTE_FC_TX_PAUSE;
997                 break;
998         case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
999                 fc_conf->mode = RTE_FC_FULL;
1000                 break;
1001         default:
1002                 sfc_err(sa, "%s: unexpected flow control value %#x",
1003                         __func__, link_fc);
1004         }
1005
1006         fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1007
1008         sfc_adapter_unlock(sa);
1009
1010         return 0;
1011 }
1012
1013 static int
1014 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1015 {
1016         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1017         struct sfc_port *port = &sa->port;
1018         unsigned int fcntl;
1019         int rc;
1020
1021         if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1022             fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1023             fc_conf->mac_ctrl_frame_fwd != 0) {
1024                 sfc_err(sa, "unsupported flow control settings specified");
1025                 rc = EINVAL;
1026                 goto fail_inval;
1027         }
1028
1029         switch (fc_conf->mode) {
1030         case RTE_FC_NONE:
1031                 fcntl = 0;
1032                 break;
1033         case RTE_FC_RX_PAUSE:
1034                 fcntl = EFX_FCNTL_RESPOND;
1035                 break;
1036         case RTE_FC_TX_PAUSE:
1037                 fcntl = EFX_FCNTL_GENERATE;
1038                 break;
1039         case RTE_FC_FULL:
1040                 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1041                 break;
1042         default:
1043                 rc = EINVAL;
1044                 goto fail_inval;
1045         }
1046
1047         sfc_adapter_lock(sa);
1048
1049         if (sa->state == SFC_ETHDEV_STARTED) {
1050                 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1051                 if (rc != 0)
1052                         goto fail_mac_fcntl_set;
1053         }
1054
1055         port->flow_ctrl = fcntl;
1056         port->flow_ctrl_autoneg = fc_conf->autoneg;
1057
1058         sfc_adapter_unlock(sa);
1059
1060         return 0;
1061
1062 fail_mac_fcntl_set:
1063         sfc_adapter_unlock(sa);
1064 fail_inval:
1065         SFC_ASSERT(rc > 0);
1066         return -rc;
1067 }
1068
1069 static int
1070 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1071 {
1072         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1073         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1074         boolean_t scatter_enabled;
1075         const char *error;
1076         unsigned int i;
1077
1078         for (i = 0; i < sas->rxq_count; i++) {
1079                 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1080                         continue;
1081
1082                 scatter_enabled = (sas->rxq_info[i].type_flags &
1083                                    EFX_RXQ_FLAG_SCATTER);
1084
1085                 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1086                                           encp->enc_rx_prefix_size,
1087                                           scatter_enabled,
1088                                           encp->enc_rx_scatter_max, &error)) {
1089                         sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1090                                 error);
1091                         return EINVAL;
1092                 }
1093         }
1094
1095         return 0;
1096 }
1097
1098 static int
1099 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1100 {
1101         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1102         size_t pdu = EFX_MAC_PDU(mtu);
1103         size_t old_pdu;
1104         int rc;
1105
1106         sfc_log_init(sa, "mtu=%u", mtu);
1107
1108         rc = EINVAL;
1109         if (pdu < EFX_MAC_PDU_MIN) {
1110                 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1111                         (unsigned int)mtu, (unsigned int)pdu,
1112                         EFX_MAC_PDU_MIN);
1113                 goto fail_inval;
1114         }
1115         if (pdu > EFX_MAC_PDU_MAX) {
1116                 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1117                         (unsigned int)mtu, (unsigned int)pdu,
1118                         (unsigned int)EFX_MAC_PDU_MAX);
1119                 goto fail_inval;
1120         }
1121
1122         sfc_adapter_lock(sa);
1123
1124         rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1125         if (rc != 0)
1126                 goto fail_check_scatter;
1127
1128         if (pdu != sa->port.pdu) {
1129                 if (sa->state == SFC_ETHDEV_STARTED) {
1130                         sfc_stop(sa);
1131
1132                         old_pdu = sa->port.pdu;
1133                         sa->port.pdu = pdu;
1134                         rc = sfc_start(sa);
1135                         if (rc != 0)
1136                                 goto fail_start;
1137                 } else {
1138                         sa->port.pdu = pdu;
1139                 }
1140         }
1141
1142         /*
1143          * The driver does not use it, but other PMDs update jumbo frame
1144          * flag and max_rx_pkt_len when MTU is set.
1145          */
1146         if (mtu > RTE_ETHER_MTU) {
1147                 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1148                 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1149         }
1150
1151         dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1152
1153         sfc_adapter_unlock(sa);
1154
1155         sfc_log_init(sa, "done");
1156         return 0;
1157
1158 fail_start:
1159         sa->port.pdu = old_pdu;
1160         if (sfc_start(sa) != 0)
1161                 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1162                         "PDU max size - port is stopped",
1163                         (unsigned int)pdu, (unsigned int)old_pdu);
1164
1165 fail_check_scatter:
1166         sfc_adapter_unlock(sa);
1167
1168 fail_inval:
1169         sfc_log_init(sa, "failed %d", rc);
1170         SFC_ASSERT(rc > 0);
1171         return -rc;
1172 }
1173 static int
1174 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1175 {
1176         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1177         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1178         struct sfc_port *port = &sa->port;
1179         struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1180         int rc = 0;
1181
1182         sfc_adapter_lock(sa);
1183
1184         if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1185                 goto unlock;
1186
1187         /*
1188          * Copy the address to the device private data so that
1189          * it could be recalled in the case of adapter restart.
1190          */
1191         rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1192
1193         /*
1194          * Neither of the two following checks can return
1195          * an error. The new MAC address is preserved in
1196          * the device private data and can be activated
1197          * on the next port start if the user prevents
1198          * isolated mode from being enabled.
1199          */
1200         if (sfc_sa2shared(sa)->isolated) {
1201                 sfc_warn(sa, "isolated mode is active on the port");
1202                 sfc_warn(sa, "will not set MAC address");
1203                 goto unlock;
1204         }
1205
1206         if (sa->state != SFC_ETHDEV_STARTED) {
1207                 sfc_notice(sa, "the port is not started");
1208                 sfc_notice(sa, "the new MAC address will be set on port start");
1209
1210                 goto unlock;
1211         }
1212
1213         if (encp->enc_allow_set_mac_with_installed_filters) {
1214                 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1215                 if (rc != 0) {
1216                         sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1217                         goto unlock;
1218                 }
1219
1220                 /*
1221                  * Changing the MAC address by means of MCDI request
1222                  * has no effect on received traffic, therefore
1223                  * we also need to update unicast filters
1224                  */
1225                 rc = sfc_set_rx_mode_unchecked(sa);
1226                 if (rc != 0) {
1227                         sfc_err(sa, "cannot set filter (rc = %u)", rc);
1228                         /* Rollback the old address */
1229                         (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1230                         (void)sfc_set_rx_mode_unchecked(sa);
1231                 }
1232         } else {
1233                 sfc_warn(sa, "cannot set MAC address with filters installed");
1234                 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1235                 sfc_warn(sa, "(some traffic may be dropped)");
1236
1237                 /*
1238                  * Since setting MAC address with filters installed is not
1239                  * allowed on the adapter, the new MAC address will be set
1240                  * by means of adapter restart. sfc_start() shall retrieve
1241                  * the new address from the device private data and set it.
1242                  */
1243                 sfc_stop(sa);
1244                 rc = sfc_start(sa);
1245                 if (rc != 0)
1246                         sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1247         }
1248
1249 unlock:
1250         if (rc != 0)
1251                 rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1252
1253         sfc_adapter_unlock(sa);
1254
1255         SFC_ASSERT(rc >= 0);
1256         return -rc;
1257 }
1258
1259
1260 static int
1261 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1262                 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1263 {
1264         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1265         struct sfc_port *port = &sa->port;
1266         uint8_t *mc_addrs = port->mcast_addrs;
1267         int rc;
1268         unsigned int i;
1269
1270         if (sfc_sa2shared(sa)->isolated) {
1271                 sfc_err(sa, "isolated mode is active on the port");
1272                 sfc_err(sa, "will not set multicast address list");
1273                 return -ENOTSUP;
1274         }
1275
1276         if (mc_addrs == NULL)
1277                 return -ENOBUFS;
1278
1279         if (nb_mc_addr > port->max_mcast_addrs) {
1280                 sfc_err(sa, "too many multicast addresses: %u > %u",
1281                          nb_mc_addr, port->max_mcast_addrs);
1282                 return -EINVAL;
1283         }
1284
1285         for (i = 0; i < nb_mc_addr; ++i) {
1286                 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1287                                  EFX_MAC_ADDR_LEN);
1288                 mc_addrs += EFX_MAC_ADDR_LEN;
1289         }
1290
1291         port->nb_mcast_addrs = nb_mc_addr;
1292
1293         if (sa->state != SFC_ETHDEV_STARTED)
1294                 return 0;
1295
1296         rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1297                                         port->nb_mcast_addrs);
1298         if (rc != 0)
1299                 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1300
1301         SFC_ASSERT(rc >= 0);
1302         return -rc;
1303 }
1304
1305 /*
1306  * The function is used by the secondary process as well. It must not
1307  * use any process-local pointers from the adapter data.
1308  */
1309 static void
1310 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1311                       struct rte_eth_rxq_info *qinfo)
1312 {
1313         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1314         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1315         struct sfc_rxq_info *rxq_info;
1316
1317         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1318
1319         qinfo->mp = rxq_info->refill_mb_pool;
1320         qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1321         qinfo->conf.rx_drop_en = 1;
1322         qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1323         qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1324         if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1325                 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1326                 qinfo->scattered_rx = 1;
1327         }
1328         qinfo->nb_desc = rxq_info->entries;
1329 }
1330
1331 /*
1332  * The function is used by the secondary process as well. It must not
1333  * use any process-local pointers from the adapter data.
1334  */
1335 static void
1336 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1337                       struct rte_eth_txq_info *qinfo)
1338 {
1339         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1340         struct sfc_txq_info *txq_info;
1341
1342         SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1343
1344         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1345
1346         memset(qinfo, 0, sizeof(*qinfo));
1347
1348         qinfo->conf.offloads = txq_info->offloads;
1349         qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1350         qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1351         qinfo->nb_desc = txq_info->entries;
1352 }
1353
1354 /*
1355  * The function is used by the secondary process as well. It must not
1356  * use any process-local pointers from the adapter data.
1357  */
1358 static uint32_t
1359 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1360 {
1361         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1362         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1363         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1364         struct sfc_rxq_info *rxq_info;
1365
1366         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1367
1368         if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1369                 return 0;
1370
1371         return sap->dp_rx->qdesc_npending(rxq_info->dp);
1372 }
1373
1374 /*
1375  * The function is used by the secondary process as well. It must not
1376  * use any process-local pointers from the adapter data.
1377  */
1378 static int
1379 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1380 {
1381         struct sfc_dp_rxq *dp_rxq = queue;
1382         const struct sfc_dp_rx *dp_rx;
1383
1384         dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1385
1386         return dp_rx->qdesc_status(dp_rxq, offset);
1387 }
1388
1389 /*
1390  * The function is used by the secondary process as well. It must not
1391  * use any process-local pointers from the adapter data.
1392  */
1393 static int
1394 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1395 {
1396         struct sfc_dp_txq *dp_txq = queue;
1397         const struct sfc_dp_tx *dp_tx;
1398
1399         dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1400
1401         return dp_tx->qdesc_status(dp_txq, offset);
1402 }
1403
1404 static int
1405 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1406 {
1407         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1408         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1409         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1410         struct sfc_rxq_info *rxq_info;
1411         sfc_sw_index_t sw_index;
1412         int rc;
1413
1414         sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1415
1416         sfc_adapter_lock(sa);
1417
1418         rc = EINVAL;
1419         if (sa->state != SFC_ETHDEV_STARTED)
1420                 goto fail_not_started;
1421
1422         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1423         if (rxq_info->state != SFC_RXQ_INITIALIZED)
1424                 goto fail_not_setup;
1425
1426         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1427         rc = sfc_rx_qstart(sa, sw_index);
1428         if (rc != 0)
1429                 goto fail_rx_qstart;
1430
1431         rxq_info->deferred_started = B_TRUE;
1432
1433         sfc_adapter_unlock(sa);
1434
1435         return 0;
1436
1437 fail_rx_qstart:
1438 fail_not_setup:
1439 fail_not_started:
1440         sfc_adapter_unlock(sa);
1441         SFC_ASSERT(rc > 0);
1442         return -rc;
1443 }
1444
1445 static int
1446 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1447 {
1448         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1449         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1450         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1451         struct sfc_rxq_info *rxq_info;
1452         sfc_sw_index_t sw_index;
1453
1454         sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1455
1456         sfc_adapter_lock(sa);
1457
1458         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1459         sfc_rx_qstop(sa, sw_index);
1460
1461         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1462         rxq_info->deferred_started = B_FALSE;
1463
1464         sfc_adapter_unlock(sa);
1465
1466         return 0;
1467 }
1468
1469 static int
1470 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1471 {
1472         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1473         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1474         struct sfc_txq_info *txq_info;
1475         sfc_sw_index_t sw_index;
1476         int rc;
1477
1478         sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1479
1480         sfc_adapter_lock(sa);
1481
1482         rc = EINVAL;
1483         if (sa->state != SFC_ETHDEV_STARTED)
1484                 goto fail_not_started;
1485
1486         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1487         if (txq_info->state != SFC_TXQ_INITIALIZED)
1488                 goto fail_not_setup;
1489
1490         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1491         rc = sfc_tx_qstart(sa, sw_index);
1492         if (rc != 0)
1493                 goto fail_tx_qstart;
1494
1495         txq_info->deferred_started = B_TRUE;
1496
1497         sfc_adapter_unlock(sa);
1498         return 0;
1499
1500 fail_tx_qstart:
1501
1502 fail_not_setup:
1503 fail_not_started:
1504         sfc_adapter_unlock(sa);
1505         SFC_ASSERT(rc > 0);
1506         return -rc;
1507 }
1508
1509 static int
1510 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1511 {
1512         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1513         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1514         struct sfc_txq_info *txq_info;
1515         sfc_sw_index_t sw_index;
1516
1517         sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1518
1519         sfc_adapter_lock(sa);
1520
1521         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1522         sfc_tx_qstop(sa, sw_index);
1523
1524         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1525         txq_info->deferred_started = B_FALSE;
1526
1527         sfc_adapter_unlock(sa);
1528         return 0;
1529 }
1530
1531 static efx_tunnel_protocol_t
1532 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1533 {
1534         switch (rte_type) {
1535         case RTE_TUNNEL_TYPE_VXLAN:
1536                 return EFX_TUNNEL_PROTOCOL_VXLAN;
1537         case RTE_TUNNEL_TYPE_GENEVE:
1538                 return EFX_TUNNEL_PROTOCOL_GENEVE;
1539         default:
1540                 return EFX_TUNNEL_NPROTOS;
1541         }
1542 }
1543
1544 enum sfc_udp_tunnel_op_e {
1545         SFC_UDP_TUNNEL_ADD_PORT,
1546         SFC_UDP_TUNNEL_DEL_PORT,
1547 };
1548
1549 static int
1550 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1551                       struct rte_eth_udp_tunnel *tunnel_udp,
1552                       enum sfc_udp_tunnel_op_e op)
1553 {
1554         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1555         efx_tunnel_protocol_t tunnel_proto;
1556         int rc;
1557
1558         sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1559                      (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1560                      (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1561                      tunnel_udp->udp_port, tunnel_udp->prot_type);
1562
1563         tunnel_proto =
1564                 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1565         if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1566                 rc = ENOTSUP;
1567                 goto fail_bad_proto;
1568         }
1569
1570         sfc_adapter_lock(sa);
1571
1572         switch (op) {
1573         case SFC_UDP_TUNNEL_ADD_PORT:
1574                 rc = efx_tunnel_config_udp_add(sa->nic,
1575                                                tunnel_udp->udp_port,
1576                                                tunnel_proto);
1577                 break;
1578         case SFC_UDP_TUNNEL_DEL_PORT:
1579                 rc = efx_tunnel_config_udp_remove(sa->nic,
1580                                                   tunnel_udp->udp_port,
1581                                                   tunnel_proto);
1582                 break;
1583         default:
1584                 rc = EINVAL;
1585                 goto fail_bad_op;
1586         }
1587
1588         if (rc != 0)
1589                 goto fail_op;
1590
1591         if (sa->state == SFC_ETHDEV_STARTED) {
1592                 rc = efx_tunnel_reconfigure(sa->nic);
1593                 if (rc == EAGAIN) {
1594                         /*
1595                          * Configuration is accepted by FW and MC reboot
1596                          * is initiated to apply the changes. MC reboot
1597                          * will be handled in a usual way (MC reboot
1598                          * event on management event queue and adapter
1599                          * restart).
1600                          */
1601                         rc = 0;
1602                 } else if (rc != 0) {
1603                         goto fail_reconfigure;
1604                 }
1605         }
1606
1607         sfc_adapter_unlock(sa);
1608         return 0;
1609
1610 fail_reconfigure:
1611         /* Remove/restore entry since the change makes the trouble */
1612         switch (op) {
1613         case SFC_UDP_TUNNEL_ADD_PORT:
1614                 (void)efx_tunnel_config_udp_remove(sa->nic,
1615                                                    tunnel_udp->udp_port,
1616                                                    tunnel_proto);
1617                 break;
1618         case SFC_UDP_TUNNEL_DEL_PORT:
1619                 (void)efx_tunnel_config_udp_add(sa->nic,
1620                                                 tunnel_udp->udp_port,
1621                                                 tunnel_proto);
1622                 break;
1623         }
1624
1625 fail_op:
1626 fail_bad_op:
1627         sfc_adapter_unlock(sa);
1628
1629 fail_bad_proto:
1630         SFC_ASSERT(rc > 0);
1631         return -rc;
1632 }
1633
1634 static int
1635 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1636                             struct rte_eth_udp_tunnel *tunnel_udp)
1637 {
1638         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1639 }
1640
1641 static int
1642 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1643                             struct rte_eth_udp_tunnel *tunnel_udp)
1644 {
1645         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1646 }
1647
1648 /*
1649  * The function is used by the secondary process as well. It must not
1650  * use any process-local pointers from the adapter data.
1651  */
1652 static int
1653 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1654                           struct rte_eth_rss_conf *rss_conf)
1655 {
1656         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1657         struct sfc_rss *rss = &sas->rss;
1658
1659         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1660                 return -ENOTSUP;
1661
1662         /*
1663          * Mapping of hash configuration between RTE and EFX is not one-to-one,
1664          * hence, conversion is done here to derive a correct set of ETH_RSS
1665          * flags which corresponds to the active EFX configuration stored
1666          * locally in 'sfc_adapter' and kept up-to-date
1667          */
1668         rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1669         rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1670         if (rss_conf->rss_key != NULL)
1671                 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1672
1673         return 0;
1674 }
1675
1676 static int
1677 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1678                         struct rte_eth_rss_conf *rss_conf)
1679 {
1680         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1681         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1682         unsigned int efx_hash_types;
1683         uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1684         unsigned int n_contexts;
1685         unsigned int mode_i = 0;
1686         unsigned int key_i = 0;
1687         unsigned int i = 0;
1688         int rc = 0;
1689
1690         n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1691
1692         if (sfc_sa2shared(sa)->isolated)
1693                 return -ENOTSUP;
1694
1695         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1696                 sfc_err(sa, "RSS is not available");
1697                 return -ENOTSUP;
1698         }
1699
1700         if (rss->channels == 0) {
1701                 sfc_err(sa, "RSS is not configured");
1702                 return -EINVAL;
1703         }
1704
1705         if ((rss_conf->rss_key != NULL) &&
1706             (rss_conf->rss_key_len != sizeof(rss->key))) {
1707                 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1708                         sizeof(rss->key));
1709                 return -EINVAL;
1710         }
1711
1712         sfc_adapter_lock(sa);
1713
1714         rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1715         if (rc != 0)
1716                 goto fail_rx_hf_rte_to_efx;
1717
1718         for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1719                 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1720                                            rss->hash_alg, efx_hash_types,
1721                                            B_TRUE);
1722                 if (rc != 0)
1723                         goto fail_scale_mode_set;
1724         }
1725
1726         if (rss_conf->rss_key != NULL) {
1727                 if (sa->state == SFC_ETHDEV_STARTED) {
1728                         for (key_i = 0; key_i < n_contexts; key_i++) {
1729                                 rc = efx_rx_scale_key_set(sa->nic,
1730                                                           contexts[key_i],
1731                                                           rss_conf->rss_key,
1732                                                           sizeof(rss->key));
1733                                 if (rc != 0)
1734                                         goto fail_scale_key_set;
1735                         }
1736                 }
1737
1738                 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1739         }
1740
1741         rss->hash_types = efx_hash_types;
1742
1743         sfc_adapter_unlock(sa);
1744
1745         return 0;
1746
1747 fail_scale_key_set:
1748         for (i = 0; i < key_i; i++) {
1749                 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1750                                          sizeof(rss->key)) != 0)
1751                         sfc_err(sa, "failed to restore RSS key");
1752         }
1753
1754 fail_scale_mode_set:
1755         for (i = 0; i < mode_i; i++) {
1756                 if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1757                                           EFX_RX_HASHALG_TOEPLITZ,
1758                                           rss->hash_types, B_TRUE) != 0)
1759                         sfc_err(sa, "failed to restore RSS mode");
1760         }
1761
1762 fail_rx_hf_rte_to_efx:
1763         sfc_adapter_unlock(sa);
1764         return -rc;
1765 }
1766
1767 /*
1768  * The function is used by the secondary process as well. It must not
1769  * use any process-local pointers from the adapter data.
1770  */
1771 static int
1772 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1773                        struct rte_eth_rss_reta_entry64 *reta_conf,
1774                        uint16_t reta_size)
1775 {
1776         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1777         struct sfc_rss *rss = &sas->rss;
1778         int entry;
1779
1780         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1781                 return -ENOTSUP;
1782
1783         if (rss->channels == 0)
1784                 return -EINVAL;
1785
1786         if (reta_size != EFX_RSS_TBL_SIZE)
1787                 return -EINVAL;
1788
1789         for (entry = 0; entry < reta_size; entry++) {
1790                 int grp = entry / RTE_RETA_GROUP_SIZE;
1791                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1792
1793                 if ((reta_conf[grp].mask >> grp_idx) & 1)
1794                         reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1795         }
1796
1797         return 0;
1798 }
1799
1800 static int
1801 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1802                         struct rte_eth_rss_reta_entry64 *reta_conf,
1803                         uint16_t reta_size)
1804 {
1805         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1806         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1807         unsigned int *rss_tbl_new;
1808         uint16_t entry;
1809         int rc = 0;
1810
1811
1812         if (sfc_sa2shared(sa)->isolated)
1813                 return -ENOTSUP;
1814
1815         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1816                 sfc_err(sa, "RSS is not available");
1817                 return -ENOTSUP;
1818         }
1819
1820         if (rss->channels == 0) {
1821                 sfc_err(sa, "RSS is not configured");
1822                 return -EINVAL;
1823         }
1824
1825         if (reta_size != EFX_RSS_TBL_SIZE) {
1826                 sfc_err(sa, "RETA size is wrong (should be %u)",
1827                         EFX_RSS_TBL_SIZE);
1828                 return -EINVAL;
1829         }
1830
1831         rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1832         if (rss_tbl_new == NULL)
1833                 return -ENOMEM;
1834
1835         sfc_adapter_lock(sa);
1836
1837         rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1838
1839         for (entry = 0; entry < reta_size; entry++) {
1840                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1841                 struct rte_eth_rss_reta_entry64 *grp;
1842
1843                 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1844
1845                 if (grp->mask & (1ull << grp_idx)) {
1846                         if (grp->reta[grp_idx] >= rss->channels) {
1847                                 rc = EINVAL;
1848                                 goto bad_reta_entry;
1849                         }
1850                         rss_tbl_new[entry] = grp->reta[grp_idx];
1851                 }
1852         }
1853
1854         if (sa->state == SFC_ETHDEV_STARTED) {
1855                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1856                                           rss_tbl_new, EFX_RSS_TBL_SIZE);
1857                 if (rc != 0)
1858                         goto fail_scale_tbl_set;
1859         }
1860
1861         rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1862
1863 fail_scale_tbl_set:
1864 bad_reta_entry:
1865         sfc_adapter_unlock(sa);
1866
1867         rte_free(rss_tbl_new);
1868
1869         SFC_ASSERT(rc >= 0);
1870         return -rc;
1871 }
1872
1873 static int
1874 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1875                      const struct rte_flow_ops **ops)
1876 {
1877         *ops = &sfc_flow_ops;
1878         return 0;
1879 }
1880
1881 static int
1882 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1883 {
1884         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1885
1886         /*
1887          * If Rx datapath does not provide callback to check mempool,
1888          * all pools are supported.
1889          */
1890         if (sap->dp_rx->pool_ops_supported == NULL)
1891                 return 1;
1892
1893         return sap->dp_rx->pool_ops_supported(pool);
1894 }
1895
1896 static int
1897 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1898 {
1899         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1900         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1901         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1902         struct sfc_rxq_info *rxq_info;
1903
1904         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1905
1906         return sap->dp_rx->intr_enable(rxq_info->dp);
1907 }
1908
1909 static int
1910 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1911 {
1912         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1913         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1914         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1915         struct sfc_rxq_info *rxq_info;
1916
1917         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1918
1919         return sap->dp_rx->intr_disable(rxq_info->dp);
1920 }
1921
1922 struct sfc_mport_journal_ctx {
1923         struct sfc_adapter              *sa;
1924         uint16_t                        switch_domain_id;
1925         uint32_t                        mcdi_handle;
1926         bool                            controllers_assigned;
1927         efx_pcie_interface_t            *controllers;
1928         size_t                          nb_controllers;
1929 };
1930
1931 static int
1932 sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
1933                                efx_pcie_interface_t intf)
1934 {
1935         efx_pcie_interface_t *new_controllers;
1936         size_t i, target;
1937         size_t new_size;
1938
1939         if (ctx->controllers == NULL) {
1940                 ctx->controllers = rte_malloc("sfc_controller_mapping",
1941                                               sizeof(ctx->controllers[0]), 0);
1942                 if (ctx->controllers == NULL)
1943                         return ENOMEM;
1944
1945                 ctx->controllers[0] = intf;
1946                 ctx->nb_controllers = 1;
1947
1948                 return 0;
1949         }
1950
1951         for (i = 0; i < ctx->nb_controllers; i++) {
1952                 if (ctx->controllers[i] == intf)
1953                         return 0;
1954                 if (ctx->controllers[i] > intf)
1955                         break;
1956         }
1957         target = i;
1958
1959         ctx->nb_controllers += 1;
1960         new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
1961
1962         new_controllers = rte_realloc(ctx->controllers, new_size, 0);
1963         if (new_controllers == NULL) {
1964                 rte_free(ctx->controllers);
1965                 return ENOMEM;
1966         }
1967         ctx->controllers = new_controllers;
1968
1969         for (i = target + 1; i < ctx->nb_controllers; i++)
1970                 ctx->controllers[i] = ctx->controllers[i - 1];
1971
1972         ctx->controllers[target] = intf;
1973
1974         return 0;
1975 }
1976
1977 static efx_rc_t
1978 sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
1979                                 efx_mport_desc_t *mport)
1980 {
1981         efx_mport_sel_t ethdev_mport;
1982         int rc;
1983
1984         sfc_dbg(ctx->sa,
1985                 "processing mport id %u (controller %u pf %u vf %u)",
1986                 mport->emd_id.id, mport->emd_vnic.ev_intf,
1987                 mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
1988         efx_mae_mport_invalid(&ethdev_mport);
1989
1990         if (!ctx->controllers_assigned) {
1991                 rc = sfc_journal_ctx_add_controller(ctx,
1992                                                     mport->emd_vnic.ev_intf);
1993                 if (rc != 0)
1994                         return rc;
1995         }
1996
1997         return 0;
1998 }
1999
2000 static efx_rc_t
2001 sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
2002                              size_t mport_len)
2003 {
2004         struct sfc_mport_journal_ctx *ctx = data;
2005
2006         if (ctx == NULL || ctx->sa == NULL) {
2007                 sfc_err(ctx->sa, "received NULL context or SFC adapter");
2008                 return EINVAL;
2009         }
2010
2011         if (mport_len != sizeof(*mport)) {
2012                 sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
2013                 return EINVAL;
2014         }
2015
2016         SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
2017
2018         /*
2019          * If a zombie flag is set, it means the mport has been marked for
2020          * deletion and cannot be used for any new operations. The mport will
2021          * be destroyed completely once all references to it are released.
2022          */
2023         if (mport->emd_zombie) {
2024                 sfc_dbg(ctx->sa, "mport is a zombie, skipping");
2025                 return 0;
2026         }
2027         if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
2028                 sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
2029                 return 0;
2030         }
2031         if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
2032                 sfc_dbg(ctx->sa, "mport is not a function, skipping");
2033                 return 0;
2034         }
2035         if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
2036                 sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
2037                 return 0;
2038         }
2039
2040         return sfc_process_mport_journal_entry(ctx, mport);
2041 }
2042
2043 static int
2044 sfc_process_mport_journal(struct sfc_adapter *sa)
2045 {
2046         struct sfc_mport_journal_ctx ctx;
2047         const efx_pcie_interface_t *controllers;
2048         size_t nb_controllers;
2049         efx_rc_t efx_rc;
2050         int rc;
2051
2052         memset(&ctx, 0, sizeof(ctx));
2053         ctx.sa = sa;
2054         ctx.switch_domain_id = sa->mae.switch_domain_id;
2055
2056         efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
2057         if (efx_rc != 0) {
2058                 sfc_err(sa, "failed to get own MCDI handle");
2059                 SFC_ASSERT(efx_rc > 0);
2060                 return efx_rc;
2061         }
2062
2063         rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
2064                                                &controllers, &nb_controllers);
2065         if (rc != 0) {
2066                 sfc_err(sa, "failed to get controller mapping");
2067                 return rc;
2068         }
2069
2070         ctx.controllers_assigned = controllers != NULL;
2071         ctx.controllers = NULL;
2072         ctx.nb_controllers = 0;
2073
2074         efx_rc = efx_mae_read_mport_journal(sa->nic,
2075                                             sfc_process_mport_journal_cb, &ctx);
2076         if (efx_rc != 0) {
2077                 sfc_err(sa, "failed to process MAE mport journal");
2078                 SFC_ASSERT(efx_rc > 0);
2079                 return efx_rc;
2080         }
2081
2082         if (controllers == NULL) {
2083                 rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
2084                                                            ctx.controllers,
2085                                                            ctx.nb_controllers);
2086                 if (rc != 0)
2087                         return rc;
2088         }
2089
2090         return 0;
2091 }
2092
2093 static const struct eth_dev_ops sfc_eth_dev_ops = {
2094         .dev_configure                  = sfc_dev_configure,
2095         .dev_start                      = sfc_dev_start,
2096         .dev_stop                       = sfc_dev_stop,
2097         .dev_set_link_up                = sfc_dev_set_link_up,
2098         .dev_set_link_down              = sfc_dev_set_link_down,
2099         .dev_close                      = sfc_dev_close,
2100         .promiscuous_enable             = sfc_dev_promisc_enable,
2101         .promiscuous_disable            = sfc_dev_promisc_disable,
2102         .allmulticast_enable            = sfc_dev_allmulti_enable,
2103         .allmulticast_disable           = sfc_dev_allmulti_disable,
2104         .link_update                    = sfc_dev_link_update,
2105         .stats_get                      = sfc_stats_get,
2106         .stats_reset                    = sfc_stats_reset,
2107         .xstats_get                     = sfc_xstats_get,
2108         .xstats_reset                   = sfc_stats_reset,
2109         .xstats_get_names               = sfc_xstats_get_names,
2110         .dev_infos_get                  = sfc_dev_infos_get,
2111         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
2112         .mtu_set                        = sfc_dev_set_mtu,
2113         .rx_queue_start                 = sfc_rx_queue_start,
2114         .rx_queue_stop                  = sfc_rx_queue_stop,
2115         .tx_queue_start                 = sfc_tx_queue_start,
2116         .tx_queue_stop                  = sfc_tx_queue_stop,
2117         .rx_queue_setup                 = sfc_rx_queue_setup,
2118         .rx_queue_release               = sfc_rx_queue_release,
2119         .rx_queue_intr_enable           = sfc_rx_queue_intr_enable,
2120         .rx_queue_intr_disable          = sfc_rx_queue_intr_disable,
2121         .tx_queue_setup                 = sfc_tx_queue_setup,
2122         .tx_queue_release               = sfc_tx_queue_release,
2123         .flow_ctrl_get                  = sfc_flow_ctrl_get,
2124         .flow_ctrl_set                  = sfc_flow_ctrl_set,
2125         .mac_addr_set                   = sfc_mac_addr_set,
2126         .udp_tunnel_port_add            = sfc_dev_udp_tunnel_port_add,
2127         .udp_tunnel_port_del            = sfc_dev_udp_tunnel_port_del,
2128         .reta_update                    = sfc_dev_rss_reta_update,
2129         .reta_query                     = sfc_dev_rss_reta_query,
2130         .rss_hash_update                = sfc_dev_rss_hash_update,
2131         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
2132         .flow_ops_get                   = sfc_dev_flow_ops_get,
2133         .set_mc_addr_list               = sfc_set_mc_addr_list,
2134         .rxq_info_get                   = sfc_rx_queue_info_get,
2135         .txq_info_get                   = sfc_tx_queue_info_get,
2136         .fw_version_get                 = sfc_fw_version_get,
2137         .xstats_get_by_id               = sfc_xstats_get_by_id,
2138         .xstats_get_names_by_id         = sfc_xstats_get_names_by_id,
2139         .pool_ops_supported             = sfc_pool_ops_supported,
2140 };
2141
2142 struct sfc_ethdev_init_data {
2143         uint16_t                nb_representors;
2144 };
2145
2146 /**
2147  * Duplicate a string in potentially shared memory required for
2148  * multi-process support.
2149  *
2150  * strdup() allocates from process-local heap/memory.
2151  */
2152 static char *
2153 sfc_strdup(const char *str)
2154 {
2155         size_t size;
2156         char *copy;
2157
2158         if (str == NULL)
2159                 return NULL;
2160
2161         size = strlen(str) + 1;
2162         copy = rte_malloc(__func__, size, 0);
2163         if (copy != NULL)
2164                 rte_memcpy(copy, str, size);
2165
2166         return copy;
2167 }
2168
2169 static int
2170 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
2171 {
2172         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2173         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2174         const struct sfc_dp_rx *dp_rx;
2175         const struct sfc_dp_tx *dp_tx;
2176         const efx_nic_cfg_t *encp;
2177         unsigned int avail_caps = 0;
2178         const char *rx_name = NULL;
2179         const char *tx_name = NULL;
2180         int rc;
2181
2182         switch (sa->family) {
2183         case EFX_FAMILY_HUNTINGTON:
2184         case EFX_FAMILY_MEDFORD:
2185         case EFX_FAMILY_MEDFORD2:
2186                 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2187                 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2188                 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2189                 break;
2190         case EFX_FAMILY_RIVERHEAD:
2191                 avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2192                 break;
2193         default:
2194                 break;
2195         }
2196
2197         encp = efx_nic_cfg_get(sa->nic);
2198         if (encp->enc_rx_es_super_buffer_supported)
2199                 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2200
2201         rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2202                                 sfc_kvarg_string_handler, &rx_name);
2203         if (rc != 0)
2204                 goto fail_kvarg_rx_datapath;
2205
2206         if (rx_name != NULL) {
2207                 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2208                 if (dp_rx == NULL) {
2209                         sfc_err(sa, "Rx datapath %s not found", rx_name);
2210                         rc = ENOENT;
2211                         goto fail_dp_rx;
2212                 }
2213                 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2214                         sfc_err(sa,
2215                                 "Insufficient Hw/FW capabilities to use Rx datapath %s",
2216                                 rx_name);
2217                         rc = EINVAL;
2218                         goto fail_dp_rx_caps;
2219                 }
2220         } else {
2221                 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2222                 if (dp_rx == NULL) {
2223                         sfc_err(sa, "Rx datapath by caps %#x not found",
2224                                 avail_caps);
2225                         rc = ENOENT;
2226                         goto fail_dp_rx;
2227                 }
2228         }
2229
2230         sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2231         if (sas->dp_rx_name == NULL) {
2232                 rc = ENOMEM;
2233                 goto fail_dp_rx_name;
2234         }
2235
2236         sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2237
2238         rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2239                                 sfc_kvarg_string_handler, &tx_name);
2240         if (rc != 0)
2241                 goto fail_kvarg_tx_datapath;
2242
2243         if (tx_name != NULL) {
2244                 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2245                 if (dp_tx == NULL) {
2246                         sfc_err(sa, "Tx datapath %s not found", tx_name);
2247                         rc = ENOENT;
2248                         goto fail_dp_tx;
2249                 }
2250                 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2251                         sfc_err(sa,
2252                                 "Insufficient Hw/FW capabilities to use Tx datapath %s",
2253                                 tx_name);
2254                         rc = EINVAL;
2255                         goto fail_dp_tx_caps;
2256                 }
2257         } else {
2258                 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2259                 if (dp_tx == NULL) {
2260                         sfc_err(sa, "Tx datapath by caps %#x not found",
2261                                 avail_caps);
2262                         rc = ENOENT;
2263                         goto fail_dp_tx;
2264                 }
2265         }
2266
2267         sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2268         if (sas->dp_tx_name == NULL) {
2269                 rc = ENOMEM;
2270                 goto fail_dp_tx_name;
2271         }
2272
2273         sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2274
2275         sa->priv.dp_rx = dp_rx;
2276         sa->priv.dp_tx = dp_tx;
2277
2278         dev->rx_pkt_burst = dp_rx->pkt_burst;
2279         dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2280         dev->tx_pkt_burst = dp_tx->pkt_burst;
2281
2282         dev->rx_queue_count = sfc_rx_queue_count;
2283         dev->rx_descriptor_status = sfc_rx_descriptor_status;
2284         dev->tx_descriptor_status = sfc_tx_descriptor_status;
2285         dev->dev_ops = &sfc_eth_dev_ops;
2286
2287         return 0;
2288
2289 fail_dp_tx_name:
2290 fail_dp_tx_caps:
2291 fail_dp_tx:
2292 fail_kvarg_tx_datapath:
2293         rte_free(sas->dp_rx_name);
2294         sas->dp_rx_name = NULL;
2295
2296 fail_dp_rx_name:
2297 fail_dp_rx_caps:
2298 fail_dp_rx:
2299 fail_kvarg_rx_datapath:
2300         return rc;
2301 }
2302
2303 static void
2304 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2305 {
2306         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2307         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2308
2309         dev->dev_ops = NULL;
2310         dev->tx_pkt_prepare = NULL;
2311         dev->rx_pkt_burst = NULL;
2312         dev->tx_pkt_burst = NULL;
2313
2314         rte_free(sas->dp_tx_name);
2315         sas->dp_tx_name = NULL;
2316         sa->priv.dp_tx = NULL;
2317
2318         rte_free(sas->dp_rx_name);
2319         sas->dp_rx_name = NULL;
2320         sa->priv.dp_rx = NULL;
2321 }
2322
2323 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2324         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
2325         .reta_query                     = sfc_dev_rss_reta_query,
2326         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
2327         .rxq_info_get                   = sfc_rx_queue_info_get,
2328         .txq_info_get                   = sfc_tx_queue_info_get,
2329 };
2330
2331 static int
2332 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2333 {
2334         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2335         struct sfc_adapter_priv *sap;
2336         const struct sfc_dp_rx *dp_rx;
2337         const struct sfc_dp_tx *dp_tx;
2338         int rc;
2339
2340         /*
2341          * Allocate process private data from heap, since it should not
2342          * be located in shared memory allocated using rte_malloc() API.
2343          */
2344         sap = calloc(1, sizeof(*sap));
2345         if (sap == NULL) {
2346                 rc = ENOMEM;
2347                 goto fail_alloc_priv;
2348         }
2349
2350         sap->logtype_main = logtype_main;
2351
2352         dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2353         if (dp_rx == NULL) {
2354                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2355                         "cannot find %s Rx datapath", sas->dp_rx_name);
2356                 rc = ENOENT;
2357                 goto fail_dp_rx;
2358         }
2359         if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2360                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2361                         "%s Rx datapath does not support multi-process",
2362                         sas->dp_rx_name);
2363                 rc = EINVAL;
2364                 goto fail_dp_rx_multi_process;
2365         }
2366
2367         dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2368         if (dp_tx == NULL) {
2369                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2370                         "cannot find %s Tx datapath", sas->dp_tx_name);
2371                 rc = ENOENT;
2372                 goto fail_dp_tx;
2373         }
2374         if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2375                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2376                         "%s Tx datapath does not support multi-process",
2377                         sas->dp_tx_name);
2378                 rc = EINVAL;
2379                 goto fail_dp_tx_multi_process;
2380         }
2381
2382         sap->dp_rx = dp_rx;
2383         sap->dp_tx = dp_tx;
2384
2385         dev->process_private = sap;
2386         dev->rx_pkt_burst = dp_rx->pkt_burst;
2387         dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2388         dev->tx_pkt_burst = dp_tx->pkt_burst;
2389         dev->rx_queue_count = sfc_rx_queue_count;
2390         dev->rx_descriptor_status = sfc_rx_descriptor_status;
2391         dev->tx_descriptor_status = sfc_tx_descriptor_status;
2392         dev->dev_ops = &sfc_eth_dev_secondary_ops;
2393
2394         return 0;
2395
2396 fail_dp_tx_multi_process:
2397 fail_dp_tx:
2398 fail_dp_rx_multi_process:
2399 fail_dp_rx:
2400         free(sap);
2401
2402 fail_alloc_priv:
2403         return rc;
2404 }
2405
2406 static void
2407 sfc_register_dp(void)
2408 {
2409         /* Register once */
2410         if (TAILQ_EMPTY(&sfc_dp_head)) {
2411                 /* Prefer EF10 datapath */
2412                 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2413                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2414                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2415                 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2416
2417                 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2418                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2419                 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2420                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2421         }
2422 }
2423
2424 static int
2425 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2426 {
2427         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2428         const char *switch_mode = NULL;
2429         int rc;
2430
2431         sfc_log_init(sa, "entry");
2432
2433         rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2434                                 sfc_kvarg_string_handler, &switch_mode);
2435         if (rc != 0)
2436                 goto fail_kvargs;
2437
2438         if (switch_mode == NULL) {
2439                 sa->switchdev = encp->enc_mae_supported &&
2440                                 (!encp->enc_datapath_cap_evb ||
2441                                  has_representors);
2442         } else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2443                 sa->switchdev = false;
2444         } else if (strcasecmp(switch_mode,
2445                               SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2446                 sa->switchdev = true;
2447         } else {
2448                 sfc_err(sa, "invalid switch mode device argument '%s'",
2449                         switch_mode);
2450                 rc = EINVAL;
2451                 goto fail_mode;
2452         }
2453
2454         sfc_log_init(sa, "done");
2455
2456         return 0;
2457
2458 fail_mode:
2459 fail_kvargs:
2460         sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2461
2462         return rc;
2463 }
2464
2465 static int
2466 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2467 {
2468         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2469         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2470         struct sfc_ethdev_init_data *init_data = init_params;
2471         uint32_t logtype_main;
2472         struct sfc_adapter *sa;
2473         int rc;
2474         const efx_nic_cfg_t *encp;
2475         const struct rte_ether_addr *from;
2476         int ret;
2477
2478         if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2479                         SFC_EFX_DEV_CLASS_NET) {
2480                 SFC_GENERIC_LOG(DEBUG,
2481                         "Incompatible device class: skip probing, should be probed by other sfc driver.");
2482                 return 1;
2483         }
2484
2485         rc = sfc_dp_mport_register();
2486         if (rc != 0)
2487                 return rc;
2488
2489         sfc_register_dp();
2490
2491         logtype_main = sfc_register_logtype(&pci_dev->addr,
2492                                             SFC_LOGTYPE_MAIN_STR,
2493                                             RTE_LOG_NOTICE);
2494
2495         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2496                 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2497
2498         /* Required for logging */
2499         ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2500                         "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2501                         pci_dev->addr.domain, pci_dev->addr.bus,
2502                         pci_dev->addr.devid, pci_dev->addr.function,
2503                         dev->data->port_id);
2504         if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2505                 SFC_GENERIC_LOG(ERR,
2506                         "reserved log prefix is too short for " PCI_PRI_FMT,
2507                         pci_dev->addr.domain, pci_dev->addr.bus,
2508                         pci_dev->addr.devid, pci_dev->addr.function);
2509                 return -EINVAL;
2510         }
2511         sas->pci_addr = pci_dev->addr;
2512         sas->port_id = dev->data->port_id;
2513
2514         /*
2515          * Allocate process private data from heap, since it should not
2516          * be located in shared memory allocated using rte_malloc() API.
2517          */
2518         sa = calloc(1, sizeof(*sa));
2519         if (sa == NULL) {
2520                 rc = ENOMEM;
2521                 goto fail_alloc_sa;
2522         }
2523
2524         dev->process_private = sa;
2525
2526         /* Required for logging */
2527         sa->priv.shared = sas;
2528         sa->priv.logtype_main = logtype_main;
2529
2530         sa->eth_dev = dev;
2531
2532         /* Copy PCI device info to the dev->data */
2533         rte_eth_copy_pci_info(dev, pci_dev);
2534         dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2535         dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2536
2537         rc = sfc_kvargs_parse(sa);
2538         if (rc != 0)
2539                 goto fail_kvargs_parse;
2540
2541         sfc_log_init(sa, "entry");
2542
2543         dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2544         if (dev->data->mac_addrs == NULL) {
2545                 rc = ENOMEM;
2546                 goto fail_mac_addrs;
2547         }
2548
2549         sfc_adapter_lock_init(sa);
2550         sfc_adapter_lock(sa);
2551
2552         sfc_log_init(sa, "probing");
2553         rc = sfc_probe(sa);
2554         if (rc != 0)
2555                 goto fail_probe;
2556
2557         /*
2558          * Selecting a default switch mode requires the NIC to be probed and
2559          * to have its capabilities filled in.
2560          */
2561         rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2562         if (rc != 0)
2563                 goto fail_switch_mode;
2564
2565         sfc_log_init(sa, "set device ops");
2566         rc = sfc_eth_dev_set_ops(dev);
2567         if (rc != 0)
2568                 goto fail_set_ops;
2569
2570         sfc_log_init(sa, "attaching");
2571         rc = sfc_attach(sa);
2572         if (rc != 0)
2573                 goto fail_attach;
2574
2575         if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_SUPPORTED) {
2576                 sfc_err(sa,
2577                         "failed to enable switchdev mode without MAE support");
2578                 rc = ENOTSUP;
2579                 goto fail_switchdev_no_mae;
2580         }
2581
2582         encp = efx_nic_cfg_get(sa->nic);
2583
2584         /*
2585          * The arguments are really reverse order in comparison to
2586          * Linux kernel. Copy from NIC config to Ethernet device data.
2587          */
2588         from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2589         rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2590
2591         sfc_adapter_unlock(sa);
2592
2593         sfc_log_init(sa, "done");
2594         return 0;
2595
2596 fail_switchdev_no_mae:
2597         sfc_detach(sa);
2598
2599 fail_attach:
2600         sfc_eth_dev_clear_ops(dev);
2601
2602 fail_set_ops:
2603 fail_switch_mode:
2604         sfc_unprobe(sa);
2605
2606 fail_probe:
2607         sfc_adapter_unlock(sa);
2608         sfc_adapter_lock_fini(sa);
2609         rte_free(dev->data->mac_addrs);
2610         dev->data->mac_addrs = NULL;
2611
2612 fail_mac_addrs:
2613         sfc_kvargs_cleanup(sa);
2614
2615 fail_kvargs_parse:
2616         sfc_log_init(sa, "failed %d", rc);
2617         dev->process_private = NULL;
2618         free(sa);
2619
2620 fail_alloc_sa:
2621         SFC_ASSERT(rc > 0);
2622         return -rc;
2623 }
2624
2625 static int
2626 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2627 {
2628         sfc_dev_close(dev);
2629
2630         return 0;
2631 }
2632
2633 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2634         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2635         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2636         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2637         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2638         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2639         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2640         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2641         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2642         { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2643         { .vendor_id = 0 /* sentinel */ }
2644 };
2645
2646 static int
2647 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2648 {
2649         struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2650         int rc;
2651
2652         if (args != NULL) {
2653                 rc = rte_eth_devargs_parse(args, &eth_da);
2654                 if (rc != 0) {
2655                         SFC_GENERIC_LOG(ERR,
2656                                         "Failed to parse generic devargs '%s'",
2657                                         args);
2658                         return rc;
2659                 }
2660         }
2661
2662         *devargs = eth_da;
2663
2664         return 0;
2665 }
2666
2667 static int
2668 sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
2669                            struct sfc_ethdev_init_data *init_data,
2670                            struct rte_eth_dev **devp,
2671                            bool *dev_created)
2672 {
2673         struct rte_eth_dev *dev;
2674         bool created = false;
2675         int rc;
2676
2677         dev = rte_eth_dev_allocated(pci_dev->device.name);
2678         if (dev == NULL) {
2679                 rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2680                                         sizeof(struct sfc_adapter_shared),
2681                                         eth_dev_pci_specific_init, pci_dev,
2682                                         sfc_eth_dev_init, init_data);
2683                 if (rc != 0) {
2684                         SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2685                                         pci_dev->device.name);
2686                         return rc;
2687                 }
2688
2689                 created = true;
2690
2691                 dev = rte_eth_dev_allocated(pci_dev->device.name);
2692                 if (dev == NULL) {
2693                         SFC_GENERIC_LOG(ERR,
2694                                 "Failed to find allocated sfc ethdev '%s'",
2695                                 pci_dev->device.name);
2696                         return -ENODEV;
2697                 }
2698         }
2699
2700         *devp = dev;
2701         *dev_created = created;
2702
2703         return 0;
2704 }
2705
2706 static int
2707 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
2708                                 const struct rte_eth_devargs *eth_da)
2709 {
2710         struct sfc_adapter *sa;
2711         unsigned int i;
2712         int rc;
2713
2714         if (eth_da->nb_representor_ports == 0)
2715                 return 0;
2716
2717         sa = sfc_adapter_by_eth_dev(dev);
2718
2719         if (!sa->switchdev) {
2720                 sfc_err(sa, "cannot create representors in non-switchdev mode");
2721                 return -EINVAL;
2722         }
2723
2724         if (!sfc_repr_available(sfc_sa2shared(sa))) {
2725                 sfc_err(sa, "cannot create representors: unsupported");
2726
2727                 return -ENOTSUP;
2728         }
2729
2730         /*
2731          * This is needed to construct the DPDK controller -> EFX interface
2732          * mapping.
2733          */
2734         sfc_adapter_lock(sa);
2735         rc = sfc_process_mport_journal(sa);
2736         sfc_adapter_unlock(sa);
2737         if (rc != 0) {
2738                 SFC_ASSERT(rc > 0);
2739                 return -rc;
2740         }
2741
2742         for (i = 0; i < eth_da->nb_representor_ports; ++i) {
2743                 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2744                 struct sfc_repr_entity_info entity;
2745                 efx_mport_sel_t mport_sel;
2746
2747                 rc = efx_mae_mport_by_pcie_function(encp->enc_pf,
2748                                 eth_da->representor_ports[i], &mport_sel);
2749                 if (rc != 0) {
2750                         sfc_err(sa,
2751                                 "failed to get representor %u m-port: %s - ignore",
2752                                 eth_da->representor_ports[i],
2753                                 rte_strerror(-rc));
2754                         continue;
2755                 }
2756
2757                 memset(&entity, 0, sizeof(entity));
2758                 entity.type = eth_da->type;
2759                 entity.intf = encp->enc_intf;
2760                 entity.pf = encp->enc_pf;
2761                 entity.vf = eth_da->representor_ports[i];
2762
2763                 rc = sfc_repr_create(dev, &entity, sa->mae.switch_domain_id,
2764                                      &mport_sel);
2765                 if (rc != 0) {
2766                         sfc_err(sa, "cannot create representor %u: %s - ignore",
2767                                 eth_da->representor_ports[i],
2768                                 rte_strerror(-rc));
2769                 }
2770         }
2771
2772         return 0;
2773 }
2774
2775 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2776         struct rte_pci_device *pci_dev)
2777 {
2778         struct sfc_ethdev_init_data init_data;
2779         struct rte_eth_devargs eth_da;
2780         struct rte_eth_dev *dev;
2781         bool dev_created;
2782         int rc;
2783
2784         if (pci_dev->device.devargs != NULL) {
2785                 rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
2786                                            &eth_da);
2787                 if (rc != 0)
2788                         return rc;
2789         } else {
2790                 memset(&eth_da, 0, sizeof(eth_da));
2791         }
2792
2793         init_data.nb_representors = eth_da.nb_representor_ports;
2794
2795         if (eth_da.nb_representor_ports > 0 &&
2796             rte_eal_process_type() != RTE_PROC_PRIMARY) {
2797                 SFC_GENERIC_LOG(ERR,
2798                         "Create representors from secondary process not supported, dev '%s'",
2799                         pci_dev->device.name);
2800                 return -ENOTSUP;
2801         }
2802
2803         /*
2804          * Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
2805          * if it does not already exist. Re-probing an existing device is
2806          * expected to allow additional representors to be configured.
2807          */
2808         rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
2809                                         &dev_created);
2810         if (rc != 0)
2811                 return rc;
2812
2813         rc = sfc_eth_dev_create_representors(dev, &eth_da);
2814         if (rc != 0) {
2815                 if (dev_created)
2816                         (void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
2817
2818                 return rc;
2819         }
2820
2821         return 0;
2822 }
2823
2824 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2825 {
2826         return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2827 }
2828
2829 static struct rte_pci_driver sfc_efx_pmd = {
2830         .id_table = pci_id_sfc_efx_map,
2831         .drv_flags =
2832                 RTE_PCI_DRV_INTR_LSC |
2833                 RTE_PCI_DRV_NEED_MAPPING |
2834                 RTE_PCI_DRV_PROBE_AGAIN,
2835         .probe = sfc_eth_dev_pci_probe,
2836         .remove = sfc_eth_dev_pci_remove,
2837 };
2838
2839 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2840 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2841 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2842 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2843         SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
2844         SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2845         SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2846         SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2847         SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2848         SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2849         SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2850
2851 RTE_INIT(sfc_driver_register_logtype)
2852 {
2853         int ret;
2854
2855         ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2856                                                    RTE_LOG_NOTICE);
2857         sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2858 }