net/sfc: cut non VLAN ID bits from TCI
[dpdk.git] / drivers / net / sfc / sfc_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2017-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <rte_ethdev_driver.h>
14 #include <rte_eth_ctrl.h>
15 #include <rte_ether.h>
16 #include <rte_flow.h>
17 #include <rte_flow_driver.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27
28 /*
29  * At now flow API is implemented in such a manner that each
30  * flow rule is converted to one or more hardware filters.
31  * All elements of flow rule (attributes, pattern items, actions)
32  * correspond to one or more fields in the efx_filter_spec_s structure
33  * that is responsible for the hardware filter.
34  * If some required field is unset in the flow rule, then a handful
35  * of filter copies will be created to cover all possible values
36  * of such a field.
37  */
38
39 enum sfc_flow_item_layers {
40         SFC_FLOW_ITEM_ANY_LAYER,
41         SFC_FLOW_ITEM_START_LAYER,
42         SFC_FLOW_ITEM_L2,
43         SFC_FLOW_ITEM_L3,
44         SFC_FLOW_ITEM_L4,
45 };
46
47 typedef int (sfc_flow_item_parse)(const struct rte_flow_item *item,
48                                   efx_filter_spec_t *spec,
49                                   struct rte_flow_error *error);
50
51 struct sfc_flow_item {
52         enum rte_flow_item_type type;           /* Type of item */
53         enum sfc_flow_item_layers layer;        /* Layer of item */
54         enum sfc_flow_item_layers prev_layer;   /* Previous layer of item */
55         sfc_flow_item_parse *parse;             /* Parsing function */
56 };
57
58 static sfc_flow_item_parse sfc_flow_parse_void;
59 static sfc_flow_item_parse sfc_flow_parse_eth;
60 static sfc_flow_item_parse sfc_flow_parse_vlan;
61 static sfc_flow_item_parse sfc_flow_parse_ipv4;
62 static sfc_flow_item_parse sfc_flow_parse_ipv6;
63 static sfc_flow_item_parse sfc_flow_parse_tcp;
64 static sfc_flow_item_parse sfc_flow_parse_udp;
65 static sfc_flow_item_parse sfc_flow_parse_vxlan;
66 static sfc_flow_item_parse sfc_flow_parse_geneve;
67 static sfc_flow_item_parse sfc_flow_parse_nvgre;
68
69 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
70                                      unsigned int filters_count_for_one_val,
71                                      struct rte_flow_error *error);
72
73 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
74                                         efx_filter_spec_t *spec,
75                                         struct sfc_filter *filter);
76
77 struct sfc_flow_copy_flag {
78         /* EFX filter specification match flag */
79         efx_filter_match_flags_t flag;
80         /* Number of values of corresponding field */
81         unsigned int vals_count;
82         /* Function to set values in specifications */
83         sfc_flow_spec_set_vals *set_vals;
84         /*
85          * Function to check that the specification is suitable
86          * for adding this match flag
87          */
88         sfc_flow_spec_check *spec_check;
89 };
90
91 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
92 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
93 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
94 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
95 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
96
97 static boolean_t
98 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
99 {
100         uint8_t sum = 0;
101         unsigned int i;
102
103         for (i = 0; i < size; i++)
104                 sum |= buf[i];
105
106         return (sum == 0) ? B_TRUE : B_FALSE;
107 }
108
109 /*
110  * Validate item and prepare structures spec and mask for parsing
111  */
112 static int
113 sfc_flow_parse_init(const struct rte_flow_item *item,
114                     const void **spec_ptr,
115                     const void **mask_ptr,
116                     const void *supp_mask,
117                     const void *def_mask,
118                     unsigned int size,
119                     struct rte_flow_error *error)
120 {
121         const uint8_t *spec;
122         const uint8_t *mask;
123         const uint8_t *last;
124         uint8_t supp;
125         unsigned int i;
126
127         if (item == NULL) {
128                 rte_flow_error_set(error, EINVAL,
129                                    RTE_FLOW_ERROR_TYPE_ITEM, NULL,
130                                    "NULL item");
131                 return -rte_errno;
132         }
133
134         if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
135                 rte_flow_error_set(error, EINVAL,
136                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
137                                    "Mask or last is set without spec");
138                 return -rte_errno;
139         }
140
141         /*
142          * If "mask" is not set, default mask is used,
143          * but if default mask is NULL, "mask" should be set
144          */
145         if (item->mask == NULL) {
146                 if (def_mask == NULL) {
147                         rte_flow_error_set(error, EINVAL,
148                                 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
149                                 "Mask should be specified");
150                         return -rte_errno;
151                 }
152
153                 mask = def_mask;
154         } else {
155                 mask = item->mask;
156         }
157
158         spec = item->spec;
159         last = item->last;
160
161         if (spec == NULL)
162                 goto exit;
163
164         /*
165          * If field values in "last" are either 0 or equal to the corresponding
166          * values in "spec" then they are ignored
167          */
168         if (last != NULL &&
169             !sfc_flow_is_zero(last, size) &&
170             memcmp(last, spec, size) != 0) {
171                 rte_flow_error_set(error, ENOTSUP,
172                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
173                                    "Ranging is not supported");
174                 return -rte_errno;
175         }
176
177         if (supp_mask == NULL) {
178                 rte_flow_error_set(error, EINVAL,
179                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
180                         "Supported mask for item should be specified");
181                 return -rte_errno;
182         }
183
184         /* Check that mask does not ask for more match than supp_mask */
185         for (i = 0; i < size; i++) {
186                 supp = ((const uint8_t *)supp_mask)[i];
187
188                 if (~supp & mask[i]) {
189                         rte_flow_error_set(error, ENOTSUP,
190                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
191                                            "Item's field is not supported");
192                         return -rte_errno;
193                 }
194         }
195
196 exit:
197         *spec_ptr = spec;
198         *mask_ptr = mask;
199         return 0;
200 }
201
202 /*
203  * Protocol parsers.
204  * Masking is not supported, so masks in items should be either
205  * full or empty (zeroed) and set only for supported fields which
206  * are specified in the supp_mask.
207  */
208
209 static int
210 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
211                     __rte_unused efx_filter_spec_t *efx_spec,
212                     __rte_unused struct rte_flow_error *error)
213 {
214         return 0;
215 }
216
217 /**
218  * Convert Ethernet item to EFX filter specification.
219  *
220  * @param item[in]
221  *   Item specification. Outer frame specification may only comprise
222  *   source/destination addresses and Ethertype field.
223  *   Inner frame specification may contain destination address only.
224  *   There is support for individual/group mask as well as for empty and full.
225  *   If the mask is NULL, default mask will be used. Ranging is not supported.
226  * @param efx_spec[in, out]
227  *   EFX filter specification to update.
228  * @param[out] error
229  *   Perform verbose error reporting if not NULL.
230  */
231 static int
232 sfc_flow_parse_eth(const struct rte_flow_item *item,
233                    efx_filter_spec_t *efx_spec,
234                    struct rte_flow_error *error)
235 {
236         int rc;
237         const struct rte_flow_item_eth *spec = NULL;
238         const struct rte_flow_item_eth *mask = NULL;
239         const struct rte_flow_item_eth supp_mask = {
240                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
241                 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
242                 .type = 0xffff,
243         };
244         const struct rte_flow_item_eth ifrm_supp_mask = {
245                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
246         };
247         const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
248                 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
249         };
250         const struct rte_flow_item_eth *supp_mask_p;
251         const struct rte_flow_item_eth *def_mask_p;
252         uint8_t *loc_mac = NULL;
253         boolean_t is_ifrm = (efx_spec->efs_encap_type !=
254                 EFX_TUNNEL_PROTOCOL_NONE);
255
256         if (is_ifrm) {
257                 supp_mask_p = &ifrm_supp_mask;
258                 def_mask_p = &ifrm_supp_mask;
259                 loc_mac = efx_spec->efs_ifrm_loc_mac;
260         } else {
261                 supp_mask_p = &supp_mask;
262                 def_mask_p = &rte_flow_item_eth_mask;
263                 loc_mac = efx_spec->efs_loc_mac;
264         }
265
266         rc = sfc_flow_parse_init(item,
267                                  (const void **)&spec,
268                                  (const void **)&mask,
269                                  supp_mask_p, def_mask_p,
270                                  sizeof(struct rte_flow_item_eth),
271                                  error);
272         if (rc != 0)
273                 return rc;
274
275         /* If "spec" is not set, could be any Ethernet */
276         if (spec == NULL)
277                 return 0;
278
279         if (is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
280                 efx_spec->efs_match_flags |= is_ifrm ?
281                         EFX_FILTER_MATCH_IFRM_LOC_MAC :
282                         EFX_FILTER_MATCH_LOC_MAC;
283                 rte_memcpy(loc_mac, spec->dst.addr_bytes,
284                            EFX_MAC_ADDR_LEN);
285         } else if (memcmp(mask->dst.addr_bytes, ig_mask,
286                           EFX_MAC_ADDR_LEN) == 0) {
287                 if (is_unicast_ether_addr(&spec->dst))
288                         efx_spec->efs_match_flags |= is_ifrm ?
289                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
290                                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
291                 else
292                         efx_spec->efs_match_flags |= is_ifrm ?
293                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
294                                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
295         } else if (!is_zero_ether_addr(&mask->dst)) {
296                 goto fail_bad_mask;
297         }
298
299         /*
300          * ifrm_supp_mask ensures that the source address and
301          * ethertype masks are equal to zero in inner frame,
302          * so these fields are filled in only for the outer frame
303          */
304         if (is_same_ether_addr(&mask->src, &supp_mask.src)) {
305                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
306                 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
307                            EFX_MAC_ADDR_LEN);
308         } else if (!is_zero_ether_addr(&mask->src)) {
309                 goto fail_bad_mask;
310         }
311
312         /*
313          * Ether type is in big-endian byte order in item and
314          * in little-endian in efx_spec, so byte swap is used
315          */
316         if (mask->type == supp_mask.type) {
317                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
318                 efx_spec->efs_ether_type = rte_bswap16(spec->type);
319         } else if (mask->type != 0) {
320                 goto fail_bad_mask;
321         }
322
323         return 0;
324
325 fail_bad_mask:
326         rte_flow_error_set(error, EINVAL,
327                            RTE_FLOW_ERROR_TYPE_ITEM, item,
328                            "Bad mask in the ETH pattern item");
329         return -rte_errno;
330 }
331
332 /**
333  * Convert VLAN item to EFX filter specification.
334  *
335  * @param item[in]
336  *   Item specification. Only VID field is supported.
337  *   The mask can not be NULL. Ranging is not supported.
338  * @param efx_spec[in, out]
339  *   EFX filter specification to update.
340  * @param[out] error
341  *   Perform verbose error reporting if not NULL.
342  */
343 static int
344 sfc_flow_parse_vlan(const struct rte_flow_item *item,
345                     efx_filter_spec_t *efx_spec,
346                     struct rte_flow_error *error)
347 {
348         int rc;
349         uint16_t vid;
350         const struct rte_flow_item_vlan *spec = NULL;
351         const struct rte_flow_item_vlan *mask = NULL;
352         const struct rte_flow_item_vlan supp_mask = {
353                 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
354                 .inner_type = RTE_BE16(0xffff),
355         };
356
357         rc = sfc_flow_parse_init(item,
358                                  (const void **)&spec,
359                                  (const void **)&mask,
360                                  &supp_mask,
361                                  NULL,
362                                  sizeof(struct rte_flow_item_vlan),
363                                  error);
364         if (rc != 0)
365                 return rc;
366
367         /*
368          * VID is in big-endian byte order in item and
369          * in little-endian in efx_spec, so byte swap is used.
370          * If two VLAN items are included, the first matches
371          * the outer tag and the next matches the inner tag.
372          */
373         if (mask->tci == supp_mask.tci) {
374                 /* Apply mask to keep VID only */
375                 vid = rte_bswap16(spec->tci & mask->tci);
376
377                 if (!(efx_spec->efs_match_flags &
378                       EFX_FILTER_MATCH_OUTER_VID)) {
379                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
380                         efx_spec->efs_outer_vid = vid;
381                 } else if (!(efx_spec->efs_match_flags &
382                              EFX_FILTER_MATCH_INNER_VID)) {
383                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
384                         efx_spec->efs_inner_vid = vid;
385                 } else {
386                         rte_flow_error_set(error, EINVAL,
387                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
388                                            "More than two VLAN items");
389                         return -rte_errno;
390                 }
391         } else {
392                 rte_flow_error_set(error, EINVAL,
393                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
394                                    "VLAN ID in TCI match is required");
395                 return -rte_errno;
396         }
397
398         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
399                 rte_flow_error_set(error, EINVAL,
400                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
401                                    "VLAN TPID matching is not supported");
402                 return -rte_errno;
403         }
404         if (mask->inner_type == supp_mask.inner_type) {
405                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
406                 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
407         } else if (mask->inner_type) {
408                 rte_flow_error_set(error, EINVAL,
409                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
410                                    "Bad mask for VLAN inner_type");
411                 return -rte_errno;
412         }
413
414         return 0;
415 }
416
417 /**
418  * Convert IPv4 item to EFX filter specification.
419  *
420  * @param item[in]
421  *   Item specification. Only source and destination addresses and
422  *   protocol fields are supported. If the mask is NULL, default
423  *   mask will be used. Ranging is not supported.
424  * @param efx_spec[in, out]
425  *   EFX filter specification to update.
426  * @param[out] error
427  *   Perform verbose error reporting if not NULL.
428  */
429 static int
430 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
431                     efx_filter_spec_t *efx_spec,
432                     struct rte_flow_error *error)
433 {
434         int rc;
435         const struct rte_flow_item_ipv4 *spec = NULL;
436         const struct rte_flow_item_ipv4 *mask = NULL;
437         const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
438         const struct rte_flow_item_ipv4 supp_mask = {
439                 .hdr = {
440                         .src_addr = 0xffffffff,
441                         .dst_addr = 0xffffffff,
442                         .next_proto_id = 0xff,
443                 }
444         };
445
446         rc = sfc_flow_parse_init(item,
447                                  (const void **)&spec,
448                                  (const void **)&mask,
449                                  &supp_mask,
450                                  &rte_flow_item_ipv4_mask,
451                                  sizeof(struct rte_flow_item_ipv4),
452                                  error);
453         if (rc != 0)
454                 return rc;
455
456         /*
457          * Filtering by IPv4 source and destination addresses requires
458          * the appropriate ETHER_TYPE in hardware filters
459          */
460         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
461                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
462                 efx_spec->efs_ether_type = ether_type_ipv4;
463         } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
464                 rte_flow_error_set(error, EINVAL,
465                         RTE_FLOW_ERROR_TYPE_ITEM, item,
466                         "Ethertype in pattern with IPV4 item should be appropriate");
467                 return -rte_errno;
468         }
469
470         if (spec == NULL)
471                 return 0;
472
473         /*
474          * IPv4 addresses are in big-endian byte order in item and in
475          * efx_spec
476          */
477         if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
478                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
479                 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
480         } else if (mask->hdr.src_addr != 0) {
481                 goto fail_bad_mask;
482         }
483
484         if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
485                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
486                 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
487         } else if (mask->hdr.dst_addr != 0) {
488                 goto fail_bad_mask;
489         }
490
491         if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
492                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
493                 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
494         } else if (mask->hdr.next_proto_id != 0) {
495                 goto fail_bad_mask;
496         }
497
498         return 0;
499
500 fail_bad_mask:
501         rte_flow_error_set(error, EINVAL,
502                            RTE_FLOW_ERROR_TYPE_ITEM, item,
503                            "Bad mask in the IPV4 pattern item");
504         return -rte_errno;
505 }
506
507 /**
508  * Convert IPv6 item to EFX filter specification.
509  *
510  * @param item[in]
511  *   Item specification. Only source and destination addresses and
512  *   next header fields are supported. If the mask is NULL, default
513  *   mask will be used. Ranging is not supported.
514  * @param efx_spec[in, out]
515  *   EFX filter specification to update.
516  * @param[out] error
517  *   Perform verbose error reporting if not NULL.
518  */
519 static int
520 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
521                     efx_filter_spec_t *efx_spec,
522                     struct rte_flow_error *error)
523 {
524         int rc;
525         const struct rte_flow_item_ipv6 *spec = NULL;
526         const struct rte_flow_item_ipv6 *mask = NULL;
527         const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
528         const struct rte_flow_item_ipv6 supp_mask = {
529                 .hdr = {
530                         .src_addr = { 0xff, 0xff, 0xff, 0xff,
531                                       0xff, 0xff, 0xff, 0xff,
532                                       0xff, 0xff, 0xff, 0xff,
533                                       0xff, 0xff, 0xff, 0xff },
534                         .dst_addr = { 0xff, 0xff, 0xff, 0xff,
535                                       0xff, 0xff, 0xff, 0xff,
536                                       0xff, 0xff, 0xff, 0xff,
537                                       0xff, 0xff, 0xff, 0xff },
538                         .proto = 0xff,
539                 }
540         };
541
542         rc = sfc_flow_parse_init(item,
543                                  (const void **)&spec,
544                                  (const void **)&mask,
545                                  &supp_mask,
546                                  &rte_flow_item_ipv6_mask,
547                                  sizeof(struct rte_flow_item_ipv6),
548                                  error);
549         if (rc != 0)
550                 return rc;
551
552         /*
553          * Filtering by IPv6 source and destination addresses requires
554          * the appropriate ETHER_TYPE in hardware filters
555          */
556         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
557                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
558                 efx_spec->efs_ether_type = ether_type_ipv6;
559         } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
560                 rte_flow_error_set(error, EINVAL,
561                         RTE_FLOW_ERROR_TYPE_ITEM, item,
562                         "Ethertype in pattern with IPV6 item should be appropriate");
563                 return -rte_errno;
564         }
565
566         if (spec == NULL)
567                 return 0;
568
569         /*
570          * IPv6 addresses are in big-endian byte order in item and in
571          * efx_spec
572          */
573         if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
574                    sizeof(mask->hdr.src_addr)) == 0) {
575                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
576
577                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
578                                  sizeof(spec->hdr.src_addr));
579                 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
580                            sizeof(efx_spec->efs_rem_host));
581         } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
582                                      sizeof(mask->hdr.src_addr))) {
583                 goto fail_bad_mask;
584         }
585
586         if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
587                    sizeof(mask->hdr.dst_addr)) == 0) {
588                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
589
590                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
591                                  sizeof(spec->hdr.dst_addr));
592                 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
593                            sizeof(efx_spec->efs_loc_host));
594         } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
595                                      sizeof(mask->hdr.dst_addr))) {
596                 goto fail_bad_mask;
597         }
598
599         if (mask->hdr.proto == supp_mask.hdr.proto) {
600                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
601                 efx_spec->efs_ip_proto = spec->hdr.proto;
602         } else if (mask->hdr.proto != 0) {
603                 goto fail_bad_mask;
604         }
605
606         return 0;
607
608 fail_bad_mask:
609         rte_flow_error_set(error, EINVAL,
610                            RTE_FLOW_ERROR_TYPE_ITEM, item,
611                            "Bad mask in the IPV6 pattern item");
612         return -rte_errno;
613 }
614
615 /**
616  * Convert TCP item to EFX filter specification.
617  *
618  * @param item[in]
619  *   Item specification. Only source and destination ports fields
620  *   are supported. If the mask is NULL, default mask will be used.
621  *   Ranging is not supported.
622  * @param efx_spec[in, out]
623  *   EFX filter specification to update.
624  * @param[out] error
625  *   Perform verbose error reporting if not NULL.
626  */
627 static int
628 sfc_flow_parse_tcp(const struct rte_flow_item *item,
629                    efx_filter_spec_t *efx_spec,
630                    struct rte_flow_error *error)
631 {
632         int rc;
633         const struct rte_flow_item_tcp *spec = NULL;
634         const struct rte_flow_item_tcp *mask = NULL;
635         const struct rte_flow_item_tcp supp_mask = {
636                 .hdr = {
637                         .src_port = 0xffff,
638                         .dst_port = 0xffff,
639                 }
640         };
641
642         rc = sfc_flow_parse_init(item,
643                                  (const void **)&spec,
644                                  (const void **)&mask,
645                                  &supp_mask,
646                                  &rte_flow_item_tcp_mask,
647                                  sizeof(struct rte_flow_item_tcp),
648                                  error);
649         if (rc != 0)
650                 return rc;
651
652         /*
653          * Filtering by TCP source and destination ports requires
654          * the appropriate IP_PROTO in hardware filters
655          */
656         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
657                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
658                 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
659         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
660                 rte_flow_error_set(error, EINVAL,
661                         RTE_FLOW_ERROR_TYPE_ITEM, item,
662                         "IP proto in pattern with TCP item should be appropriate");
663                 return -rte_errno;
664         }
665
666         if (spec == NULL)
667                 return 0;
668
669         /*
670          * Source and destination ports are in big-endian byte order in item and
671          * in little-endian in efx_spec, so byte swap is used
672          */
673         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
674                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
675                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
676         } else if (mask->hdr.src_port != 0) {
677                 goto fail_bad_mask;
678         }
679
680         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
681                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
682                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
683         } else if (mask->hdr.dst_port != 0) {
684                 goto fail_bad_mask;
685         }
686
687         return 0;
688
689 fail_bad_mask:
690         rte_flow_error_set(error, EINVAL,
691                            RTE_FLOW_ERROR_TYPE_ITEM, item,
692                            "Bad mask in the TCP pattern item");
693         return -rte_errno;
694 }
695
696 /**
697  * Convert UDP item to EFX filter specification.
698  *
699  * @param item[in]
700  *   Item specification. Only source and destination ports fields
701  *   are supported. If the mask is NULL, default mask will be used.
702  *   Ranging is not supported.
703  * @param efx_spec[in, out]
704  *   EFX filter specification to update.
705  * @param[out] error
706  *   Perform verbose error reporting if not NULL.
707  */
708 static int
709 sfc_flow_parse_udp(const struct rte_flow_item *item,
710                    efx_filter_spec_t *efx_spec,
711                    struct rte_flow_error *error)
712 {
713         int rc;
714         const struct rte_flow_item_udp *spec = NULL;
715         const struct rte_flow_item_udp *mask = NULL;
716         const struct rte_flow_item_udp supp_mask = {
717                 .hdr = {
718                         .src_port = 0xffff,
719                         .dst_port = 0xffff,
720                 }
721         };
722
723         rc = sfc_flow_parse_init(item,
724                                  (const void **)&spec,
725                                  (const void **)&mask,
726                                  &supp_mask,
727                                  &rte_flow_item_udp_mask,
728                                  sizeof(struct rte_flow_item_udp),
729                                  error);
730         if (rc != 0)
731                 return rc;
732
733         /*
734          * Filtering by UDP source and destination ports requires
735          * the appropriate IP_PROTO in hardware filters
736          */
737         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
738                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
739                 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
740         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
741                 rte_flow_error_set(error, EINVAL,
742                         RTE_FLOW_ERROR_TYPE_ITEM, item,
743                         "IP proto in pattern with UDP item should be appropriate");
744                 return -rte_errno;
745         }
746
747         if (spec == NULL)
748                 return 0;
749
750         /*
751          * Source and destination ports are in big-endian byte order in item and
752          * in little-endian in efx_spec, so byte swap is used
753          */
754         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
755                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
756                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
757         } else if (mask->hdr.src_port != 0) {
758                 goto fail_bad_mask;
759         }
760
761         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
762                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
763                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
764         } else if (mask->hdr.dst_port != 0) {
765                 goto fail_bad_mask;
766         }
767
768         return 0;
769
770 fail_bad_mask:
771         rte_flow_error_set(error, EINVAL,
772                            RTE_FLOW_ERROR_TYPE_ITEM, item,
773                            "Bad mask in the UDP pattern item");
774         return -rte_errno;
775 }
776
777 /*
778  * Filters for encapsulated packets match based on the EtherType and IP
779  * protocol in the outer frame.
780  */
781 static int
782 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
783                                         efx_filter_spec_t *efx_spec,
784                                         uint8_t ip_proto,
785                                         struct rte_flow_error *error)
786 {
787         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
788                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
789                 efx_spec->efs_ip_proto = ip_proto;
790         } else if (efx_spec->efs_ip_proto != ip_proto) {
791                 switch (ip_proto) {
792                 case EFX_IPPROTO_UDP:
793                         rte_flow_error_set(error, EINVAL,
794                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
795                                 "Outer IP header protocol must be UDP "
796                                 "in VxLAN/GENEVE pattern");
797                         return -rte_errno;
798
799                 case EFX_IPPROTO_GRE:
800                         rte_flow_error_set(error, EINVAL,
801                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
802                                 "Outer IP header protocol must be GRE "
803                                 "in NVGRE pattern");
804                         return -rte_errno;
805
806                 default:
807                         rte_flow_error_set(error, EINVAL,
808                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
809                                 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
810                                 "are supported");
811                         return -rte_errno;
812                 }
813         }
814
815         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
816             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
817             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
818                 rte_flow_error_set(error, EINVAL,
819                         RTE_FLOW_ERROR_TYPE_ITEM, item,
820                         "Outer frame EtherType in pattern with tunneling "
821                         "must be IPv4 or IPv6");
822                 return -rte_errno;
823         }
824
825         return 0;
826 }
827
828 static int
829 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
830                                   const uint8_t *vni_or_vsid_val,
831                                   const uint8_t *vni_or_vsid_mask,
832                                   const struct rte_flow_item *item,
833                                   struct rte_flow_error *error)
834 {
835         const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
836                 0xff, 0xff, 0xff
837         };
838
839         if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
840                    EFX_VNI_OR_VSID_LEN) == 0) {
841                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
842                 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
843                            EFX_VNI_OR_VSID_LEN);
844         } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
845                 rte_flow_error_set(error, EINVAL,
846                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
847                                    "Unsupported VNI/VSID mask");
848                 return -rte_errno;
849         }
850
851         return 0;
852 }
853
854 /**
855  * Convert VXLAN item to EFX filter specification.
856  *
857  * @param item[in]
858  *   Item specification. Only VXLAN network identifier field is supported.
859  *   If the mask is NULL, default mask will be used.
860  *   Ranging is not supported.
861  * @param efx_spec[in, out]
862  *   EFX filter specification to update.
863  * @param[out] error
864  *   Perform verbose error reporting if not NULL.
865  */
866 static int
867 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
868                      efx_filter_spec_t *efx_spec,
869                      struct rte_flow_error *error)
870 {
871         int rc;
872         const struct rte_flow_item_vxlan *spec = NULL;
873         const struct rte_flow_item_vxlan *mask = NULL;
874         const struct rte_flow_item_vxlan supp_mask = {
875                 .vni = { 0xff, 0xff, 0xff }
876         };
877
878         rc = sfc_flow_parse_init(item,
879                                  (const void **)&spec,
880                                  (const void **)&mask,
881                                  &supp_mask,
882                                  &rte_flow_item_vxlan_mask,
883                                  sizeof(struct rte_flow_item_vxlan),
884                                  error);
885         if (rc != 0)
886                 return rc;
887
888         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
889                                                      EFX_IPPROTO_UDP, error);
890         if (rc != 0)
891                 return rc;
892
893         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
894         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
895
896         if (spec == NULL)
897                 return 0;
898
899         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
900                                                mask->vni, item, error);
901
902         return rc;
903 }
904
905 /**
906  * Convert GENEVE item to EFX filter specification.
907  *
908  * @param item[in]
909  *   Item specification. Only Virtual Network Identifier and protocol type
910  *   fields are supported. But protocol type can be only Ethernet (0x6558).
911  *   If the mask is NULL, default mask will be used.
912  *   Ranging is not supported.
913  * @param efx_spec[in, out]
914  *   EFX filter specification to update.
915  * @param[out] error
916  *   Perform verbose error reporting if not NULL.
917  */
918 static int
919 sfc_flow_parse_geneve(const struct rte_flow_item *item,
920                       efx_filter_spec_t *efx_spec,
921                       struct rte_flow_error *error)
922 {
923         int rc;
924         const struct rte_flow_item_geneve *spec = NULL;
925         const struct rte_flow_item_geneve *mask = NULL;
926         const struct rte_flow_item_geneve supp_mask = {
927                 .protocol = RTE_BE16(0xffff),
928                 .vni = { 0xff, 0xff, 0xff }
929         };
930
931         rc = sfc_flow_parse_init(item,
932                                  (const void **)&spec,
933                                  (const void **)&mask,
934                                  &supp_mask,
935                                  &rte_flow_item_geneve_mask,
936                                  sizeof(struct rte_flow_item_geneve),
937                                  error);
938         if (rc != 0)
939                 return rc;
940
941         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
942                                                      EFX_IPPROTO_UDP, error);
943         if (rc != 0)
944                 return rc;
945
946         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
947         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
948
949         if (spec == NULL)
950                 return 0;
951
952         if (mask->protocol == supp_mask.protocol) {
953                 if (spec->protocol != rte_cpu_to_be_16(ETHER_TYPE_TEB)) {
954                         rte_flow_error_set(error, EINVAL,
955                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
956                                 "GENEVE encap. protocol must be Ethernet "
957                                 "(0x6558) in the GENEVE pattern item");
958                         return -rte_errno;
959                 }
960         } else if (mask->protocol != 0) {
961                 rte_flow_error_set(error, EINVAL,
962                         RTE_FLOW_ERROR_TYPE_ITEM, item,
963                         "Unsupported mask for GENEVE encap. protocol");
964                 return -rte_errno;
965         }
966
967         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
968                                                mask->vni, item, error);
969
970         return rc;
971 }
972
973 /**
974  * Convert NVGRE item to EFX filter specification.
975  *
976  * @param item[in]
977  *   Item specification. Only virtual subnet ID field is supported.
978  *   If the mask is NULL, default mask will be used.
979  *   Ranging is not supported.
980  * @param efx_spec[in, out]
981  *   EFX filter specification to update.
982  * @param[out] error
983  *   Perform verbose error reporting if not NULL.
984  */
985 static int
986 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
987                      efx_filter_spec_t *efx_spec,
988                      struct rte_flow_error *error)
989 {
990         int rc;
991         const struct rte_flow_item_nvgre *spec = NULL;
992         const struct rte_flow_item_nvgre *mask = NULL;
993         const struct rte_flow_item_nvgre supp_mask = {
994                 .tni = { 0xff, 0xff, 0xff }
995         };
996
997         rc = sfc_flow_parse_init(item,
998                                  (const void **)&spec,
999                                  (const void **)&mask,
1000                                  &supp_mask,
1001                                  &rte_flow_item_nvgre_mask,
1002                                  sizeof(struct rte_flow_item_nvgre),
1003                                  error);
1004         if (rc != 0)
1005                 return rc;
1006
1007         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1008                                                      EFX_IPPROTO_GRE, error);
1009         if (rc != 0)
1010                 return rc;
1011
1012         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1013         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1014
1015         if (spec == NULL)
1016                 return 0;
1017
1018         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1019                                                mask->tni, item, error);
1020
1021         return rc;
1022 }
1023
1024 static const struct sfc_flow_item sfc_flow_items[] = {
1025         {
1026                 .type = RTE_FLOW_ITEM_TYPE_VOID,
1027                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1028                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1029                 .parse = sfc_flow_parse_void,
1030         },
1031         {
1032                 .type = RTE_FLOW_ITEM_TYPE_ETH,
1033                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1034                 .layer = SFC_FLOW_ITEM_L2,
1035                 .parse = sfc_flow_parse_eth,
1036         },
1037         {
1038                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1039                 .prev_layer = SFC_FLOW_ITEM_L2,
1040                 .layer = SFC_FLOW_ITEM_L2,
1041                 .parse = sfc_flow_parse_vlan,
1042         },
1043         {
1044                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1045                 .prev_layer = SFC_FLOW_ITEM_L2,
1046                 .layer = SFC_FLOW_ITEM_L3,
1047                 .parse = sfc_flow_parse_ipv4,
1048         },
1049         {
1050                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1051                 .prev_layer = SFC_FLOW_ITEM_L2,
1052                 .layer = SFC_FLOW_ITEM_L3,
1053                 .parse = sfc_flow_parse_ipv6,
1054         },
1055         {
1056                 .type = RTE_FLOW_ITEM_TYPE_TCP,
1057                 .prev_layer = SFC_FLOW_ITEM_L3,
1058                 .layer = SFC_FLOW_ITEM_L4,
1059                 .parse = sfc_flow_parse_tcp,
1060         },
1061         {
1062                 .type = RTE_FLOW_ITEM_TYPE_UDP,
1063                 .prev_layer = SFC_FLOW_ITEM_L3,
1064                 .layer = SFC_FLOW_ITEM_L4,
1065                 .parse = sfc_flow_parse_udp,
1066         },
1067         {
1068                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1069                 .prev_layer = SFC_FLOW_ITEM_L4,
1070                 .layer = SFC_FLOW_ITEM_START_LAYER,
1071                 .parse = sfc_flow_parse_vxlan,
1072         },
1073         {
1074                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1075                 .prev_layer = SFC_FLOW_ITEM_L4,
1076                 .layer = SFC_FLOW_ITEM_START_LAYER,
1077                 .parse = sfc_flow_parse_geneve,
1078         },
1079         {
1080                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1081                 .prev_layer = SFC_FLOW_ITEM_L3,
1082                 .layer = SFC_FLOW_ITEM_START_LAYER,
1083                 .parse = sfc_flow_parse_nvgre,
1084         },
1085 };
1086
1087 /*
1088  * Protocol-independent flow API support
1089  */
1090 static int
1091 sfc_flow_parse_attr(const struct rte_flow_attr *attr,
1092                     struct rte_flow *flow,
1093                     struct rte_flow_error *error)
1094 {
1095         if (attr == NULL) {
1096                 rte_flow_error_set(error, EINVAL,
1097                                    RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1098                                    "NULL attribute");
1099                 return -rte_errno;
1100         }
1101         if (attr->group != 0) {
1102                 rte_flow_error_set(error, ENOTSUP,
1103                                    RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1104                                    "Groups are not supported");
1105                 return -rte_errno;
1106         }
1107         if (attr->priority != 0) {
1108                 rte_flow_error_set(error, ENOTSUP,
1109                                    RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr,
1110                                    "Priorities are not supported");
1111                 return -rte_errno;
1112         }
1113         if (attr->egress != 0) {
1114                 rte_flow_error_set(error, ENOTSUP,
1115                                    RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1116                                    "Egress is not supported");
1117                 return -rte_errno;
1118         }
1119         if (attr->transfer != 0) {
1120                 rte_flow_error_set(error, ENOTSUP,
1121                                    RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr,
1122                                    "Transfer is not supported");
1123                 return -rte_errno;
1124         }
1125         if (attr->ingress == 0) {
1126                 rte_flow_error_set(error, ENOTSUP,
1127                                    RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1128                                    "Only ingress is supported");
1129                 return -rte_errno;
1130         }
1131
1132         flow->spec.template.efs_flags |= EFX_FILTER_FLAG_RX;
1133         flow->spec.template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1134
1135         return 0;
1136 }
1137
1138 /* Get item from array sfc_flow_items */
1139 static const struct sfc_flow_item *
1140 sfc_flow_get_item(enum rte_flow_item_type type)
1141 {
1142         unsigned int i;
1143
1144         for (i = 0; i < RTE_DIM(sfc_flow_items); i++)
1145                 if (sfc_flow_items[i].type == type)
1146                         return &sfc_flow_items[i];
1147
1148         return NULL;
1149 }
1150
1151 static int
1152 sfc_flow_parse_pattern(const struct rte_flow_item pattern[],
1153                        struct rte_flow *flow,
1154                        struct rte_flow_error *error)
1155 {
1156         int rc;
1157         unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1158         boolean_t is_ifrm = B_FALSE;
1159         const struct sfc_flow_item *item;
1160
1161         if (pattern == NULL) {
1162                 rte_flow_error_set(error, EINVAL,
1163                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1164                                    "NULL pattern");
1165                 return -rte_errno;
1166         }
1167
1168         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1169                 item = sfc_flow_get_item(pattern->type);
1170                 if (item == NULL) {
1171                         rte_flow_error_set(error, ENOTSUP,
1172                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1173                                            "Unsupported pattern item");
1174                         return -rte_errno;
1175                 }
1176
1177                 /*
1178                  * Omitting one or several protocol layers at the beginning
1179                  * of pattern is supported
1180                  */
1181                 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1182                     prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1183                     item->prev_layer != prev_layer) {
1184                         rte_flow_error_set(error, ENOTSUP,
1185                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1186                                            "Unexpected sequence of pattern items");
1187                         return -rte_errno;
1188                 }
1189
1190                 /*
1191                  * Allow only VOID and ETH pattern items in the inner frame.
1192                  * Also check that there is only one tunneling protocol.
1193                  */
1194                 switch (item->type) {
1195                 case RTE_FLOW_ITEM_TYPE_VOID:
1196                 case RTE_FLOW_ITEM_TYPE_ETH:
1197                         break;
1198
1199                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1200                 case RTE_FLOW_ITEM_TYPE_GENEVE:
1201                 case RTE_FLOW_ITEM_TYPE_NVGRE:
1202                         if (is_ifrm) {
1203                                 rte_flow_error_set(error, EINVAL,
1204                                         RTE_FLOW_ERROR_TYPE_ITEM,
1205                                         pattern,
1206                                         "More than one tunneling protocol");
1207                                 return -rte_errno;
1208                         }
1209                         is_ifrm = B_TRUE;
1210                         break;
1211
1212                 default:
1213                         if (is_ifrm) {
1214                                 rte_flow_error_set(error, EINVAL,
1215                                         RTE_FLOW_ERROR_TYPE_ITEM,
1216                                         pattern,
1217                                         "There is an unsupported pattern item "
1218                                         "in the inner frame");
1219                                 return -rte_errno;
1220                         }
1221                         break;
1222                 }
1223
1224                 rc = item->parse(pattern, &flow->spec.template, error);
1225                 if (rc != 0)
1226                         return rc;
1227
1228                 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1229                         prev_layer = item->layer;
1230         }
1231
1232         return 0;
1233 }
1234
1235 static int
1236 sfc_flow_parse_queue(struct sfc_adapter *sa,
1237                      const struct rte_flow_action_queue *queue,
1238                      struct rte_flow *flow)
1239 {
1240         struct sfc_rxq *rxq;
1241
1242         if (queue->index >= sa->rxq_count)
1243                 return -EINVAL;
1244
1245         rxq = sa->rxq_info[queue->index].rxq;
1246         flow->spec.template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1247
1248         return 0;
1249 }
1250
1251 static int
1252 sfc_flow_parse_rss(struct sfc_adapter *sa,
1253                    const struct rte_flow_action_rss *action_rss,
1254                    struct rte_flow *flow)
1255 {
1256         struct sfc_rss *rss = &sa->rss;
1257         unsigned int rxq_sw_index;
1258         struct sfc_rxq *rxq;
1259         unsigned int rxq_hw_index_min;
1260         unsigned int rxq_hw_index_max;
1261         efx_rx_hash_type_t efx_hash_types;
1262         const uint8_t *rss_key;
1263         struct sfc_flow_rss *sfc_rss_conf = &flow->rss_conf;
1264         unsigned int i;
1265
1266         if (action_rss->queue_num == 0)
1267                 return -EINVAL;
1268
1269         rxq_sw_index = sa->rxq_count - 1;
1270         rxq = sa->rxq_info[rxq_sw_index].rxq;
1271         rxq_hw_index_min = rxq->hw_index;
1272         rxq_hw_index_max = 0;
1273
1274         for (i = 0; i < action_rss->queue_num; ++i) {
1275                 rxq_sw_index = action_rss->queue[i];
1276
1277                 if (rxq_sw_index >= sa->rxq_count)
1278                         return -EINVAL;
1279
1280                 rxq = sa->rxq_info[rxq_sw_index].rxq;
1281
1282                 if (rxq->hw_index < rxq_hw_index_min)
1283                         rxq_hw_index_min = rxq->hw_index;
1284
1285                 if (rxq->hw_index > rxq_hw_index_max)
1286                         rxq_hw_index_max = rxq->hw_index;
1287         }
1288
1289         switch (action_rss->func) {
1290         case RTE_ETH_HASH_FUNCTION_DEFAULT:
1291         case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1292                 break;
1293         default:
1294                 return -EINVAL;
1295         }
1296
1297         if (action_rss->level)
1298                 return -EINVAL;
1299
1300         /*
1301          * Dummy RSS action with only one queue and no specific settings
1302          * for hash types and key does not require dedicated RSS context
1303          * and may be simplified to single queue action.
1304          */
1305         if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1306             action_rss->key_len == 0) {
1307                 flow->spec.template.efs_dmaq_id = rxq_hw_index_min;
1308                 return 0;
1309         }
1310
1311         if (action_rss->types) {
1312                 int rc;
1313
1314                 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1315                                           &efx_hash_types);
1316                 if (rc != 0)
1317                         return -rc;
1318         } else {
1319                 unsigned int i;
1320
1321                 efx_hash_types = 0;
1322                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
1323                         efx_hash_types |= rss->hf_map[i].efx;
1324         }
1325
1326         if (action_rss->key_len) {
1327                 if (action_rss->key_len != sizeof(rss->key))
1328                         return -EINVAL;
1329
1330                 rss_key = action_rss->key;
1331         } else {
1332                 rss_key = rss->key;
1333         }
1334
1335         flow->rss = B_TRUE;
1336
1337         sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1338         sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1339         sfc_rss_conf->rss_hash_types = efx_hash_types;
1340         rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1341
1342         for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1343                 unsigned int nb_queues = action_rss->queue_num;
1344                 unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
1345                 struct sfc_rxq *rxq = sa->rxq_info[rxq_sw_index].rxq;
1346
1347                 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1348         }
1349
1350         return 0;
1351 }
1352
1353 static int
1354 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1355                     unsigned int filters_count)
1356 {
1357         unsigned int i;
1358         int ret = 0;
1359
1360         for (i = 0; i < filters_count; i++) {
1361                 int rc;
1362
1363                 rc = efx_filter_remove(sa->nic, &spec->filters[i]);
1364                 if (ret == 0 && rc != 0) {
1365                         sfc_err(sa, "failed to remove filter specification "
1366                                 "(rc = %d)", rc);
1367                         ret = rc;
1368                 }
1369         }
1370
1371         return ret;
1372 }
1373
1374 static int
1375 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1376 {
1377         unsigned int i;
1378         int rc = 0;
1379
1380         for (i = 0; i < spec->count; i++) {
1381                 rc = efx_filter_insert(sa->nic, &spec->filters[i]);
1382                 if (rc != 0) {
1383                         sfc_flow_spec_flush(sa, spec, i);
1384                         break;
1385                 }
1386         }
1387
1388         return rc;
1389 }
1390
1391 static int
1392 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1393 {
1394         return sfc_flow_spec_flush(sa, spec, spec->count);
1395 }
1396
1397 static int
1398 sfc_flow_filter_insert(struct sfc_adapter *sa,
1399                        struct rte_flow *flow)
1400 {
1401         struct sfc_rss *rss = &sa->rss;
1402         struct sfc_flow_rss *flow_rss = &flow->rss_conf;
1403         uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1404         unsigned int i;
1405         int rc = 0;
1406
1407         if (flow->rss) {
1408                 unsigned int rss_spread = MIN(flow_rss->rxq_hw_index_max -
1409                                               flow_rss->rxq_hw_index_min + 1,
1410                                               EFX_MAXRSS);
1411
1412                 rc = efx_rx_scale_context_alloc(sa->nic,
1413                                                 EFX_RX_SCALE_EXCLUSIVE,
1414                                                 rss_spread,
1415                                                 &efs_rss_context);
1416                 if (rc != 0)
1417                         goto fail_scale_context_alloc;
1418
1419                 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1420                                            rss->hash_alg,
1421                                            flow_rss->rss_hash_types, B_TRUE);
1422                 if (rc != 0)
1423                         goto fail_scale_mode_set;
1424
1425                 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1426                                           flow_rss->rss_key,
1427                                           sizeof(rss->key));
1428                 if (rc != 0)
1429                         goto fail_scale_key_set;
1430
1431                 /*
1432                  * At this point, fully elaborated filter specifications
1433                  * have been produced from the template. To make sure that
1434                  * RSS behaviour is consistent between them, set the same
1435                  * RSS context value everywhere.
1436                  */
1437                 for (i = 0; i < flow->spec.count; i++) {
1438                         efx_filter_spec_t *spec = &flow->spec.filters[i];
1439
1440                         spec->efs_rss_context = efs_rss_context;
1441                         spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1442                         spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1443                 }
1444         }
1445
1446         rc = sfc_flow_spec_insert(sa, &flow->spec);
1447         if (rc != 0)
1448                 goto fail_filter_insert;
1449
1450         if (flow->rss) {
1451                 /*
1452                  * Scale table is set after filter insertion because
1453                  * the table entries are relative to the base RxQ ID
1454                  * and the latter is submitted to the HW by means of
1455                  * inserting a filter, so by the time of the request
1456                  * the HW knows all the information needed to verify
1457                  * the table entries, and the operation will succeed
1458                  */
1459                 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1460                                           flow_rss->rss_tbl,
1461                                           RTE_DIM(flow_rss->rss_tbl));
1462                 if (rc != 0)
1463                         goto fail_scale_tbl_set;
1464         }
1465
1466         return 0;
1467
1468 fail_scale_tbl_set:
1469         sfc_flow_spec_remove(sa, &flow->spec);
1470
1471 fail_filter_insert:
1472 fail_scale_key_set:
1473 fail_scale_mode_set:
1474         if (efs_rss_context != EFX_RSS_CONTEXT_DEFAULT)
1475                 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1476
1477 fail_scale_context_alloc:
1478         return rc;
1479 }
1480
1481 static int
1482 sfc_flow_filter_remove(struct sfc_adapter *sa,
1483                        struct rte_flow *flow)
1484 {
1485         int rc = 0;
1486
1487         rc = sfc_flow_spec_remove(sa, &flow->spec);
1488         if (rc != 0)
1489                 return rc;
1490
1491         if (flow->rss) {
1492                 /*
1493                  * All specifications for a given flow rule have the same RSS
1494                  * context, so that RSS context value is taken from the first
1495                  * filter specification
1496                  */
1497                 efx_filter_spec_t *spec = &flow->spec.filters[0];
1498
1499                 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1500         }
1501
1502         return rc;
1503 }
1504
1505 static int
1506 sfc_flow_parse_mark(struct sfc_adapter *sa,
1507                     const struct rte_flow_action_mark *mark,
1508                     struct rte_flow *flow)
1509 {
1510         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1511
1512         if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1513                 return EINVAL;
1514
1515         flow->spec.template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1516         flow->spec.template.efs_mark = mark->id;
1517
1518         return 0;
1519 }
1520
1521 static int
1522 sfc_flow_parse_actions(struct sfc_adapter *sa,
1523                        const struct rte_flow_action actions[],
1524                        struct rte_flow *flow,
1525                        struct rte_flow_error *error)
1526 {
1527         int rc;
1528         const unsigned int dp_rx_features = sa->dp_rx->features;
1529         uint32_t actions_set = 0;
1530         const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1531                                            (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1532                                            (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1533         const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1534                                            (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1535
1536         if (actions == NULL) {
1537                 rte_flow_error_set(error, EINVAL,
1538                                    RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1539                                    "NULL actions");
1540                 return -rte_errno;
1541         }
1542
1543 #define SFC_BUILD_SET_OVERFLOW(_action, _set) \
1544         RTE_BUILD_BUG_ON(_action >= sizeof(_set) * CHAR_BIT)
1545
1546         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1547                 switch (actions->type) {
1548                 case RTE_FLOW_ACTION_TYPE_VOID:
1549                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1550                                                actions_set);
1551                         break;
1552
1553                 case RTE_FLOW_ACTION_TYPE_QUEUE:
1554                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1555                                                actions_set);
1556                         if ((actions_set & fate_actions_mask) != 0)
1557                                 goto fail_fate_actions;
1558
1559                         rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1560                         if (rc != 0) {
1561                                 rte_flow_error_set(error, EINVAL,
1562                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1563                                         "Bad QUEUE action");
1564                                 return -rte_errno;
1565                         }
1566                         break;
1567
1568                 case RTE_FLOW_ACTION_TYPE_RSS:
1569                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1570                                                actions_set);
1571                         if ((actions_set & fate_actions_mask) != 0)
1572                                 goto fail_fate_actions;
1573
1574                         rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1575                         if (rc != 0) {
1576                                 rte_flow_error_set(error, -rc,
1577                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1578                                         "Bad RSS action");
1579                                 return -rte_errno;
1580                         }
1581                         break;
1582
1583                 case RTE_FLOW_ACTION_TYPE_DROP:
1584                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1585                                                actions_set);
1586                         if ((actions_set & fate_actions_mask) != 0)
1587                                 goto fail_fate_actions;
1588
1589                         flow->spec.template.efs_dmaq_id =
1590                                 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1591                         break;
1592
1593                 case RTE_FLOW_ACTION_TYPE_FLAG:
1594                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1595                                                actions_set);
1596                         if ((actions_set & mark_actions_mask) != 0)
1597                                 goto fail_actions_overlap;
1598
1599                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1600                                 rte_flow_error_set(error, ENOTSUP,
1601                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1602                                         "FLAG action is not supported on the current Rx datapath");
1603                                 return -rte_errno;
1604                         }
1605
1606                         flow->spec.template.efs_flags |=
1607                                 EFX_FILTER_FLAG_ACTION_FLAG;
1608                         break;
1609
1610                 case RTE_FLOW_ACTION_TYPE_MARK:
1611                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1612                                                actions_set);
1613                         if ((actions_set & mark_actions_mask) != 0)
1614                                 goto fail_actions_overlap;
1615
1616                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1617                                 rte_flow_error_set(error, ENOTSUP,
1618                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1619                                         "MARK action is not supported on the current Rx datapath");
1620                                 return -rte_errno;
1621                         }
1622
1623                         rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1624                         if (rc != 0) {
1625                                 rte_flow_error_set(error, rc,
1626                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1627                                         "Bad MARK action");
1628                                 return -rte_errno;
1629                         }
1630                         break;
1631
1632                 default:
1633                         rte_flow_error_set(error, ENOTSUP,
1634                                            RTE_FLOW_ERROR_TYPE_ACTION, actions,
1635                                            "Action is not supported");
1636                         return -rte_errno;
1637                 }
1638
1639                 actions_set |= (1UL << actions->type);
1640         }
1641 #undef SFC_BUILD_SET_OVERFLOW
1642
1643         /* When fate is unknown, drop traffic. */
1644         if ((actions_set & fate_actions_mask) == 0) {
1645                 flow->spec.template.efs_dmaq_id =
1646                         EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1647         }
1648
1649         return 0;
1650
1651 fail_fate_actions:
1652         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1653                            "Cannot combine several fate-deciding actions, "
1654                            "choose between QUEUE, RSS or DROP");
1655         return -rte_errno;
1656
1657 fail_actions_overlap:
1658         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1659                            "Overlapping actions are not supported");
1660         return -rte_errno;
1661 }
1662
1663 /**
1664  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1665  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1666  * specifications after copying.
1667  *
1668  * @param spec[in, out]
1669  *   SFC flow specification to update.
1670  * @param filters_count_for_one_val[in]
1671  *   How many specifications should have the same match flag, what is the
1672  *   number of specifications before copying.
1673  * @param error[out]
1674  *   Perform verbose error reporting if not NULL.
1675  */
1676 static int
1677 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1678                                unsigned int filters_count_for_one_val,
1679                                struct rte_flow_error *error)
1680 {
1681         unsigned int i;
1682         static const efx_filter_match_flags_t vals[] = {
1683                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1684                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1685         };
1686
1687         if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1688                 rte_flow_error_set(error, EINVAL,
1689                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1690                         "Number of specifications is incorrect while copying "
1691                         "by unknown destination flags");
1692                 return -rte_errno;
1693         }
1694
1695         for (i = 0; i < spec->count; i++) {
1696                 /* The check above ensures that divisor can't be zero here */
1697                 spec->filters[i].efs_match_flags |=
1698                         vals[i / filters_count_for_one_val];
1699         }
1700
1701         return 0;
1702 }
1703
1704 /**
1705  * Check that the following conditions are met:
1706  * - the list of supported filters has a filter
1707  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1708  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1709  *   be inserted.
1710  *
1711  * @param match[in]
1712  *   The match flags of filter.
1713  * @param spec[in]
1714  *   Specification to be supplemented.
1715  * @param filter[in]
1716  *   SFC filter with list of supported filters.
1717  */
1718 static boolean_t
1719 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1720                                  __rte_unused efx_filter_spec_t *spec,
1721                                  struct sfc_filter *filter)
1722 {
1723         unsigned int i;
1724         efx_filter_match_flags_t match_mcast_dst;
1725
1726         match_mcast_dst =
1727                 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1728                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1729         for (i = 0; i < filter->supported_match_num; i++) {
1730                 if (match_mcast_dst == filter->supported_match[i])
1731                         return B_TRUE;
1732         }
1733
1734         return B_FALSE;
1735 }
1736
1737 /**
1738  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1739  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1740  * specifications after copying.
1741  *
1742  * @param spec[in, out]
1743  *   SFC flow specification to update.
1744  * @param filters_count_for_one_val[in]
1745  *   How many specifications should have the same EtherType value, what is the
1746  *   number of specifications before copying.
1747  * @param error[out]
1748  *   Perform verbose error reporting if not NULL.
1749  */
1750 static int
1751 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1752                         unsigned int filters_count_for_one_val,
1753                         struct rte_flow_error *error)
1754 {
1755         unsigned int i;
1756         static const uint16_t vals[] = {
1757                 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1758         };
1759
1760         if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1761                 rte_flow_error_set(error, EINVAL,
1762                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1763                         "Number of specifications is incorrect "
1764                         "while copying by Ethertype");
1765                 return -rte_errno;
1766         }
1767
1768         for (i = 0; i < spec->count; i++) {
1769                 spec->filters[i].efs_match_flags |=
1770                         EFX_FILTER_MATCH_ETHER_TYPE;
1771
1772                 /*
1773                  * The check above ensures that
1774                  * filters_count_for_one_val is not 0
1775                  */
1776                 spec->filters[i].efs_ether_type =
1777                         vals[i / filters_count_for_one_val];
1778         }
1779
1780         return 0;
1781 }
1782
1783 /**
1784  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
1785  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
1786  * specifications after copying.
1787  *
1788  * @param spec[in, out]
1789  *   SFC flow specification to update.
1790  * @param filters_count_for_one_val[in]
1791  *   How many specifications should have the same match flag, what is the
1792  *   number of specifications before copying.
1793  * @param error[out]
1794  *   Perform verbose error reporting if not NULL.
1795  */
1796 static int
1797 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
1798                                     unsigned int filters_count_for_one_val,
1799                                     struct rte_flow_error *error)
1800 {
1801         unsigned int i;
1802         static const efx_filter_match_flags_t vals[] = {
1803                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1804                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
1805         };
1806
1807         if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1808                 rte_flow_error_set(error, EINVAL,
1809                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1810                         "Number of specifications is incorrect while copying "
1811                         "by inner frame unknown destination flags");
1812                 return -rte_errno;
1813         }
1814
1815         for (i = 0; i < spec->count; i++) {
1816                 /* The check above ensures that divisor can't be zero here */
1817                 spec->filters[i].efs_match_flags |=
1818                         vals[i / filters_count_for_one_val];
1819         }
1820
1821         return 0;
1822 }
1823
1824 /**
1825  * Check that the following conditions are met:
1826  * - the specification corresponds to a filter for encapsulated traffic
1827  * - the list of supported filters has a filter
1828  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
1829  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
1830  *   be inserted.
1831  *
1832  * @param match[in]
1833  *   The match flags of filter.
1834  * @param spec[in]
1835  *   Specification to be supplemented.
1836  * @param filter[in]
1837  *   SFC filter with list of supported filters.
1838  */
1839 static boolean_t
1840 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
1841                                       efx_filter_spec_t *spec,
1842                                       struct sfc_filter *filter)
1843 {
1844         unsigned int i;
1845         efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
1846         efx_filter_match_flags_t match_mcast_dst;
1847
1848         if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
1849                 return B_FALSE;
1850
1851         match_mcast_dst =
1852                 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
1853                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
1854         for (i = 0; i < filter->supported_match_num; i++) {
1855                 if (match_mcast_dst == filter->supported_match[i])
1856                         return B_TRUE;
1857         }
1858
1859         return B_FALSE;
1860 }
1861
1862 /*
1863  * Match flags that can be automatically added to filters.
1864  * Selecting the last minimum when searching for the copy flag ensures that the
1865  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
1866  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
1867  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
1868  * filters.
1869  */
1870 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
1871         {
1872                 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1873                 .vals_count = 2,
1874                 .set_vals = sfc_flow_set_unknown_dst_flags,
1875                 .spec_check = sfc_flow_check_unknown_dst_flags,
1876         },
1877         {
1878                 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
1879                 .vals_count = 2,
1880                 .set_vals = sfc_flow_set_ethertypes,
1881                 .spec_check = NULL,
1882         },
1883         {
1884                 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1885                 .vals_count = 2,
1886                 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
1887                 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
1888         },
1889 };
1890
1891 /* Get item from array sfc_flow_copy_flags */
1892 static const struct sfc_flow_copy_flag *
1893 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
1894 {
1895         unsigned int i;
1896
1897         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1898                 if (sfc_flow_copy_flags[i].flag == flag)
1899                         return &sfc_flow_copy_flags[i];
1900         }
1901
1902         return NULL;
1903 }
1904
1905 /**
1906  * Make copies of the specifications, set match flag and values
1907  * of the field that corresponds to it.
1908  *
1909  * @param spec[in, out]
1910  *   SFC flow specification to update.
1911  * @param flag[in]
1912  *   The match flag to add.
1913  * @param error[out]
1914  *   Perform verbose error reporting if not NULL.
1915  */
1916 static int
1917 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
1918                              efx_filter_match_flags_t flag,
1919                              struct rte_flow_error *error)
1920 {
1921         unsigned int i;
1922         unsigned int new_filters_count;
1923         unsigned int filters_count_for_one_val;
1924         const struct sfc_flow_copy_flag *copy_flag;
1925         int rc;
1926
1927         copy_flag = sfc_flow_get_copy_flag(flag);
1928         if (copy_flag == NULL) {
1929                 rte_flow_error_set(error, ENOTSUP,
1930                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1931                                    "Unsupported spec field for copying");
1932                 return -rte_errno;
1933         }
1934
1935         new_filters_count = spec->count * copy_flag->vals_count;
1936         if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
1937                 rte_flow_error_set(error, EINVAL,
1938                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1939                         "Too much EFX specifications in the flow rule");
1940                 return -rte_errno;
1941         }
1942
1943         /* Copy filters specifications */
1944         for (i = spec->count; i < new_filters_count; i++)
1945                 spec->filters[i] = spec->filters[i - spec->count];
1946
1947         filters_count_for_one_val = spec->count;
1948         spec->count = new_filters_count;
1949
1950         rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
1951         if (rc != 0)
1952                 return rc;
1953
1954         return 0;
1955 }
1956
1957 /**
1958  * Check that the given set of match flags missing in the original filter spec
1959  * could be covered by adding spec copies which specify the corresponding
1960  * flags and packet field values to match.
1961  *
1962  * @param miss_flags[in]
1963  *   Flags that are missing until the supported filter.
1964  * @param spec[in]
1965  *   Specification to be supplemented.
1966  * @param filter[in]
1967  *   SFC filter.
1968  *
1969  * @return
1970  *   Number of specifications after copy or 0, if the flags can not be added.
1971  */
1972 static unsigned int
1973 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
1974                              efx_filter_spec_t *spec,
1975                              struct sfc_filter *filter)
1976 {
1977         unsigned int i;
1978         efx_filter_match_flags_t copy_flags = 0;
1979         efx_filter_match_flags_t flag;
1980         efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
1981         sfc_flow_spec_check *check;
1982         unsigned int multiplier = 1;
1983
1984         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1985                 flag = sfc_flow_copy_flags[i].flag;
1986                 check = sfc_flow_copy_flags[i].spec_check;
1987                 if ((flag & miss_flags) == flag) {
1988                         if (check != NULL && (!check(match, spec, filter)))
1989                                 continue;
1990
1991                         copy_flags |= flag;
1992                         multiplier *= sfc_flow_copy_flags[i].vals_count;
1993                 }
1994         }
1995
1996         if (copy_flags == miss_flags)
1997                 return multiplier;
1998
1999         return 0;
2000 }
2001
2002 /**
2003  * Attempt to supplement the specification template to the minimally
2004  * supported set of match flags. To do this, it is necessary to copy
2005  * the specifications, filling them with the values of fields that
2006  * correspond to the missing flags.
2007  * The necessary and sufficient filter is built from the fewest number
2008  * of copies which could be made to cover the minimally required set
2009  * of flags.
2010  *
2011  * @param sa[in]
2012  *   SFC adapter.
2013  * @param spec[in, out]
2014  *   SFC flow specification to update.
2015  * @param error[out]
2016  *   Perform verbose error reporting if not NULL.
2017  */
2018 static int
2019 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2020                                struct sfc_flow_spec *spec,
2021                                struct rte_flow_error *error)
2022 {
2023         struct sfc_filter *filter = &sa->filter;
2024         efx_filter_match_flags_t miss_flags;
2025         efx_filter_match_flags_t min_miss_flags = 0;
2026         efx_filter_match_flags_t match;
2027         unsigned int min_multiplier = UINT_MAX;
2028         unsigned int multiplier;
2029         unsigned int i;
2030         int rc;
2031
2032         match = spec->template.efs_match_flags;
2033         for (i = 0; i < filter->supported_match_num; i++) {
2034                 if ((match & filter->supported_match[i]) == match) {
2035                         miss_flags = filter->supported_match[i] & (~match);
2036                         multiplier = sfc_flow_check_missing_flags(miss_flags,
2037                                 &spec->template, filter);
2038                         if (multiplier > 0) {
2039                                 if (multiplier <= min_multiplier) {
2040                                         min_multiplier = multiplier;
2041                                         min_miss_flags = miss_flags;
2042                                 }
2043                         }
2044                 }
2045         }
2046
2047         if (min_multiplier == UINT_MAX) {
2048                 rte_flow_error_set(error, ENOTSUP,
2049                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2050                                    "The flow rule pattern is unsupported");
2051                 return -rte_errno;
2052         }
2053
2054         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2055                 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2056
2057                 if ((flag & min_miss_flags) == flag) {
2058                         rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2059                         if (rc != 0)
2060                                 return rc;
2061                 }
2062         }
2063
2064         return 0;
2065 }
2066
2067 /**
2068  * Check that set of match flags is referred to by a filter. Filter is
2069  * described by match flags with the ability to add OUTER_VID and INNER_VID
2070  * flags.
2071  *
2072  * @param match_flags[in]
2073  *   Set of match flags.
2074  * @param flags_pattern[in]
2075  *   Pattern of filter match flags.
2076  */
2077 static boolean_t
2078 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2079                             efx_filter_match_flags_t flags_pattern)
2080 {
2081         if ((match_flags & flags_pattern) != flags_pattern)
2082                 return B_FALSE;
2083
2084         switch (match_flags & ~flags_pattern) {
2085         case 0:
2086         case EFX_FILTER_MATCH_OUTER_VID:
2087         case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2088                 return B_TRUE;
2089         default:
2090                 return B_FALSE;
2091         }
2092 }
2093
2094 /**
2095  * Check whether the spec maps to a hardware filter which is known to be
2096  * ineffective despite being valid.
2097  *
2098  * @param spec[in]
2099  *   SFC flow specification.
2100  */
2101 static boolean_t
2102 sfc_flow_is_match_flags_exception(struct sfc_flow_spec *spec)
2103 {
2104         unsigned int i;
2105         uint16_t ether_type;
2106         uint8_t ip_proto;
2107         efx_filter_match_flags_t match_flags;
2108
2109         for (i = 0; i < spec->count; i++) {
2110                 match_flags = spec->filters[i].efs_match_flags;
2111
2112                 if (sfc_flow_is_match_with_vids(match_flags,
2113                                                 EFX_FILTER_MATCH_ETHER_TYPE) ||
2114                     sfc_flow_is_match_with_vids(match_flags,
2115                                                 EFX_FILTER_MATCH_ETHER_TYPE |
2116                                                 EFX_FILTER_MATCH_LOC_MAC)) {
2117                         ether_type = spec->filters[i].efs_ether_type;
2118                         if (ether_type == EFX_ETHER_TYPE_IPV4 ||
2119                             ether_type == EFX_ETHER_TYPE_IPV6)
2120                                 return B_TRUE;
2121                 } else if (sfc_flow_is_match_with_vids(match_flags,
2122                                 EFX_FILTER_MATCH_ETHER_TYPE |
2123                                 EFX_FILTER_MATCH_IP_PROTO) ||
2124                            sfc_flow_is_match_with_vids(match_flags,
2125                                 EFX_FILTER_MATCH_ETHER_TYPE |
2126                                 EFX_FILTER_MATCH_IP_PROTO |
2127                                 EFX_FILTER_MATCH_LOC_MAC)) {
2128                         ip_proto = spec->filters[i].efs_ip_proto;
2129                         if (ip_proto == EFX_IPPROTO_TCP ||
2130                             ip_proto == EFX_IPPROTO_UDP)
2131                                 return B_TRUE;
2132                 }
2133         }
2134
2135         return B_FALSE;
2136 }
2137
2138 static int
2139 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2140                               struct rte_flow *flow,
2141                               struct rte_flow_error *error)
2142 {
2143         efx_filter_spec_t *spec_tmpl = &flow->spec.template;
2144         efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2145         int rc;
2146
2147         /* Initialize the first filter spec with template */
2148         flow->spec.filters[0] = *spec_tmpl;
2149         flow->spec.count = 1;
2150
2151         if (!sfc_filter_is_match_supported(sa, match_flags)) {
2152                 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2153                 if (rc != 0)
2154                         return rc;
2155         }
2156
2157         if (sfc_flow_is_match_flags_exception(&flow->spec)) {
2158                 rte_flow_error_set(error, ENOTSUP,
2159                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2160                         "The flow rule pattern is unsupported");
2161                 return -rte_errno;
2162         }
2163
2164         return 0;
2165 }
2166
2167 static int
2168 sfc_flow_parse(struct rte_eth_dev *dev,
2169                const struct rte_flow_attr *attr,
2170                const struct rte_flow_item pattern[],
2171                const struct rte_flow_action actions[],
2172                struct rte_flow *flow,
2173                struct rte_flow_error *error)
2174 {
2175         struct sfc_adapter *sa = dev->data->dev_private;
2176         int rc;
2177
2178         rc = sfc_flow_parse_attr(attr, flow, error);
2179         if (rc != 0)
2180                 goto fail_bad_value;
2181
2182         rc = sfc_flow_parse_pattern(pattern, flow, error);
2183         if (rc != 0)
2184                 goto fail_bad_value;
2185
2186         rc = sfc_flow_parse_actions(sa, actions, flow, error);
2187         if (rc != 0)
2188                 goto fail_bad_value;
2189
2190         rc = sfc_flow_validate_match_flags(sa, flow, error);
2191         if (rc != 0)
2192                 goto fail_bad_value;
2193
2194         return 0;
2195
2196 fail_bad_value:
2197         return rc;
2198 }
2199
2200 static int
2201 sfc_flow_validate(struct rte_eth_dev *dev,
2202                   const struct rte_flow_attr *attr,
2203                   const struct rte_flow_item pattern[],
2204                   const struct rte_flow_action actions[],
2205                   struct rte_flow_error *error)
2206 {
2207         struct rte_flow flow;
2208
2209         memset(&flow, 0, sizeof(flow));
2210
2211         return sfc_flow_parse(dev, attr, pattern, actions, &flow, error);
2212 }
2213
2214 static struct rte_flow *
2215 sfc_flow_create(struct rte_eth_dev *dev,
2216                 const struct rte_flow_attr *attr,
2217                 const struct rte_flow_item pattern[],
2218                 const struct rte_flow_action actions[],
2219                 struct rte_flow_error *error)
2220 {
2221         struct sfc_adapter *sa = dev->data->dev_private;
2222         struct rte_flow *flow = NULL;
2223         int rc;
2224
2225         flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2226         if (flow == NULL) {
2227                 rte_flow_error_set(error, ENOMEM,
2228                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2229                                    "Failed to allocate memory");
2230                 goto fail_no_mem;
2231         }
2232
2233         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2234         if (rc != 0)
2235                 goto fail_bad_value;
2236
2237         TAILQ_INSERT_TAIL(&sa->filter.flow_list, flow, entries);
2238
2239         sfc_adapter_lock(sa);
2240
2241         if (sa->state == SFC_ADAPTER_STARTED) {
2242                 rc = sfc_flow_filter_insert(sa, flow);
2243                 if (rc != 0) {
2244                         rte_flow_error_set(error, rc,
2245                                 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2246                                 "Failed to insert filter");
2247                         goto fail_filter_insert;
2248                 }
2249         }
2250
2251         sfc_adapter_unlock(sa);
2252
2253         return flow;
2254
2255 fail_filter_insert:
2256         TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2257
2258 fail_bad_value:
2259         rte_free(flow);
2260         sfc_adapter_unlock(sa);
2261
2262 fail_no_mem:
2263         return NULL;
2264 }
2265
2266 static int
2267 sfc_flow_remove(struct sfc_adapter *sa,
2268                 struct rte_flow *flow,
2269                 struct rte_flow_error *error)
2270 {
2271         int rc = 0;
2272
2273         SFC_ASSERT(sfc_adapter_is_locked(sa));
2274
2275         if (sa->state == SFC_ADAPTER_STARTED) {
2276                 rc = sfc_flow_filter_remove(sa, flow);
2277                 if (rc != 0)
2278                         rte_flow_error_set(error, rc,
2279                                 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2280                                 "Failed to destroy flow rule");
2281         }
2282
2283         TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2284         rte_free(flow);
2285
2286         return rc;
2287 }
2288
2289 static int
2290 sfc_flow_destroy(struct rte_eth_dev *dev,
2291                  struct rte_flow *flow,
2292                  struct rte_flow_error *error)
2293 {
2294         struct sfc_adapter *sa = dev->data->dev_private;
2295         struct rte_flow *flow_ptr;
2296         int rc = EINVAL;
2297
2298         sfc_adapter_lock(sa);
2299
2300         TAILQ_FOREACH(flow_ptr, &sa->filter.flow_list, entries) {
2301                 if (flow_ptr == flow)
2302                         rc = 0;
2303         }
2304         if (rc != 0) {
2305                 rte_flow_error_set(error, rc,
2306                                    RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2307                                    "Failed to find flow rule to destroy");
2308                 goto fail_bad_value;
2309         }
2310
2311         rc = sfc_flow_remove(sa, flow, error);
2312
2313 fail_bad_value:
2314         sfc_adapter_unlock(sa);
2315
2316         return -rc;
2317 }
2318
2319 static int
2320 sfc_flow_flush(struct rte_eth_dev *dev,
2321                struct rte_flow_error *error)
2322 {
2323         struct sfc_adapter *sa = dev->data->dev_private;
2324         struct rte_flow *flow;
2325         int rc = 0;
2326         int ret = 0;
2327
2328         sfc_adapter_lock(sa);
2329
2330         while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
2331                 rc = sfc_flow_remove(sa, flow, error);
2332                 if (rc != 0)
2333                         ret = rc;
2334         }
2335
2336         sfc_adapter_unlock(sa);
2337
2338         return -ret;
2339 }
2340
2341 static int
2342 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2343                  struct rte_flow_error *error)
2344 {
2345         struct sfc_adapter *sa = dev->data->dev_private;
2346         struct sfc_port *port = &sa->port;
2347         int ret = 0;
2348
2349         sfc_adapter_lock(sa);
2350         if (sa->state != SFC_ADAPTER_INITIALIZED) {
2351                 rte_flow_error_set(error, EBUSY,
2352                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2353                                    NULL, "please close the port first");
2354                 ret = -rte_errno;
2355         } else {
2356                 port->isolated = (enable) ? B_TRUE : B_FALSE;
2357         }
2358         sfc_adapter_unlock(sa);
2359
2360         return ret;
2361 }
2362
2363 const struct rte_flow_ops sfc_flow_ops = {
2364         .validate = sfc_flow_validate,
2365         .create = sfc_flow_create,
2366         .destroy = sfc_flow_destroy,
2367         .flush = sfc_flow_flush,
2368         .query = NULL,
2369         .isolate = sfc_flow_isolate,
2370 };
2371
2372 void
2373 sfc_flow_init(struct sfc_adapter *sa)
2374 {
2375         SFC_ASSERT(sfc_adapter_is_locked(sa));
2376
2377         TAILQ_INIT(&sa->filter.flow_list);
2378 }
2379
2380 void
2381 sfc_flow_fini(struct sfc_adapter *sa)
2382 {
2383         struct rte_flow *flow;
2384
2385         SFC_ASSERT(sfc_adapter_is_locked(sa));
2386
2387         while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
2388                 TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2389                 rte_free(flow);
2390         }
2391 }
2392
2393 void
2394 sfc_flow_stop(struct sfc_adapter *sa)
2395 {
2396         struct rte_flow *flow;
2397
2398         SFC_ASSERT(sfc_adapter_is_locked(sa));
2399
2400         TAILQ_FOREACH(flow, &sa->filter.flow_list, entries)
2401                 sfc_flow_filter_remove(sa, flow);
2402 }
2403
2404 int
2405 sfc_flow_start(struct sfc_adapter *sa)
2406 {
2407         struct rte_flow *flow;
2408         int rc = 0;
2409
2410         sfc_log_init(sa, "entry");
2411
2412         SFC_ASSERT(sfc_adapter_is_locked(sa));
2413
2414         TAILQ_FOREACH(flow, &sa->filter.flow_list, entries) {
2415                 rc = sfc_flow_filter_insert(sa, flow);
2416                 if (rc != 0)
2417                         goto fail_bad_flow;
2418         }
2419
2420         sfc_log_init(sa, "done");
2421
2422 fail_bad_flow:
2423         return rc;
2424 }