net/ice: support L4 for QinQ switch filter
[dpdk.git] / drivers / net / sfc / sfc_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17
18 #include "efx.h"
19
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_mae_counter.h"
28
29 struct sfc_flow_ops_by_spec {
30         sfc_flow_parse_cb_t     *parse;
31         sfc_flow_verify_cb_t    *verify;
32         sfc_flow_cleanup_cb_t   *cleanup;
33         sfc_flow_insert_cb_t    *insert;
34         sfc_flow_remove_cb_t    *remove;
35         sfc_flow_query_cb_t     *query;
36 };
37
38 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
39 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
40 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
41 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
42
43 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
44         .parse = sfc_flow_parse_rte_to_filter,
45         .verify = NULL,
46         .cleanup = NULL,
47         .insert = sfc_flow_filter_insert,
48         .remove = sfc_flow_filter_remove,
49         .query = NULL,
50 };
51
52 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
53         .parse = sfc_flow_parse_rte_to_mae,
54         .verify = sfc_mae_flow_verify,
55         .cleanup = sfc_mae_flow_cleanup,
56         .insert = sfc_mae_flow_insert,
57         .remove = sfc_mae_flow_remove,
58         .query = sfc_mae_flow_query,
59 };
60
61 static const struct sfc_flow_ops_by_spec *
62 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
63 {
64         struct sfc_flow_spec *spec = &flow->spec;
65         const struct sfc_flow_ops_by_spec *ops = NULL;
66
67         switch (spec->type) {
68         case SFC_FLOW_SPEC_FILTER:
69                 ops = &sfc_flow_ops_filter;
70                 break;
71         case SFC_FLOW_SPEC_MAE:
72                 ops = &sfc_flow_ops_mae;
73                 break;
74         default:
75                 SFC_ASSERT(false);
76                 break;
77         }
78
79         return ops;
80 }
81
82 /*
83  * Currently, filter-based (VNIC) flow API is implemented in such a manner
84  * that each flow rule is converted to one or more hardware filters.
85  * All elements of flow rule (attributes, pattern items, actions)
86  * correspond to one or more fields in the efx_filter_spec_s structure
87  * that is responsible for the hardware filter.
88  * If some required field is unset in the flow rule, then a handful
89  * of filter copies will be created to cover all possible values
90  * of such a field.
91  */
92
93 static sfc_flow_item_parse sfc_flow_parse_void;
94 static sfc_flow_item_parse sfc_flow_parse_eth;
95 static sfc_flow_item_parse sfc_flow_parse_vlan;
96 static sfc_flow_item_parse sfc_flow_parse_ipv4;
97 static sfc_flow_item_parse sfc_flow_parse_ipv6;
98 static sfc_flow_item_parse sfc_flow_parse_tcp;
99 static sfc_flow_item_parse sfc_flow_parse_udp;
100 static sfc_flow_item_parse sfc_flow_parse_vxlan;
101 static sfc_flow_item_parse sfc_flow_parse_geneve;
102 static sfc_flow_item_parse sfc_flow_parse_nvgre;
103 static sfc_flow_item_parse sfc_flow_parse_pppoex;
104
105 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
106                                      unsigned int filters_count_for_one_val,
107                                      struct rte_flow_error *error);
108
109 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
110                                         efx_filter_spec_t *spec,
111                                         struct sfc_filter *filter);
112
113 struct sfc_flow_copy_flag {
114         /* EFX filter specification match flag */
115         efx_filter_match_flags_t flag;
116         /* Number of values of corresponding field */
117         unsigned int vals_count;
118         /* Function to set values in specifications */
119         sfc_flow_spec_set_vals *set_vals;
120         /*
121          * Function to check that the specification is suitable
122          * for adding this match flag
123          */
124         sfc_flow_spec_check *spec_check;
125 };
126
127 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
128 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
129 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
130 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
131 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
132 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
133 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
134
135 static boolean_t
136 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
137 {
138         uint8_t sum = 0;
139         unsigned int i;
140
141         for (i = 0; i < size; i++)
142                 sum |= buf[i];
143
144         return (sum == 0) ? B_TRUE : B_FALSE;
145 }
146
147 /*
148  * Validate item and prepare structures spec and mask for parsing
149  */
150 int
151 sfc_flow_parse_init(const struct rte_flow_item *item,
152                     const void **spec_ptr,
153                     const void **mask_ptr,
154                     const void *supp_mask,
155                     const void *def_mask,
156                     unsigned int size,
157                     struct rte_flow_error *error)
158 {
159         const uint8_t *spec;
160         const uint8_t *mask;
161         const uint8_t *last;
162         uint8_t supp;
163         unsigned int i;
164
165         if (item == NULL) {
166                 rte_flow_error_set(error, EINVAL,
167                                    RTE_FLOW_ERROR_TYPE_ITEM, NULL,
168                                    "NULL item");
169                 return -rte_errno;
170         }
171
172         if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
173                 rte_flow_error_set(error, EINVAL,
174                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
175                                    "Mask or last is set without spec");
176                 return -rte_errno;
177         }
178
179         /*
180          * If "mask" is not set, default mask is used,
181          * but if default mask is NULL, "mask" should be set
182          */
183         if (item->mask == NULL) {
184                 if (def_mask == NULL) {
185                         rte_flow_error_set(error, EINVAL,
186                                 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
187                                 "Mask should be specified");
188                         return -rte_errno;
189                 }
190
191                 mask = def_mask;
192         } else {
193                 mask = item->mask;
194         }
195
196         spec = item->spec;
197         last = item->last;
198
199         if (spec == NULL)
200                 goto exit;
201
202         /*
203          * If field values in "last" are either 0 or equal to the corresponding
204          * values in "spec" then they are ignored
205          */
206         if (last != NULL &&
207             !sfc_flow_is_zero(last, size) &&
208             memcmp(last, spec, size) != 0) {
209                 rte_flow_error_set(error, ENOTSUP,
210                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
211                                    "Ranging is not supported");
212                 return -rte_errno;
213         }
214
215         if (supp_mask == NULL) {
216                 rte_flow_error_set(error, EINVAL,
217                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
218                         "Supported mask for item should be specified");
219                 return -rte_errno;
220         }
221
222         /* Check that mask does not ask for more match than supp_mask */
223         for (i = 0; i < size; i++) {
224                 supp = ((const uint8_t *)supp_mask)[i];
225
226                 if (~supp & mask[i]) {
227                         rte_flow_error_set(error, ENOTSUP,
228                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
229                                            "Item's field is not supported");
230                         return -rte_errno;
231                 }
232         }
233
234 exit:
235         *spec_ptr = spec;
236         *mask_ptr = mask;
237         return 0;
238 }
239
240 /*
241  * Protocol parsers.
242  * Masking is not supported, so masks in items should be either
243  * full or empty (zeroed) and set only for supported fields which
244  * are specified in the supp_mask.
245  */
246
247 static int
248 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
249                     __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
250                     __rte_unused struct rte_flow_error *error)
251 {
252         return 0;
253 }
254
255 /**
256  * Convert Ethernet item to EFX filter specification.
257  *
258  * @param item[in]
259  *   Item specification. Outer frame specification may only comprise
260  *   source/destination addresses and Ethertype field.
261  *   Inner frame specification may contain destination address only.
262  *   There is support for individual/group mask as well as for empty and full.
263  *   If the mask is NULL, default mask will be used. Ranging is not supported.
264  * @param efx_spec[in, out]
265  *   EFX filter specification to update.
266  * @param[out] error
267  *   Perform verbose error reporting if not NULL.
268  */
269 static int
270 sfc_flow_parse_eth(const struct rte_flow_item *item,
271                    struct sfc_flow_parse_ctx *parse_ctx,
272                    struct rte_flow_error *error)
273 {
274         int rc;
275         efx_filter_spec_t *efx_spec = parse_ctx->filter;
276         const struct rte_flow_item_eth *spec = NULL;
277         const struct rte_flow_item_eth *mask = NULL;
278         const struct rte_flow_item_eth supp_mask = {
279                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280                 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
281                 .type = 0xffff,
282         };
283         const struct rte_flow_item_eth ifrm_supp_mask = {
284                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
285         };
286         const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
287                 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
288         };
289         const struct rte_flow_item_eth *supp_mask_p;
290         const struct rte_flow_item_eth *def_mask_p;
291         uint8_t *loc_mac = NULL;
292         boolean_t is_ifrm = (efx_spec->efs_encap_type !=
293                 EFX_TUNNEL_PROTOCOL_NONE);
294
295         if (is_ifrm) {
296                 supp_mask_p = &ifrm_supp_mask;
297                 def_mask_p = &ifrm_supp_mask;
298                 loc_mac = efx_spec->efs_ifrm_loc_mac;
299         } else {
300                 supp_mask_p = &supp_mask;
301                 def_mask_p = &rte_flow_item_eth_mask;
302                 loc_mac = efx_spec->efs_loc_mac;
303         }
304
305         rc = sfc_flow_parse_init(item,
306                                  (const void **)&spec,
307                                  (const void **)&mask,
308                                  supp_mask_p, def_mask_p,
309                                  sizeof(struct rte_flow_item_eth),
310                                  error);
311         if (rc != 0)
312                 return rc;
313
314         /* If "spec" is not set, could be any Ethernet */
315         if (spec == NULL)
316                 return 0;
317
318         if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
319                 efx_spec->efs_match_flags |= is_ifrm ?
320                         EFX_FILTER_MATCH_IFRM_LOC_MAC :
321                         EFX_FILTER_MATCH_LOC_MAC;
322                 rte_memcpy(loc_mac, spec->dst.addr_bytes,
323                            EFX_MAC_ADDR_LEN);
324         } else if (memcmp(mask->dst.addr_bytes, ig_mask,
325                           EFX_MAC_ADDR_LEN) == 0) {
326                 if (rte_is_unicast_ether_addr(&spec->dst))
327                         efx_spec->efs_match_flags |= is_ifrm ?
328                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
329                                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
330                 else
331                         efx_spec->efs_match_flags |= is_ifrm ?
332                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
333                                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
334         } else if (!rte_is_zero_ether_addr(&mask->dst)) {
335                 goto fail_bad_mask;
336         }
337
338         /*
339          * ifrm_supp_mask ensures that the source address and
340          * ethertype masks are equal to zero in inner frame,
341          * so these fields are filled in only for the outer frame
342          */
343         if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
344                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
345                 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
346                            EFX_MAC_ADDR_LEN);
347         } else if (!rte_is_zero_ether_addr(&mask->src)) {
348                 goto fail_bad_mask;
349         }
350
351         /*
352          * Ether type is in big-endian byte order in item and
353          * in little-endian in efx_spec, so byte swap is used
354          */
355         if (mask->type == supp_mask.type) {
356                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
357                 efx_spec->efs_ether_type = rte_bswap16(spec->type);
358         } else if (mask->type != 0) {
359                 goto fail_bad_mask;
360         }
361
362         return 0;
363
364 fail_bad_mask:
365         rte_flow_error_set(error, EINVAL,
366                            RTE_FLOW_ERROR_TYPE_ITEM, item,
367                            "Bad mask in the ETH pattern item");
368         return -rte_errno;
369 }
370
371 /**
372  * Convert VLAN item to EFX filter specification.
373  *
374  * @param item[in]
375  *   Item specification. Only VID field is supported.
376  *   The mask can not be NULL. Ranging is not supported.
377  * @param efx_spec[in, out]
378  *   EFX filter specification to update.
379  * @param[out] error
380  *   Perform verbose error reporting if not NULL.
381  */
382 static int
383 sfc_flow_parse_vlan(const struct rte_flow_item *item,
384                     struct sfc_flow_parse_ctx *parse_ctx,
385                     struct rte_flow_error *error)
386 {
387         int rc;
388         uint16_t vid;
389         efx_filter_spec_t *efx_spec = parse_ctx->filter;
390         const struct rte_flow_item_vlan *spec = NULL;
391         const struct rte_flow_item_vlan *mask = NULL;
392         const struct rte_flow_item_vlan supp_mask = {
393                 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
394                 .inner_type = RTE_BE16(0xffff),
395         };
396
397         rc = sfc_flow_parse_init(item,
398                                  (const void **)&spec,
399                                  (const void **)&mask,
400                                  &supp_mask,
401                                  NULL,
402                                  sizeof(struct rte_flow_item_vlan),
403                                  error);
404         if (rc != 0)
405                 return rc;
406
407         /*
408          * VID is in big-endian byte order in item and
409          * in little-endian in efx_spec, so byte swap is used.
410          * If two VLAN items are included, the first matches
411          * the outer tag and the next matches the inner tag.
412          */
413         if (mask->tci == supp_mask.tci) {
414                 /* Apply mask to keep VID only */
415                 vid = rte_bswap16(spec->tci & mask->tci);
416
417                 if (!(efx_spec->efs_match_flags &
418                       EFX_FILTER_MATCH_OUTER_VID)) {
419                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
420                         efx_spec->efs_outer_vid = vid;
421                 } else if (!(efx_spec->efs_match_flags &
422                              EFX_FILTER_MATCH_INNER_VID)) {
423                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
424                         efx_spec->efs_inner_vid = vid;
425                 } else {
426                         rte_flow_error_set(error, EINVAL,
427                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
428                                            "More than two VLAN items");
429                         return -rte_errno;
430                 }
431         } else {
432                 rte_flow_error_set(error, EINVAL,
433                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
434                                    "VLAN ID in TCI match is required");
435                 return -rte_errno;
436         }
437
438         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
439                 rte_flow_error_set(error, EINVAL,
440                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                    "VLAN TPID matching is not supported");
442                 return -rte_errno;
443         }
444         if (mask->inner_type == supp_mask.inner_type) {
445                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
446                 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
447         } else if (mask->inner_type) {
448                 rte_flow_error_set(error, EINVAL,
449                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
450                                    "Bad mask for VLAN inner_type");
451                 return -rte_errno;
452         }
453
454         return 0;
455 }
456
457 /**
458  * Convert IPv4 item to EFX filter specification.
459  *
460  * @param item[in]
461  *   Item specification. Only source and destination addresses and
462  *   protocol fields are supported. If the mask is NULL, default
463  *   mask will be used. Ranging is not supported.
464  * @param efx_spec[in, out]
465  *   EFX filter specification to update.
466  * @param[out] error
467  *   Perform verbose error reporting if not NULL.
468  */
469 static int
470 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
471                     struct sfc_flow_parse_ctx *parse_ctx,
472                     struct rte_flow_error *error)
473 {
474         int rc;
475         efx_filter_spec_t *efx_spec = parse_ctx->filter;
476         const struct rte_flow_item_ipv4 *spec = NULL;
477         const struct rte_flow_item_ipv4 *mask = NULL;
478         const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
479         const struct rte_flow_item_ipv4 supp_mask = {
480                 .hdr = {
481                         .src_addr = 0xffffffff,
482                         .dst_addr = 0xffffffff,
483                         .next_proto_id = 0xff,
484                 }
485         };
486
487         rc = sfc_flow_parse_init(item,
488                                  (const void **)&spec,
489                                  (const void **)&mask,
490                                  &supp_mask,
491                                  &rte_flow_item_ipv4_mask,
492                                  sizeof(struct rte_flow_item_ipv4),
493                                  error);
494         if (rc != 0)
495                 return rc;
496
497         /*
498          * Filtering by IPv4 source and destination addresses requires
499          * the appropriate ETHER_TYPE in hardware filters
500          */
501         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
502                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
503                 efx_spec->efs_ether_type = ether_type_ipv4;
504         } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
505                 rte_flow_error_set(error, EINVAL,
506                         RTE_FLOW_ERROR_TYPE_ITEM, item,
507                         "Ethertype in pattern with IPV4 item should be appropriate");
508                 return -rte_errno;
509         }
510
511         if (spec == NULL)
512                 return 0;
513
514         /*
515          * IPv4 addresses are in big-endian byte order in item and in
516          * efx_spec
517          */
518         if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
519                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
520                 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
521         } else if (mask->hdr.src_addr != 0) {
522                 goto fail_bad_mask;
523         }
524
525         if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
526                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
527                 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
528         } else if (mask->hdr.dst_addr != 0) {
529                 goto fail_bad_mask;
530         }
531
532         if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
533                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
534                 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
535         } else if (mask->hdr.next_proto_id != 0) {
536                 goto fail_bad_mask;
537         }
538
539         return 0;
540
541 fail_bad_mask:
542         rte_flow_error_set(error, EINVAL,
543                            RTE_FLOW_ERROR_TYPE_ITEM, item,
544                            "Bad mask in the IPV4 pattern item");
545         return -rte_errno;
546 }
547
548 /**
549  * Convert IPv6 item to EFX filter specification.
550  *
551  * @param item[in]
552  *   Item specification. Only source and destination addresses and
553  *   next header fields are supported. If the mask is NULL, default
554  *   mask will be used. Ranging is not supported.
555  * @param efx_spec[in, out]
556  *   EFX filter specification to update.
557  * @param[out] error
558  *   Perform verbose error reporting if not NULL.
559  */
560 static int
561 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
562                     struct sfc_flow_parse_ctx *parse_ctx,
563                     struct rte_flow_error *error)
564 {
565         int rc;
566         efx_filter_spec_t *efx_spec = parse_ctx->filter;
567         const struct rte_flow_item_ipv6 *spec = NULL;
568         const struct rte_flow_item_ipv6 *mask = NULL;
569         const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
570         const struct rte_flow_item_ipv6 supp_mask = {
571                 .hdr = {
572                         .src_addr = { 0xff, 0xff, 0xff, 0xff,
573                                       0xff, 0xff, 0xff, 0xff,
574                                       0xff, 0xff, 0xff, 0xff,
575                                       0xff, 0xff, 0xff, 0xff },
576                         .dst_addr = { 0xff, 0xff, 0xff, 0xff,
577                                       0xff, 0xff, 0xff, 0xff,
578                                       0xff, 0xff, 0xff, 0xff,
579                                       0xff, 0xff, 0xff, 0xff },
580                         .proto = 0xff,
581                 }
582         };
583
584         rc = sfc_flow_parse_init(item,
585                                  (const void **)&spec,
586                                  (const void **)&mask,
587                                  &supp_mask,
588                                  &rte_flow_item_ipv6_mask,
589                                  sizeof(struct rte_flow_item_ipv6),
590                                  error);
591         if (rc != 0)
592                 return rc;
593
594         /*
595          * Filtering by IPv6 source and destination addresses requires
596          * the appropriate ETHER_TYPE in hardware filters
597          */
598         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
599                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
600                 efx_spec->efs_ether_type = ether_type_ipv6;
601         } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
602                 rte_flow_error_set(error, EINVAL,
603                         RTE_FLOW_ERROR_TYPE_ITEM, item,
604                         "Ethertype in pattern with IPV6 item should be appropriate");
605                 return -rte_errno;
606         }
607
608         if (spec == NULL)
609                 return 0;
610
611         /*
612          * IPv6 addresses are in big-endian byte order in item and in
613          * efx_spec
614          */
615         if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
616                    sizeof(mask->hdr.src_addr)) == 0) {
617                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
618
619                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
620                                  sizeof(spec->hdr.src_addr));
621                 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
622                            sizeof(efx_spec->efs_rem_host));
623         } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
624                                      sizeof(mask->hdr.src_addr))) {
625                 goto fail_bad_mask;
626         }
627
628         if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
629                    sizeof(mask->hdr.dst_addr)) == 0) {
630                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
631
632                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
633                                  sizeof(spec->hdr.dst_addr));
634                 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
635                            sizeof(efx_spec->efs_loc_host));
636         } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
637                                      sizeof(mask->hdr.dst_addr))) {
638                 goto fail_bad_mask;
639         }
640
641         if (mask->hdr.proto == supp_mask.hdr.proto) {
642                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
643                 efx_spec->efs_ip_proto = spec->hdr.proto;
644         } else if (mask->hdr.proto != 0) {
645                 goto fail_bad_mask;
646         }
647
648         return 0;
649
650 fail_bad_mask:
651         rte_flow_error_set(error, EINVAL,
652                            RTE_FLOW_ERROR_TYPE_ITEM, item,
653                            "Bad mask in the IPV6 pattern item");
654         return -rte_errno;
655 }
656
657 /**
658  * Convert TCP item to EFX filter specification.
659  *
660  * @param item[in]
661  *   Item specification. Only source and destination ports fields
662  *   are supported. If the mask is NULL, default mask will be used.
663  *   Ranging is not supported.
664  * @param efx_spec[in, out]
665  *   EFX filter specification to update.
666  * @param[out] error
667  *   Perform verbose error reporting if not NULL.
668  */
669 static int
670 sfc_flow_parse_tcp(const struct rte_flow_item *item,
671                    struct sfc_flow_parse_ctx *parse_ctx,
672                    struct rte_flow_error *error)
673 {
674         int rc;
675         efx_filter_spec_t *efx_spec = parse_ctx->filter;
676         const struct rte_flow_item_tcp *spec = NULL;
677         const struct rte_flow_item_tcp *mask = NULL;
678         const struct rte_flow_item_tcp supp_mask = {
679                 .hdr = {
680                         .src_port = 0xffff,
681                         .dst_port = 0xffff,
682                 }
683         };
684
685         rc = sfc_flow_parse_init(item,
686                                  (const void **)&spec,
687                                  (const void **)&mask,
688                                  &supp_mask,
689                                  &rte_flow_item_tcp_mask,
690                                  sizeof(struct rte_flow_item_tcp),
691                                  error);
692         if (rc != 0)
693                 return rc;
694
695         /*
696          * Filtering by TCP source and destination ports requires
697          * the appropriate IP_PROTO in hardware filters
698          */
699         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
700                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
701                 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
702         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
703                 rte_flow_error_set(error, EINVAL,
704                         RTE_FLOW_ERROR_TYPE_ITEM, item,
705                         "IP proto in pattern with TCP item should be appropriate");
706                 return -rte_errno;
707         }
708
709         if (spec == NULL)
710                 return 0;
711
712         /*
713          * Source and destination ports are in big-endian byte order in item and
714          * in little-endian in efx_spec, so byte swap is used
715          */
716         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
717                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
718                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
719         } else if (mask->hdr.src_port != 0) {
720                 goto fail_bad_mask;
721         }
722
723         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
724                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
725                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
726         } else if (mask->hdr.dst_port != 0) {
727                 goto fail_bad_mask;
728         }
729
730         return 0;
731
732 fail_bad_mask:
733         rte_flow_error_set(error, EINVAL,
734                            RTE_FLOW_ERROR_TYPE_ITEM, item,
735                            "Bad mask in the TCP pattern item");
736         return -rte_errno;
737 }
738
739 /**
740  * Convert UDP item to EFX filter specification.
741  *
742  * @param item[in]
743  *   Item specification. Only source and destination ports fields
744  *   are supported. If the mask is NULL, default mask will be used.
745  *   Ranging is not supported.
746  * @param efx_spec[in, out]
747  *   EFX filter specification to update.
748  * @param[out] error
749  *   Perform verbose error reporting if not NULL.
750  */
751 static int
752 sfc_flow_parse_udp(const struct rte_flow_item *item,
753                    struct sfc_flow_parse_ctx *parse_ctx,
754                    struct rte_flow_error *error)
755 {
756         int rc;
757         efx_filter_spec_t *efx_spec = parse_ctx->filter;
758         const struct rte_flow_item_udp *spec = NULL;
759         const struct rte_flow_item_udp *mask = NULL;
760         const struct rte_flow_item_udp supp_mask = {
761                 .hdr = {
762                         .src_port = 0xffff,
763                         .dst_port = 0xffff,
764                 }
765         };
766
767         rc = sfc_flow_parse_init(item,
768                                  (const void **)&spec,
769                                  (const void **)&mask,
770                                  &supp_mask,
771                                  &rte_flow_item_udp_mask,
772                                  sizeof(struct rte_flow_item_udp),
773                                  error);
774         if (rc != 0)
775                 return rc;
776
777         /*
778          * Filtering by UDP source and destination ports requires
779          * the appropriate IP_PROTO in hardware filters
780          */
781         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
782                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
783                 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
784         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
785                 rte_flow_error_set(error, EINVAL,
786                         RTE_FLOW_ERROR_TYPE_ITEM, item,
787                         "IP proto in pattern with UDP item should be appropriate");
788                 return -rte_errno;
789         }
790
791         if (spec == NULL)
792                 return 0;
793
794         /*
795          * Source and destination ports are in big-endian byte order in item and
796          * in little-endian in efx_spec, so byte swap is used
797          */
798         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
799                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
800                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
801         } else if (mask->hdr.src_port != 0) {
802                 goto fail_bad_mask;
803         }
804
805         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
806                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
807                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
808         } else if (mask->hdr.dst_port != 0) {
809                 goto fail_bad_mask;
810         }
811
812         return 0;
813
814 fail_bad_mask:
815         rte_flow_error_set(error, EINVAL,
816                            RTE_FLOW_ERROR_TYPE_ITEM, item,
817                            "Bad mask in the UDP pattern item");
818         return -rte_errno;
819 }
820
821 /*
822  * Filters for encapsulated packets match based on the EtherType and IP
823  * protocol in the outer frame.
824  */
825 static int
826 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
827                                         efx_filter_spec_t *efx_spec,
828                                         uint8_t ip_proto,
829                                         struct rte_flow_error *error)
830 {
831         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
832                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
833                 efx_spec->efs_ip_proto = ip_proto;
834         } else if (efx_spec->efs_ip_proto != ip_proto) {
835                 switch (ip_proto) {
836                 case EFX_IPPROTO_UDP:
837                         rte_flow_error_set(error, EINVAL,
838                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
839                                 "Outer IP header protocol must be UDP "
840                                 "in VxLAN/GENEVE pattern");
841                         return -rte_errno;
842
843                 case EFX_IPPROTO_GRE:
844                         rte_flow_error_set(error, EINVAL,
845                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
846                                 "Outer IP header protocol must be GRE "
847                                 "in NVGRE pattern");
848                         return -rte_errno;
849
850                 default:
851                         rte_flow_error_set(error, EINVAL,
852                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
853                                 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
854                                 "are supported");
855                         return -rte_errno;
856                 }
857         }
858
859         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
860             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
861             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
862                 rte_flow_error_set(error, EINVAL,
863                         RTE_FLOW_ERROR_TYPE_ITEM, item,
864                         "Outer frame EtherType in pattern with tunneling "
865                         "must be IPv4 or IPv6");
866                 return -rte_errno;
867         }
868
869         return 0;
870 }
871
872 static int
873 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
874                                   const uint8_t *vni_or_vsid_val,
875                                   const uint8_t *vni_or_vsid_mask,
876                                   const struct rte_flow_item *item,
877                                   struct rte_flow_error *error)
878 {
879         const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
880                 0xff, 0xff, 0xff
881         };
882
883         if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
884                    EFX_VNI_OR_VSID_LEN) == 0) {
885                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
886                 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
887                            EFX_VNI_OR_VSID_LEN);
888         } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
889                 rte_flow_error_set(error, EINVAL,
890                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
891                                    "Unsupported VNI/VSID mask");
892                 return -rte_errno;
893         }
894
895         return 0;
896 }
897
898 /**
899  * Convert VXLAN item to EFX filter specification.
900  *
901  * @param item[in]
902  *   Item specification. Only VXLAN network identifier field is supported.
903  *   If the mask is NULL, default mask will be used.
904  *   Ranging is not supported.
905  * @param efx_spec[in, out]
906  *   EFX filter specification to update.
907  * @param[out] error
908  *   Perform verbose error reporting if not NULL.
909  */
910 static int
911 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
912                      struct sfc_flow_parse_ctx *parse_ctx,
913                      struct rte_flow_error *error)
914 {
915         int rc;
916         efx_filter_spec_t *efx_spec = parse_ctx->filter;
917         const struct rte_flow_item_vxlan *spec = NULL;
918         const struct rte_flow_item_vxlan *mask = NULL;
919         const struct rte_flow_item_vxlan supp_mask = {
920                 .vni = { 0xff, 0xff, 0xff }
921         };
922
923         rc = sfc_flow_parse_init(item,
924                                  (const void **)&spec,
925                                  (const void **)&mask,
926                                  &supp_mask,
927                                  &rte_flow_item_vxlan_mask,
928                                  sizeof(struct rte_flow_item_vxlan),
929                                  error);
930         if (rc != 0)
931                 return rc;
932
933         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
934                                                      EFX_IPPROTO_UDP, error);
935         if (rc != 0)
936                 return rc;
937
938         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
939         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
940
941         if (spec == NULL)
942                 return 0;
943
944         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
945                                                mask->vni, item, error);
946
947         return rc;
948 }
949
950 /**
951  * Convert GENEVE item to EFX filter specification.
952  *
953  * @param item[in]
954  *   Item specification. Only Virtual Network Identifier and protocol type
955  *   fields are supported. But protocol type can be only Ethernet (0x6558).
956  *   If the mask is NULL, default mask will be used.
957  *   Ranging is not supported.
958  * @param efx_spec[in, out]
959  *   EFX filter specification to update.
960  * @param[out] error
961  *   Perform verbose error reporting if not NULL.
962  */
963 static int
964 sfc_flow_parse_geneve(const struct rte_flow_item *item,
965                       struct sfc_flow_parse_ctx *parse_ctx,
966                       struct rte_flow_error *error)
967 {
968         int rc;
969         efx_filter_spec_t *efx_spec = parse_ctx->filter;
970         const struct rte_flow_item_geneve *spec = NULL;
971         const struct rte_flow_item_geneve *mask = NULL;
972         const struct rte_flow_item_geneve supp_mask = {
973                 .protocol = RTE_BE16(0xffff),
974                 .vni = { 0xff, 0xff, 0xff }
975         };
976
977         rc = sfc_flow_parse_init(item,
978                                  (const void **)&spec,
979                                  (const void **)&mask,
980                                  &supp_mask,
981                                  &rte_flow_item_geneve_mask,
982                                  sizeof(struct rte_flow_item_geneve),
983                                  error);
984         if (rc != 0)
985                 return rc;
986
987         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
988                                                      EFX_IPPROTO_UDP, error);
989         if (rc != 0)
990                 return rc;
991
992         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
993         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
994
995         if (spec == NULL)
996                 return 0;
997
998         if (mask->protocol == supp_mask.protocol) {
999                 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
1000                         rte_flow_error_set(error, EINVAL,
1001                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1002                                 "GENEVE encap. protocol must be Ethernet "
1003                                 "(0x6558) in the GENEVE pattern item");
1004                         return -rte_errno;
1005                 }
1006         } else if (mask->protocol != 0) {
1007                 rte_flow_error_set(error, EINVAL,
1008                         RTE_FLOW_ERROR_TYPE_ITEM, item,
1009                         "Unsupported mask for GENEVE encap. protocol");
1010                 return -rte_errno;
1011         }
1012
1013         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1014                                                mask->vni, item, error);
1015
1016         return rc;
1017 }
1018
1019 /**
1020  * Convert NVGRE item to EFX filter specification.
1021  *
1022  * @param item[in]
1023  *   Item specification. Only virtual subnet ID field is supported.
1024  *   If the mask is NULL, default mask will be used.
1025  *   Ranging is not supported.
1026  * @param efx_spec[in, out]
1027  *   EFX filter specification to update.
1028  * @param[out] error
1029  *   Perform verbose error reporting if not NULL.
1030  */
1031 static int
1032 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1033                      struct sfc_flow_parse_ctx *parse_ctx,
1034                      struct rte_flow_error *error)
1035 {
1036         int rc;
1037         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1038         const struct rte_flow_item_nvgre *spec = NULL;
1039         const struct rte_flow_item_nvgre *mask = NULL;
1040         const struct rte_flow_item_nvgre supp_mask = {
1041                 .tni = { 0xff, 0xff, 0xff }
1042         };
1043
1044         rc = sfc_flow_parse_init(item,
1045                                  (const void **)&spec,
1046                                  (const void **)&mask,
1047                                  &supp_mask,
1048                                  &rte_flow_item_nvgre_mask,
1049                                  sizeof(struct rte_flow_item_nvgre),
1050                                  error);
1051         if (rc != 0)
1052                 return rc;
1053
1054         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1055                                                      EFX_IPPROTO_GRE, error);
1056         if (rc != 0)
1057                 return rc;
1058
1059         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1060         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1061
1062         if (spec == NULL)
1063                 return 0;
1064
1065         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1066                                                mask->tni, item, error);
1067
1068         return rc;
1069 }
1070
1071 /**
1072  * Convert PPPoEx item to EFX filter specification.
1073  *
1074  * @param item[in]
1075  *   Item specification.
1076  *   Matching on PPPoEx fields is not supported.
1077  *   This item can only be used to set or validate the EtherType filter.
1078  *   Only zero masks are allowed.
1079  *   Ranging is not supported.
1080  * @param efx_spec[in, out]
1081  *   EFX filter specification to update.
1082  * @param[out] error
1083  *   Perform verbose error reporting if not NULL.
1084  */
1085 static int
1086 sfc_flow_parse_pppoex(const struct rte_flow_item *item,
1087                       struct sfc_flow_parse_ctx *parse_ctx,
1088                       struct rte_flow_error *error)
1089 {
1090         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1091         const struct rte_flow_item_pppoe *spec = NULL;
1092         const struct rte_flow_item_pppoe *mask = NULL;
1093         const struct rte_flow_item_pppoe supp_mask = {};
1094         const struct rte_flow_item_pppoe def_mask = {};
1095         uint16_t ether_type;
1096         int rc;
1097
1098         rc = sfc_flow_parse_init(item,
1099                                  (const void **)&spec,
1100                                  (const void **)&mask,
1101                                  &supp_mask,
1102                                  &def_mask,
1103                                  sizeof(struct rte_flow_item_pppoe),
1104                                  error);
1105         if (rc != 0)
1106                 return rc;
1107
1108         if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED)
1109                 ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY;
1110         else
1111                 ether_type = RTE_ETHER_TYPE_PPPOE_SESSION;
1112
1113         if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) {
1114                 if (efx_spec->efs_ether_type != ether_type) {
1115                         rte_flow_error_set(error, EINVAL,
1116                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
1117                                            "Invalid EtherType for a PPPoE flow item");
1118                         return -rte_errno;
1119                 }
1120         } else {
1121                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1122                 efx_spec->efs_ether_type = ether_type;
1123         }
1124
1125         return 0;
1126 }
1127
1128 static const struct sfc_flow_item sfc_flow_items[] = {
1129         {
1130                 .type = RTE_FLOW_ITEM_TYPE_VOID,
1131                 .name = "VOID",
1132                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1133                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1134                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135                 .parse = sfc_flow_parse_void,
1136         },
1137         {
1138                 .type = RTE_FLOW_ITEM_TYPE_ETH,
1139                 .name = "ETH",
1140                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1141                 .layer = SFC_FLOW_ITEM_L2,
1142                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1143                 .parse = sfc_flow_parse_eth,
1144         },
1145         {
1146                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1147                 .name = "VLAN",
1148                 .prev_layer = SFC_FLOW_ITEM_L2,
1149                 .layer = SFC_FLOW_ITEM_L2,
1150                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1151                 .parse = sfc_flow_parse_vlan,
1152         },
1153         {
1154                 .type = RTE_FLOW_ITEM_TYPE_PPPOED,
1155                 .name = "PPPOED",
1156                 .prev_layer = SFC_FLOW_ITEM_L2,
1157                 .layer = SFC_FLOW_ITEM_L2,
1158                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1159                 .parse = sfc_flow_parse_pppoex,
1160         },
1161         {
1162                 .type = RTE_FLOW_ITEM_TYPE_PPPOES,
1163                 .name = "PPPOES",
1164                 .prev_layer = SFC_FLOW_ITEM_L2,
1165                 .layer = SFC_FLOW_ITEM_L2,
1166                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1167                 .parse = sfc_flow_parse_pppoex,
1168         },
1169         {
1170                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1171                 .name = "IPV4",
1172                 .prev_layer = SFC_FLOW_ITEM_L2,
1173                 .layer = SFC_FLOW_ITEM_L3,
1174                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1175                 .parse = sfc_flow_parse_ipv4,
1176         },
1177         {
1178                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1179                 .name = "IPV6",
1180                 .prev_layer = SFC_FLOW_ITEM_L2,
1181                 .layer = SFC_FLOW_ITEM_L3,
1182                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1183                 .parse = sfc_flow_parse_ipv6,
1184         },
1185         {
1186                 .type = RTE_FLOW_ITEM_TYPE_TCP,
1187                 .name = "TCP",
1188                 .prev_layer = SFC_FLOW_ITEM_L3,
1189                 .layer = SFC_FLOW_ITEM_L4,
1190                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1191                 .parse = sfc_flow_parse_tcp,
1192         },
1193         {
1194                 .type = RTE_FLOW_ITEM_TYPE_UDP,
1195                 .name = "UDP",
1196                 .prev_layer = SFC_FLOW_ITEM_L3,
1197                 .layer = SFC_FLOW_ITEM_L4,
1198                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1199                 .parse = sfc_flow_parse_udp,
1200         },
1201         {
1202                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1203                 .name = "VXLAN",
1204                 .prev_layer = SFC_FLOW_ITEM_L4,
1205                 .layer = SFC_FLOW_ITEM_START_LAYER,
1206                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1207                 .parse = sfc_flow_parse_vxlan,
1208         },
1209         {
1210                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1211                 .name = "GENEVE",
1212                 .prev_layer = SFC_FLOW_ITEM_L4,
1213                 .layer = SFC_FLOW_ITEM_START_LAYER,
1214                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1215                 .parse = sfc_flow_parse_geneve,
1216         },
1217         {
1218                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1219                 .name = "NVGRE",
1220                 .prev_layer = SFC_FLOW_ITEM_L3,
1221                 .layer = SFC_FLOW_ITEM_START_LAYER,
1222                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1223                 .parse = sfc_flow_parse_nvgre,
1224         },
1225 };
1226
1227 /*
1228  * Protocol-independent flow API support
1229  */
1230 static int
1231 sfc_flow_parse_attr(struct sfc_adapter *sa,
1232                     const struct rte_flow_attr *attr,
1233                     struct rte_flow *flow,
1234                     struct rte_flow_error *error)
1235 {
1236         struct sfc_flow_spec *spec = &flow->spec;
1237         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1238         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1239         struct sfc_mae *mae = &sa->mae;
1240
1241         if (attr == NULL) {
1242                 rte_flow_error_set(error, EINVAL,
1243                                    RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1244                                    "NULL attribute");
1245                 return -rte_errno;
1246         }
1247         if (attr->group != 0) {
1248                 rte_flow_error_set(error, ENOTSUP,
1249                                    RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1250                                    "Groups are not supported");
1251                 return -rte_errno;
1252         }
1253         if (attr->egress != 0) {
1254                 rte_flow_error_set(error, ENOTSUP,
1255                                    RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1256                                    "Egress is not supported");
1257                 return -rte_errno;
1258         }
1259         if (attr->ingress == 0) {
1260                 rte_flow_error_set(error, ENOTSUP,
1261                                    RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1262                                    "Ingress is compulsory");
1263                 return -rte_errno;
1264         }
1265         if (attr->transfer == 0) {
1266                 if (attr->priority != 0) {
1267                         rte_flow_error_set(error, ENOTSUP,
1268                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1269                                            attr, "Priorities are unsupported");
1270                         return -rte_errno;
1271                 }
1272                 spec->type = SFC_FLOW_SPEC_FILTER;
1273                 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1274                 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1275                 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1276         } else {
1277                 if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1278                         rte_flow_error_set(error, ENOTSUP,
1279                                            RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1280                                            attr, "Transfer is not supported");
1281                         return -rte_errno;
1282                 }
1283                 if (attr->priority > mae->nb_action_rule_prios_max) {
1284                         rte_flow_error_set(error, ENOTSUP,
1285                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1286                                            attr, "Unsupported priority level");
1287                         return -rte_errno;
1288                 }
1289                 spec->type = SFC_FLOW_SPEC_MAE;
1290                 spec_mae->priority = attr->priority;
1291                 spec_mae->match_spec = NULL;
1292                 spec_mae->action_set = NULL;
1293                 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1294         }
1295
1296         return 0;
1297 }
1298
1299 /* Get item from array sfc_flow_items */
1300 static const struct sfc_flow_item *
1301 sfc_flow_get_item(const struct sfc_flow_item *items,
1302                   unsigned int nb_items,
1303                   enum rte_flow_item_type type)
1304 {
1305         unsigned int i;
1306
1307         for (i = 0; i < nb_items; i++)
1308                 if (items[i].type == type)
1309                         return &items[i];
1310
1311         return NULL;
1312 }
1313
1314 int
1315 sfc_flow_parse_pattern(struct sfc_adapter *sa,
1316                        const struct sfc_flow_item *flow_items,
1317                        unsigned int nb_flow_items,
1318                        const struct rte_flow_item pattern[],
1319                        struct sfc_flow_parse_ctx *parse_ctx,
1320                        struct rte_flow_error *error)
1321 {
1322         int rc;
1323         unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1324         boolean_t is_ifrm = B_FALSE;
1325         const struct sfc_flow_item *item;
1326
1327         if (pattern == NULL) {
1328                 rte_flow_error_set(error, EINVAL,
1329                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1330                                    "NULL pattern");
1331                 return -rte_errno;
1332         }
1333
1334         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1335                 item = sfc_flow_get_item(flow_items, nb_flow_items,
1336                                          pattern->type);
1337                 if (item == NULL) {
1338                         rte_flow_error_set(error, ENOTSUP,
1339                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1340                                            "Unsupported pattern item");
1341                         return -rte_errno;
1342                 }
1343
1344                 /*
1345                  * Omitting one or several protocol layers at the beginning
1346                  * of pattern is supported
1347                  */
1348                 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1349                     prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1350                     item->prev_layer != prev_layer) {
1351                         rte_flow_error_set(error, ENOTSUP,
1352                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1353                                            "Unexpected sequence of pattern items");
1354                         return -rte_errno;
1355                 }
1356
1357                 /*
1358                  * Allow only VOID and ETH pattern items in the inner frame.
1359                  * Also check that there is only one tunneling protocol.
1360                  */
1361                 switch (item->type) {
1362                 case RTE_FLOW_ITEM_TYPE_VOID:
1363                 case RTE_FLOW_ITEM_TYPE_ETH:
1364                         break;
1365
1366                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1367                 case RTE_FLOW_ITEM_TYPE_GENEVE:
1368                 case RTE_FLOW_ITEM_TYPE_NVGRE:
1369                         if (is_ifrm) {
1370                                 rte_flow_error_set(error, EINVAL,
1371                                         RTE_FLOW_ERROR_TYPE_ITEM,
1372                                         pattern,
1373                                         "More than one tunneling protocol");
1374                                 return -rte_errno;
1375                         }
1376                         is_ifrm = B_TRUE;
1377                         break;
1378
1379                 default:
1380                         if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1381                             is_ifrm) {
1382                                 rte_flow_error_set(error, EINVAL,
1383                                         RTE_FLOW_ERROR_TYPE_ITEM,
1384                                         pattern,
1385                                         "There is an unsupported pattern item "
1386                                         "in the inner frame");
1387                                 return -rte_errno;
1388                         }
1389                         break;
1390                 }
1391
1392                 if (parse_ctx->type != item->ctx_type) {
1393                         rte_flow_error_set(error, EINVAL,
1394                                         RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1395                                         "Parse context type mismatch");
1396                         return -rte_errno;
1397                 }
1398
1399                 rc = item->parse(pattern, parse_ctx, error);
1400                 if (rc != 0) {
1401                         sfc_err(sa, "failed to parse item %s: %s",
1402                                 item->name, strerror(-rc));
1403                         return rc;
1404                 }
1405
1406                 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1407                         prev_layer = item->layer;
1408         }
1409
1410         return 0;
1411 }
1412
1413 static int
1414 sfc_flow_parse_queue(struct sfc_adapter *sa,
1415                      const struct rte_flow_action_queue *queue,
1416                      struct rte_flow *flow)
1417 {
1418         struct sfc_flow_spec *spec = &flow->spec;
1419         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1420         struct sfc_rxq *rxq;
1421         struct sfc_rxq_info *rxq_info;
1422
1423         if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count)
1424                 return -EINVAL;
1425
1426         rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index);
1427         spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1428
1429         rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1430         spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1431                                             SFC_RXQ_FLAG_RSS_HASH);
1432
1433         return 0;
1434 }
1435
1436 static int
1437 sfc_flow_parse_rss(struct sfc_adapter *sa,
1438                    const struct rte_flow_action_rss *action_rss,
1439                    struct rte_flow *flow)
1440 {
1441         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1442         struct sfc_rss *rss = &sas->rss;
1443         sfc_ethdev_qid_t ethdev_qid;
1444         struct sfc_rxq *rxq;
1445         unsigned int rxq_hw_index_min;
1446         unsigned int rxq_hw_index_max;
1447         efx_rx_hash_type_t efx_hash_types;
1448         const uint8_t *rss_key;
1449         struct sfc_flow_spec *spec = &flow->spec;
1450         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1451         struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1452         unsigned int i;
1453
1454         if (action_rss->queue_num == 0)
1455                 return -EINVAL;
1456
1457         ethdev_qid = sfc_sa2shared(sa)->ethdev_rxq_count - 1;
1458         rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1459         rxq_hw_index_min = rxq->hw_index;
1460         rxq_hw_index_max = 0;
1461
1462         for (i = 0; i < action_rss->queue_num; ++i) {
1463                 ethdev_qid = action_rss->queue[i];
1464
1465                 if ((unsigned int)ethdev_qid >=
1466                     sfc_sa2shared(sa)->ethdev_rxq_count)
1467                         return -EINVAL;
1468
1469                 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1470
1471                 if (rxq->hw_index < rxq_hw_index_min)
1472                         rxq_hw_index_min = rxq->hw_index;
1473
1474                 if (rxq->hw_index > rxq_hw_index_max)
1475                         rxq_hw_index_max = rxq->hw_index;
1476         }
1477
1478         switch (action_rss->func) {
1479         case RTE_ETH_HASH_FUNCTION_DEFAULT:
1480         case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1481                 break;
1482         default:
1483                 return -EINVAL;
1484         }
1485
1486         if (action_rss->level)
1487                 return -EINVAL;
1488
1489         /*
1490          * Dummy RSS action with only one queue and no specific settings
1491          * for hash types and key does not require dedicated RSS context
1492          * and may be simplified to single queue action.
1493          */
1494         if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1495             action_rss->key_len == 0) {
1496                 spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1497                 return 0;
1498         }
1499
1500         if (action_rss->types) {
1501                 int rc;
1502
1503                 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1504                                           &efx_hash_types);
1505                 if (rc != 0)
1506                         return -rc;
1507         } else {
1508                 unsigned int i;
1509
1510                 efx_hash_types = 0;
1511                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
1512                         efx_hash_types |= rss->hf_map[i].efx;
1513         }
1514
1515         if (action_rss->key_len) {
1516                 if (action_rss->key_len != sizeof(rss->key))
1517                         return -EINVAL;
1518
1519                 rss_key = action_rss->key;
1520         } else {
1521                 rss_key = rss->key;
1522         }
1523
1524         spec_filter->rss = B_TRUE;
1525
1526         sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1527         sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1528         sfc_rss_conf->rss_hash_types = efx_hash_types;
1529         rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1530
1531         for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1532                 unsigned int nb_queues = action_rss->queue_num;
1533                 struct sfc_rxq *rxq;
1534
1535                 ethdev_qid = action_rss->queue[i % nb_queues];
1536                 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1537                 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1538         }
1539
1540         return 0;
1541 }
1542
1543 static int
1544 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1545                     unsigned int filters_count)
1546 {
1547         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1548         unsigned int i;
1549         int ret = 0;
1550
1551         for (i = 0; i < filters_count; i++) {
1552                 int rc;
1553
1554                 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1555                 if (ret == 0 && rc != 0) {
1556                         sfc_err(sa, "failed to remove filter specification "
1557                                 "(rc = %d)", rc);
1558                         ret = rc;
1559                 }
1560         }
1561
1562         return ret;
1563 }
1564
1565 static int
1566 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1567 {
1568         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1569         unsigned int i;
1570         int rc = 0;
1571
1572         for (i = 0; i < spec_filter->count; i++) {
1573                 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1574                 if (rc != 0) {
1575                         sfc_flow_spec_flush(sa, spec, i);
1576                         break;
1577                 }
1578         }
1579
1580         return rc;
1581 }
1582
1583 static int
1584 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1585 {
1586         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1587
1588         return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1589 }
1590
1591 static int
1592 sfc_flow_filter_insert(struct sfc_adapter *sa,
1593                        struct rte_flow *flow)
1594 {
1595         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1596         struct sfc_rss *rss = &sas->rss;
1597         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1598         struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1599         uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1600         boolean_t create_context;
1601         unsigned int i;
1602         int rc = 0;
1603
1604         create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1605                         rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1606
1607         if (create_context) {
1608                 unsigned int rss_spread;
1609                 unsigned int rss_hash_types;
1610                 uint8_t *rss_key;
1611
1612                 if (spec_filter->rss) {
1613                         rss_spread = MIN(flow_rss->rxq_hw_index_max -
1614                                         flow_rss->rxq_hw_index_min + 1,
1615                                         EFX_MAXRSS);
1616                         rss_hash_types = flow_rss->rss_hash_types;
1617                         rss_key = flow_rss->rss_key;
1618                 } else {
1619                         /*
1620                          * Initialize dummy RSS context parameters to have
1621                          * valid RSS hash. Use default RSS hash function and
1622                          * key.
1623                          */
1624                         rss_spread = 1;
1625                         rss_hash_types = rss->hash_types;
1626                         rss_key = rss->key;
1627                 }
1628
1629                 rc = efx_rx_scale_context_alloc(sa->nic,
1630                                                 EFX_RX_SCALE_EXCLUSIVE,
1631                                                 rss_spread,
1632                                                 &efs_rss_context);
1633                 if (rc != 0)
1634                         goto fail_scale_context_alloc;
1635
1636                 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1637                                            rss->hash_alg,
1638                                            rss_hash_types, B_TRUE);
1639                 if (rc != 0)
1640                         goto fail_scale_mode_set;
1641
1642                 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1643                                           rss_key, sizeof(rss->key));
1644                 if (rc != 0)
1645                         goto fail_scale_key_set;
1646         } else {
1647                 efs_rss_context = rss->dummy_rss_context;
1648         }
1649
1650         if (spec_filter->rss || spec_filter->rss_hash_required) {
1651                 /*
1652                  * At this point, fully elaborated filter specifications
1653                  * have been produced from the template. To make sure that
1654                  * RSS behaviour is consistent between them, set the same
1655                  * RSS context value everywhere.
1656                  */
1657                 for (i = 0; i < spec_filter->count; i++) {
1658                         efx_filter_spec_t *spec = &spec_filter->filters[i];
1659
1660                         spec->efs_rss_context = efs_rss_context;
1661                         spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1662                         if (spec_filter->rss)
1663                                 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1664                 }
1665         }
1666
1667         rc = sfc_flow_spec_insert(sa, &flow->spec);
1668         if (rc != 0)
1669                 goto fail_filter_insert;
1670
1671         if (create_context) {
1672                 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1673                 unsigned int *tbl;
1674
1675                 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1676
1677                 /*
1678                  * Scale table is set after filter insertion because
1679                  * the table entries are relative to the base RxQ ID
1680                  * and the latter is submitted to the HW by means of
1681                  * inserting a filter, so by the time of the request
1682                  * the HW knows all the information needed to verify
1683                  * the table entries, and the operation will succeed
1684                  */
1685                 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1686                                           tbl, RTE_DIM(flow_rss->rss_tbl));
1687                 if (rc != 0)
1688                         goto fail_scale_tbl_set;
1689
1690                 /* Remember created dummy RSS context */
1691                 if (!spec_filter->rss)
1692                         rss->dummy_rss_context = efs_rss_context;
1693         }
1694
1695         return 0;
1696
1697 fail_scale_tbl_set:
1698         sfc_flow_spec_remove(sa, &flow->spec);
1699
1700 fail_filter_insert:
1701 fail_scale_key_set:
1702 fail_scale_mode_set:
1703         if (create_context)
1704                 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1705
1706 fail_scale_context_alloc:
1707         return rc;
1708 }
1709
1710 static int
1711 sfc_flow_filter_remove(struct sfc_adapter *sa,
1712                        struct rte_flow *flow)
1713 {
1714         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1715         int rc = 0;
1716
1717         rc = sfc_flow_spec_remove(sa, &flow->spec);
1718         if (rc != 0)
1719                 return rc;
1720
1721         if (spec_filter->rss) {
1722                 /*
1723                  * All specifications for a given flow rule have the same RSS
1724                  * context, so that RSS context value is taken from the first
1725                  * filter specification
1726                  */
1727                 efx_filter_spec_t *spec = &spec_filter->filters[0];
1728
1729                 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1730         }
1731
1732         return rc;
1733 }
1734
1735 static int
1736 sfc_flow_parse_mark(struct sfc_adapter *sa,
1737                     const struct rte_flow_action_mark *mark,
1738                     struct rte_flow *flow)
1739 {
1740         struct sfc_flow_spec *spec = &flow->spec;
1741         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1742         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1743
1744         if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1745                 return EINVAL;
1746
1747         spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1748         spec_filter->template.efs_mark = mark->id;
1749
1750         return 0;
1751 }
1752
1753 static int
1754 sfc_flow_parse_actions(struct sfc_adapter *sa,
1755                        const struct rte_flow_action actions[],
1756                        struct rte_flow *flow,
1757                        struct rte_flow_error *error)
1758 {
1759         int rc;
1760         struct sfc_flow_spec *spec = &flow->spec;
1761         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1762         const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1763         uint32_t actions_set = 0;
1764         const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1765                                            (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1766                                            (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1767         const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1768                                            (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1769
1770         if (actions == NULL) {
1771                 rte_flow_error_set(error, EINVAL,
1772                                    RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1773                                    "NULL actions");
1774                 return -rte_errno;
1775         }
1776
1777         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1778                 switch (actions->type) {
1779                 case RTE_FLOW_ACTION_TYPE_VOID:
1780                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1781                                                actions_set);
1782                         break;
1783
1784                 case RTE_FLOW_ACTION_TYPE_QUEUE:
1785                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1786                                                actions_set);
1787                         if ((actions_set & fate_actions_mask) != 0)
1788                                 goto fail_fate_actions;
1789
1790                         rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1791                         if (rc != 0) {
1792                                 rte_flow_error_set(error, EINVAL,
1793                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1794                                         "Bad QUEUE action");
1795                                 return -rte_errno;
1796                         }
1797                         break;
1798
1799                 case RTE_FLOW_ACTION_TYPE_RSS:
1800                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1801                                                actions_set);
1802                         if ((actions_set & fate_actions_mask) != 0)
1803                                 goto fail_fate_actions;
1804
1805                         rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1806                         if (rc != 0) {
1807                                 rte_flow_error_set(error, -rc,
1808                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1809                                         "Bad RSS action");
1810                                 return -rte_errno;
1811                         }
1812                         break;
1813
1814                 case RTE_FLOW_ACTION_TYPE_DROP:
1815                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1816                                                actions_set);
1817                         if ((actions_set & fate_actions_mask) != 0)
1818                                 goto fail_fate_actions;
1819
1820                         spec_filter->template.efs_dmaq_id =
1821                                 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1822                         break;
1823
1824                 case RTE_FLOW_ACTION_TYPE_FLAG:
1825                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1826                                                actions_set);
1827                         if ((actions_set & mark_actions_mask) != 0)
1828                                 goto fail_actions_overlap;
1829
1830                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1831                                 rte_flow_error_set(error, ENOTSUP,
1832                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1833                                         "FLAG action is not supported on the current Rx datapath");
1834                                 return -rte_errno;
1835                         }
1836
1837                         spec_filter->template.efs_flags |=
1838                                 EFX_FILTER_FLAG_ACTION_FLAG;
1839                         break;
1840
1841                 case RTE_FLOW_ACTION_TYPE_MARK:
1842                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1843                                                actions_set);
1844                         if ((actions_set & mark_actions_mask) != 0)
1845                                 goto fail_actions_overlap;
1846
1847                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1848                                 rte_flow_error_set(error, ENOTSUP,
1849                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1850                                         "MARK action is not supported on the current Rx datapath");
1851                                 return -rte_errno;
1852                         }
1853
1854                         rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1855                         if (rc != 0) {
1856                                 rte_flow_error_set(error, rc,
1857                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1858                                         "Bad MARK action");
1859                                 return -rte_errno;
1860                         }
1861                         break;
1862
1863                 default:
1864                         rte_flow_error_set(error, ENOTSUP,
1865                                            RTE_FLOW_ERROR_TYPE_ACTION, actions,
1866                                            "Action is not supported");
1867                         return -rte_errno;
1868                 }
1869
1870                 actions_set |= (1UL << actions->type);
1871         }
1872
1873         /* When fate is unknown, drop traffic. */
1874         if ((actions_set & fate_actions_mask) == 0) {
1875                 spec_filter->template.efs_dmaq_id =
1876                         EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1877         }
1878
1879         return 0;
1880
1881 fail_fate_actions:
1882         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1883                            "Cannot combine several fate-deciding actions, "
1884                            "choose between QUEUE, RSS or DROP");
1885         return -rte_errno;
1886
1887 fail_actions_overlap:
1888         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1889                            "Overlapping actions are not supported");
1890         return -rte_errno;
1891 }
1892
1893 /**
1894  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1895  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1896  * specifications after copying.
1897  *
1898  * @param spec[in, out]
1899  *   SFC flow specification to update.
1900  * @param filters_count_for_one_val[in]
1901  *   How many specifications should have the same match flag, what is the
1902  *   number of specifications before copying.
1903  * @param error[out]
1904  *   Perform verbose error reporting if not NULL.
1905  */
1906 static int
1907 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1908                                unsigned int filters_count_for_one_val,
1909                                struct rte_flow_error *error)
1910 {
1911         unsigned int i;
1912         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1913         static const efx_filter_match_flags_t vals[] = {
1914                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1915                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1916         };
1917
1918         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1919                 rte_flow_error_set(error, EINVAL,
1920                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1921                         "Number of specifications is incorrect while copying "
1922                         "by unknown destination flags");
1923                 return -rte_errno;
1924         }
1925
1926         for (i = 0; i < spec_filter->count; i++) {
1927                 /* The check above ensures that divisor can't be zero here */
1928                 spec_filter->filters[i].efs_match_flags |=
1929                         vals[i / filters_count_for_one_val];
1930         }
1931
1932         return 0;
1933 }
1934
1935 /**
1936  * Check that the following conditions are met:
1937  * - the list of supported filters has a filter
1938  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1939  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1940  *   be inserted.
1941  *
1942  * @param match[in]
1943  *   The match flags of filter.
1944  * @param spec[in]
1945  *   Specification to be supplemented.
1946  * @param filter[in]
1947  *   SFC filter with list of supported filters.
1948  */
1949 static boolean_t
1950 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1951                                  __rte_unused efx_filter_spec_t *spec,
1952                                  struct sfc_filter *filter)
1953 {
1954         unsigned int i;
1955         efx_filter_match_flags_t match_mcast_dst;
1956
1957         match_mcast_dst =
1958                 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1959                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1960         for (i = 0; i < filter->supported_match_num; i++) {
1961                 if (match_mcast_dst == filter->supported_match[i])
1962                         return B_TRUE;
1963         }
1964
1965         return B_FALSE;
1966 }
1967
1968 /**
1969  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1970  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1971  * specifications after copying.
1972  *
1973  * @param spec[in, out]
1974  *   SFC flow specification to update.
1975  * @param filters_count_for_one_val[in]
1976  *   How many specifications should have the same EtherType value, what is the
1977  *   number of specifications before copying.
1978  * @param error[out]
1979  *   Perform verbose error reporting if not NULL.
1980  */
1981 static int
1982 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1983                         unsigned int filters_count_for_one_val,
1984                         struct rte_flow_error *error)
1985 {
1986         unsigned int i;
1987         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1988         static const uint16_t vals[] = {
1989                 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1990         };
1991
1992         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1993                 rte_flow_error_set(error, EINVAL,
1994                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1995                         "Number of specifications is incorrect "
1996                         "while copying by Ethertype");
1997                 return -rte_errno;
1998         }
1999
2000         for (i = 0; i < spec_filter->count; i++) {
2001                 spec_filter->filters[i].efs_match_flags |=
2002                         EFX_FILTER_MATCH_ETHER_TYPE;
2003
2004                 /*
2005                  * The check above ensures that
2006                  * filters_count_for_one_val is not 0
2007                  */
2008                 spec_filter->filters[i].efs_ether_type =
2009                         vals[i / filters_count_for_one_val];
2010         }
2011
2012         return 0;
2013 }
2014
2015 /**
2016  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
2017  * in the same specifications after copying.
2018  *
2019  * @param spec[in, out]
2020  *   SFC flow specification to update.
2021  * @param filters_count_for_one_val[in]
2022  *   How many specifications should have the same match flag, what is the
2023  *   number of specifications before copying.
2024  * @param error[out]
2025  *   Perform verbose error reporting if not NULL.
2026  */
2027 static int
2028 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
2029                             unsigned int filters_count_for_one_val,
2030                             struct rte_flow_error *error)
2031 {
2032         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2033         unsigned int i;
2034
2035         if (filters_count_for_one_val != spec_filter->count) {
2036                 rte_flow_error_set(error, EINVAL,
2037                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2038                         "Number of specifications is incorrect "
2039                         "while copying by outer VLAN ID");
2040                 return -rte_errno;
2041         }
2042
2043         for (i = 0; i < spec_filter->count; i++) {
2044                 spec_filter->filters[i].efs_match_flags |=
2045                         EFX_FILTER_MATCH_OUTER_VID;
2046
2047                 spec_filter->filters[i].efs_outer_vid = 0;
2048         }
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
2055  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
2056  * specifications after copying.
2057  *
2058  * @param spec[in, out]
2059  *   SFC flow specification to update.
2060  * @param filters_count_for_one_val[in]
2061  *   How many specifications should have the same match flag, what is the
2062  *   number of specifications before copying.
2063  * @param error[out]
2064  *   Perform verbose error reporting if not NULL.
2065  */
2066 static int
2067 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
2068                                     unsigned int filters_count_for_one_val,
2069                                     struct rte_flow_error *error)
2070 {
2071         unsigned int i;
2072         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2073         static const efx_filter_match_flags_t vals[] = {
2074                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2075                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
2076         };
2077
2078         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2079                 rte_flow_error_set(error, EINVAL,
2080                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2081                         "Number of specifications is incorrect while copying "
2082                         "by inner frame unknown destination flags");
2083                 return -rte_errno;
2084         }
2085
2086         for (i = 0; i < spec_filter->count; i++) {
2087                 /* The check above ensures that divisor can't be zero here */
2088                 spec_filter->filters[i].efs_match_flags |=
2089                         vals[i / filters_count_for_one_val];
2090         }
2091
2092         return 0;
2093 }
2094
2095 /**
2096  * Check that the following conditions are met:
2097  * - the specification corresponds to a filter for encapsulated traffic
2098  * - the list of supported filters has a filter
2099  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2100  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2101  *   be inserted.
2102  *
2103  * @param match[in]
2104  *   The match flags of filter.
2105  * @param spec[in]
2106  *   Specification to be supplemented.
2107  * @param filter[in]
2108  *   SFC filter with list of supported filters.
2109  */
2110 static boolean_t
2111 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2112                                       efx_filter_spec_t *spec,
2113                                       struct sfc_filter *filter)
2114 {
2115         unsigned int i;
2116         efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2117         efx_filter_match_flags_t match_mcast_dst;
2118
2119         if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2120                 return B_FALSE;
2121
2122         match_mcast_dst =
2123                 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2124                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2125         for (i = 0; i < filter->supported_match_num; i++) {
2126                 if (match_mcast_dst == filter->supported_match[i])
2127                         return B_TRUE;
2128         }
2129
2130         return B_FALSE;
2131 }
2132
2133 /**
2134  * Check that the list of supported filters has a filter that differs
2135  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2136  * in this case that filter will be used and the flag
2137  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2138  *
2139  * @param match[in]
2140  *   The match flags of filter.
2141  * @param spec[in]
2142  *   Specification to be supplemented.
2143  * @param filter[in]
2144  *   SFC filter with list of supported filters.
2145  */
2146 static boolean_t
2147 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2148                               __rte_unused efx_filter_spec_t *spec,
2149                               struct sfc_filter *filter)
2150 {
2151         unsigned int i;
2152         efx_filter_match_flags_t match_without_vid =
2153                 match & ~EFX_FILTER_MATCH_OUTER_VID;
2154
2155         for (i = 0; i < filter->supported_match_num; i++) {
2156                 if (match_without_vid == filter->supported_match[i])
2157                         return B_FALSE;
2158         }
2159
2160         return B_TRUE;
2161 }
2162
2163 /*
2164  * Match flags that can be automatically added to filters.
2165  * Selecting the last minimum when searching for the copy flag ensures that the
2166  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2167  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2168  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2169  * filters.
2170  */
2171 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2172         {
2173                 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2174                 .vals_count = 2,
2175                 .set_vals = sfc_flow_set_unknown_dst_flags,
2176                 .spec_check = sfc_flow_check_unknown_dst_flags,
2177         },
2178         {
2179                 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
2180                 .vals_count = 2,
2181                 .set_vals = sfc_flow_set_ethertypes,
2182                 .spec_check = NULL,
2183         },
2184         {
2185                 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2186                 .vals_count = 2,
2187                 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2188                 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2189         },
2190         {
2191                 .flag = EFX_FILTER_MATCH_OUTER_VID,
2192                 .vals_count = 1,
2193                 .set_vals = sfc_flow_set_outer_vid_flag,
2194                 .spec_check = sfc_flow_check_outer_vid_flag,
2195         },
2196 };
2197
2198 /* Get item from array sfc_flow_copy_flags */
2199 static const struct sfc_flow_copy_flag *
2200 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2201 {
2202         unsigned int i;
2203
2204         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2205                 if (sfc_flow_copy_flags[i].flag == flag)
2206                         return &sfc_flow_copy_flags[i];
2207         }
2208
2209         return NULL;
2210 }
2211
2212 /**
2213  * Make copies of the specifications, set match flag and values
2214  * of the field that corresponds to it.
2215  *
2216  * @param spec[in, out]
2217  *   SFC flow specification to update.
2218  * @param flag[in]
2219  *   The match flag to add.
2220  * @param error[out]
2221  *   Perform verbose error reporting if not NULL.
2222  */
2223 static int
2224 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2225                              efx_filter_match_flags_t flag,
2226                              struct rte_flow_error *error)
2227 {
2228         unsigned int i;
2229         unsigned int new_filters_count;
2230         unsigned int filters_count_for_one_val;
2231         const struct sfc_flow_copy_flag *copy_flag;
2232         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2233         int rc;
2234
2235         copy_flag = sfc_flow_get_copy_flag(flag);
2236         if (copy_flag == NULL) {
2237                 rte_flow_error_set(error, ENOTSUP,
2238                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2239                                    "Unsupported spec field for copying");
2240                 return -rte_errno;
2241         }
2242
2243         new_filters_count = spec_filter->count * copy_flag->vals_count;
2244         if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2245                 rte_flow_error_set(error, EINVAL,
2246                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2247                         "Too much EFX specifications in the flow rule");
2248                 return -rte_errno;
2249         }
2250
2251         /* Copy filters specifications */
2252         for (i = spec_filter->count; i < new_filters_count; i++) {
2253                 spec_filter->filters[i] =
2254                         spec_filter->filters[i - spec_filter->count];
2255         }
2256
2257         filters_count_for_one_val = spec_filter->count;
2258         spec_filter->count = new_filters_count;
2259
2260         rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2261         if (rc != 0)
2262                 return rc;
2263
2264         return 0;
2265 }
2266
2267 /**
2268  * Check that the given set of match flags missing in the original filter spec
2269  * could be covered by adding spec copies which specify the corresponding
2270  * flags and packet field values to match.
2271  *
2272  * @param miss_flags[in]
2273  *   Flags that are missing until the supported filter.
2274  * @param spec[in]
2275  *   Specification to be supplemented.
2276  * @param filter[in]
2277  *   SFC filter.
2278  *
2279  * @return
2280  *   Number of specifications after copy or 0, if the flags can not be added.
2281  */
2282 static unsigned int
2283 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2284                              efx_filter_spec_t *spec,
2285                              struct sfc_filter *filter)
2286 {
2287         unsigned int i;
2288         efx_filter_match_flags_t copy_flags = 0;
2289         efx_filter_match_flags_t flag;
2290         efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2291         sfc_flow_spec_check *check;
2292         unsigned int multiplier = 1;
2293
2294         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2295                 flag = sfc_flow_copy_flags[i].flag;
2296                 check = sfc_flow_copy_flags[i].spec_check;
2297                 if ((flag & miss_flags) == flag) {
2298                         if (check != NULL && (!check(match, spec, filter)))
2299                                 continue;
2300
2301                         copy_flags |= flag;
2302                         multiplier *= sfc_flow_copy_flags[i].vals_count;
2303                 }
2304         }
2305
2306         if (copy_flags == miss_flags)
2307                 return multiplier;
2308
2309         return 0;
2310 }
2311
2312 /**
2313  * Attempt to supplement the specification template to the minimally
2314  * supported set of match flags. To do this, it is necessary to copy
2315  * the specifications, filling them with the values of fields that
2316  * correspond to the missing flags.
2317  * The necessary and sufficient filter is built from the fewest number
2318  * of copies which could be made to cover the minimally required set
2319  * of flags.
2320  *
2321  * @param sa[in]
2322  *   SFC adapter.
2323  * @param spec[in, out]
2324  *   SFC flow specification to update.
2325  * @param error[out]
2326  *   Perform verbose error reporting if not NULL.
2327  */
2328 static int
2329 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2330                                struct sfc_flow_spec *spec,
2331                                struct rte_flow_error *error)
2332 {
2333         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2334         struct sfc_filter *filter = &sa->filter;
2335         efx_filter_match_flags_t miss_flags;
2336         efx_filter_match_flags_t min_miss_flags = 0;
2337         efx_filter_match_flags_t match;
2338         unsigned int min_multiplier = UINT_MAX;
2339         unsigned int multiplier;
2340         unsigned int i;
2341         int rc;
2342
2343         match = spec_filter->template.efs_match_flags;
2344         for (i = 0; i < filter->supported_match_num; i++) {
2345                 if ((match & filter->supported_match[i]) == match) {
2346                         miss_flags = filter->supported_match[i] & (~match);
2347                         multiplier = sfc_flow_check_missing_flags(miss_flags,
2348                                 &spec_filter->template, filter);
2349                         if (multiplier > 0) {
2350                                 if (multiplier <= min_multiplier) {
2351                                         min_multiplier = multiplier;
2352                                         min_miss_flags = miss_flags;
2353                                 }
2354                         }
2355                 }
2356         }
2357
2358         if (min_multiplier == UINT_MAX) {
2359                 rte_flow_error_set(error, ENOTSUP,
2360                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2361                                    "The flow rule pattern is unsupported");
2362                 return -rte_errno;
2363         }
2364
2365         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2366                 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2367
2368                 if ((flag & min_miss_flags) == flag) {
2369                         rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2370                         if (rc != 0)
2371                                 return rc;
2372                 }
2373         }
2374
2375         return 0;
2376 }
2377
2378 /**
2379  * Check that set of match flags is referred to by a filter. Filter is
2380  * described by match flags with the ability to add OUTER_VID and INNER_VID
2381  * flags.
2382  *
2383  * @param match_flags[in]
2384  *   Set of match flags.
2385  * @param flags_pattern[in]
2386  *   Pattern of filter match flags.
2387  */
2388 static boolean_t
2389 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2390                             efx_filter_match_flags_t flags_pattern)
2391 {
2392         if ((match_flags & flags_pattern) != flags_pattern)
2393                 return B_FALSE;
2394
2395         switch (match_flags & ~flags_pattern) {
2396         case 0:
2397         case EFX_FILTER_MATCH_OUTER_VID:
2398         case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2399                 return B_TRUE;
2400         default:
2401                 return B_FALSE;
2402         }
2403 }
2404
2405 /**
2406  * Check whether the spec maps to a hardware filter which is known to be
2407  * ineffective despite being valid.
2408  *
2409  * @param filter[in]
2410  *   SFC filter with list of supported filters.
2411  * @param spec[in]
2412  *   SFC flow specification.
2413  */
2414 static boolean_t
2415 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2416                                   struct sfc_flow_spec *spec)
2417 {
2418         unsigned int i;
2419         uint16_t ether_type;
2420         uint8_t ip_proto;
2421         efx_filter_match_flags_t match_flags;
2422         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2423
2424         for (i = 0; i < spec_filter->count; i++) {
2425                 match_flags = spec_filter->filters[i].efs_match_flags;
2426
2427                 if (sfc_flow_is_match_with_vids(match_flags,
2428                                                 EFX_FILTER_MATCH_ETHER_TYPE) ||
2429                     sfc_flow_is_match_with_vids(match_flags,
2430                                                 EFX_FILTER_MATCH_ETHER_TYPE |
2431                                                 EFX_FILTER_MATCH_LOC_MAC)) {
2432                         ether_type = spec_filter->filters[i].efs_ether_type;
2433                         if (filter->supports_ip_proto_or_addr_filter &&
2434                             (ether_type == EFX_ETHER_TYPE_IPV4 ||
2435                              ether_type == EFX_ETHER_TYPE_IPV6))
2436                                 return B_TRUE;
2437                 } else if (sfc_flow_is_match_with_vids(match_flags,
2438                                 EFX_FILTER_MATCH_ETHER_TYPE |
2439                                 EFX_FILTER_MATCH_IP_PROTO) ||
2440                            sfc_flow_is_match_with_vids(match_flags,
2441                                 EFX_FILTER_MATCH_ETHER_TYPE |
2442                                 EFX_FILTER_MATCH_IP_PROTO |
2443                                 EFX_FILTER_MATCH_LOC_MAC)) {
2444                         ip_proto = spec_filter->filters[i].efs_ip_proto;
2445                         if (filter->supports_rem_or_local_port_filter &&
2446                             (ip_proto == EFX_IPPROTO_TCP ||
2447                              ip_proto == EFX_IPPROTO_UDP))
2448                                 return B_TRUE;
2449                 }
2450         }
2451
2452         return B_FALSE;
2453 }
2454
2455 static int
2456 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2457                               struct rte_flow *flow,
2458                               struct rte_flow_error *error)
2459 {
2460         struct sfc_flow_spec *spec = &flow->spec;
2461         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2462         efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2463         efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2464         int rc;
2465
2466         /* Initialize the first filter spec with template */
2467         spec_filter->filters[0] = *spec_tmpl;
2468         spec_filter->count = 1;
2469
2470         if (!sfc_filter_is_match_supported(sa, match_flags)) {
2471                 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2472                 if (rc != 0)
2473                         return rc;
2474         }
2475
2476         if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2477                 rte_flow_error_set(error, ENOTSUP,
2478                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2479                         "The flow rule pattern is unsupported");
2480                 return -rte_errno;
2481         }
2482
2483         return 0;
2484 }
2485
2486 static int
2487 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2488                              const struct rte_flow_item pattern[],
2489                              const struct rte_flow_action actions[],
2490                              struct rte_flow *flow,
2491                              struct rte_flow_error *error)
2492 {
2493         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2494         struct sfc_flow_spec *spec = &flow->spec;
2495         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2496         struct sfc_flow_parse_ctx ctx;
2497         int rc;
2498
2499         ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2500         ctx.filter = &spec_filter->template;
2501
2502         rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items),
2503                                     pattern, &ctx, error);
2504         if (rc != 0)
2505                 goto fail_bad_value;
2506
2507         rc = sfc_flow_parse_actions(sa, actions, flow, error);
2508         if (rc != 0)
2509                 goto fail_bad_value;
2510
2511         rc = sfc_flow_validate_match_flags(sa, flow, error);
2512         if (rc != 0)
2513                 goto fail_bad_value;
2514
2515         return 0;
2516
2517 fail_bad_value:
2518         return rc;
2519 }
2520
2521 static int
2522 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2523                           const struct rte_flow_item pattern[],
2524                           const struct rte_flow_action actions[],
2525                           struct rte_flow *flow,
2526                           struct rte_flow_error *error)
2527 {
2528         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2529         struct sfc_flow_spec *spec = &flow->spec;
2530         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2531         int rc;
2532
2533         rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2534         if (rc != 0)
2535                 return rc;
2536
2537         rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error);
2538         if (rc != 0)
2539                 return rc;
2540
2541         return 0;
2542 }
2543
2544 static int
2545 sfc_flow_parse(struct rte_eth_dev *dev,
2546                const struct rte_flow_attr *attr,
2547                const struct rte_flow_item pattern[],
2548                const struct rte_flow_action actions[],
2549                struct rte_flow *flow,
2550                struct rte_flow_error *error)
2551 {
2552         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2553         const struct sfc_flow_ops_by_spec *ops;
2554         int rc;
2555
2556         rc = sfc_flow_parse_attr(sa, attr, flow, error);
2557         if (rc != 0)
2558                 return rc;
2559
2560         ops = sfc_flow_get_ops_by_spec(flow);
2561         if (ops == NULL || ops->parse == NULL) {
2562                 rte_flow_error_set(error, ENOTSUP,
2563                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2564                                    "No backend to handle this flow");
2565                 return -rte_errno;
2566         }
2567
2568         return ops->parse(dev, pattern, actions, flow, error);
2569 }
2570
2571 static struct rte_flow *
2572 sfc_flow_zmalloc(struct rte_flow_error *error)
2573 {
2574         struct rte_flow *flow;
2575
2576         flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2577         if (flow == NULL) {
2578                 rte_flow_error_set(error, ENOMEM,
2579                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2580                                    "Failed to allocate memory");
2581         }
2582
2583         return flow;
2584 }
2585
2586 static void
2587 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2588 {
2589         const struct sfc_flow_ops_by_spec *ops;
2590
2591         ops = sfc_flow_get_ops_by_spec(flow);
2592         if (ops != NULL && ops->cleanup != NULL)
2593                 ops->cleanup(sa, flow);
2594
2595         rte_free(flow);
2596 }
2597
2598 static int
2599 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2600                 struct rte_flow_error *error)
2601 {
2602         const struct sfc_flow_ops_by_spec *ops;
2603         int rc;
2604
2605         ops = sfc_flow_get_ops_by_spec(flow);
2606         if (ops == NULL || ops->insert == NULL) {
2607                 rte_flow_error_set(error, ENOTSUP,
2608                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2609                                    "No backend to handle this flow");
2610                 return rte_errno;
2611         }
2612
2613         rc = ops->insert(sa, flow);
2614         if (rc != 0) {
2615                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2616                                    NULL, "Failed to insert the flow rule");
2617         }
2618
2619         return rc;
2620 }
2621
2622 static int
2623 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2624                 struct rte_flow_error *error)
2625 {
2626         const struct sfc_flow_ops_by_spec *ops;
2627         int rc;
2628
2629         ops = sfc_flow_get_ops_by_spec(flow);
2630         if (ops == NULL || ops->remove == NULL) {
2631                 rte_flow_error_set(error, ENOTSUP,
2632                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2633                                    "No backend to handle this flow");
2634                 return rte_errno;
2635         }
2636
2637         rc = ops->remove(sa, flow);
2638         if (rc != 0) {
2639                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2640                                    NULL, "Failed to remove the flow rule");
2641         }
2642
2643         return rc;
2644 }
2645
2646 static int
2647 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2648                 struct rte_flow_error *error)
2649 {
2650         const struct sfc_flow_ops_by_spec *ops;
2651         int rc = 0;
2652
2653         ops = sfc_flow_get_ops_by_spec(flow);
2654         if (ops == NULL) {
2655                 rte_flow_error_set(error, ENOTSUP,
2656                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2657                                    "No backend to handle this flow");
2658                 return -rte_errno;
2659         }
2660
2661         if (ops->verify != NULL) {
2662                 SFC_ASSERT(sfc_adapter_is_locked(sa));
2663                 rc = ops->verify(sa, flow);
2664         }
2665
2666         if (rc != 0) {
2667                 rte_flow_error_set(error, rc,
2668                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2669                         "Failed to verify flow validity with FW");
2670                 return -rte_errno;
2671         }
2672
2673         return 0;
2674 }
2675
2676 static int
2677 sfc_flow_validate(struct rte_eth_dev *dev,
2678                   const struct rte_flow_attr *attr,
2679                   const struct rte_flow_item pattern[],
2680                   const struct rte_flow_action actions[],
2681                   struct rte_flow_error *error)
2682 {
2683         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2684         struct rte_flow *flow;
2685         int rc;
2686
2687         flow = sfc_flow_zmalloc(error);
2688         if (flow == NULL)
2689                 return -rte_errno;
2690
2691         sfc_adapter_lock(sa);
2692
2693         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2694         if (rc == 0)
2695                 rc = sfc_flow_verify(sa, flow, error);
2696
2697         sfc_flow_free(sa, flow);
2698
2699         sfc_adapter_unlock(sa);
2700
2701         return rc;
2702 }
2703
2704 static struct rte_flow *
2705 sfc_flow_create(struct rte_eth_dev *dev,
2706                 const struct rte_flow_attr *attr,
2707                 const struct rte_flow_item pattern[],
2708                 const struct rte_flow_action actions[],
2709                 struct rte_flow_error *error)
2710 {
2711         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2712         struct rte_flow *flow = NULL;
2713         int rc;
2714
2715         flow = sfc_flow_zmalloc(error);
2716         if (flow == NULL)
2717                 goto fail_no_mem;
2718
2719         sfc_adapter_lock(sa);
2720
2721         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2722         if (rc != 0)
2723                 goto fail_bad_value;
2724
2725         TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2726
2727         if (sa->state == SFC_ADAPTER_STARTED) {
2728                 rc = sfc_flow_insert(sa, flow, error);
2729                 if (rc != 0)
2730                         goto fail_flow_insert;
2731         }
2732
2733         sfc_adapter_unlock(sa);
2734
2735         return flow;
2736
2737 fail_flow_insert:
2738         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2739
2740 fail_bad_value:
2741         sfc_flow_free(sa, flow);
2742         sfc_adapter_unlock(sa);
2743
2744 fail_no_mem:
2745         return NULL;
2746 }
2747
2748 static int
2749 sfc_flow_destroy(struct rte_eth_dev *dev,
2750                  struct rte_flow *flow,
2751                  struct rte_flow_error *error)
2752 {
2753         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2754         struct rte_flow *flow_ptr;
2755         int rc = EINVAL;
2756
2757         sfc_adapter_lock(sa);
2758
2759         TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2760                 if (flow_ptr == flow)
2761                         rc = 0;
2762         }
2763         if (rc != 0) {
2764                 rte_flow_error_set(error, rc,
2765                                    RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2766                                    "Failed to find flow rule to destroy");
2767                 goto fail_bad_value;
2768         }
2769
2770         if (sa->state == SFC_ADAPTER_STARTED)
2771                 rc = sfc_flow_remove(sa, flow, error);
2772
2773         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2774         sfc_flow_free(sa, flow);
2775
2776 fail_bad_value:
2777         sfc_adapter_unlock(sa);
2778
2779         return -rc;
2780 }
2781
2782 static int
2783 sfc_flow_flush(struct rte_eth_dev *dev,
2784                struct rte_flow_error *error)
2785 {
2786         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2787         struct rte_flow *flow;
2788         int ret = 0;
2789
2790         sfc_adapter_lock(sa);
2791
2792         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2793                 if (sa->state == SFC_ADAPTER_STARTED) {
2794                         int rc;
2795
2796                         rc = sfc_flow_remove(sa, flow, error);
2797                         if (rc != 0)
2798                                 ret = rc;
2799                 }
2800
2801                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2802                 sfc_flow_free(sa, flow);
2803         }
2804
2805         sfc_adapter_unlock(sa);
2806
2807         return -ret;
2808 }
2809
2810 static int
2811 sfc_flow_query(struct rte_eth_dev *dev,
2812                struct rte_flow *flow,
2813                const struct rte_flow_action *action,
2814                void *data,
2815                struct rte_flow_error *error)
2816 {
2817         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2818         const struct sfc_flow_ops_by_spec *ops;
2819         int ret;
2820
2821         sfc_adapter_lock(sa);
2822
2823         ops = sfc_flow_get_ops_by_spec(flow);
2824         if (ops == NULL || ops->query == NULL) {
2825                 ret = rte_flow_error_set(error, ENOTSUP,
2826                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2827                         "No backend to handle this flow");
2828                 goto fail_no_backend;
2829         }
2830
2831         if (sa->state != SFC_ADAPTER_STARTED) {
2832                 ret = rte_flow_error_set(error, EINVAL,
2833                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2834                         "Can't query the flow: the adapter is not started");
2835                 goto fail_not_started;
2836         }
2837
2838         ret = ops->query(dev, flow, action, data, error);
2839         if (ret != 0)
2840                 goto fail_query;
2841
2842         sfc_adapter_unlock(sa);
2843
2844         return 0;
2845
2846 fail_query:
2847 fail_not_started:
2848 fail_no_backend:
2849         sfc_adapter_unlock(sa);
2850         return ret;
2851 }
2852
2853 static int
2854 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2855                  struct rte_flow_error *error)
2856 {
2857         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2858         int ret = 0;
2859
2860         sfc_adapter_lock(sa);
2861         if (sa->state != SFC_ADAPTER_INITIALIZED) {
2862                 rte_flow_error_set(error, EBUSY,
2863                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2864                                    NULL, "please close the port first");
2865                 ret = -rte_errno;
2866         } else {
2867                 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2868         }
2869         sfc_adapter_unlock(sa);
2870
2871         return ret;
2872 }
2873
2874 const struct rte_flow_ops sfc_flow_ops = {
2875         .validate = sfc_flow_validate,
2876         .create = sfc_flow_create,
2877         .destroy = sfc_flow_destroy,
2878         .flush = sfc_flow_flush,
2879         .query = sfc_flow_query,
2880         .isolate = sfc_flow_isolate,
2881 };
2882
2883 void
2884 sfc_flow_init(struct sfc_adapter *sa)
2885 {
2886         SFC_ASSERT(sfc_adapter_is_locked(sa));
2887
2888         TAILQ_INIT(&sa->flow_list);
2889 }
2890
2891 void
2892 sfc_flow_fini(struct sfc_adapter *sa)
2893 {
2894         struct rte_flow *flow;
2895
2896         SFC_ASSERT(sfc_adapter_is_locked(sa));
2897
2898         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2899                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2900                 sfc_flow_free(sa, flow);
2901         }
2902 }
2903
2904 void
2905 sfc_flow_stop(struct sfc_adapter *sa)
2906 {
2907         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2908         struct sfc_rss *rss = &sas->rss;
2909         struct rte_flow *flow;
2910
2911         SFC_ASSERT(sfc_adapter_is_locked(sa));
2912
2913         TAILQ_FOREACH(flow, &sa->flow_list, entries)
2914                 sfc_flow_remove(sa, flow, NULL);
2915
2916         if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2917                 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2918                 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2919         }
2920
2921         /*
2922          * MAE counter service is not stopped on flow rule remove to avoid
2923          * extra work. Make sure that it is stopped here.
2924          */
2925         sfc_mae_counter_stop(sa);
2926 }
2927
2928 int
2929 sfc_flow_start(struct sfc_adapter *sa)
2930 {
2931         struct rte_flow *flow;
2932         int rc = 0;
2933
2934         sfc_log_init(sa, "entry");
2935
2936         SFC_ASSERT(sfc_adapter_is_locked(sa));
2937
2938         TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2939                 rc = sfc_flow_insert(sa, flow, NULL);
2940                 if (rc != 0)
2941                         goto fail_bad_flow;
2942         }
2943
2944         sfc_log_init(sa, "done");
2945
2946 fail_bad_flow:
2947         return rc;
2948 }