net/mlx5: fix RSS expansion for GTP
[dpdk.git] / drivers / net / sfc / sfc_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17
18 #include "efx.h"
19
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_mae_counter.h"
28
29 struct sfc_flow_ops_by_spec {
30         sfc_flow_parse_cb_t     *parse;
31         sfc_flow_verify_cb_t    *verify;
32         sfc_flow_cleanup_cb_t   *cleanup;
33         sfc_flow_insert_cb_t    *insert;
34         sfc_flow_remove_cb_t    *remove;
35         sfc_flow_query_cb_t     *query;
36 };
37
38 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
39 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
40 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
41 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
42
43 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
44         .parse = sfc_flow_parse_rte_to_filter,
45         .verify = NULL,
46         .cleanup = NULL,
47         .insert = sfc_flow_filter_insert,
48         .remove = sfc_flow_filter_remove,
49         .query = NULL,
50 };
51
52 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
53         .parse = sfc_flow_parse_rte_to_mae,
54         .verify = sfc_mae_flow_verify,
55         .cleanup = sfc_mae_flow_cleanup,
56         .insert = sfc_mae_flow_insert,
57         .remove = sfc_mae_flow_remove,
58         .query = sfc_mae_flow_query,
59 };
60
61 static const struct sfc_flow_ops_by_spec *
62 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
63 {
64         struct sfc_flow_spec *spec = &flow->spec;
65         const struct sfc_flow_ops_by_spec *ops = NULL;
66
67         switch (spec->type) {
68         case SFC_FLOW_SPEC_FILTER:
69                 ops = &sfc_flow_ops_filter;
70                 break;
71         case SFC_FLOW_SPEC_MAE:
72                 ops = &sfc_flow_ops_mae;
73                 break;
74         default:
75                 SFC_ASSERT(false);
76                 break;
77         }
78
79         return ops;
80 }
81
82 /*
83  * Currently, filter-based (VNIC) flow API is implemented in such a manner
84  * that each flow rule is converted to one or more hardware filters.
85  * All elements of flow rule (attributes, pattern items, actions)
86  * correspond to one or more fields in the efx_filter_spec_s structure
87  * that is responsible for the hardware filter.
88  * If some required field is unset in the flow rule, then a handful
89  * of filter copies will be created to cover all possible values
90  * of such a field.
91  */
92
93 static sfc_flow_item_parse sfc_flow_parse_void;
94 static sfc_flow_item_parse sfc_flow_parse_eth;
95 static sfc_flow_item_parse sfc_flow_parse_vlan;
96 static sfc_flow_item_parse sfc_flow_parse_ipv4;
97 static sfc_flow_item_parse sfc_flow_parse_ipv6;
98 static sfc_flow_item_parse sfc_flow_parse_tcp;
99 static sfc_flow_item_parse sfc_flow_parse_udp;
100 static sfc_flow_item_parse sfc_flow_parse_vxlan;
101 static sfc_flow_item_parse sfc_flow_parse_geneve;
102 static sfc_flow_item_parse sfc_flow_parse_nvgre;
103 static sfc_flow_item_parse sfc_flow_parse_pppoex;
104
105 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
106                                      unsigned int filters_count_for_one_val,
107                                      struct rte_flow_error *error);
108
109 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
110                                         efx_filter_spec_t *spec,
111                                         struct sfc_filter *filter);
112
113 struct sfc_flow_copy_flag {
114         /* EFX filter specification match flag */
115         efx_filter_match_flags_t flag;
116         /* Number of values of corresponding field */
117         unsigned int vals_count;
118         /* Function to set values in specifications */
119         sfc_flow_spec_set_vals *set_vals;
120         /*
121          * Function to check that the specification is suitable
122          * for adding this match flag
123          */
124         sfc_flow_spec_check *spec_check;
125 };
126
127 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
128 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
129 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
130 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
131 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
132 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
133 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
134
135 static boolean_t
136 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
137 {
138         uint8_t sum = 0;
139         unsigned int i;
140
141         for (i = 0; i < size; i++)
142                 sum |= buf[i];
143
144         return (sum == 0) ? B_TRUE : B_FALSE;
145 }
146
147 /*
148  * Validate item and prepare structures spec and mask for parsing
149  */
150 int
151 sfc_flow_parse_init(const struct rte_flow_item *item,
152                     const void **spec_ptr,
153                     const void **mask_ptr,
154                     const void *supp_mask,
155                     const void *def_mask,
156                     unsigned int size,
157                     struct rte_flow_error *error)
158 {
159         const uint8_t *spec;
160         const uint8_t *mask;
161         const uint8_t *last;
162         uint8_t supp;
163         unsigned int i;
164
165         if (item == NULL) {
166                 rte_flow_error_set(error, EINVAL,
167                                    RTE_FLOW_ERROR_TYPE_ITEM, NULL,
168                                    "NULL item");
169                 return -rte_errno;
170         }
171
172         if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
173                 rte_flow_error_set(error, EINVAL,
174                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
175                                    "Mask or last is set without spec");
176                 return -rte_errno;
177         }
178
179         /*
180          * If "mask" is not set, default mask is used,
181          * but if default mask is NULL, "mask" should be set
182          */
183         if (item->mask == NULL) {
184                 if (def_mask == NULL) {
185                         rte_flow_error_set(error, EINVAL,
186                                 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
187                                 "Mask should be specified");
188                         return -rte_errno;
189                 }
190
191                 mask = def_mask;
192         } else {
193                 mask = item->mask;
194         }
195
196         spec = item->spec;
197         last = item->last;
198
199         if (spec == NULL)
200                 goto exit;
201
202         /*
203          * If field values in "last" are either 0 or equal to the corresponding
204          * values in "spec" then they are ignored
205          */
206         if (last != NULL &&
207             !sfc_flow_is_zero(last, size) &&
208             memcmp(last, spec, size) != 0) {
209                 rte_flow_error_set(error, ENOTSUP,
210                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
211                                    "Ranging is not supported");
212                 return -rte_errno;
213         }
214
215         if (supp_mask == NULL) {
216                 rte_flow_error_set(error, EINVAL,
217                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
218                         "Supported mask for item should be specified");
219                 return -rte_errno;
220         }
221
222         /* Check that mask does not ask for more match than supp_mask */
223         for (i = 0; i < size; i++) {
224                 supp = ((const uint8_t *)supp_mask)[i];
225
226                 if (~supp & mask[i]) {
227                         rte_flow_error_set(error, ENOTSUP,
228                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
229                                            "Item's field is not supported");
230                         return -rte_errno;
231                 }
232         }
233
234 exit:
235         *spec_ptr = spec;
236         *mask_ptr = mask;
237         return 0;
238 }
239
240 /*
241  * Protocol parsers.
242  * Masking is not supported, so masks in items should be either
243  * full or empty (zeroed) and set only for supported fields which
244  * are specified in the supp_mask.
245  */
246
247 static int
248 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
249                     __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
250                     __rte_unused struct rte_flow_error *error)
251 {
252         return 0;
253 }
254
255 /**
256  * Convert Ethernet item to EFX filter specification.
257  *
258  * @param item[in]
259  *   Item specification. Outer frame specification may only comprise
260  *   source/destination addresses and Ethertype field.
261  *   Inner frame specification may contain destination address only.
262  *   There is support for individual/group mask as well as for empty and full.
263  *   If the mask is NULL, default mask will be used. Ranging is not supported.
264  * @param efx_spec[in, out]
265  *   EFX filter specification to update.
266  * @param[out] error
267  *   Perform verbose error reporting if not NULL.
268  */
269 static int
270 sfc_flow_parse_eth(const struct rte_flow_item *item,
271                    struct sfc_flow_parse_ctx *parse_ctx,
272                    struct rte_flow_error *error)
273 {
274         int rc;
275         efx_filter_spec_t *efx_spec = parse_ctx->filter;
276         const struct rte_flow_item_eth *spec = NULL;
277         const struct rte_flow_item_eth *mask = NULL;
278         const struct rte_flow_item_eth supp_mask = {
279                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280                 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
281                 .type = 0xffff,
282         };
283         const struct rte_flow_item_eth ifrm_supp_mask = {
284                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
285         };
286         const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
287                 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
288         };
289         const struct rte_flow_item_eth *supp_mask_p;
290         const struct rte_flow_item_eth *def_mask_p;
291         uint8_t *loc_mac = NULL;
292         boolean_t is_ifrm = (efx_spec->efs_encap_type !=
293                 EFX_TUNNEL_PROTOCOL_NONE);
294
295         if (is_ifrm) {
296                 supp_mask_p = &ifrm_supp_mask;
297                 def_mask_p = &ifrm_supp_mask;
298                 loc_mac = efx_spec->efs_ifrm_loc_mac;
299         } else {
300                 supp_mask_p = &supp_mask;
301                 def_mask_p = &rte_flow_item_eth_mask;
302                 loc_mac = efx_spec->efs_loc_mac;
303         }
304
305         rc = sfc_flow_parse_init(item,
306                                  (const void **)&spec,
307                                  (const void **)&mask,
308                                  supp_mask_p, def_mask_p,
309                                  sizeof(struct rte_flow_item_eth),
310                                  error);
311         if (rc != 0)
312                 return rc;
313
314         /* If "spec" is not set, could be any Ethernet */
315         if (spec == NULL)
316                 return 0;
317
318         if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
319                 efx_spec->efs_match_flags |= is_ifrm ?
320                         EFX_FILTER_MATCH_IFRM_LOC_MAC :
321                         EFX_FILTER_MATCH_LOC_MAC;
322                 rte_memcpy(loc_mac, spec->dst.addr_bytes,
323                            EFX_MAC_ADDR_LEN);
324         } else if (memcmp(mask->dst.addr_bytes, ig_mask,
325                           EFX_MAC_ADDR_LEN) == 0) {
326                 if (rte_is_unicast_ether_addr(&spec->dst))
327                         efx_spec->efs_match_flags |= is_ifrm ?
328                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
329                                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
330                 else
331                         efx_spec->efs_match_flags |= is_ifrm ?
332                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
333                                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
334         } else if (!rte_is_zero_ether_addr(&mask->dst)) {
335                 goto fail_bad_mask;
336         }
337
338         /*
339          * ifrm_supp_mask ensures that the source address and
340          * ethertype masks are equal to zero in inner frame,
341          * so these fields are filled in only for the outer frame
342          */
343         if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
344                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
345                 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
346                            EFX_MAC_ADDR_LEN);
347         } else if (!rte_is_zero_ether_addr(&mask->src)) {
348                 goto fail_bad_mask;
349         }
350
351         /*
352          * Ether type is in big-endian byte order in item and
353          * in little-endian in efx_spec, so byte swap is used
354          */
355         if (mask->type == supp_mask.type) {
356                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
357                 efx_spec->efs_ether_type = rte_bswap16(spec->type);
358         } else if (mask->type != 0) {
359                 goto fail_bad_mask;
360         }
361
362         return 0;
363
364 fail_bad_mask:
365         rte_flow_error_set(error, EINVAL,
366                            RTE_FLOW_ERROR_TYPE_ITEM, item,
367                            "Bad mask in the ETH pattern item");
368         return -rte_errno;
369 }
370
371 /**
372  * Convert VLAN item to EFX filter specification.
373  *
374  * @param item[in]
375  *   Item specification. Only VID field is supported.
376  *   The mask can not be NULL. Ranging is not supported.
377  * @param efx_spec[in, out]
378  *   EFX filter specification to update.
379  * @param[out] error
380  *   Perform verbose error reporting if not NULL.
381  */
382 static int
383 sfc_flow_parse_vlan(const struct rte_flow_item *item,
384                     struct sfc_flow_parse_ctx *parse_ctx,
385                     struct rte_flow_error *error)
386 {
387         int rc;
388         uint16_t vid;
389         efx_filter_spec_t *efx_spec = parse_ctx->filter;
390         const struct rte_flow_item_vlan *spec = NULL;
391         const struct rte_flow_item_vlan *mask = NULL;
392         const struct rte_flow_item_vlan supp_mask = {
393                 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
394                 .inner_type = RTE_BE16(0xffff),
395         };
396
397         rc = sfc_flow_parse_init(item,
398                                  (const void **)&spec,
399                                  (const void **)&mask,
400                                  &supp_mask,
401                                  NULL,
402                                  sizeof(struct rte_flow_item_vlan),
403                                  error);
404         if (rc != 0)
405                 return rc;
406
407         /*
408          * VID is in big-endian byte order in item and
409          * in little-endian in efx_spec, so byte swap is used.
410          * If two VLAN items are included, the first matches
411          * the outer tag and the next matches the inner tag.
412          */
413         if (mask->tci == supp_mask.tci) {
414                 /* Apply mask to keep VID only */
415                 vid = rte_bswap16(spec->tci & mask->tci);
416
417                 if (!(efx_spec->efs_match_flags &
418                       EFX_FILTER_MATCH_OUTER_VID)) {
419                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
420                         efx_spec->efs_outer_vid = vid;
421                 } else if (!(efx_spec->efs_match_flags &
422                              EFX_FILTER_MATCH_INNER_VID)) {
423                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
424                         efx_spec->efs_inner_vid = vid;
425                 } else {
426                         rte_flow_error_set(error, EINVAL,
427                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
428                                            "More than two VLAN items");
429                         return -rte_errno;
430                 }
431         } else {
432                 rte_flow_error_set(error, EINVAL,
433                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
434                                    "VLAN ID in TCI match is required");
435                 return -rte_errno;
436         }
437
438         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
439                 rte_flow_error_set(error, EINVAL,
440                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                    "VLAN TPID matching is not supported");
442                 return -rte_errno;
443         }
444         if (mask->inner_type == supp_mask.inner_type) {
445                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
446                 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
447         } else if (mask->inner_type) {
448                 rte_flow_error_set(error, EINVAL,
449                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
450                                    "Bad mask for VLAN inner_type");
451                 return -rte_errno;
452         }
453
454         return 0;
455 }
456
457 /**
458  * Convert IPv4 item to EFX filter specification.
459  *
460  * @param item[in]
461  *   Item specification. Only source and destination addresses and
462  *   protocol fields are supported. If the mask is NULL, default
463  *   mask will be used. Ranging is not supported.
464  * @param efx_spec[in, out]
465  *   EFX filter specification to update.
466  * @param[out] error
467  *   Perform verbose error reporting if not NULL.
468  */
469 static int
470 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
471                     struct sfc_flow_parse_ctx *parse_ctx,
472                     struct rte_flow_error *error)
473 {
474         int rc;
475         efx_filter_spec_t *efx_spec = parse_ctx->filter;
476         const struct rte_flow_item_ipv4 *spec = NULL;
477         const struct rte_flow_item_ipv4 *mask = NULL;
478         const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
479         const struct rte_flow_item_ipv4 supp_mask = {
480                 .hdr = {
481                         .src_addr = 0xffffffff,
482                         .dst_addr = 0xffffffff,
483                         .next_proto_id = 0xff,
484                 }
485         };
486
487         rc = sfc_flow_parse_init(item,
488                                  (const void **)&spec,
489                                  (const void **)&mask,
490                                  &supp_mask,
491                                  &rte_flow_item_ipv4_mask,
492                                  sizeof(struct rte_flow_item_ipv4),
493                                  error);
494         if (rc != 0)
495                 return rc;
496
497         /*
498          * Filtering by IPv4 source and destination addresses requires
499          * the appropriate ETHER_TYPE in hardware filters
500          */
501         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
502                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
503                 efx_spec->efs_ether_type = ether_type_ipv4;
504         } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
505                 rte_flow_error_set(error, EINVAL,
506                         RTE_FLOW_ERROR_TYPE_ITEM, item,
507                         "Ethertype in pattern with IPV4 item should be appropriate");
508                 return -rte_errno;
509         }
510
511         if (spec == NULL)
512                 return 0;
513
514         /*
515          * IPv4 addresses are in big-endian byte order in item and in
516          * efx_spec
517          */
518         if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
519                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
520                 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
521         } else if (mask->hdr.src_addr != 0) {
522                 goto fail_bad_mask;
523         }
524
525         if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
526                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
527                 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
528         } else if (mask->hdr.dst_addr != 0) {
529                 goto fail_bad_mask;
530         }
531
532         if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
533                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
534                 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
535         } else if (mask->hdr.next_proto_id != 0) {
536                 goto fail_bad_mask;
537         }
538
539         return 0;
540
541 fail_bad_mask:
542         rte_flow_error_set(error, EINVAL,
543                            RTE_FLOW_ERROR_TYPE_ITEM, item,
544                            "Bad mask in the IPV4 pattern item");
545         return -rte_errno;
546 }
547
548 /**
549  * Convert IPv6 item to EFX filter specification.
550  *
551  * @param item[in]
552  *   Item specification. Only source and destination addresses and
553  *   next header fields are supported. If the mask is NULL, default
554  *   mask will be used. Ranging is not supported.
555  * @param efx_spec[in, out]
556  *   EFX filter specification to update.
557  * @param[out] error
558  *   Perform verbose error reporting if not NULL.
559  */
560 static int
561 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
562                     struct sfc_flow_parse_ctx *parse_ctx,
563                     struct rte_flow_error *error)
564 {
565         int rc;
566         efx_filter_spec_t *efx_spec = parse_ctx->filter;
567         const struct rte_flow_item_ipv6 *spec = NULL;
568         const struct rte_flow_item_ipv6 *mask = NULL;
569         const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
570         const struct rte_flow_item_ipv6 supp_mask = {
571                 .hdr = {
572                         .src_addr = { 0xff, 0xff, 0xff, 0xff,
573                                       0xff, 0xff, 0xff, 0xff,
574                                       0xff, 0xff, 0xff, 0xff,
575                                       0xff, 0xff, 0xff, 0xff },
576                         .dst_addr = { 0xff, 0xff, 0xff, 0xff,
577                                       0xff, 0xff, 0xff, 0xff,
578                                       0xff, 0xff, 0xff, 0xff,
579                                       0xff, 0xff, 0xff, 0xff },
580                         .proto = 0xff,
581                 }
582         };
583
584         rc = sfc_flow_parse_init(item,
585                                  (const void **)&spec,
586                                  (const void **)&mask,
587                                  &supp_mask,
588                                  &rte_flow_item_ipv6_mask,
589                                  sizeof(struct rte_flow_item_ipv6),
590                                  error);
591         if (rc != 0)
592                 return rc;
593
594         /*
595          * Filtering by IPv6 source and destination addresses requires
596          * the appropriate ETHER_TYPE in hardware filters
597          */
598         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
599                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
600                 efx_spec->efs_ether_type = ether_type_ipv6;
601         } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
602                 rte_flow_error_set(error, EINVAL,
603                         RTE_FLOW_ERROR_TYPE_ITEM, item,
604                         "Ethertype in pattern with IPV6 item should be appropriate");
605                 return -rte_errno;
606         }
607
608         if (spec == NULL)
609                 return 0;
610
611         /*
612          * IPv6 addresses are in big-endian byte order in item and in
613          * efx_spec
614          */
615         if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
616                    sizeof(mask->hdr.src_addr)) == 0) {
617                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
618
619                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
620                                  sizeof(spec->hdr.src_addr));
621                 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
622                            sizeof(efx_spec->efs_rem_host));
623         } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
624                                      sizeof(mask->hdr.src_addr))) {
625                 goto fail_bad_mask;
626         }
627
628         if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
629                    sizeof(mask->hdr.dst_addr)) == 0) {
630                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
631
632                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
633                                  sizeof(spec->hdr.dst_addr));
634                 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
635                            sizeof(efx_spec->efs_loc_host));
636         } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
637                                      sizeof(mask->hdr.dst_addr))) {
638                 goto fail_bad_mask;
639         }
640
641         if (mask->hdr.proto == supp_mask.hdr.proto) {
642                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
643                 efx_spec->efs_ip_proto = spec->hdr.proto;
644         } else if (mask->hdr.proto != 0) {
645                 goto fail_bad_mask;
646         }
647
648         return 0;
649
650 fail_bad_mask:
651         rte_flow_error_set(error, EINVAL,
652                            RTE_FLOW_ERROR_TYPE_ITEM, item,
653                            "Bad mask in the IPV6 pattern item");
654         return -rte_errno;
655 }
656
657 /**
658  * Convert TCP item to EFX filter specification.
659  *
660  * @param item[in]
661  *   Item specification. Only source and destination ports fields
662  *   are supported. If the mask is NULL, default mask will be used.
663  *   Ranging is not supported.
664  * @param efx_spec[in, out]
665  *   EFX filter specification to update.
666  * @param[out] error
667  *   Perform verbose error reporting if not NULL.
668  */
669 static int
670 sfc_flow_parse_tcp(const struct rte_flow_item *item,
671                    struct sfc_flow_parse_ctx *parse_ctx,
672                    struct rte_flow_error *error)
673 {
674         int rc;
675         efx_filter_spec_t *efx_spec = parse_ctx->filter;
676         const struct rte_flow_item_tcp *spec = NULL;
677         const struct rte_flow_item_tcp *mask = NULL;
678         const struct rte_flow_item_tcp supp_mask = {
679                 .hdr = {
680                         .src_port = 0xffff,
681                         .dst_port = 0xffff,
682                 }
683         };
684
685         rc = sfc_flow_parse_init(item,
686                                  (const void **)&spec,
687                                  (const void **)&mask,
688                                  &supp_mask,
689                                  &rte_flow_item_tcp_mask,
690                                  sizeof(struct rte_flow_item_tcp),
691                                  error);
692         if (rc != 0)
693                 return rc;
694
695         /*
696          * Filtering by TCP source and destination ports requires
697          * the appropriate IP_PROTO in hardware filters
698          */
699         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
700                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
701                 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
702         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
703                 rte_flow_error_set(error, EINVAL,
704                         RTE_FLOW_ERROR_TYPE_ITEM, item,
705                         "IP proto in pattern with TCP item should be appropriate");
706                 return -rte_errno;
707         }
708
709         if (spec == NULL)
710                 return 0;
711
712         /*
713          * Source and destination ports are in big-endian byte order in item and
714          * in little-endian in efx_spec, so byte swap is used
715          */
716         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
717                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
718                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
719         } else if (mask->hdr.src_port != 0) {
720                 goto fail_bad_mask;
721         }
722
723         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
724                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
725                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
726         } else if (mask->hdr.dst_port != 0) {
727                 goto fail_bad_mask;
728         }
729
730         return 0;
731
732 fail_bad_mask:
733         rte_flow_error_set(error, EINVAL,
734                            RTE_FLOW_ERROR_TYPE_ITEM, item,
735                            "Bad mask in the TCP pattern item");
736         return -rte_errno;
737 }
738
739 /**
740  * Convert UDP item to EFX filter specification.
741  *
742  * @param item[in]
743  *   Item specification. Only source and destination ports fields
744  *   are supported. If the mask is NULL, default mask will be used.
745  *   Ranging is not supported.
746  * @param efx_spec[in, out]
747  *   EFX filter specification to update.
748  * @param[out] error
749  *   Perform verbose error reporting if not NULL.
750  */
751 static int
752 sfc_flow_parse_udp(const struct rte_flow_item *item,
753                    struct sfc_flow_parse_ctx *parse_ctx,
754                    struct rte_flow_error *error)
755 {
756         int rc;
757         efx_filter_spec_t *efx_spec = parse_ctx->filter;
758         const struct rte_flow_item_udp *spec = NULL;
759         const struct rte_flow_item_udp *mask = NULL;
760         const struct rte_flow_item_udp supp_mask = {
761                 .hdr = {
762                         .src_port = 0xffff,
763                         .dst_port = 0xffff,
764                 }
765         };
766
767         rc = sfc_flow_parse_init(item,
768                                  (const void **)&spec,
769                                  (const void **)&mask,
770                                  &supp_mask,
771                                  &rte_flow_item_udp_mask,
772                                  sizeof(struct rte_flow_item_udp),
773                                  error);
774         if (rc != 0)
775                 return rc;
776
777         /*
778          * Filtering by UDP source and destination ports requires
779          * the appropriate IP_PROTO in hardware filters
780          */
781         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
782                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
783                 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
784         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
785                 rte_flow_error_set(error, EINVAL,
786                         RTE_FLOW_ERROR_TYPE_ITEM, item,
787                         "IP proto in pattern with UDP item should be appropriate");
788                 return -rte_errno;
789         }
790
791         if (spec == NULL)
792                 return 0;
793
794         /*
795          * Source and destination ports are in big-endian byte order in item and
796          * in little-endian in efx_spec, so byte swap is used
797          */
798         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
799                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
800                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
801         } else if (mask->hdr.src_port != 0) {
802                 goto fail_bad_mask;
803         }
804
805         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
806                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
807                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
808         } else if (mask->hdr.dst_port != 0) {
809                 goto fail_bad_mask;
810         }
811
812         return 0;
813
814 fail_bad_mask:
815         rte_flow_error_set(error, EINVAL,
816                            RTE_FLOW_ERROR_TYPE_ITEM, item,
817                            "Bad mask in the UDP pattern item");
818         return -rte_errno;
819 }
820
821 /*
822  * Filters for encapsulated packets match based on the EtherType and IP
823  * protocol in the outer frame.
824  */
825 static int
826 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
827                                         efx_filter_spec_t *efx_spec,
828                                         uint8_t ip_proto,
829                                         struct rte_flow_error *error)
830 {
831         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
832                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
833                 efx_spec->efs_ip_proto = ip_proto;
834         } else if (efx_spec->efs_ip_proto != ip_proto) {
835                 switch (ip_proto) {
836                 case EFX_IPPROTO_UDP:
837                         rte_flow_error_set(error, EINVAL,
838                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
839                                 "Outer IP header protocol must be UDP "
840                                 "in VxLAN/GENEVE pattern");
841                         return -rte_errno;
842
843                 case EFX_IPPROTO_GRE:
844                         rte_flow_error_set(error, EINVAL,
845                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
846                                 "Outer IP header protocol must be GRE "
847                                 "in NVGRE pattern");
848                         return -rte_errno;
849
850                 default:
851                         rte_flow_error_set(error, EINVAL,
852                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
853                                 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
854                                 "are supported");
855                         return -rte_errno;
856                 }
857         }
858
859         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
860             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
861             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
862                 rte_flow_error_set(error, EINVAL,
863                         RTE_FLOW_ERROR_TYPE_ITEM, item,
864                         "Outer frame EtherType in pattern with tunneling "
865                         "must be IPv4 or IPv6");
866                 return -rte_errno;
867         }
868
869         return 0;
870 }
871
872 static int
873 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
874                                   const uint8_t *vni_or_vsid_val,
875                                   const uint8_t *vni_or_vsid_mask,
876                                   const struct rte_flow_item *item,
877                                   struct rte_flow_error *error)
878 {
879         const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
880                 0xff, 0xff, 0xff
881         };
882
883         if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
884                    EFX_VNI_OR_VSID_LEN) == 0) {
885                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
886                 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
887                            EFX_VNI_OR_VSID_LEN);
888         } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
889                 rte_flow_error_set(error, EINVAL,
890                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
891                                    "Unsupported VNI/VSID mask");
892                 return -rte_errno;
893         }
894
895         return 0;
896 }
897
898 /**
899  * Convert VXLAN item to EFX filter specification.
900  *
901  * @param item[in]
902  *   Item specification. Only VXLAN network identifier field is supported.
903  *   If the mask is NULL, default mask will be used.
904  *   Ranging is not supported.
905  * @param efx_spec[in, out]
906  *   EFX filter specification to update.
907  * @param[out] error
908  *   Perform verbose error reporting if not NULL.
909  */
910 static int
911 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
912                      struct sfc_flow_parse_ctx *parse_ctx,
913                      struct rte_flow_error *error)
914 {
915         int rc;
916         efx_filter_spec_t *efx_spec = parse_ctx->filter;
917         const struct rte_flow_item_vxlan *spec = NULL;
918         const struct rte_flow_item_vxlan *mask = NULL;
919         const struct rte_flow_item_vxlan supp_mask = {
920                 .vni = { 0xff, 0xff, 0xff }
921         };
922
923         rc = sfc_flow_parse_init(item,
924                                  (const void **)&spec,
925                                  (const void **)&mask,
926                                  &supp_mask,
927                                  &rte_flow_item_vxlan_mask,
928                                  sizeof(struct rte_flow_item_vxlan),
929                                  error);
930         if (rc != 0)
931                 return rc;
932
933         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
934                                                      EFX_IPPROTO_UDP, error);
935         if (rc != 0)
936                 return rc;
937
938         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
939         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
940
941         if (spec == NULL)
942                 return 0;
943
944         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
945                                                mask->vni, item, error);
946
947         return rc;
948 }
949
950 /**
951  * Convert GENEVE item to EFX filter specification.
952  *
953  * @param item[in]
954  *   Item specification. Only Virtual Network Identifier and protocol type
955  *   fields are supported. But protocol type can be only Ethernet (0x6558).
956  *   If the mask is NULL, default mask will be used.
957  *   Ranging is not supported.
958  * @param efx_spec[in, out]
959  *   EFX filter specification to update.
960  * @param[out] error
961  *   Perform verbose error reporting if not NULL.
962  */
963 static int
964 sfc_flow_parse_geneve(const struct rte_flow_item *item,
965                       struct sfc_flow_parse_ctx *parse_ctx,
966                       struct rte_flow_error *error)
967 {
968         int rc;
969         efx_filter_spec_t *efx_spec = parse_ctx->filter;
970         const struct rte_flow_item_geneve *spec = NULL;
971         const struct rte_flow_item_geneve *mask = NULL;
972         const struct rte_flow_item_geneve supp_mask = {
973                 .protocol = RTE_BE16(0xffff),
974                 .vni = { 0xff, 0xff, 0xff }
975         };
976
977         rc = sfc_flow_parse_init(item,
978                                  (const void **)&spec,
979                                  (const void **)&mask,
980                                  &supp_mask,
981                                  &rte_flow_item_geneve_mask,
982                                  sizeof(struct rte_flow_item_geneve),
983                                  error);
984         if (rc != 0)
985                 return rc;
986
987         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
988                                                      EFX_IPPROTO_UDP, error);
989         if (rc != 0)
990                 return rc;
991
992         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
993         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
994
995         if (spec == NULL)
996                 return 0;
997
998         if (mask->protocol == supp_mask.protocol) {
999                 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
1000                         rte_flow_error_set(error, EINVAL,
1001                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1002                                 "GENEVE encap. protocol must be Ethernet "
1003                                 "(0x6558) in the GENEVE pattern item");
1004                         return -rte_errno;
1005                 }
1006         } else if (mask->protocol != 0) {
1007                 rte_flow_error_set(error, EINVAL,
1008                         RTE_FLOW_ERROR_TYPE_ITEM, item,
1009                         "Unsupported mask for GENEVE encap. protocol");
1010                 return -rte_errno;
1011         }
1012
1013         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1014                                                mask->vni, item, error);
1015
1016         return rc;
1017 }
1018
1019 /**
1020  * Convert NVGRE item to EFX filter specification.
1021  *
1022  * @param item[in]
1023  *   Item specification. Only virtual subnet ID field is supported.
1024  *   If the mask is NULL, default mask will be used.
1025  *   Ranging is not supported.
1026  * @param efx_spec[in, out]
1027  *   EFX filter specification to update.
1028  * @param[out] error
1029  *   Perform verbose error reporting if not NULL.
1030  */
1031 static int
1032 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1033                      struct sfc_flow_parse_ctx *parse_ctx,
1034                      struct rte_flow_error *error)
1035 {
1036         int rc;
1037         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1038         const struct rte_flow_item_nvgre *spec = NULL;
1039         const struct rte_flow_item_nvgre *mask = NULL;
1040         const struct rte_flow_item_nvgre supp_mask = {
1041                 .tni = { 0xff, 0xff, 0xff }
1042         };
1043
1044         rc = sfc_flow_parse_init(item,
1045                                  (const void **)&spec,
1046                                  (const void **)&mask,
1047                                  &supp_mask,
1048                                  &rte_flow_item_nvgre_mask,
1049                                  sizeof(struct rte_flow_item_nvgre),
1050                                  error);
1051         if (rc != 0)
1052                 return rc;
1053
1054         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1055                                                      EFX_IPPROTO_GRE, error);
1056         if (rc != 0)
1057                 return rc;
1058
1059         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1060         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1061
1062         if (spec == NULL)
1063                 return 0;
1064
1065         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1066                                                mask->tni, item, error);
1067
1068         return rc;
1069 }
1070
1071 /**
1072  * Convert PPPoEx item to EFX filter specification.
1073  *
1074  * @param item[in]
1075  *   Item specification.
1076  *   Matching on PPPoEx fields is not supported.
1077  *   This item can only be used to set or validate the EtherType filter.
1078  *   Only zero masks are allowed.
1079  *   Ranging is not supported.
1080  * @param efx_spec[in, out]
1081  *   EFX filter specification to update.
1082  * @param[out] error
1083  *   Perform verbose error reporting if not NULL.
1084  */
1085 static int
1086 sfc_flow_parse_pppoex(const struct rte_flow_item *item,
1087                       struct sfc_flow_parse_ctx *parse_ctx,
1088                       struct rte_flow_error *error)
1089 {
1090         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1091         const struct rte_flow_item_pppoe *spec = NULL;
1092         const struct rte_flow_item_pppoe *mask = NULL;
1093         const struct rte_flow_item_pppoe supp_mask = {};
1094         const struct rte_flow_item_pppoe def_mask = {};
1095         uint16_t ether_type;
1096         int rc;
1097
1098         rc = sfc_flow_parse_init(item,
1099                                  (const void **)&spec,
1100                                  (const void **)&mask,
1101                                  &supp_mask,
1102                                  &def_mask,
1103                                  sizeof(struct rte_flow_item_pppoe),
1104                                  error);
1105         if (rc != 0)
1106                 return rc;
1107
1108         if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED)
1109                 ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY;
1110         else
1111                 ether_type = RTE_ETHER_TYPE_PPPOE_SESSION;
1112
1113         if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) {
1114                 if (efx_spec->efs_ether_type != ether_type) {
1115                         rte_flow_error_set(error, EINVAL,
1116                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
1117                                            "Invalid EtherType for a PPPoE flow item");
1118                         return -rte_errno;
1119                 }
1120         } else {
1121                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1122                 efx_spec->efs_ether_type = ether_type;
1123         }
1124
1125         return 0;
1126 }
1127
1128 static const struct sfc_flow_item sfc_flow_items[] = {
1129         {
1130                 .type = RTE_FLOW_ITEM_TYPE_VOID,
1131                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1132                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1133                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1134                 .parse = sfc_flow_parse_void,
1135         },
1136         {
1137                 .type = RTE_FLOW_ITEM_TYPE_ETH,
1138                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1139                 .layer = SFC_FLOW_ITEM_L2,
1140                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1141                 .parse = sfc_flow_parse_eth,
1142         },
1143         {
1144                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1145                 .prev_layer = SFC_FLOW_ITEM_L2,
1146                 .layer = SFC_FLOW_ITEM_L2,
1147                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1148                 .parse = sfc_flow_parse_vlan,
1149         },
1150         {
1151                 .type = RTE_FLOW_ITEM_TYPE_PPPOED,
1152                 .prev_layer = SFC_FLOW_ITEM_L2,
1153                 .layer = SFC_FLOW_ITEM_L2,
1154                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1155                 .parse = sfc_flow_parse_pppoex,
1156         },
1157         {
1158                 .type = RTE_FLOW_ITEM_TYPE_PPPOES,
1159                 .prev_layer = SFC_FLOW_ITEM_L2,
1160                 .layer = SFC_FLOW_ITEM_L2,
1161                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1162                 .parse = sfc_flow_parse_pppoex,
1163         },
1164         {
1165                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1166                 .prev_layer = SFC_FLOW_ITEM_L2,
1167                 .layer = SFC_FLOW_ITEM_L3,
1168                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1169                 .parse = sfc_flow_parse_ipv4,
1170         },
1171         {
1172                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1173                 .prev_layer = SFC_FLOW_ITEM_L2,
1174                 .layer = SFC_FLOW_ITEM_L3,
1175                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1176                 .parse = sfc_flow_parse_ipv6,
1177         },
1178         {
1179                 .type = RTE_FLOW_ITEM_TYPE_TCP,
1180                 .prev_layer = SFC_FLOW_ITEM_L3,
1181                 .layer = SFC_FLOW_ITEM_L4,
1182                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1183                 .parse = sfc_flow_parse_tcp,
1184         },
1185         {
1186                 .type = RTE_FLOW_ITEM_TYPE_UDP,
1187                 .prev_layer = SFC_FLOW_ITEM_L3,
1188                 .layer = SFC_FLOW_ITEM_L4,
1189                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1190                 .parse = sfc_flow_parse_udp,
1191         },
1192         {
1193                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1194                 .prev_layer = SFC_FLOW_ITEM_L4,
1195                 .layer = SFC_FLOW_ITEM_START_LAYER,
1196                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1197                 .parse = sfc_flow_parse_vxlan,
1198         },
1199         {
1200                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1201                 .prev_layer = SFC_FLOW_ITEM_L4,
1202                 .layer = SFC_FLOW_ITEM_START_LAYER,
1203                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1204                 .parse = sfc_flow_parse_geneve,
1205         },
1206         {
1207                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1208                 .prev_layer = SFC_FLOW_ITEM_L3,
1209                 .layer = SFC_FLOW_ITEM_START_LAYER,
1210                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1211                 .parse = sfc_flow_parse_nvgre,
1212         },
1213 };
1214
1215 /*
1216  * Protocol-independent flow API support
1217  */
1218 static int
1219 sfc_flow_parse_attr(struct sfc_adapter *sa,
1220                     const struct rte_flow_attr *attr,
1221                     struct rte_flow *flow,
1222                     struct rte_flow_error *error)
1223 {
1224         struct sfc_flow_spec *spec = &flow->spec;
1225         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1226         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1227         struct sfc_mae *mae = &sa->mae;
1228
1229         if (attr == NULL) {
1230                 rte_flow_error_set(error, EINVAL,
1231                                    RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1232                                    "NULL attribute");
1233                 return -rte_errno;
1234         }
1235         if (attr->group != 0) {
1236                 rte_flow_error_set(error, ENOTSUP,
1237                                    RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1238                                    "Groups are not supported");
1239                 return -rte_errno;
1240         }
1241         if (attr->egress != 0) {
1242                 rte_flow_error_set(error, ENOTSUP,
1243                                    RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1244                                    "Egress is not supported");
1245                 return -rte_errno;
1246         }
1247         if (attr->ingress == 0) {
1248                 rte_flow_error_set(error, ENOTSUP,
1249                                    RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1250                                    "Ingress is compulsory");
1251                 return -rte_errno;
1252         }
1253         if (attr->transfer == 0) {
1254                 if (attr->priority != 0) {
1255                         rte_flow_error_set(error, ENOTSUP,
1256                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1257                                            attr, "Priorities are unsupported");
1258                         return -rte_errno;
1259                 }
1260                 spec->type = SFC_FLOW_SPEC_FILTER;
1261                 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1262                 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1263                 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1264         } else {
1265                 if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1266                         rte_flow_error_set(error, ENOTSUP,
1267                                            RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1268                                            attr, "Transfer is not supported");
1269                         return -rte_errno;
1270                 }
1271                 if (attr->priority > mae->nb_action_rule_prios_max) {
1272                         rte_flow_error_set(error, ENOTSUP,
1273                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1274                                            attr, "Unsupported priority level");
1275                         return -rte_errno;
1276                 }
1277                 spec->type = SFC_FLOW_SPEC_MAE;
1278                 spec_mae->priority = attr->priority;
1279                 spec_mae->match_spec = NULL;
1280                 spec_mae->action_set = NULL;
1281                 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1282         }
1283
1284         return 0;
1285 }
1286
1287 /* Get item from array sfc_flow_items */
1288 static const struct sfc_flow_item *
1289 sfc_flow_get_item(const struct sfc_flow_item *items,
1290                   unsigned int nb_items,
1291                   enum rte_flow_item_type type)
1292 {
1293         unsigned int i;
1294
1295         for (i = 0; i < nb_items; i++)
1296                 if (items[i].type == type)
1297                         return &items[i];
1298
1299         return NULL;
1300 }
1301
1302 int
1303 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items,
1304                        unsigned int nb_flow_items,
1305                        const struct rte_flow_item pattern[],
1306                        struct sfc_flow_parse_ctx *parse_ctx,
1307                        struct rte_flow_error *error)
1308 {
1309         int rc;
1310         unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1311         boolean_t is_ifrm = B_FALSE;
1312         const struct sfc_flow_item *item;
1313
1314         if (pattern == NULL) {
1315                 rte_flow_error_set(error, EINVAL,
1316                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1317                                    "NULL pattern");
1318                 return -rte_errno;
1319         }
1320
1321         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1322                 item = sfc_flow_get_item(flow_items, nb_flow_items,
1323                                          pattern->type);
1324                 if (item == NULL) {
1325                         rte_flow_error_set(error, ENOTSUP,
1326                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1327                                            "Unsupported pattern item");
1328                         return -rte_errno;
1329                 }
1330
1331                 /*
1332                  * Omitting one or several protocol layers at the beginning
1333                  * of pattern is supported
1334                  */
1335                 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1336                     prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1337                     item->prev_layer != prev_layer) {
1338                         rte_flow_error_set(error, ENOTSUP,
1339                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1340                                            "Unexpected sequence of pattern items");
1341                         return -rte_errno;
1342                 }
1343
1344                 /*
1345                  * Allow only VOID and ETH pattern items in the inner frame.
1346                  * Also check that there is only one tunneling protocol.
1347                  */
1348                 switch (item->type) {
1349                 case RTE_FLOW_ITEM_TYPE_VOID:
1350                 case RTE_FLOW_ITEM_TYPE_ETH:
1351                         break;
1352
1353                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1354                 case RTE_FLOW_ITEM_TYPE_GENEVE:
1355                 case RTE_FLOW_ITEM_TYPE_NVGRE:
1356                         if (is_ifrm) {
1357                                 rte_flow_error_set(error, EINVAL,
1358                                         RTE_FLOW_ERROR_TYPE_ITEM,
1359                                         pattern,
1360                                         "More than one tunneling protocol");
1361                                 return -rte_errno;
1362                         }
1363                         is_ifrm = B_TRUE;
1364                         break;
1365
1366                 default:
1367                         if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1368                             is_ifrm) {
1369                                 rte_flow_error_set(error, EINVAL,
1370                                         RTE_FLOW_ERROR_TYPE_ITEM,
1371                                         pattern,
1372                                         "There is an unsupported pattern item "
1373                                         "in the inner frame");
1374                                 return -rte_errno;
1375                         }
1376                         break;
1377                 }
1378
1379                 if (parse_ctx->type != item->ctx_type) {
1380                         rte_flow_error_set(error, EINVAL,
1381                                         RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1382                                         "Parse context type mismatch");
1383                         return -rte_errno;
1384                 }
1385
1386                 rc = item->parse(pattern, parse_ctx, error);
1387                 if (rc != 0)
1388                         return rc;
1389
1390                 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1391                         prev_layer = item->layer;
1392         }
1393
1394         return 0;
1395 }
1396
1397 static int
1398 sfc_flow_parse_queue(struct sfc_adapter *sa,
1399                      const struct rte_flow_action_queue *queue,
1400                      struct rte_flow *flow)
1401 {
1402         struct sfc_flow_spec *spec = &flow->spec;
1403         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1404         struct sfc_rxq *rxq;
1405         struct sfc_rxq_info *rxq_info;
1406
1407         if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count)
1408                 return -EINVAL;
1409
1410         rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index);
1411         spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1412
1413         rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1414         spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1415                                             SFC_RXQ_FLAG_RSS_HASH);
1416
1417         return 0;
1418 }
1419
1420 static int
1421 sfc_flow_parse_rss(struct sfc_adapter *sa,
1422                    const struct rte_flow_action_rss *action_rss,
1423                    struct rte_flow *flow)
1424 {
1425         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1426         struct sfc_rss *rss = &sas->rss;
1427         sfc_ethdev_qid_t ethdev_qid;
1428         struct sfc_rxq *rxq;
1429         unsigned int rxq_hw_index_min;
1430         unsigned int rxq_hw_index_max;
1431         efx_rx_hash_type_t efx_hash_types;
1432         const uint8_t *rss_key;
1433         struct sfc_flow_spec *spec = &flow->spec;
1434         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1435         struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1436         unsigned int i;
1437
1438         if (action_rss->queue_num == 0)
1439                 return -EINVAL;
1440
1441         ethdev_qid = sfc_sa2shared(sa)->ethdev_rxq_count - 1;
1442         rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1443         rxq_hw_index_min = rxq->hw_index;
1444         rxq_hw_index_max = 0;
1445
1446         for (i = 0; i < action_rss->queue_num; ++i) {
1447                 ethdev_qid = action_rss->queue[i];
1448
1449                 if ((unsigned int)ethdev_qid >=
1450                     sfc_sa2shared(sa)->ethdev_rxq_count)
1451                         return -EINVAL;
1452
1453                 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1454
1455                 if (rxq->hw_index < rxq_hw_index_min)
1456                         rxq_hw_index_min = rxq->hw_index;
1457
1458                 if (rxq->hw_index > rxq_hw_index_max)
1459                         rxq_hw_index_max = rxq->hw_index;
1460         }
1461
1462         switch (action_rss->func) {
1463         case RTE_ETH_HASH_FUNCTION_DEFAULT:
1464         case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1465                 break;
1466         default:
1467                 return -EINVAL;
1468         }
1469
1470         if (action_rss->level)
1471                 return -EINVAL;
1472
1473         /*
1474          * Dummy RSS action with only one queue and no specific settings
1475          * for hash types and key does not require dedicated RSS context
1476          * and may be simplified to single queue action.
1477          */
1478         if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1479             action_rss->key_len == 0) {
1480                 spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1481                 return 0;
1482         }
1483
1484         if (action_rss->types) {
1485                 int rc;
1486
1487                 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1488                                           &efx_hash_types);
1489                 if (rc != 0)
1490                         return -rc;
1491         } else {
1492                 unsigned int i;
1493
1494                 efx_hash_types = 0;
1495                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
1496                         efx_hash_types |= rss->hf_map[i].efx;
1497         }
1498
1499         if (action_rss->key_len) {
1500                 if (action_rss->key_len != sizeof(rss->key))
1501                         return -EINVAL;
1502
1503                 rss_key = action_rss->key;
1504         } else {
1505                 rss_key = rss->key;
1506         }
1507
1508         spec_filter->rss = B_TRUE;
1509
1510         sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1511         sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1512         sfc_rss_conf->rss_hash_types = efx_hash_types;
1513         rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1514
1515         for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1516                 unsigned int nb_queues = action_rss->queue_num;
1517                 struct sfc_rxq *rxq;
1518
1519                 ethdev_qid = action_rss->queue[i % nb_queues];
1520                 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1521                 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1522         }
1523
1524         return 0;
1525 }
1526
1527 static int
1528 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1529                     unsigned int filters_count)
1530 {
1531         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1532         unsigned int i;
1533         int ret = 0;
1534
1535         for (i = 0; i < filters_count; i++) {
1536                 int rc;
1537
1538                 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1539                 if (ret == 0 && rc != 0) {
1540                         sfc_err(sa, "failed to remove filter specification "
1541                                 "(rc = %d)", rc);
1542                         ret = rc;
1543                 }
1544         }
1545
1546         return ret;
1547 }
1548
1549 static int
1550 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1551 {
1552         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1553         unsigned int i;
1554         int rc = 0;
1555
1556         for (i = 0; i < spec_filter->count; i++) {
1557                 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1558                 if (rc != 0) {
1559                         sfc_flow_spec_flush(sa, spec, i);
1560                         break;
1561                 }
1562         }
1563
1564         return rc;
1565 }
1566
1567 static int
1568 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1569 {
1570         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1571
1572         return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1573 }
1574
1575 static int
1576 sfc_flow_filter_insert(struct sfc_adapter *sa,
1577                        struct rte_flow *flow)
1578 {
1579         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1580         struct sfc_rss *rss = &sas->rss;
1581         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1582         struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1583         uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1584         boolean_t create_context;
1585         unsigned int i;
1586         int rc = 0;
1587
1588         create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1589                         rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1590
1591         if (create_context) {
1592                 unsigned int rss_spread;
1593                 unsigned int rss_hash_types;
1594                 uint8_t *rss_key;
1595
1596                 if (spec_filter->rss) {
1597                         rss_spread = MIN(flow_rss->rxq_hw_index_max -
1598                                         flow_rss->rxq_hw_index_min + 1,
1599                                         EFX_MAXRSS);
1600                         rss_hash_types = flow_rss->rss_hash_types;
1601                         rss_key = flow_rss->rss_key;
1602                 } else {
1603                         /*
1604                          * Initialize dummy RSS context parameters to have
1605                          * valid RSS hash. Use default RSS hash function and
1606                          * key.
1607                          */
1608                         rss_spread = 1;
1609                         rss_hash_types = rss->hash_types;
1610                         rss_key = rss->key;
1611                 }
1612
1613                 rc = efx_rx_scale_context_alloc(sa->nic,
1614                                                 EFX_RX_SCALE_EXCLUSIVE,
1615                                                 rss_spread,
1616                                                 &efs_rss_context);
1617                 if (rc != 0)
1618                         goto fail_scale_context_alloc;
1619
1620                 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1621                                            rss->hash_alg,
1622                                            rss_hash_types, B_TRUE);
1623                 if (rc != 0)
1624                         goto fail_scale_mode_set;
1625
1626                 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1627                                           rss_key, sizeof(rss->key));
1628                 if (rc != 0)
1629                         goto fail_scale_key_set;
1630         } else {
1631                 efs_rss_context = rss->dummy_rss_context;
1632         }
1633
1634         if (spec_filter->rss || spec_filter->rss_hash_required) {
1635                 /*
1636                  * At this point, fully elaborated filter specifications
1637                  * have been produced from the template. To make sure that
1638                  * RSS behaviour is consistent between them, set the same
1639                  * RSS context value everywhere.
1640                  */
1641                 for (i = 0; i < spec_filter->count; i++) {
1642                         efx_filter_spec_t *spec = &spec_filter->filters[i];
1643
1644                         spec->efs_rss_context = efs_rss_context;
1645                         spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1646                         if (spec_filter->rss)
1647                                 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1648                 }
1649         }
1650
1651         rc = sfc_flow_spec_insert(sa, &flow->spec);
1652         if (rc != 0)
1653                 goto fail_filter_insert;
1654
1655         if (create_context) {
1656                 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1657                 unsigned int *tbl;
1658
1659                 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1660
1661                 /*
1662                  * Scale table is set after filter insertion because
1663                  * the table entries are relative to the base RxQ ID
1664                  * and the latter is submitted to the HW by means of
1665                  * inserting a filter, so by the time of the request
1666                  * the HW knows all the information needed to verify
1667                  * the table entries, and the operation will succeed
1668                  */
1669                 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1670                                           tbl, RTE_DIM(flow_rss->rss_tbl));
1671                 if (rc != 0)
1672                         goto fail_scale_tbl_set;
1673
1674                 /* Remember created dummy RSS context */
1675                 if (!spec_filter->rss)
1676                         rss->dummy_rss_context = efs_rss_context;
1677         }
1678
1679         return 0;
1680
1681 fail_scale_tbl_set:
1682         sfc_flow_spec_remove(sa, &flow->spec);
1683
1684 fail_filter_insert:
1685 fail_scale_key_set:
1686 fail_scale_mode_set:
1687         if (create_context)
1688                 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1689
1690 fail_scale_context_alloc:
1691         return rc;
1692 }
1693
1694 static int
1695 sfc_flow_filter_remove(struct sfc_adapter *sa,
1696                        struct rte_flow *flow)
1697 {
1698         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1699         int rc = 0;
1700
1701         rc = sfc_flow_spec_remove(sa, &flow->spec);
1702         if (rc != 0)
1703                 return rc;
1704
1705         if (spec_filter->rss) {
1706                 /*
1707                  * All specifications for a given flow rule have the same RSS
1708                  * context, so that RSS context value is taken from the first
1709                  * filter specification
1710                  */
1711                 efx_filter_spec_t *spec = &spec_filter->filters[0];
1712
1713                 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1714         }
1715
1716         return rc;
1717 }
1718
1719 static int
1720 sfc_flow_parse_mark(struct sfc_adapter *sa,
1721                     const struct rte_flow_action_mark *mark,
1722                     struct rte_flow *flow)
1723 {
1724         struct sfc_flow_spec *spec = &flow->spec;
1725         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1726         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1727
1728         if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1729                 return EINVAL;
1730
1731         spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1732         spec_filter->template.efs_mark = mark->id;
1733
1734         return 0;
1735 }
1736
1737 static int
1738 sfc_flow_parse_actions(struct sfc_adapter *sa,
1739                        const struct rte_flow_action actions[],
1740                        struct rte_flow *flow,
1741                        struct rte_flow_error *error)
1742 {
1743         int rc;
1744         struct sfc_flow_spec *spec = &flow->spec;
1745         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1746         const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1747         uint32_t actions_set = 0;
1748         const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1749                                            (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1750                                            (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1751         const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1752                                            (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1753
1754         if (actions == NULL) {
1755                 rte_flow_error_set(error, EINVAL,
1756                                    RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1757                                    "NULL actions");
1758                 return -rte_errno;
1759         }
1760
1761         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1762                 switch (actions->type) {
1763                 case RTE_FLOW_ACTION_TYPE_VOID:
1764                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1765                                                actions_set);
1766                         break;
1767
1768                 case RTE_FLOW_ACTION_TYPE_QUEUE:
1769                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1770                                                actions_set);
1771                         if ((actions_set & fate_actions_mask) != 0)
1772                                 goto fail_fate_actions;
1773
1774                         rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1775                         if (rc != 0) {
1776                                 rte_flow_error_set(error, EINVAL,
1777                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1778                                         "Bad QUEUE action");
1779                                 return -rte_errno;
1780                         }
1781                         break;
1782
1783                 case RTE_FLOW_ACTION_TYPE_RSS:
1784                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1785                                                actions_set);
1786                         if ((actions_set & fate_actions_mask) != 0)
1787                                 goto fail_fate_actions;
1788
1789                         rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1790                         if (rc != 0) {
1791                                 rte_flow_error_set(error, -rc,
1792                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1793                                         "Bad RSS action");
1794                                 return -rte_errno;
1795                         }
1796                         break;
1797
1798                 case RTE_FLOW_ACTION_TYPE_DROP:
1799                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1800                                                actions_set);
1801                         if ((actions_set & fate_actions_mask) != 0)
1802                                 goto fail_fate_actions;
1803
1804                         spec_filter->template.efs_dmaq_id =
1805                                 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1806                         break;
1807
1808                 case RTE_FLOW_ACTION_TYPE_FLAG:
1809                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1810                                                actions_set);
1811                         if ((actions_set & mark_actions_mask) != 0)
1812                                 goto fail_actions_overlap;
1813
1814                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1815                                 rte_flow_error_set(error, ENOTSUP,
1816                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1817                                         "FLAG action is not supported on the current Rx datapath");
1818                                 return -rte_errno;
1819                         }
1820
1821                         spec_filter->template.efs_flags |=
1822                                 EFX_FILTER_FLAG_ACTION_FLAG;
1823                         break;
1824
1825                 case RTE_FLOW_ACTION_TYPE_MARK:
1826                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1827                                                actions_set);
1828                         if ((actions_set & mark_actions_mask) != 0)
1829                                 goto fail_actions_overlap;
1830
1831                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1832                                 rte_flow_error_set(error, ENOTSUP,
1833                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1834                                         "MARK action is not supported on the current Rx datapath");
1835                                 return -rte_errno;
1836                         }
1837
1838                         rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1839                         if (rc != 0) {
1840                                 rte_flow_error_set(error, rc,
1841                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1842                                         "Bad MARK action");
1843                                 return -rte_errno;
1844                         }
1845                         break;
1846
1847                 default:
1848                         rte_flow_error_set(error, ENOTSUP,
1849                                            RTE_FLOW_ERROR_TYPE_ACTION, actions,
1850                                            "Action is not supported");
1851                         return -rte_errno;
1852                 }
1853
1854                 actions_set |= (1UL << actions->type);
1855         }
1856
1857         /* When fate is unknown, drop traffic. */
1858         if ((actions_set & fate_actions_mask) == 0) {
1859                 spec_filter->template.efs_dmaq_id =
1860                         EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1861         }
1862
1863         return 0;
1864
1865 fail_fate_actions:
1866         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1867                            "Cannot combine several fate-deciding actions, "
1868                            "choose between QUEUE, RSS or DROP");
1869         return -rte_errno;
1870
1871 fail_actions_overlap:
1872         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1873                            "Overlapping actions are not supported");
1874         return -rte_errno;
1875 }
1876
1877 /**
1878  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1879  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1880  * specifications after copying.
1881  *
1882  * @param spec[in, out]
1883  *   SFC flow specification to update.
1884  * @param filters_count_for_one_val[in]
1885  *   How many specifications should have the same match flag, what is the
1886  *   number of specifications before copying.
1887  * @param error[out]
1888  *   Perform verbose error reporting if not NULL.
1889  */
1890 static int
1891 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1892                                unsigned int filters_count_for_one_val,
1893                                struct rte_flow_error *error)
1894 {
1895         unsigned int i;
1896         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1897         static const efx_filter_match_flags_t vals[] = {
1898                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1899                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1900         };
1901
1902         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1903                 rte_flow_error_set(error, EINVAL,
1904                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1905                         "Number of specifications is incorrect while copying "
1906                         "by unknown destination flags");
1907                 return -rte_errno;
1908         }
1909
1910         for (i = 0; i < spec_filter->count; i++) {
1911                 /* The check above ensures that divisor can't be zero here */
1912                 spec_filter->filters[i].efs_match_flags |=
1913                         vals[i / filters_count_for_one_val];
1914         }
1915
1916         return 0;
1917 }
1918
1919 /**
1920  * Check that the following conditions are met:
1921  * - the list of supported filters has a filter
1922  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1923  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1924  *   be inserted.
1925  *
1926  * @param match[in]
1927  *   The match flags of filter.
1928  * @param spec[in]
1929  *   Specification to be supplemented.
1930  * @param filter[in]
1931  *   SFC filter with list of supported filters.
1932  */
1933 static boolean_t
1934 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1935                                  __rte_unused efx_filter_spec_t *spec,
1936                                  struct sfc_filter *filter)
1937 {
1938         unsigned int i;
1939         efx_filter_match_flags_t match_mcast_dst;
1940
1941         match_mcast_dst =
1942                 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1943                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1944         for (i = 0; i < filter->supported_match_num; i++) {
1945                 if (match_mcast_dst == filter->supported_match[i])
1946                         return B_TRUE;
1947         }
1948
1949         return B_FALSE;
1950 }
1951
1952 /**
1953  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1954  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1955  * specifications after copying.
1956  *
1957  * @param spec[in, out]
1958  *   SFC flow specification to update.
1959  * @param filters_count_for_one_val[in]
1960  *   How many specifications should have the same EtherType value, what is the
1961  *   number of specifications before copying.
1962  * @param error[out]
1963  *   Perform verbose error reporting if not NULL.
1964  */
1965 static int
1966 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1967                         unsigned int filters_count_for_one_val,
1968                         struct rte_flow_error *error)
1969 {
1970         unsigned int i;
1971         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1972         static const uint16_t vals[] = {
1973                 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1974         };
1975
1976         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1977                 rte_flow_error_set(error, EINVAL,
1978                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1979                         "Number of specifications is incorrect "
1980                         "while copying by Ethertype");
1981                 return -rte_errno;
1982         }
1983
1984         for (i = 0; i < spec_filter->count; i++) {
1985                 spec_filter->filters[i].efs_match_flags |=
1986                         EFX_FILTER_MATCH_ETHER_TYPE;
1987
1988                 /*
1989                  * The check above ensures that
1990                  * filters_count_for_one_val is not 0
1991                  */
1992                 spec_filter->filters[i].efs_ether_type =
1993                         vals[i / filters_count_for_one_val];
1994         }
1995
1996         return 0;
1997 }
1998
1999 /**
2000  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
2001  * in the same specifications after copying.
2002  *
2003  * @param spec[in, out]
2004  *   SFC flow specification to update.
2005  * @param filters_count_for_one_val[in]
2006  *   How many specifications should have the same match flag, what is the
2007  *   number of specifications before copying.
2008  * @param error[out]
2009  *   Perform verbose error reporting if not NULL.
2010  */
2011 static int
2012 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
2013                             unsigned int filters_count_for_one_val,
2014                             struct rte_flow_error *error)
2015 {
2016         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2017         unsigned int i;
2018
2019         if (filters_count_for_one_val != spec_filter->count) {
2020                 rte_flow_error_set(error, EINVAL,
2021                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2022                         "Number of specifications is incorrect "
2023                         "while copying by outer VLAN ID");
2024                 return -rte_errno;
2025         }
2026
2027         for (i = 0; i < spec_filter->count; i++) {
2028                 spec_filter->filters[i].efs_match_flags |=
2029                         EFX_FILTER_MATCH_OUTER_VID;
2030
2031                 spec_filter->filters[i].efs_outer_vid = 0;
2032         }
2033
2034         return 0;
2035 }
2036
2037 /**
2038  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
2039  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
2040  * specifications after copying.
2041  *
2042  * @param spec[in, out]
2043  *   SFC flow specification to update.
2044  * @param filters_count_for_one_val[in]
2045  *   How many specifications should have the same match flag, what is the
2046  *   number of specifications before copying.
2047  * @param error[out]
2048  *   Perform verbose error reporting if not NULL.
2049  */
2050 static int
2051 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
2052                                     unsigned int filters_count_for_one_val,
2053                                     struct rte_flow_error *error)
2054 {
2055         unsigned int i;
2056         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2057         static const efx_filter_match_flags_t vals[] = {
2058                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2059                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
2060         };
2061
2062         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2063                 rte_flow_error_set(error, EINVAL,
2064                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2065                         "Number of specifications is incorrect while copying "
2066                         "by inner frame unknown destination flags");
2067                 return -rte_errno;
2068         }
2069
2070         for (i = 0; i < spec_filter->count; i++) {
2071                 /* The check above ensures that divisor can't be zero here */
2072                 spec_filter->filters[i].efs_match_flags |=
2073                         vals[i / filters_count_for_one_val];
2074         }
2075
2076         return 0;
2077 }
2078
2079 /**
2080  * Check that the following conditions are met:
2081  * - the specification corresponds to a filter for encapsulated traffic
2082  * - the list of supported filters has a filter
2083  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2084  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2085  *   be inserted.
2086  *
2087  * @param match[in]
2088  *   The match flags of filter.
2089  * @param spec[in]
2090  *   Specification to be supplemented.
2091  * @param filter[in]
2092  *   SFC filter with list of supported filters.
2093  */
2094 static boolean_t
2095 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2096                                       efx_filter_spec_t *spec,
2097                                       struct sfc_filter *filter)
2098 {
2099         unsigned int i;
2100         efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2101         efx_filter_match_flags_t match_mcast_dst;
2102
2103         if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2104                 return B_FALSE;
2105
2106         match_mcast_dst =
2107                 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2108                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2109         for (i = 0; i < filter->supported_match_num; i++) {
2110                 if (match_mcast_dst == filter->supported_match[i])
2111                         return B_TRUE;
2112         }
2113
2114         return B_FALSE;
2115 }
2116
2117 /**
2118  * Check that the list of supported filters has a filter that differs
2119  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2120  * in this case that filter will be used and the flag
2121  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2122  *
2123  * @param match[in]
2124  *   The match flags of filter.
2125  * @param spec[in]
2126  *   Specification to be supplemented.
2127  * @param filter[in]
2128  *   SFC filter with list of supported filters.
2129  */
2130 static boolean_t
2131 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2132                               __rte_unused efx_filter_spec_t *spec,
2133                               struct sfc_filter *filter)
2134 {
2135         unsigned int i;
2136         efx_filter_match_flags_t match_without_vid =
2137                 match & ~EFX_FILTER_MATCH_OUTER_VID;
2138
2139         for (i = 0; i < filter->supported_match_num; i++) {
2140                 if (match_without_vid == filter->supported_match[i])
2141                         return B_FALSE;
2142         }
2143
2144         return B_TRUE;
2145 }
2146
2147 /*
2148  * Match flags that can be automatically added to filters.
2149  * Selecting the last minimum when searching for the copy flag ensures that the
2150  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2151  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2152  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2153  * filters.
2154  */
2155 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2156         {
2157                 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2158                 .vals_count = 2,
2159                 .set_vals = sfc_flow_set_unknown_dst_flags,
2160                 .spec_check = sfc_flow_check_unknown_dst_flags,
2161         },
2162         {
2163                 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
2164                 .vals_count = 2,
2165                 .set_vals = sfc_flow_set_ethertypes,
2166                 .spec_check = NULL,
2167         },
2168         {
2169                 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2170                 .vals_count = 2,
2171                 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2172                 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2173         },
2174         {
2175                 .flag = EFX_FILTER_MATCH_OUTER_VID,
2176                 .vals_count = 1,
2177                 .set_vals = sfc_flow_set_outer_vid_flag,
2178                 .spec_check = sfc_flow_check_outer_vid_flag,
2179         },
2180 };
2181
2182 /* Get item from array sfc_flow_copy_flags */
2183 static const struct sfc_flow_copy_flag *
2184 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2185 {
2186         unsigned int i;
2187
2188         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2189                 if (sfc_flow_copy_flags[i].flag == flag)
2190                         return &sfc_flow_copy_flags[i];
2191         }
2192
2193         return NULL;
2194 }
2195
2196 /**
2197  * Make copies of the specifications, set match flag and values
2198  * of the field that corresponds to it.
2199  *
2200  * @param spec[in, out]
2201  *   SFC flow specification to update.
2202  * @param flag[in]
2203  *   The match flag to add.
2204  * @param error[out]
2205  *   Perform verbose error reporting if not NULL.
2206  */
2207 static int
2208 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2209                              efx_filter_match_flags_t flag,
2210                              struct rte_flow_error *error)
2211 {
2212         unsigned int i;
2213         unsigned int new_filters_count;
2214         unsigned int filters_count_for_one_val;
2215         const struct sfc_flow_copy_flag *copy_flag;
2216         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2217         int rc;
2218
2219         copy_flag = sfc_flow_get_copy_flag(flag);
2220         if (copy_flag == NULL) {
2221                 rte_flow_error_set(error, ENOTSUP,
2222                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2223                                    "Unsupported spec field for copying");
2224                 return -rte_errno;
2225         }
2226
2227         new_filters_count = spec_filter->count * copy_flag->vals_count;
2228         if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2229                 rte_flow_error_set(error, EINVAL,
2230                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2231                         "Too much EFX specifications in the flow rule");
2232                 return -rte_errno;
2233         }
2234
2235         /* Copy filters specifications */
2236         for (i = spec_filter->count; i < new_filters_count; i++) {
2237                 spec_filter->filters[i] =
2238                         spec_filter->filters[i - spec_filter->count];
2239         }
2240
2241         filters_count_for_one_val = spec_filter->count;
2242         spec_filter->count = new_filters_count;
2243
2244         rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2245         if (rc != 0)
2246                 return rc;
2247
2248         return 0;
2249 }
2250
2251 /**
2252  * Check that the given set of match flags missing in the original filter spec
2253  * could be covered by adding spec copies which specify the corresponding
2254  * flags and packet field values to match.
2255  *
2256  * @param miss_flags[in]
2257  *   Flags that are missing until the supported filter.
2258  * @param spec[in]
2259  *   Specification to be supplemented.
2260  * @param filter[in]
2261  *   SFC filter.
2262  *
2263  * @return
2264  *   Number of specifications after copy or 0, if the flags can not be added.
2265  */
2266 static unsigned int
2267 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2268                              efx_filter_spec_t *spec,
2269                              struct sfc_filter *filter)
2270 {
2271         unsigned int i;
2272         efx_filter_match_flags_t copy_flags = 0;
2273         efx_filter_match_flags_t flag;
2274         efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2275         sfc_flow_spec_check *check;
2276         unsigned int multiplier = 1;
2277
2278         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2279                 flag = sfc_flow_copy_flags[i].flag;
2280                 check = sfc_flow_copy_flags[i].spec_check;
2281                 if ((flag & miss_flags) == flag) {
2282                         if (check != NULL && (!check(match, spec, filter)))
2283                                 continue;
2284
2285                         copy_flags |= flag;
2286                         multiplier *= sfc_flow_copy_flags[i].vals_count;
2287                 }
2288         }
2289
2290         if (copy_flags == miss_flags)
2291                 return multiplier;
2292
2293         return 0;
2294 }
2295
2296 /**
2297  * Attempt to supplement the specification template to the minimally
2298  * supported set of match flags. To do this, it is necessary to copy
2299  * the specifications, filling them with the values of fields that
2300  * correspond to the missing flags.
2301  * The necessary and sufficient filter is built from the fewest number
2302  * of copies which could be made to cover the minimally required set
2303  * of flags.
2304  *
2305  * @param sa[in]
2306  *   SFC adapter.
2307  * @param spec[in, out]
2308  *   SFC flow specification to update.
2309  * @param error[out]
2310  *   Perform verbose error reporting if not NULL.
2311  */
2312 static int
2313 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2314                                struct sfc_flow_spec *spec,
2315                                struct rte_flow_error *error)
2316 {
2317         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2318         struct sfc_filter *filter = &sa->filter;
2319         efx_filter_match_flags_t miss_flags;
2320         efx_filter_match_flags_t min_miss_flags = 0;
2321         efx_filter_match_flags_t match;
2322         unsigned int min_multiplier = UINT_MAX;
2323         unsigned int multiplier;
2324         unsigned int i;
2325         int rc;
2326
2327         match = spec_filter->template.efs_match_flags;
2328         for (i = 0; i < filter->supported_match_num; i++) {
2329                 if ((match & filter->supported_match[i]) == match) {
2330                         miss_flags = filter->supported_match[i] & (~match);
2331                         multiplier = sfc_flow_check_missing_flags(miss_flags,
2332                                 &spec_filter->template, filter);
2333                         if (multiplier > 0) {
2334                                 if (multiplier <= min_multiplier) {
2335                                         min_multiplier = multiplier;
2336                                         min_miss_flags = miss_flags;
2337                                 }
2338                         }
2339                 }
2340         }
2341
2342         if (min_multiplier == UINT_MAX) {
2343                 rte_flow_error_set(error, ENOTSUP,
2344                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2345                                    "The flow rule pattern is unsupported");
2346                 return -rte_errno;
2347         }
2348
2349         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2350                 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2351
2352                 if ((flag & min_miss_flags) == flag) {
2353                         rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2354                         if (rc != 0)
2355                                 return rc;
2356                 }
2357         }
2358
2359         return 0;
2360 }
2361
2362 /**
2363  * Check that set of match flags is referred to by a filter. Filter is
2364  * described by match flags with the ability to add OUTER_VID and INNER_VID
2365  * flags.
2366  *
2367  * @param match_flags[in]
2368  *   Set of match flags.
2369  * @param flags_pattern[in]
2370  *   Pattern of filter match flags.
2371  */
2372 static boolean_t
2373 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2374                             efx_filter_match_flags_t flags_pattern)
2375 {
2376         if ((match_flags & flags_pattern) != flags_pattern)
2377                 return B_FALSE;
2378
2379         switch (match_flags & ~flags_pattern) {
2380         case 0:
2381         case EFX_FILTER_MATCH_OUTER_VID:
2382         case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2383                 return B_TRUE;
2384         default:
2385                 return B_FALSE;
2386         }
2387 }
2388
2389 /**
2390  * Check whether the spec maps to a hardware filter which is known to be
2391  * ineffective despite being valid.
2392  *
2393  * @param filter[in]
2394  *   SFC filter with list of supported filters.
2395  * @param spec[in]
2396  *   SFC flow specification.
2397  */
2398 static boolean_t
2399 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2400                                   struct sfc_flow_spec *spec)
2401 {
2402         unsigned int i;
2403         uint16_t ether_type;
2404         uint8_t ip_proto;
2405         efx_filter_match_flags_t match_flags;
2406         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2407
2408         for (i = 0; i < spec_filter->count; i++) {
2409                 match_flags = spec_filter->filters[i].efs_match_flags;
2410
2411                 if (sfc_flow_is_match_with_vids(match_flags,
2412                                                 EFX_FILTER_MATCH_ETHER_TYPE) ||
2413                     sfc_flow_is_match_with_vids(match_flags,
2414                                                 EFX_FILTER_MATCH_ETHER_TYPE |
2415                                                 EFX_FILTER_MATCH_LOC_MAC)) {
2416                         ether_type = spec_filter->filters[i].efs_ether_type;
2417                         if (filter->supports_ip_proto_or_addr_filter &&
2418                             (ether_type == EFX_ETHER_TYPE_IPV4 ||
2419                              ether_type == EFX_ETHER_TYPE_IPV6))
2420                                 return B_TRUE;
2421                 } else if (sfc_flow_is_match_with_vids(match_flags,
2422                                 EFX_FILTER_MATCH_ETHER_TYPE |
2423                                 EFX_FILTER_MATCH_IP_PROTO) ||
2424                            sfc_flow_is_match_with_vids(match_flags,
2425                                 EFX_FILTER_MATCH_ETHER_TYPE |
2426                                 EFX_FILTER_MATCH_IP_PROTO |
2427                                 EFX_FILTER_MATCH_LOC_MAC)) {
2428                         ip_proto = spec_filter->filters[i].efs_ip_proto;
2429                         if (filter->supports_rem_or_local_port_filter &&
2430                             (ip_proto == EFX_IPPROTO_TCP ||
2431                              ip_proto == EFX_IPPROTO_UDP))
2432                                 return B_TRUE;
2433                 }
2434         }
2435
2436         return B_FALSE;
2437 }
2438
2439 static int
2440 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2441                               struct rte_flow *flow,
2442                               struct rte_flow_error *error)
2443 {
2444         struct sfc_flow_spec *spec = &flow->spec;
2445         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2446         efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2447         efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2448         int rc;
2449
2450         /* Initialize the first filter spec with template */
2451         spec_filter->filters[0] = *spec_tmpl;
2452         spec_filter->count = 1;
2453
2454         if (!sfc_filter_is_match_supported(sa, match_flags)) {
2455                 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2456                 if (rc != 0)
2457                         return rc;
2458         }
2459
2460         if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2461                 rte_flow_error_set(error, ENOTSUP,
2462                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2463                         "The flow rule pattern is unsupported");
2464                 return -rte_errno;
2465         }
2466
2467         return 0;
2468 }
2469
2470 static int
2471 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2472                              const struct rte_flow_item pattern[],
2473                              const struct rte_flow_action actions[],
2474                              struct rte_flow *flow,
2475                              struct rte_flow_error *error)
2476 {
2477         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2478         struct sfc_flow_spec *spec = &flow->spec;
2479         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2480         struct sfc_flow_parse_ctx ctx;
2481         int rc;
2482
2483         ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2484         ctx.filter = &spec_filter->template;
2485
2486         rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
2487                                     pattern, &ctx, error);
2488         if (rc != 0)
2489                 goto fail_bad_value;
2490
2491         rc = sfc_flow_parse_actions(sa, actions, flow, error);
2492         if (rc != 0)
2493                 goto fail_bad_value;
2494
2495         rc = sfc_flow_validate_match_flags(sa, flow, error);
2496         if (rc != 0)
2497                 goto fail_bad_value;
2498
2499         return 0;
2500
2501 fail_bad_value:
2502         return rc;
2503 }
2504
2505 static int
2506 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2507                           const struct rte_flow_item pattern[],
2508                           const struct rte_flow_action actions[],
2509                           struct rte_flow *flow,
2510                           struct rte_flow_error *error)
2511 {
2512         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2513         struct sfc_flow_spec *spec = &flow->spec;
2514         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2515         int rc;
2516
2517         rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2518         if (rc != 0)
2519                 return rc;
2520
2521         rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error);
2522         if (rc != 0)
2523                 return rc;
2524
2525         return 0;
2526 }
2527
2528 static int
2529 sfc_flow_parse(struct rte_eth_dev *dev,
2530                const struct rte_flow_attr *attr,
2531                const struct rte_flow_item pattern[],
2532                const struct rte_flow_action actions[],
2533                struct rte_flow *flow,
2534                struct rte_flow_error *error)
2535 {
2536         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2537         const struct sfc_flow_ops_by_spec *ops;
2538         int rc;
2539
2540         rc = sfc_flow_parse_attr(sa, attr, flow, error);
2541         if (rc != 0)
2542                 return rc;
2543
2544         ops = sfc_flow_get_ops_by_spec(flow);
2545         if (ops == NULL || ops->parse == NULL) {
2546                 rte_flow_error_set(error, ENOTSUP,
2547                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2548                                    "No backend to handle this flow");
2549                 return -rte_errno;
2550         }
2551
2552         return ops->parse(dev, pattern, actions, flow, error);
2553 }
2554
2555 static struct rte_flow *
2556 sfc_flow_zmalloc(struct rte_flow_error *error)
2557 {
2558         struct rte_flow *flow;
2559
2560         flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2561         if (flow == NULL) {
2562                 rte_flow_error_set(error, ENOMEM,
2563                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2564                                    "Failed to allocate memory");
2565         }
2566
2567         return flow;
2568 }
2569
2570 static void
2571 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2572 {
2573         const struct sfc_flow_ops_by_spec *ops;
2574
2575         ops = sfc_flow_get_ops_by_spec(flow);
2576         if (ops != NULL && ops->cleanup != NULL)
2577                 ops->cleanup(sa, flow);
2578
2579         rte_free(flow);
2580 }
2581
2582 static int
2583 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2584                 struct rte_flow_error *error)
2585 {
2586         const struct sfc_flow_ops_by_spec *ops;
2587         int rc;
2588
2589         ops = sfc_flow_get_ops_by_spec(flow);
2590         if (ops == NULL || ops->insert == NULL) {
2591                 rte_flow_error_set(error, ENOTSUP,
2592                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2593                                    "No backend to handle this flow");
2594                 return rte_errno;
2595         }
2596
2597         rc = ops->insert(sa, flow);
2598         if (rc != 0) {
2599                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2600                                    NULL, "Failed to insert the flow rule");
2601         }
2602
2603         return rc;
2604 }
2605
2606 static int
2607 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2608                 struct rte_flow_error *error)
2609 {
2610         const struct sfc_flow_ops_by_spec *ops;
2611         int rc;
2612
2613         ops = sfc_flow_get_ops_by_spec(flow);
2614         if (ops == NULL || ops->remove == NULL) {
2615                 rte_flow_error_set(error, ENOTSUP,
2616                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2617                                    "No backend to handle this flow");
2618                 return rte_errno;
2619         }
2620
2621         rc = ops->remove(sa, flow);
2622         if (rc != 0) {
2623                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2624                                    NULL, "Failed to remove the flow rule");
2625         }
2626
2627         return rc;
2628 }
2629
2630 static int
2631 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2632                 struct rte_flow_error *error)
2633 {
2634         const struct sfc_flow_ops_by_spec *ops;
2635         int rc = 0;
2636
2637         ops = sfc_flow_get_ops_by_spec(flow);
2638         if (ops == NULL) {
2639                 rte_flow_error_set(error, ENOTSUP,
2640                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2641                                    "No backend to handle this flow");
2642                 return -rte_errno;
2643         }
2644
2645         if (ops->verify != NULL) {
2646                 SFC_ASSERT(sfc_adapter_is_locked(sa));
2647                 rc = ops->verify(sa, flow);
2648         }
2649
2650         if (rc != 0) {
2651                 rte_flow_error_set(error, rc,
2652                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2653                         "Failed to verify flow validity with FW");
2654                 return -rte_errno;
2655         }
2656
2657         return 0;
2658 }
2659
2660 static int
2661 sfc_flow_validate(struct rte_eth_dev *dev,
2662                   const struct rte_flow_attr *attr,
2663                   const struct rte_flow_item pattern[],
2664                   const struct rte_flow_action actions[],
2665                   struct rte_flow_error *error)
2666 {
2667         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2668         struct rte_flow *flow;
2669         int rc;
2670
2671         flow = sfc_flow_zmalloc(error);
2672         if (flow == NULL)
2673                 return -rte_errno;
2674
2675         sfc_adapter_lock(sa);
2676
2677         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2678         if (rc == 0)
2679                 rc = sfc_flow_verify(sa, flow, error);
2680
2681         sfc_flow_free(sa, flow);
2682
2683         sfc_adapter_unlock(sa);
2684
2685         return rc;
2686 }
2687
2688 static struct rte_flow *
2689 sfc_flow_create(struct rte_eth_dev *dev,
2690                 const struct rte_flow_attr *attr,
2691                 const struct rte_flow_item pattern[],
2692                 const struct rte_flow_action actions[],
2693                 struct rte_flow_error *error)
2694 {
2695         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2696         struct rte_flow *flow = NULL;
2697         int rc;
2698
2699         flow = sfc_flow_zmalloc(error);
2700         if (flow == NULL)
2701                 goto fail_no_mem;
2702
2703         sfc_adapter_lock(sa);
2704
2705         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2706         if (rc != 0)
2707                 goto fail_bad_value;
2708
2709         TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2710
2711         if (sa->state == SFC_ADAPTER_STARTED) {
2712                 rc = sfc_flow_insert(sa, flow, error);
2713                 if (rc != 0)
2714                         goto fail_flow_insert;
2715         }
2716
2717         sfc_adapter_unlock(sa);
2718
2719         return flow;
2720
2721 fail_flow_insert:
2722         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2723
2724 fail_bad_value:
2725         sfc_flow_free(sa, flow);
2726         sfc_adapter_unlock(sa);
2727
2728 fail_no_mem:
2729         return NULL;
2730 }
2731
2732 static int
2733 sfc_flow_destroy(struct rte_eth_dev *dev,
2734                  struct rte_flow *flow,
2735                  struct rte_flow_error *error)
2736 {
2737         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2738         struct rte_flow *flow_ptr;
2739         int rc = EINVAL;
2740
2741         sfc_adapter_lock(sa);
2742
2743         TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2744                 if (flow_ptr == flow)
2745                         rc = 0;
2746         }
2747         if (rc != 0) {
2748                 rte_flow_error_set(error, rc,
2749                                    RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2750                                    "Failed to find flow rule to destroy");
2751                 goto fail_bad_value;
2752         }
2753
2754         if (sa->state == SFC_ADAPTER_STARTED)
2755                 rc = sfc_flow_remove(sa, flow, error);
2756
2757         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2758         sfc_flow_free(sa, flow);
2759
2760 fail_bad_value:
2761         sfc_adapter_unlock(sa);
2762
2763         return -rc;
2764 }
2765
2766 static int
2767 sfc_flow_flush(struct rte_eth_dev *dev,
2768                struct rte_flow_error *error)
2769 {
2770         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2771         struct rte_flow *flow;
2772         int ret = 0;
2773
2774         sfc_adapter_lock(sa);
2775
2776         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2777                 if (sa->state == SFC_ADAPTER_STARTED) {
2778                         int rc;
2779
2780                         rc = sfc_flow_remove(sa, flow, error);
2781                         if (rc != 0)
2782                                 ret = rc;
2783                 }
2784
2785                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2786                 sfc_flow_free(sa, flow);
2787         }
2788
2789         sfc_adapter_unlock(sa);
2790
2791         return -ret;
2792 }
2793
2794 static int
2795 sfc_flow_query(struct rte_eth_dev *dev,
2796                struct rte_flow *flow,
2797                const struct rte_flow_action *action,
2798                void *data,
2799                struct rte_flow_error *error)
2800 {
2801         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2802         const struct sfc_flow_ops_by_spec *ops;
2803         int ret;
2804
2805         sfc_adapter_lock(sa);
2806
2807         ops = sfc_flow_get_ops_by_spec(flow);
2808         if (ops == NULL || ops->query == NULL) {
2809                 ret = rte_flow_error_set(error, ENOTSUP,
2810                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2811                         "No backend to handle this flow");
2812                 goto fail_no_backend;
2813         }
2814
2815         if (sa->state != SFC_ADAPTER_STARTED) {
2816                 ret = rte_flow_error_set(error, EINVAL,
2817                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2818                         "Can't query the flow: the adapter is not started");
2819                 goto fail_not_started;
2820         }
2821
2822         ret = ops->query(dev, flow, action, data, error);
2823         if (ret != 0)
2824                 goto fail_query;
2825
2826         sfc_adapter_unlock(sa);
2827
2828         return 0;
2829
2830 fail_query:
2831 fail_not_started:
2832 fail_no_backend:
2833         sfc_adapter_unlock(sa);
2834         return ret;
2835 }
2836
2837 static int
2838 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2839                  struct rte_flow_error *error)
2840 {
2841         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2842         int ret = 0;
2843
2844         sfc_adapter_lock(sa);
2845         if (sa->state != SFC_ADAPTER_INITIALIZED) {
2846                 rte_flow_error_set(error, EBUSY,
2847                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2848                                    NULL, "please close the port first");
2849                 ret = -rte_errno;
2850         } else {
2851                 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2852         }
2853         sfc_adapter_unlock(sa);
2854
2855         return ret;
2856 }
2857
2858 const struct rte_flow_ops sfc_flow_ops = {
2859         .validate = sfc_flow_validate,
2860         .create = sfc_flow_create,
2861         .destroy = sfc_flow_destroy,
2862         .flush = sfc_flow_flush,
2863         .query = sfc_flow_query,
2864         .isolate = sfc_flow_isolate,
2865 };
2866
2867 void
2868 sfc_flow_init(struct sfc_adapter *sa)
2869 {
2870         SFC_ASSERT(sfc_adapter_is_locked(sa));
2871
2872         TAILQ_INIT(&sa->flow_list);
2873 }
2874
2875 void
2876 sfc_flow_fini(struct sfc_adapter *sa)
2877 {
2878         struct rte_flow *flow;
2879
2880         SFC_ASSERT(sfc_adapter_is_locked(sa));
2881
2882         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2883                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2884                 sfc_flow_free(sa, flow);
2885         }
2886 }
2887
2888 void
2889 sfc_flow_stop(struct sfc_adapter *sa)
2890 {
2891         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2892         struct sfc_rss *rss = &sas->rss;
2893         struct rte_flow *flow;
2894
2895         SFC_ASSERT(sfc_adapter_is_locked(sa));
2896
2897         TAILQ_FOREACH(flow, &sa->flow_list, entries)
2898                 sfc_flow_remove(sa, flow, NULL);
2899
2900         if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2901                 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2902                 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2903         }
2904
2905         /*
2906          * MAE counter service is not stopped on flow rule remove to avoid
2907          * extra work. Make sure that it is stopped here.
2908          */
2909         sfc_mae_counter_stop(sa);
2910 }
2911
2912 int
2913 sfc_flow_start(struct sfc_adapter *sa)
2914 {
2915         struct rte_flow *flow;
2916         int rc = 0;
2917
2918         sfc_log_init(sa, "entry");
2919
2920         SFC_ASSERT(sfc_adapter_is_locked(sa));
2921
2922         TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2923                 rc = sfc_flow_insert(sa, flow, NULL);
2924                 if (rc != 0)
2925                         goto fail_bad_flow;
2926         }
2927
2928         sfc_log_init(sa, "done");
2929
2930 fail_bad_flow:
2931         return rc;
2932 }