1 /* SPDX-License-Identifier: BSD-3-Clause
3 * Copyright(c) 2019-2021 Xilinx, Inc.
4 * Copyright(c) 2017-2019 Solarflare Communications Inc.
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <ethdev_driver.h>
14 #include <rte_ether.h>
16 #include <rte_flow_driver.h>
21 #include "sfc_debug.h"
23 #include "sfc_filter.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_mae_counter.h"
29 struct sfc_flow_ops_by_spec {
30 sfc_flow_parse_cb_t *parse;
31 sfc_flow_verify_cb_t *verify;
32 sfc_flow_cleanup_cb_t *cleanup;
33 sfc_flow_insert_cb_t *insert;
34 sfc_flow_remove_cb_t *remove;
35 sfc_flow_query_cb_t *query;
38 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
39 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
40 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
41 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
43 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
44 .parse = sfc_flow_parse_rte_to_filter,
47 .insert = sfc_flow_filter_insert,
48 .remove = sfc_flow_filter_remove,
52 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
53 .parse = sfc_flow_parse_rte_to_mae,
54 .verify = sfc_mae_flow_verify,
55 .cleanup = sfc_mae_flow_cleanup,
56 .insert = sfc_mae_flow_insert,
57 .remove = sfc_mae_flow_remove,
58 .query = sfc_mae_flow_query,
61 static const struct sfc_flow_ops_by_spec *
62 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
64 struct sfc_flow_spec *spec = &flow->spec;
65 const struct sfc_flow_ops_by_spec *ops = NULL;
68 case SFC_FLOW_SPEC_FILTER:
69 ops = &sfc_flow_ops_filter;
71 case SFC_FLOW_SPEC_MAE:
72 ops = &sfc_flow_ops_mae;
83 * Currently, filter-based (VNIC) flow API is implemented in such a manner
84 * that each flow rule is converted to one or more hardware filters.
85 * All elements of flow rule (attributes, pattern items, actions)
86 * correspond to one or more fields in the efx_filter_spec_s structure
87 * that is responsible for the hardware filter.
88 * If some required field is unset in the flow rule, then a handful
89 * of filter copies will be created to cover all possible values
93 static sfc_flow_item_parse sfc_flow_parse_void;
94 static sfc_flow_item_parse sfc_flow_parse_eth;
95 static sfc_flow_item_parse sfc_flow_parse_vlan;
96 static sfc_flow_item_parse sfc_flow_parse_ipv4;
97 static sfc_flow_item_parse sfc_flow_parse_ipv6;
98 static sfc_flow_item_parse sfc_flow_parse_tcp;
99 static sfc_flow_item_parse sfc_flow_parse_udp;
100 static sfc_flow_item_parse sfc_flow_parse_vxlan;
101 static sfc_flow_item_parse sfc_flow_parse_geneve;
102 static sfc_flow_item_parse sfc_flow_parse_nvgre;
103 static sfc_flow_item_parse sfc_flow_parse_pppoex;
105 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
106 unsigned int filters_count_for_one_val,
107 struct rte_flow_error *error);
109 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
110 efx_filter_spec_t *spec,
111 struct sfc_filter *filter);
113 struct sfc_flow_copy_flag {
114 /* EFX filter specification match flag */
115 efx_filter_match_flags_t flag;
116 /* Number of values of corresponding field */
117 unsigned int vals_count;
118 /* Function to set values in specifications */
119 sfc_flow_spec_set_vals *set_vals;
121 * Function to check that the specification is suitable
122 * for adding this match flag
124 sfc_flow_spec_check *spec_check;
127 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
128 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
129 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
130 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
131 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
132 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
133 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
136 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
141 for (i = 0; i < size; i++)
144 return (sum == 0) ? B_TRUE : B_FALSE;
148 * Validate item and prepare structures spec and mask for parsing
151 sfc_flow_parse_init(const struct rte_flow_item *item,
152 const void **spec_ptr,
153 const void **mask_ptr,
154 const void *supp_mask,
155 const void *def_mask,
157 struct rte_flow_error *error)
166 rte_flow_error_set(error, EINVAL,
167 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
172 if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
173 rte_flow_error_set(error, EINVAL,
174 RTE_FLOW_ERROR_TYPE_ITEM, item,
175 "Mask or last is set without spec");
180 * If "mask" is not set, default mask is used,
181 * but if default mask is NULL, "mask" should be set
183 if (item->mask == NULL) {
184 if (def_mask == NULL) {
185 rte_flow_error_set(error, EINVAL,
186 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
187 "Mask should be specified");
203 * If field values in "last" are either 0 or equal to the corresponding
204 * values in "spec" then they are ignored
207 !sfc_flow_is_zero(last, size) &&
208 memcmp(last, spec, size) != 0) {
209 rte_flow_error_set(error, ENOTSUP,
210 RTE_FLOW_ERROR_TYPE_ITEM, item,
211 "Ranging is not supported");
215 if (supp_mask == NULL) {
216 rte_flow_error_set(error, EINVAL,
217 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
218 "Supported mask for item should be specified");
222 /* Check that mask does not ask for more match than supp_mask */
223 for (i = 0; i < size; i++) {
224 supp = ((const uint8_t *)supp_mask)[i];
226 if (~supp & mask[i]) {
227 rte_flow_error_set(error, ENOTSUP,
228 RTE_FLOW_ERROR_TYPE_ITEM, item,
229 "Item's field is not supported");
242 * Masking is not supported, so masks in items should be either
243 * full or empty (zeroed) and set only for supported fields which
244 * are specified in the supp_mask.
248 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
249 __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
250 __rte_unused struct rte_flow_error *error)
256 * Convert Ethernet item to EFX filter specification.
259 * Item specification. Outer frame specification may only comprise
260 * source/destination addresses and Ethertype field.
261 * Inner frame specification may contain destination address only.
262 * There is support for individual/group mask as well as for empty and full.
263 * If the mask is NULL, default mask will be used. Ranging is not supported.
264 * @param efx_spec[in, out]
265 * EFX filter specification to update.
267 * Perform verbose error reporting if not NULL.
270 sfc_flow_parse_eth(const struct rte_flow_item *item,
271 struct sfc_flow_parse_ctx *parse_ctx,
272 struct rte_flow_error *error)
275 efx_filter_spec_t *efx_spec = parse_ctx->filter;
276 const struct rte_flow_item_eth *spec = NULL;
277 const struct rte_flow_item_eth *mask = NULL;
278 const struct rte_flow_item_eth supp_mask = {
279 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
283 const struct rte_flow_item_eth ifrm_supp_mask = {
284 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
286 const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
287 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
289 const struct rte_flow_item_eth *supp_mask_p;
290 const struct rte_flow_item_eth *def_mask_p;
291 uint8_t *loc_mac = NULL;
292 boolean_t is_ifrm = (efx_spec->efs_encap_type !=
293 EFX_TUNNEL_PROTOCOL_NONE);
296 supp_mask_p = &ifrm_supp_mask;
297 def_mask_p = &ifrm_supp_mask;
298 loc_mac = efx_spec->efs_ifrm_loc_mac;
300 supp_mask_p = &supp_mask;
301 def_mask_p = &rte_flow_item_eth_mask;
302 loc_mac = efx_spec->efs_loc_mac;
305 rc = sfc_flow_parse_init(item,
306 (const void **)&spec,
307 (const void **)&mask,
308 supp_mask_p, def_mask_p,
309 sizeof(struct rte_flow_item_eth),
314 /* If "spec" is not set, could be any Ethernet */
318 if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
319 efx_spec->efs_match_flags |= is_ifrm ?
320 EFX_FILTER_MATCH_IFRM_LOC_MAC :
321 EFX_FILTER_MATCH_LOC_MAC;
322 rte_memcpy(loc_mac, spec->dst.addr_bytes,
324 } else if (memcmp(mask->dst.addr_bytes, ig_mask,
325 EFX_MAC_ADDR_LEN) == 0) {
326 if (rte_is_unicast_ether_addr(&spec->dst))
327 efx_spec->efs_match_flags |= is_ifrm ?
328 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
329 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
331 efx_spec->efs_match_flags |= is_ifrm ?
332 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
333 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
334 } else if (!rte_is_zero_ether_addr(&mask->dst)) {
339 * ifrm_supp_mask ensures that the source address and
340 * ethertype masks are equal to zero in inner frame,
341 * so these fields are filled in only for the outer frame
343 if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
344 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
345 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
347 } else if (!rte_is_zero_ether_addr(&mask->src)) {
352 * Ether type is in big-endian byte order in item and
353 * in little-endian in efx_spec, so byte swap is used
355 if (mask->type == supp_mask.type) {
356 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
357 efx_spec->efs_ether_type = rte_bswap16(spec->type);
358 } else if (mask->type != 0) {
365 rte_flow_error_set(error, EINVAL,
366 RTE_FLOW_ERROR_TYPE_ITEM, item,
367 "Bad mask in the ETH pattern item");
372 * Convert VLAN item to EFX filter specification.
375 * Item specification. Only VID field is supported.
376 * The mask can not be NULL. Ranging is not supported.
377 * @param efx_spec[in, out]
378 * EFX filter specification to update.
380 * Perform verbose error reporting if not NULL.
383 sfc_flow_parse_vlan(const struct rte_flow_item *item,
384 struct sfc_flow_parse_ctx *parse_ctx,
385 struct rte_flow_error *error)
389 efx_filter_spec_t *efx_spec = parse_ctx->filter;
390 const struct rte_flow_item_vlan *spec = NULL;
391 const struct rte_flow_item_vlan *mask = NULL;
392 const struct rte_flow_item_vlan supp_mask = {
393 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
394 .inner_type = RTE_BE16(0xffff),
397 rc = sfc_flow_parse_init(item,
398 (const void **)&spec,
399 (const void **)&mask,
402 sizeof(struct rte_flow_item_vlan),
408 * VID is in big-endian byte order in item and
409 * in little-endian in efx_spec, so byte swap is used.
410 * If two VLAN items are included, the first matches
411 * the outer tag and the next matches the inner tag.
413 if (mask->tci == supp_mask.tci) {
414 /* Apply mask to keep VID only */
415 vid = rte_bswap16(spec->tci & mask->tci);
417 if (!(efx_spec->efs_match_flags &
418 EFX_FILTER_MATCH_OUTER_VID)) {
419 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
420 efx_spec->efs_outer_vid = vid;
421 } else if (!(efx_spec->efs_match_flags &
422 EFX_FILTER_MATCH_INNER_VID)) {
423 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
424 efx_spec->efs_inner_vid = vid;
426 rte_flow_error_set(error, EINVAL,
427 RTE_FLOW_ERROR_TYPE_ITEM, item,
428 "More than two VLAN items");
432 rte_flow_error_set(error, EINVAL,
433 RTE_FLOW_ERROR_TYPE_ITEM, item,
434 "VLAN ID in TCI match is required");
438 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
439 rte_flow_error_set(error, EINVAL,
440 RTE_FLOW_ERROR_TYPE_ITEM, item,
441 "VLAN TPID matching is not supported");
444 if (mask->inner_type == supp_mask.inner_type) {
445 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
446 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
447 } else if (mask->inner_type) {
448 rte_flow_error_set(error, EINVAL,
449 RTE_FLOW_ERROR_TYPE_ITEM, item,
450 "Bad mask for VLAN inner_type");
458 * Convert IPv4 item to EFX filter specification.
461 * Item specification. Only source and destination addresses and
462 * protocol fields are supported. If the mask is NULL, default
463 * mask will be used. Ranging is not supported.
464 * @param efx_spec[in, out]
465 * EFX filter specification to update.
467 * Perform verbose error reporting if not NULL.
470 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
471 struct sfc_flow_parse_ctx *parse_ctx,
472 struct rte_flow_error *error)
475 efx_filter_spec_t *efx_spec = parse_ctx->filter;
476 const struct rte_flow_item_ipv4 *spec = NULL;
477 const struct rte_flow_item_ipv4 *mask = NULL;
478 const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
479 const struct rte_flow_item_ipv4 supp_mask = {
481 .src_addr = 0xffffffff,
482 .dst_addr = 0xffffffff,
483 .next_proto_id = 0xff,
487 rc = sfc_flow_parse_init(item,
488 (const void **)&spec,
489 (const void **)&mask,
491 &rte_flow_item_ipv4_mask,
492 sizeof(struct rte_flow_item_ipv4),
498 * Filtering by IPv4 source and destination addresses requires
499 * the appropriate ETHER_TYPE in hardware filters
501 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
502 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
503 efx_spec->efs_ether_type = ether_type_ipv4;
504 } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
505 rte_flow_error_set(error, EINVAL,
506 RTE_FLOW_ERROR_TYPE_ITEM, item,
507 "Ethertype in pattern with IPV4 item should be appropriate");
515 * IPv4 addresses are in big-endian byte order in item and in
518 if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
519 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
520 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
521 } else if (mask->hdr.src_addr != 0) {
525 if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
526 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
527 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
528 } else if (mask->hdr.dst_addr != 0) {
532 if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
533 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
534 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
535 } else if (mask->hdr.next_proto_id != 0) {
542 rte_flow_error_set(error, EINVAL,
543 RTE_FLOW_ERROR_TYPE_ITEM, item,
544 "Bad mask in the IPV4 pattern item");
549 * Convert IPv6 item to EFX filter specification.
552 * Item specification. Only source and destination addresses and
553 * next header fields are supported. If the mask is NULL, default
554 * mask will be used. Ranging is not supported.
555 * @param efx_spec[in, out]
556 * EFX filter specification to update.
558 * Perform verbose error reporting if not NULL.
561 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
562 struct sfc_flow_parse_ctx *parse_ctx,
563 struct rte_flow_error *error)
566 efx_filter_spec_t *efx_spec = parse_ctx->filter;
567 const struct rte_flow_item_ipv6 *spec = NULL;
568 const struct rte_flow_item_ipv6 *mask = NULL;
569 const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
570 const struct rte_flow_item_ipv6 supp_mask = {
572 .src_addr = { 0xff, 0xff, 0xff, 0xff,
573 0xff, 0xff, 0xff, 0xff,
574 0xff, 0xff, 0xff, 0xff,
575 0xff, 0xff, 0xff, 0xff },
576 .dst_addr = { 0xff, 0xff, 0xff, 0xff,
577 0xff, 0xff, 0xff, 0xff,
578 0xff, 0xff, 0xff, 0xff,
579 0xff, 0xff, 0xff, 0xff },
584 rc = sfc_flow_parse_init(item,
585 (const void **)&spec,
586 (const void **)&mask,
588 &rte_flow_item_ipv6_mask,
589 sizeof(struct rte_flow_item_ipv6),
595 * Filtering by IPv6 source and destination addresses requires
596 * the appropriate ETHER_TYPE in hardware filters
598 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
599 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
600 efx_spec->efs_ether_type = ether_type_ipv6;
601 } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
602 rte_flow_error_set(error, EINVAL,
603 RTE_FLOW_ERROR_TYPE_ITEM, item,
604 "Ethertype in pattern with IPV6 item should be appropriate");
612 * IPv6 addresses are in big-endian byte order in item and in
615 if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
616 sizeof(mask->hdr.src_addr)) == 0) {
617 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
619 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
620 sizeof(spec->hdr.src_addr));
621 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
622 sizeof(efx_spec->efs_rem_host));
623 } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
624 sizeof(mask->hdr.src_addr))) {
628 if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
629 sizeof(mask->hdr.dst_addr)) == 0) {
630 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
632 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
633 sizeof(spec->hdr.dst_addr));
634 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
635 sizeof(efx_spec->efs_loc_host));
636 } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
637 sizeof(mask->hdr.dst_addr))) {
641 if (mask->hdr.proto == supp_mask.hdr.proto) {
642 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
643 efx_spec->efs_ip_proto = spec->hdr.proto;
644 } else if (mask->hdr.proto != 0) {
651 rte_flow_error_set(error, EINVAL,
652 RTE_FLOW_ERROR_TYPE_ITEM, item,
653 "Bad mask in the IPV6 pattern item");
658 * Convert TCP item to EFX filter specification.
661 * Item specification. Only source and destination ports fields
662 * are supported. If the mask is NULL, default mask will be used.
663 * Ranging is not supported.
664 * @param efx_spec[in, out]
665 * EFX filter specification to update.
667 * Perform verbose error reporting if not NULL.
670 sfc_flow_parse_tcp(const struct rte_flow_item *item,
671 struct sfc_flow_parse_ctx *parse_ctx,
672 struct rte_flow_error *error)
675 efx_filter_spec_t *efx_spec = parse_ctx->filter;
676 const struct rte_flow_item_tcp *spec = NULL;
677 const struct rte_flow_item_tcp *mask = NULL;
678 const struct rte_flow_item_tcp supp_mask = {
685 rc = sfc_flow_parse_init(item,
686 (const void **)&spec,
687 (const void **)&mask,
689 &rte_flow_item_tcp_mask,
690 sizeof(struct rte_flow_item_tcp),
696 * Filtering by TCP source and destination ports requires
697 * the appropriate IP_PROTO in hardware filters
699 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
700 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
701 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
702 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
703 rte_flow_error_set(error, EINVAL,
704 RTE_FLOW_ERROR_TYPE_ITEM, item,
705 "IP proto in pattern with TCP item should be appropriate");
713 * Source and destination ports are in big-endian byte order in item and
714 * in little-endian in efx_spec, so byte swap is used
716 if (mask->hdr.src_port == supp_mask.hdr.src_port) {
717 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
718 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
719 } else if (mask->hdr.src_port != 0) {
723 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
724 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
725 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
726 } else if (mask->hdr.dst_port != 0) {
733 rte_flow_error_set(error, EINVAL,
734 RTE_FLOW_ERROR_TYPE_ITEM, item,
735 "Bad mask in the TCP pattern item");
740 * Convert UDP item to EFX filter specification.
743 * Item specification. Only source and destination ports fields
744 * are supported. If the mask is NULL, default mask will be used.
745 * Ranging is not supported.
746 * @param efx_spec[in, out]
747 * EFX filter specification to update.
749 * Perform verbose error reporting if not NULL.
752 sfc_flow_parse_udp(const struct rte_flow_item *item,
753 struct sfc_flow_parse_ctx *parse_ctx,
754 struct rte_flow_error *error)
757 efx_filter_spec_t *efx_spec = parse_ctx->filter;
758 const struct rte_flow_item_udp *spec = NULL;
759 const struct rte_flow_item_udp *mask = NULL;
760 const struct rte_flow_item_udp supp_mask = {
767 rc = sfc_flow_parse_init(item,
768 (const void **)&spec,
769 (const void **)&mask,
771 &rte_flow_item_udp_mask,
772 sizeof(struct rte_flow_item_udp),
778 * Filtering by UDP source and destination ports requires
779 * the appropriate IP_PROTO in hardware filters
781 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
782 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
783 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
784 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
785 rte_flow_error_set(error, EINVAL,
786 RTE_FLOW_ERROR_TYPE_ITEM, item,
787 "IP proto in pattern with UDP item should be appropriate");
795 * Source and destination ports are in big-endian byte order in item and
796 * in little-endian in efx_spec, so byte swap is used
798 if (mask->hdr.src_port == supp_mask.hdr.src_port) {
799 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
800 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
801 } else if (mask->hdr.src_port != 0) {
805 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
806 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
807 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
808 } else if (mask->hdr.dst_port != 0) {
815 rte_flow_error_set(error, EINVAL,
816 RTE_FLOW_ERROR_TYPE_ITEM, item,
817 "Bad mask in the UDP pattern item");
822 * Filters for encapsulated packets match based on the EtherType and IP
823 * protocol in the outer frame.
826 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
827 efx_filter_spec_t *efx_spec,
829 struct rte_flow_error *error)
831 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
832 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
833 efx_spec->efs_ip_proto = ip_proto;
834 } else if (efx_spec->efs_ip_proto != ip_proto) {
836 case EFX_IPPROTO_UDP:
837 rte_flow_error_set(error, EINVAL,
838 RTE_FLOW_ERROR_TYPE_ITEM, item,
839 "Outer IP header protocol must be UDP "
840 "in VxLAN/GENEVE pattern");
843 case EFX_IPPROTO_GRE:
844 rte_flow_error_set(error, EINVAL,
845 RTE_FLOW_ERROR_TYPE_ITEM, item,
846 "Outer IP header protocol must be GRE "
851 rte_flow_error_set(error, EINVAL,
852 RTE_FLOW_ERROR_TYPE_ITEM, item,
853 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
859 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
860 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
861 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
862 rte_flow_error_set(error, EINVAL,
863 RTE_FLOW_ERROR_TYPE_ITEM, item,
864 "Outer frame EtherType in pattern with tunneling "
865 "must be IPv4 or IPv6");
873 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
874 const uint8_t *vni_or_vsid_val,
875 const uint8_t *vni_or_vsid_mask,
876 const struct rte_flow_item *item,
877 struct rte_flow_error *error)
879 const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
883 if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
884 EFX_VNI_OR_VSID_LEN) == 0) {
885 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
886 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
887 EFX_VNI_OR_VSID_LEN);
888 } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
889 rte_flow_error_set(error, EINVAL,
890 RTE_FLOW_ERROR_TYPE_ITEM, item,
891 "Unsupported VNI/VSID mask");
899 * Convert VXLAN item to EFX filter specification.
902 * Item specification. Only VXLAN network identifier field is supported.
903 * If the mask is NULL, default mask will be used.
904 * Ranging is not supported.
905 * @param efx_spec[in, out]
906 * EFX filter specification to update.
908 * Perform verbose error reporting if not NULL.
911 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
912 struct sfc_flow_parse_ctx *parse_ctx,
913 struct rte_flow_error *error)
916 efx_filter_spec_t *efx_spec = parse_ctx->filter;
917 const struct rte_flow_item_vxlan *spec = NULL;
918 const struct rte_flow_item_vxlan *mask = NULL;
919 const struct rte_flow_item_vxlan supp_mask = {
920 .vni = { 0xff, 0xff, 0xff }
923 rc = sfc_flow_parse_init(item,
924 (const void **)&spec,
925 (const void **)&mask,
927 &rte_flow_item_vxlan_mask,
928 sizeof(struct rte_flow_item_vxlan),
933 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
934 EFX_IPPROTO_UDP, error);
938 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
939 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
944 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
945 mask->vni, item, error);
951 * Convert GENEVE item to EFX filter specification.
954 * Item specification. Only Virtual Network Identifier and protocol type
955 * fields are supported. But protocol type can be only Ethernet (0x6558).
956 * If the mask is NULL, default mask will be used.
957 * Ranging is not supported.
958 * @param efx_spec[in, out]
959 * EFX filter specification to update.
961 * Perform verbose error reporting if not NULL.
964 sfc_flow_parse_geneve(const struct rte_flow_item *item,
965 struct sfc_flow_parse_ctx *parse_ctx,
966 struct rte_flow_error *error)
969 efx_filter_spec_t *efx_spec = parse_ctx->filter;
970 const struct rte_flow_item_geneve *spec = NULL;
971 const struct rte_flow_item_geneve *mask = NULL;
972 const struct rte_flow_item_geneve supp_mask = {
973 .protocol = RTE_BE16(0xffff),
974 .vni = { 0xff, 0xff, 0xff }
977 rc = sfc_flow_parse_init(item,
978 (const void **)&spec,
979 (const void **)&mask,
981 &rte_flow_item_geneve_mask,
982 sizeof(struct rte_flow_item_geneve),
987 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
988 EFX_IPPROTO_UDP, error);
992 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
993 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
998 if (mask->protocol == supp_mask.protocol) {
999 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
1000 rte_flow_error_set(error, EINVAL,
1001 RTE_FLOW_ERROR_TYPE_ITEM, item,
1002 "GENEVE encap. protocol must be Ethernet "
1003 "(0x6558) in the GENEVE pattern item");
1006 } else if (mask->protocol != 0) {
1007 rte_flow_error_set(error, EINVAL,
1008 RTE_FLOW_ERROR_TYPE_ITEM, item,
1009 "Unsupported mask for GENEVE encap. protocol");
1013 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1014 mask->vni, item, error);
1020 * Convert NVGRE item to EFX filter specification.
1023 * Item specification. Only virtual subnet ID field is supported.
1024 * If the mask is NULL, default mask will be used.
1025 * Ranging is not supported.
1026 * @param efx_spec[in, out]
1027 * EFX filter specification to update.
1029 * Perform verbose error reporting if not NULL.
1032 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1033 struct sfc_flow_parse_ctx *parse_ctx,
1034 struct rte_flow_error *error)
1037 efx_filter_spec_t *efx_spec = parse_ctx->filter;
1038 const struct rte_flow_item_nvgre *spec = NULL;
1039 const struct rte_flow_item_nvgre *mask = NULL;
1040 const struct rte_flow_item_nvgre supp_mask = {
1041 .tni = { 0xff, 0xff, 0xff }
1044 rc = sfc_flow_parse_init(item,
1045 (const void **)&spec,
1046 (const void **)&mask,
1048 &rte_flow_item_nvgre_mask,
1049 sizeof(struct rte_flow_item_nvgre),
1054 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1055 EFX_IPPROTO_GRE, error);
1059 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1060 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1065 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1066 mask->tni, item, error);
1072 * Convert PPPoEx item to EFX filter specification.
1075 * Item specification.
1076 * Matching on PPPoEx fields is not supported.
1077 * This item can only be used to set or validate the EtherType filter.
1078 * Only zero masks are allowed.
1079 * Ranging is not supported.
1080 * @param efx_spec[in, out]
1081 * EFX filter specification to update.
1083 * Perform verbose error reporting if not NULL.
1086 sfc_flow_parse_pppoex(const struct rte_flow_item *item,
1087 struct sfc_flow_parse_ctx *parse_ctx,
1088 struct rte_flow_error *error)
1090 efx_filter_spec_t *efx_spec = parse_ctx->filter;
1091 const struct rte_flow_item_pppoe *spec = NULL;
1092 const struct rte_flow_item_pppoe *mask = NULL;
1093 const struct rte_flow_item_pppoe supp_mask = {};
1094 const struct rte_flow_item_pppoe def_mask = {};
1095 uint16_t ether_type;
1098 rc = sfc_flow_parse_init(item,
1099 (const void **)&spec,
1100 (const void **)&mask,
1103 sizeof(struct rte_flow_item_pppoe),
1108 if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED)
1109 ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY;
1111 ether_type = RTE_ETHER_TYPE_PPPOE_SESSION;
1113 if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) {
1114 if (efx_spec->efs_ether_type != ether_type) {
1115 rte_flow_error_set(error, EINVAL,
1116 RTE_FLOW_ERROR_TYPE_ITEM, item,
1117 "Invalid EtherType for a PPPoE flow item");
1121 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1122 efx_spec->efs_ether_type = ether_type;
1128 static const struct sfc_flow_item sfc_flow_items[] = {
1130 .type = RTE_FLOW_ITEM_TYPE_VOID,
1132 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1133 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1134 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135 .parse = sfc_flow_parse_void,
1138 .type = RTE_FLOW_ITEM_TYPE_ETH,
1140 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1141 .layer = SFC_FLOW_ITEM_L2,
1142 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1143 .parse = sfc_flow_parse_eth,
1146 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1148 .prev_layer = SFC_FLOW_ITEM_L2,
1149 .layer = SFC_FLOW_ITEM_L2,
1150 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1151 .parse = sfc_flow_parse_vlan,
1154 .type = RTE_FLOW_ITEM_TYPE_PPPOED,
1156 .prev_layer = SFC_FLOW_ITEM_L2,
1157 .layer = SFC_FLOW_ITEM_L2,
1158 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1159 .parse = sfc_flow_parse_pppoex,
1162 .type = RTE_FLOW_ITEM_TYPE_PPPOES,
1164 .prev_layer = SFC_FLOW_ITEM_L2,
1165 .layer = SFC_FLOW_ITEM_L2,
1166 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1167 .parse = sfc_flow_parse_pppoex,
1170 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1172 .prev_layer = SFC_FLOW_ITEM_L2,
1173 .layer = SFC_FLOW_ITEM_L3,
1174 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1175 .parse = sfc_flow_parse_ipv4,
1178 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1180 .prev_layer = SFC_FLOW_ITEM_L2,
1181 .layer = SFC_FLOW_ITEM_L3,
1182 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1183 .parse = sfc_flow_parse_ipv6,
1186 .type = RTE_FLOW_ITEM_TYPE_TCP,
1188 .prev_layer = SFC_FLOW_ITEM_L3,
1189 .layer = SFC_FLOW_ITEM_L4,
1190 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1191 .parse = sfc_flow_parse_tcp,
1194 .type = RTE_FLOW_ITEM_TYPE_UDP,
1196 .prev_layer = SFC_FLOW_ITEM_L3,
1197 .layer = SFC_FLOW_ITEM_L4,
1198 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1199 .parse = sfc_flow_parse_udp,
1202 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1204 .prev_layer = SFC_FLOW_ITEM_L4,
1205 .layer = SFC_FLOW_ITEM_START_LAYER,
1206 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1207 .parse = sfc_flow_parse_vxlan,
1210 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1212 .prev_layer = SFC_FLOW_ITEM_L4,
1213 .layer = SFC_FLOW_ITEM_START_LAYER,
1214 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1215 .parse = sfc_flow_parse_geneve,
1218 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1220 .prev_layer = SFC_FLOW_ITEM_L3,
1221 .layer = SFC_FLOW_ITEM_START_LAYER,
1222 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1223 .parse = sfc_flow_parse_nvgre,
1228 * Protocol-independent flow API support
1231 sfc_flow_parse_attr(struct sfc_adapter *sa,
1232 const struct rte_flow_attr *attr,
1233 struct rte_flow *flow,
1234 struct rte_flow_error *error)
1236 struct sfc_flow_spec *spec = &flow->spec;
1237 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1238 struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1239 struct sfc_mae *mae = &sa->mae;
1242 rte_flow_error_set(error, EINVAL,
1243 RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1247 if (attr->group != 0) {
1248 rte_flow_error_set(error, ENOTSUP,
1249 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1250 "Groups are not supported");
1253 if (attr->egress != 0) {
1254 rte_flow_error_set(error, ENOTSUP,
1255 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1256 "Egress is not supported");
1259 if (attr->ingress == 0) {
1260 rte_flow_error_set(error, ENOTSUP,
1261 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1262 "Ingress is compulsory");
1265 if (attr->transfer == 0) {
1266 if (attr->priority != 0) {
1267 rte_flow_error_set(error, ENOTSUP,
1268 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1269 attr, "Priorities are unsupported");
1272 spec->type = SFC_FLOW_SPEC_FILTER;
1273 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1274 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1275 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1277 if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1278 rte_flow_error_set(error, ENOTSUP,
1279 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1280 attr, "Transfer is not supported");
1283 if (attr->priority > mae->nb_action_rule_prios_max) {
1284 rte_flow_error_set(error, ENOTSUP,
1285 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1286 attr, "Unsupported priority level");
1289 spec->type = SFC_FLOW_SPEC_MAE;
1290 spec_mae->priority = attr->priority;
1291 spec_mae->match_spec = NULL;
1292 spec_mae->action_set = NULL;
1293 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1299 /* Get item from array sfc_flow_items */
1300 static const struct sfc_flow_item *
1301 sfc_flow_get_item(const struct sfc_flow_item *items,
1302 unsigned int nb_items,
1303 enum rte_flow_item_type type)
1307 for (i = 0; i < nb_items; i++)
1308 if (items[i].type == type)
1315 sfc_flow_parse_pattern(struct sfc_adapter *sa,
1316 const struct sfc_flow_item *flow_items,
1317 unsigned int nb_flow_items,
1318 const struct rte_flow_item pattern[],
1319 struct sfc_flow_parse_ctx *parse_ctx,
1320 struct rte_flow_error *error)
1323 unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1324 boolean_t is_ifrm = B_FALSE;
1325 const struct sfc_flow_item *item;
1327 if (pattern == NULL) {
1328 rte_flow_error_set(error, EINVAL,
1329 RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1334 for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1335 item = sfc_flow_get_item(flow_items, nb_flow_items,
1338 rte_flow_error_set(error, ENOTSUP,
1339 RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1340 "Unsupported pattern item");
1345 * Omitting one or several protocol layers at the beginning
1346 * of pattern is supported
1348 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1349 prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1350 item->prev_layer != prev_layer) {
1351 rte_flow_error_set(error, ENOTSUP,
1352 RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1353 "Unexpected sequence of pattern items");
1358 * Allow only VOID and ETH pattern items in the inner frame.
1359 * Also check that there is only one tunneling protocol.
1361 switch (item->type) {
1362 case RTE_FLOW_ITEM_TYPE_VOID:
1363 case RTE_FLOW_ITEM_TYPE_ETH:
1366 case RTE_FLOW_ITEM_TYPE_VXLAN:
1367 case RTE_FLOW_ITEM_TYPE_GENEVE:
1368 case RTE_FLOW_ITEM_TYPE_NVGRE:
1370 rte_flow_error_set(error, EINVAL,
1371 RTE_FLOW_ERROR_TYPE_ITEM,
1373 "More than one tunneling protocol");
1380 if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1382 rte_flow_error_set(error, EINVAL,
1383 RTE_FLOW_ERROR_TYPE_ITEM,
1385 "There is an unsupported pattern item "
1386 "in the inner frame");
1392 if (parse_ctx->type != item->ctx_type) {
1393 rte_flow_error_set(error, EINVAL,
1394 RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1395 "Parse context type mismatch");
1399 rc = item->parse(pattern, parse_ctx, error);
1401 sfc_err(sa, "failed to parse item %s: %s",
1402 item->name, strerror(-rc));
1406 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1407 prev_layer = item->layer;
1414 sfc_flow_parse_queue(struct sfc_adapter *sa,
1415 const struct rte_flow_action_queue *queue,
1416 struct rte_flow *flow)
1418 struct sfc_flow_spec *spec = &flow->spec;
1419 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1420 struct sfc_rxq *rxq;
1421 struct sfc_rxq_info *rxq_info;
1423 if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count)
1426 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index);
1427 spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1429 rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1430 spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1431 SFC_RXQ_FLAG_RSS_HASH);
1437 sfc_flow_parse_rss(struct sfc_adapter *sa,
1438 const struct rte_flow_action_rss *action_rss,
1439 struct rte_flow *flow)
1441 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1442 struct sfc_rss *rss = &sas->rss;
1443 sfc_ethdev_qid_t ethdev_qid;
1444 struct sfc_rxq *rxq;
1445 unsigned int rxq_hw_index_min;
1446 unsigned int rxq_hw_index_max;
1447 efx_rx_hash_type_t efx_hash_types;
1448 const uint8_t *rss_key;
1449 struct sfc_flow_spec *spec = &flow->spec;
1450 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1451 struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1454 if (action_rss->queue_num == 0)
1457 ethdev_qid = sfc_sa2shared(sa)->ethdev_rxq_count - 1;
1458 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1459 rxq_hw_index_min = rxq->hw_index;
1460 rxq_hw_index_max = 0;
1462 for (i = 0; i < action_rss->queue_num; ++i) {
1463 ethdev_qid = action_rss->queue[i];
1465 if ((unsigned int)ethdev_qid >=
1466 sfc_sa2shared(sa)->ethdev_rxq_count)
1469 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1471 if (rxq->hw_index < rxq_hw_index_min)
1472 rxq_hw_index_min = rxq->hw_index;
1474 if (rxq->hw_index > rxq_hw_index_max)
1475 rxq_hw_index_max = rxq->hw_index;
1478 switch (action_rss->func) {
1479 case RTE_ETH_HASH_FUNCTION_DEFAULT:
1480 case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1486 if (action_rss->level)
1490 * Dummy RSS action with only one queue and no specific settings
1491 * for hash types and key does not require dedicated RSS context
1492 * and may be simplified to single queue action.
1494 if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1495 action_rss->key_len == 0) {
1496 spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1500 if (action_rss->types) {
1503 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1511 for (i = 0; i < rss->hf_map_nb_entries; ++i)
1512 efx_hash_types |= rss->hf_map[i].efx;
1515 if (action_rss->key_len) {
1516 if (action_rss->key_len != sizeof(rss->key))
1519 rss_key = action_rss->key;
1524 spec_filter->rss = B_TRUE;
1526 sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1527 sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1528 sfc_rss_conf->rss_hash_types = efx_hash_types;
1529 rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1531 for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1532 unsigned int nb_queues = action_rss->queue_num;
1533 struct sfc_rxq *rxq;
1535 ethdev_qid = action_rss->queue[i % nb_queues];
1536 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1537 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1544 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1545 unsigned int filters_count)
1547 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1551 for (i = 0; i < filters_count; i++) {
1554 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1555 if (ret == 0 && rc != 0) {
1556 sfc_err(sa, "failed to remove filter specification "
1566 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1568 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1572 for (i = 0; i < spec_filter->count; i++) {
1573 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1575 sfc_flow_spec_flush(sa, spec, i);
1584 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1586 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1588 return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1592 sfc_flow_filter_insert(struct sfc_adapter *sa,
1593 struct rte_flow *flow)
1595 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1596 struct sfc_rss *rss = &sas->rss;
1597 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1598 struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1599 uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1600 boolean_t create_context;
1604 create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1605 rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1607 if (create_context) {
1608 unsigned int rss_spread;
1609 unsigned int rss_hash_types;
1612 if (spec_filter->rss) {
1613 rss_spread = MIN(flow_rss->rxq_hw_index_max -
1614 flow_rss->rxq_hw_index_min + 1,
1616 rss_hash_types = flow_rss->rss_hash_types;
1617 rss_key = flow_rss->rss_key;
1620 * Initialize dummy RSS context parameters to have
1621 * valid RSS hash. Use default RSS hash function and
1625 rss_hash_types = rss->hash_types;
1629 rc = efx_rx_scale_context_alloc(sa->nic,
1630 EFX_RX_SCALE_EXCLUSIVE,
1634 goto fail_scale_context_alloc;
1636 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1638 rss_hash_types, B_TRUE);
1640 goto fail_scale_mode_set;
1642 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1643 rss_key, sizeof(rss->key));
1645 goto fail_scale_key_set;
1647 efs_rss_context = rss->dummy_rss_context;
1650 if (spec_filter->rss || spec_filter->rss_hash_required) {
1652 * At this point, fully elaborated filter specifications
1653 * have been produced from the template. To make sure that
1654 * RSS behaviour is consistent between them, set the same
1655 * RSS context value everywhere.
1657 for (i = 0; i < spec_filter->count; i++) {
1658 efx_filter_spec_t *spec = &spec_filter->filters[i];
1660 spec->efs_rss_context = efs_rss_context;
1661 spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1662 if (spec_filter->rss)
1663 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1667 rc = sfc_flow_spec_insert(sa, &flow->spec);
1669 goto fail_filter_insert;
1671 if (create_context) {
1672 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1675 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1678 * Scale table is set after filter insertion because
1679 * the table entries are relative to the base RxQ ID
1680 * and the latter is submitted to the HW by means of
1681 * inserting a filter, so by the time of the request
1682 * the HW knows all the information needed to verify
1683 * the table entries, and the operation will succeed
1685 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1686 tbl, RTE_DIM(flow_rss->rss_tbl));
1688 goto fail_scale_tbl_set;
1690 /* Remember created dummy RSS context */
1691 if (!spec_filter->rss)
1692 rss->dummy_rss_context = efs_rss_context;
1698 sfc_flow_spec_remove(sa, &flow->spec);
1702 fail_scale_mode_set:
1704 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1706 fail_scale_context_alloc:
1711 sfc_flow_filter_remove(struct sfc_adapter *sa,
1712 struct rte_flow *flow)
1714 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1717 rc = sfc_flow_spec_remove(sa, &flow->spec);
1721 if (spec_filter->rss) {
1723 * All specifications for a given flow rule have the same RSS
1724 * context, so that RSS context value is taken from the first
1725 * filter specification
1727 efx_filter_spec_t *spec = &spec_filter->filters[0];
1729 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1736 sfc_flow_parse_mark(struct sfc_adapter *sa,
1737 const struct rte_flow_action_mark *mark,
1738 struct rte_flow *flow)
1740 struct sfc_flow_spec *spec = &flow->spec;
1741 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1742 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1744 if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1747 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1748 spec_filter->template.efs_mark = mark->id;
1754 sfc_flow_parse_actions(struct sfc_adapter *sa,
1755 const struct rte_flow_action actions[],
1756 struct rte_flow *flow,
1757 struct rte_flow_error *error)
1760 struct sfc_flow_spec *spec = &flow->spec;
1761 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1762 const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1763 uint32_t actions_set = 0;
1764 const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1765 (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1766 (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1767 const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1768 (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1770 if (actions == NULL) {
1771 rte_flow_error_set(error, EINVAL,
1772 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1777 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1778 switch (actions->type) {
1779 case RTE_FLOW_ACTION_TYPE_VOID:
1780 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1784 case RTE_FLOW_ACTION_TYPE_QUEUE:
1785 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1787 if ((actions_set & fate_actions_mask) != 0)
1788 goto fail_fate_actions;
1790 rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1792 rte_flow_error_set(error, EINVAL,
1793 RTE_FLOW_ERROR_TYPE_ACTION, actions,
1794 "Bad QUEUE action");
1799 case RTE_FLOW_ACTION_TYPE_RSS:
1800 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1802 if ((actions_set & fate_actions_mask) != 0)
1803 goto fail_fate_actions;
1805 rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1807 rte_flow_error_set(error, -rc,
1808 RTE_FLOW_ERROR_TYPE_ACTION, actions,
1814 case RTE_FLOW_ACTION_TYPE_DROP:
1815 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1817 if ((actions_set & fate_actions_mask) != 0)
1818 goto fail_fate_actions;
1820 spec_filter->template.efs_dmaq_id =
1821 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1824 case RTE_FLOW_ACTION_TYPE_FLAG:
1825 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1827 if ((actions_set & mark_actions_mask) != 0)
1828 goto fail_actions_overlap;
1830 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1831 rte_flow_error_set(error, ENOTSUP,
1832 RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1833 "FLAG action is not supported on the current Rx datapath");
1837 spec_filter->template.efs_flags |=
1838 EFX_FILTER_FLAG_ACTION_FLAG;
1841 case RTE_FLOW_ACTION_TYPE_MARK:
1842 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1844 if ((actions_set & mark_actions_mask) != 0)
1845 goto fail_actions_overlap;
1847 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1848 rte_flow_error_set(error, ENOTSUP,
1849 RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1850 "MARK action is not supported on the current Rx datapath");
1854 rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1856 rte_flow_error_set(error, rc,
1857 RTE_FLOW_ERROR_TYPE_ACTION, actions,
1864 rte_flow_error_set(error, ENOTSUP,
1865 RTE_FLOW_ERROR_TYPE_ACTION, actions,
1866 "Action is not supported");
1870 actions_set |= (1UL << actions->type);
1873 /* When fate is unknown, drop traffic. */
1874 if ((actions_set & fate_actions_mask) == 0) {
1875 spec_filter->template.efs_dmaq_id =
1876 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1882 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1883 "Cannot combine several fate-deciding actions, "
1884 "choose between QUEUE, RSS or DROP");
1887 fail_actions_overlap:
1888 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1889 "Overlapping actions are not supported");
1894 * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1895 * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1896 * specifications after copying.
1898 * @param spec[in, out]
1899 * SFC flow specification to update.
1900 * @param filters_count_for_one_val[in]
1901 * How many specifications should have the same match flag, what is the
1902 * number of specifications before copying.
1904 * Perform verbose error reporting if not NULL.
1907 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1908 unsigned int filters_count_for_one_val,
1909 struct rte_flow_error *error)
1912 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1913 static const efx_filter_match_flags_t vals[] = {
1914 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1915 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1918 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1919 rte_flow_error_set(error, EINVAL,
1920 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1921 "Number of specifications is incorrect while copying "
1922 "by unknown destination flags");
1926 for (i = 0; i < spec_filter->count; i++) {
1927 /* The check above ensures that divisor can't be zero here */
1928 spec_filter->filters[i].efs_match_flags |=
1929 vals[i / filters_count_for_one_val];
1936 * Check that the following conditions are met:
1937 * - the list of supported filters has a filter
1938 * with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1939 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1943 * The match flags of filter.
1945 * Specification to be supplemented.
1947 * SFC filter with list of supported filters.
1950 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1951 __rte_unused efx_filter_spec_t *spec,
1952 struct sfc_filter *filter)
1955 efx_filter_match_flags_t match_mcast_dst;
1958 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1959 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1960 for (i = 0; i < filter->supported_match_num; i++) {
1961 if (match_mcast_dst == filter->supported_match[i])
1969 * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1970 * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1971 * specifications after copying.
1973 * @param spec[in, out]
1974 * SFC flow specification to update.
1975 * @param filters_count_for_one_val[in]
1976 * How many specifications should have the same EtherType value, what is the
1977 * number of specifications before copying.
1979 * Perform verbose error reporting if not NULL.
1982 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1983 unsigned int filters_count_for_one_val,
1984 struct rte_flow_error *error)
1987 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1988 static const uint16_t vals[] = {
1989 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1992 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1993 rte_flow_error_set(error, EINVAL,
1994 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1995 "Number of specifications is incorrect "
1996 "while copying by Ethertype");
2000 for (i = 0; i < spec_filter->count; i++) {
2001 spec_filter->filters[i].efs_match_flags |=
2002 EFX_FILTER_MATCH_ETHER_TYPE;
2005 * The check above ensures that
2006 * filters_count_for_one_val is not 0
2008 spec_filter->filters[i].efs_ether_type =
2009 vals[i / filters_count_for_one_val];
2016 * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
2017 * in the same specifications after copying.
2019 * @param spec[in, out]
2020 * SFC flow specification to update.
2021 * @param filters_count_for_one_val[in]
2022 * How many specifications should have the same match flag, what is the
2023 * number of specifications before copying.
2025 * Perform verbose error reporting if not NULL.
2028 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
2029 unsigned int filters_count_for_one_val,
2030 struct rte_flow_error *error)
2032 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2035 if (filters_count_for_one_val != spec_filter->count) {
2036 rte_flow_error_set(error, EINVAL,
2037 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2038 "Number of specifications is incorrect "
2039 "while copying by outer VLAN ID");
2043 for (i = 0; i < spec_filter->count; i++) {
2044 spec_filter->filters[i].efs_match_flags |=
2045 EFX_FILTER_MATCH_OUTER_VID;
2047 spec_filter->filters[i].efs_outer_vid = 0;
2054 * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
2055 * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
2056 * specifications after copying.
2058 * @param spec[in, out]
2059 * SFC flow specification to update.
2060 * @param filters_count_for_one_val[in]
2061 * How many specifications should have the same match flag, what is the
2062 * number of specifications before copying.
2064 * Perform verbose error reporting if not NULL.
2067 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
2068 unsigned int filters_count_for_one_val,
2069 struct rte_flow_error *error)
2072 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2073 static const efx_filter_match_flags_t vals[] = {
2074 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2075 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
2078 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2079 rte_flow_error_set(error, EINVAL,
2080 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2081 "Number of specifications is incorrect while copying "
2082 "by inner frame unknown destination flags");
2086 for (i = 0; i < spec_filter->count; i++) {
2087 /* The check above ensures that divisor can't be zero here */
2088 spec_filter->filters[i].efs_match_flags |=
2089 vals[i / filters_count_for_one_val];
2096 * Check that the following conditions are met:
2097 * - the specification corresponds to a filter for encapsulated traffic
2098 * - the list of supported filters has a filter
2099 * with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2100 * EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2104 * The match flags of filter.
2106 * Specification to be supplemented.
2108 * SFC filter with list of supported filters.
2111 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2112 efx_filter_spec_t *spec,
2113 struct sfc_filter *filter)
2116 efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2117 efx_filter_match_flags_t match_mcast_dst;
2119 if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2123 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2124 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2125 for (i = 0; i < filter->supported_match_num; i++) {
2126 if (match_mcast_dst == filter->supported_match[i])
2134 * Check that the list of supported filters has a filter that differs
2135 * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2136 * in this case that filter will be used and the flag
2137 * EFX_FILTER_MATCH_OUTER_VID is not needed.
2140 * The match flags of filter.
2142 * Specification to be supplemented.
2144 * SFC filter with list of supported filters.
2147 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2148 __rte_unused efx_filter_spec_t *spec,
2149 struct sfc_filter *filter)
2152 efx_filter_match_flags_t match_without_vid =
2153 match & ~EFX_FILTER_MATCH_OUTER_VID;
2155 for (i = 0; i < filter->supported_match_num; i++) {
2156 if (match_without_vid == filter->supported_match[i])
2164 * Match flags that can be automatically added to filters.
2165 * Selecting the last minimum when searching for the copy flag ensures that the
2166 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2167 * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2168 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2171 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2173 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2175 .set_vals = sfc_flow_set_unknown_dst_flags,
2176 .spec_check = sfc_flow_check_unknown_dst_flags,
2179 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
2181 .set_vals = sfc_flow_set_ethertypes,
2185 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2187 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2188 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2191 .flag = EFX_FILTER_MATCH_OUTER_VID,
2193 .set_vals = sfc_flow_set_outer_vid_flag,
2194 .spec_check = sfc_flow_check_outer_vid_flag,
2198 /* Get item from array sfc_flow_copy_flags */
2199 static const struct sfc_flow_copy_flag *
2200 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2204 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2205 if (sfc_flow_copy_flags[i].flag == flag)
2206 return &sfc_flow_copy_flags[i];
2213 * Make copies of the specifications, set match flag and values
2214 * of the field that corresponds to it.
2216 * @param spec[in, out]
2217 * SFC flow specification to update.
2219 * The match flag to add.
2221 * Perform verbose error reporting if not NULL.
2224 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2225 efx_filter_match_flags_t flag,
2226 struct rte_flow_error *error)
2229 unsigned int new_filters_count;
2230 unsigned int filters_count_for_one_val;
2231 const struct sfc_flow_copy_flag *copy_flag;
2232 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2235 copy_flag = sfc_flow_get_copy_flag(flag);
2236 if (copy_flag == NULL) {
2237 rte_flow_error_set(error, ENOTSUP,
2238 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2239 "Unsupported spec field for copying");
2243 new_filters_count = spec_filter->count * copy_flag->vals_count;
2244 if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2245 rte_flow_error_set(error, EINVAL,
2246 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2247 "Too much EFX specifications in the flow rule");
2251 /* Copy filters specifications */
2252 for (i = spec_filter->count; i < new_filters_count; i++) {
2253 spec_filter->filters[i] =
2254 spec_filter->filters[i - spec_filter->count];
2257 filters_count_for_one_val = spec_filter->count;
2258 spec_filter->count = new_filters_count;
2260 rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2268 * Check that the given set of match flags missing in the original filter spec
2269 * could be covered by adding spec copies which specify the corresponding
2270 * flags and packet field values to match.
2272 * @param miss_flags[in]
2273 * Flags that are missing until the supported filter.
2275 * Specification to be supplemented.
2280 * Number of specifications after copy or 0, if the flags can not be added.
2283 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2284 efx_filter_spec_t *spec,
2285 struct sfc_filter *filter)
2288 efx_filter_match_flags_t copy_flags = 0;
2289 efx_filter_match_flags_t flag;
2290 efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2291 sfc_flow_spec_check *check;
2292 unsigned int multiplier = 1;
2294 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2295 flag = sfc_flow_copy_flags[i].flag;
2296 check = sfc_flow_copy_flags[i].spec_check;
2297 if ((flag & miss_flags) == flag) {
2298 if (check != NULL && (!check(match, spec, filter)))
2302 multiplier *= sfc_flow_copy_flags[i].vals_count;
2306 if (copy_flags == miss_flags)
2313 * Attempt to supplement the specification template to the minimally
2314 * supported set of match flags. To do this, it is necessary to copy
2315 * the specifications, filling them with the values of fields that
2316 * correspond to the missing flags.
2317 * The necessary and sufficient filter is built from the fewest number
2318 * of copies which could be made to cover the minimally required set
2323 * @param spec[in, out]
2324 * SFC flow specification to update.
2326 * Perform verbose error reporting if not NULL.
2329 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2330 struct sfc_flow_spec *spec,
2331 struct rte_flow_error *error)
2333 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2334 struct sfc_filter *filter = &sa->filter;
2335 efx_filter_match_flags_t miss_flags;
2336 efx_filter_match_flags_t min_miss_flags = 0;
2337 efx_filter_match_flags_t match;
2338 unsigned int min_multiplier = UINT_MAX;
2339 unsigned int multiplier;
2343 match = spec_filter->template.efs_match_flags;
2344 for (i = 0; i < filter->supported_match_num; i++) {
2345 if ((match & filter->supported_match[i]) == match) {
2346 miss_flags = filter->supported_match[i] & (~match);
2347 multiplier = sfc_flow_check_missing_flags(miss_flags,
2348 &spec_filter->template, filter);
2349 if (multiplier > 0) {
2350 if (multiplier <= min_multiplier) {
2351 min_multiplier = multiplier;
2352 min_miss_flags = miss_flags;
2358 if (min_multiplier == UINT_MAX) {
2359 rte_flow_error_set(error, ENOTSUP,
2360 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2361 "The flow rule pattern is unsupported");
2365 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2366 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2368 if ((flag & min_miss_flags) == flag) {
2369 rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2379 * Check that set of match flags is referred to by a filter. Filter is
2380 * described by match flags with the ability to add OUTER_VID and INNER_VID
2383 * @param match_flags[in]
2384 * Set of match flags.
2385 * @param flags_pattern[in]
2386 * Pattern of filter match flags.
2389 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2390 efx_filter_match_flags_t flags_pattern)
2392 if ((match_flags & flags_pattern) != flags_pattern)
2395 switch (match_flags & ~flags_pattern) {
2397 case EFX_FILTER_MATCH_OUTER_VID:
2398 case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2406 * Check whether the spec maps to a hardware filter which is known to be
2407 * ineffective despite being valid.
2410 * SFC filter with list of supported filters.
2412 * SFC flow specification.
2415 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2416 struct sfc_flow_spec *spec)
2419 uint16_t ether_type;
2421 efx_filter_match_flags_t match_flags;
2422 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2424 for (i = 0; i < spec_filter->count; i++) {
2425 match_flags = spec_filter->filters[i].efs_match_flags;
2427 if (sfc_flow_is_match_with_vids(match_flags,
2428 EFX_FILTER_MATCH_ETHER_TYPE) ||
2429 sfc_flow_is_match_with_vids(match_flags,
2430 EFX_FILTER_MATCH_ETHER_TYPE |
2431 EFX_FILTER_MATCH_LOC_MAC)) {
2432 ether_type = spec_filter->filters[i].efs_ether_type;
2433 if (filter->supports_ip_proto_or_addr_filter &&
2434 (ether_type == EFX_ETHER_TYPE_IPV4 ||
2435 ether_type == EFX_ETHER_TYPE_IPV6))
2437 } else if (sfc_flow_is_match_with_vids(match_flags,
2438 EFX_FILTER_MATCH_ETHER_TYPE |
2439 EFX_FILTER_MATCH_IP_PROTO) ||
2440 sfc_flow_is_match_with_vids(match_flags,
2441 EFX_FILTER_MATCH_ETHER_TYPE |
2442 EFX_FILTER_MATCH_IP_PROTO |
2443 EFX_FILTER_MATCH_LOC_MAC)) {
2444 ip_proto = spec_filter->filters[i].efs_ip_proto;
2445 if (filter->supports_rem_or_local_port_filter &&
2446 (ip_proto == EFX_IPPROTO_TCP ||
2447 ip_proto == EFX_IPPROTO_UDP))
2456 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2457 struct rte_flow *flow,
2458 struct rte_flow_error *error)
2460 struct sfc_flow_spec *spec = &flow->spec;
2461 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2462 efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2463 efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2466 /* Initialize the first filter spec with template */
2467 spec_filter->filters[0] = *spec_tmpl;
2468 spec_filter->count = 1;
2470 if (!sfc_filter_is_match_supported(sa, match_flags)) {
2471 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2476 if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2477 rte_flow_error_set(error, ENOTSUP,
2478 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2479 "The flow rule pattern is unsupported");
2487 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2488 const struct rte_flow_item pattern[],
2489 const struct rte_flow_action actions[],
2490 struct rte_flow *flow,
2491 struct rte_flow_error *error)
2493 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2494 struct sfc_flow_spec *spec = &flow->spec;
2495 struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2496 struct sfc_flow_parse_ctx ctx;
2499 ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2500 ctx.filter = &spec_filter->template;
2502 rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items),
2503 pattern, &ctx, error);
2505 goto fail_bad_value;
2507 rc = sfc_flow_parse_actions(sa, actions, flow, error);
2509 goto fail_bad_value;
2511 rc = sfc_flow_validate_match_flags(sa, flow, error);
2513 goto fail_bad_value;
2522 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2523 const struct rte_flow_item pattern[],
2524 const struct rte_flow_action actions[],
2525 struct rte_flow *flow,
2526 struct rte_flow_error *error)
2528 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2529 struct sfc_flow_spec *spec = &flow->spec;
2530 struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2533 rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2537 rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error);
2545 sfc_flow_parse(struct rte_eth_dev *dev,
2546 const struct rte_flow_attr *attr,
2547 const struct rte_flow_item pattern[],
2548 const struct rte_flow_action actions[],
2549 struct rte_flow *flow,
2550 struct rte_flow_error *error)
2552 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2553 const struct sfc_flow_ops_by_spec *ops;
2556 rc = sfc_flow_parse_attr(sa, attr, flow, error);
2560 ops = sfc_flow_get_ops_by_spec(flow);
2561 if (ops == NULL || ops->parse == NULL) {
2562 rte_flow_error_set(error, ENOTSUP,
2563 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2564 "No backend to handle this flow");
2568 return ops->parse(dev, pattern, actions, flow, error);
2571 static struct rte_flow *
2572 sfc_flow_zmalloc(struct rte_flow_error *error)
2574 struct rte_flow *flow;
2576 flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2578 rte_flow_error_set(error, ENOMEM,
2579 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2580 "Failed to allocate memory");
2587 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2589 const struct sfc_flow_ops_by_spec *ops;
2591 ops = sfc_flow_get_ops_by_spec(flow);
2592 if (ops != NULL && ops->cleanup != NULL)
2593 ops->cleanup(sa, flow);
2599 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2600 struct rte_flow_error *error)
2602 const struct sfc_flow_ops_by_spec *ops;
2605 ops = sfc_flow_get_ops_by_spec(flow);
2606 if (ops == NULL || ops->insert == NULL) {
2607 rte_flow_error_set(error, ENOTSUP,
2608 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2609 "No backend to handle this flow");
2613 rc = ops->insert(sa, flow);
2615 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2616 NULL, "Failed to insert the flow rule");
2623 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2624 struct rte_flow_error *error)
2626 const struct sfc_flow_ops_by_spec *ops;
2629 ops = sfc_flow_get_ops_by_spec(flow);
2630 if (ops == NULL || ops->remove == NULL) {
2631 rte_flow_error_set(error, ENOTSUP,
2632 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2633 "No backend to handle this flow");
2637 rc = ops->remove(sa, flow);
2639 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2640 NULL, "Failed to remove the flow rule");
2647 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2648 struct rte_flow_error *error)
2650 const struct sfc_flow_ops_by_spec *ops;
2653 ops = sfc_flow_get_ops_by_spec(flow);
2655 rte_flow_error_set(error, ENOTSUP,
2656 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2657 "No backend to handle this flow");
2661 if (ops->verify != NULL) {
2662 SFC_ASSERT(sfc_adapter_is_locked(sa));
2663 rc = ops->verify(sa, flow);
2667 rte_flow_error_set(error, rc,
2668 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2669 "Failed to verify flow validity with FW");
2677 sfc_flow_validate(struct rte_eth_dev *dev,
2678 const struct rte_flow_attr *attr,
2679 const struct rte_flow_item pattern[],
2680 const struct rte_flow_action actions[],
2681 struct rte_flow_error *error)
2683 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2684 struct rte_flow *flow;
2687 flow = sfc_flow_zmalloc(error);
2691 sfc_adapter_lock(sa);
2693 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2695 rc = sfc_flow_verify(sa, flow, error);
2697 sfc_flow_free(sa, flow);
2699 sfc_adapter_unlock(sa);
2704 static struct rte_flow *
2705 sfc_flow_create(struct rte_eth_dev *dev,
2706 const struct rte_flow_attr *attr,
2707 const struct rte_flow_item pattern[],
2708 const struct rte_flow_action actions[],
2709 struct rte_flow_error *error)
2711 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2712 struct rte_flow *flow = NULL;
2715 flow = sfc_flow_zmalloc(error);
2719 sfc_adapter_lock(sa);
2721 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2723 goto fail_bad_value;
2725 TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2727 if (sa->state == SFC_ETHDEV_STARTED) {
2728 rc = sfc_flow_insert(sa, flow, error);
2730 goto fail_flow_insert;
2733 sfc_adapter_unlock(sa);
2738 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2741 sfc_flow_free(sa, flow);
2742 sfc_adapter_unlock(sa);
2749 sfc_flow_destroy(struct rte_eth_dev *dev,
2750 struct rte_flow *flow,
2751 struct rte_flow_error *error)
2753 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2754 struct rte_flow *flow_ptr;
2757 sfc_adapter_lock(sa);
2759 TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2760 if (flow_ptr == flow)
2764 rte_flow_error_set(error, rc,
2765 RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2766 "Failed to find flow rule to destroy");
2767 goto fail_bad_value;
2770 if (sa->state == SFC_ETHDEV_STARTED)
2771 rc = sfc_flow_remove(sa, flow, error);
2773 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2774 sfc_flow_free(sa, flow);
2777 sfc_adapter_unlock(sa);
2783 sfc_flow_flush(struct rte_eth_dev *dev,
2784 struct rte_flow_error *error)
2786 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2787 struct rte_flow *flow;
2790 sfc_adapter_lock(sa);
2792 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2793 if (sa->state == SFC_ETHDEV_STARTED) {
2796 rc = sfc_flow_remove(sa, flow, error);
2801 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2802 sfc_flow_free(sa, flow);
2805 sfc_adapter_unlock(sa);
2811 sfc_flow_query(struct rte_eth_dev *dev,
2812 struct rte_flow *flow,
2813 const struct rte_flow_action *action,
2815 struct rte_flow_error *error)
2817 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2818 const struct sfc_flow_ops_by_spec *ops;
2821 sfc_adapter_lock(sa);
2823 ops = sfc_flow_get_ops_by_spec(flow);
2824 if (ops == NULL || ops->query == NULL) {
2825 ret = rte_flow_error_set(error, ENOTSUP,
2826 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2827 "No backend to handle this flow");
2828 goto fail_no_backend;
2831 if (sa->state != SFC_ETHDEV_STARTED) {
2832 ret = rte_flow_error_set(error, EINVAL,
2833 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2834 "Can't query the flow: the adapter is not started");
2835 goto fail_not_started;
2838 ret = ops->query(dev, flow, action, data, error);
2842 sfc_adapter_unlock(sa);
2849 sfc_adapter_unlock(sa);
2854 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2855 struct rte_flow_error *error)
2857 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2860 sfc_adapter_lock(sa);
2861 if (sa->state != SFC_ETHDEV_INITIALIZED) {
2862 rte_flow_error_set(error, EBUSY,
2863 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2864 NULL, "please close the port first");
2867 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2869 sfc_adapter_unlock(sa);
2874 const struct rte_flow_ops sfc_flow_ops = {
2875 .validate = sfc_flow_validate,
2876 .create = sfc_flow_create,
2877 .destroy = sfc_flow_destroy,
2878 .flush = sfc_flow_flush,
2879 .query = sfc_flow_query,
2880 .isolate = sfc_flow_isolate,
2884 sfc_flow_init(struct sfc_adapter *sa)
2886 SFC_ASSERT(sfc_adapter_is_locked(sa));
2888 TAILQ_INIT(&sa->flow_list);
2892 sfc_flow_fini(struct sfc_adapter *sa)
2894 struct rte_flow *flow;
2896 SFC_ASSERT(sfc_adapter_is_locked(sa));
2898 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2899 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2900 sfc_flow_free(sa, flow);
2905 sfc_flow_stop(struct sfc_adapter *sa)
2907 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2908 struct sfc_rss *rss = &sas->rss;
2909 struct rte_flow *flow;
2911 SFC_ASSERT(sfc_adapter_is_locked(sa));
2913 TAILQ_FOREACH(flow, &sa->flow_list, entries)
2914 sfc_flow_remove(sa, flow, NULL);
2916 if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2917 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2918 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2922 * MAE counter service is not stopped on flow rule remove to avoid
2923 * extra work. Make sure that it is stopped here.
2925 sfc_mae_counter_stop(sa);
2929 sfc_flow_start(struct sfc_adapter *sa)
2931 struct rte_flow *flow;
2934 sfc_log_init(sa, "entry");
2936 SFC_ASSERT(sfc_adapter_is_locked(sa));
2938 TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2939 rc = sfc_flow_insert(sa, flow, NULL);
2944 sfc_log_init(sa, "done");