net/sfc: support API to negotiate delivery of Rx metadata
[dpdk.git] / drivers / net / sfc / sfc_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17
18 #include "efx.h"
19
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_mae_counter.h"
28
29 struct sfc_flow_ops_by_spec {
30         sfc_flow_parse_cb_t     *parse;
31         sfc_flow_verify_cb_t    *verify;
32         sfc_flow_cleanup_cb_t   *cleanup;
33         sfc_flow_insert_cb_t    *insert;
34         sfc_flow_remove_cb_t    *remove;
35         sfc_flow_query_cb_t     *query;
36 };
37
38 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
39 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
40 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
41 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
42
43 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
44         .parse = sfc_flow_parse_rte_to_filter,
45         .verify = NULL,
46         .cleanup = NULL,
47         .insert = sfc_flow_filter_insert,
48         .remove = sfc_flow_filter_remove,
49         .query = NULL,
50 };
51
52 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
53         .parse = sfc_flow_parse_rte_to_mae,
54         .verify = sfc_mae_flow_verify,
55         .cleanup = sfc_mae_flow_cleanup,
56         .insert = sfc_mae_flow_insert,
57         .remove = sfc_mae_flow_remove,
58         .query = sfc_mae_flow_query,
59 };
60
61 static const struct sfc_flow_ops_by_spec *
62 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
63 {
64         struct sfc_flow_spec *spec = &flow->spec;
65         const struct sfc_flow_ops_by_spec *ops = NULL;
66
67         switch (spec->type) {
68         case SFC_FLOW_SPEC_FILTER:
69                 ops = &sfc_flow_ops_filter;
70                 break;
71         case SFC_FLOW_SPEC_MAE:
72                 ops = &sfc_flow_ops_mae;
73                 break;
74         default:
75                 SFC_ASSERT(false);
76                 break;
77         }
78
79         return ops;
80 }
81
82 /*
83  * Currently, filter-based (VNIC) flow API is implemented in such a manner
84  * that each flow rule is converted to one or more hardware filters.
85  * All elements of flow rule (attributes, pattern items, actions)
86  * correspond to one or more fields in the efx_filter_spec_s structure
87  * that is responsible for the hardware filter.
88  * If some required field is unset in the flow rule, then a handful
89  * of filter copies will be created to cover all possible values
90  * of such a field.
91  */
92
93 static sfc_flow_item_parse sfc_flow_parse_void;
94 static sfc_flow_item_parse sfc_flow_parse_eth;
95 static sfc_flow_item_parse sfc_flow_parse_vlan;
96 static sfc_flow_item_parse sfc_flow_parse_ipv4;
97 static sfc_flow_item_parse sfc_flow_parse_ipv6;
98 static sfc_flow_item_parse sfc_flow_parse_tcp;
99 static sfc_flow_item_parse sfc_flow_parse_udp;
100 static sfc_flow_item_parse sfc_flow_parse_vxlan;
101 static sfc_flow_item_parse sfc_flow_parse_geneve;
102 static sfc_flow_item_parse sfc_flow_parse_nvgre;
103 static sfc_flow_item_parse sfc_flow_parse_pppoex;
104
105 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
106                                      unsigned int filters_count_for_one_val,
107                                      struct rte_flow_error *error);
108
109 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
110                                         efx_filter_spec_t *spec,
111                                         struct sfc_filter *filter);
112
113 struct sfc_flow_copy_flag {
114         /* EFX filter specification match flag */
115         efx_filter_match_flags_t flag;
116         /* Number of values of corresponding field */
117         unsigned int vals_count;
118         /* Function to set values in specifications */
119         sfc_flow_spec_set_vals *set_vals;
120         /*
121          * Function to check that the specification is suitable
122          * for adding this match flag
123          */
124         sfc_flow_spec_check *spec_check;
125 };
126
127 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
128 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
129 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
130 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
131 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
132 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
133 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
134
135 static boolean_t
136 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
137 {
138         uint8_t sum = 0;
139         unsigned int i;
140
141         for (i = 0; i < size; i++)
142                 sum |= buf[i];
143
144         return (sum == 0) ? B_TRUE : B_FALSE;
145 }
146
147 /*
148  * Validate item and prepare structures spec and mask for parsing
149  */
150 int
151 sfc_flow_parse_init(const struct rte_flow_item *item,
152                     const void **spec_ptr,
153                     const void **mask_ptr,
154                     const void *supp_mask,
155                     const void *def_mask,
156                     unsigned int size,
157                     struct rte_flow_error *error)
158 {
159         const uint8_t *spec;
160         const uint8_t *mask;
161         const uint8_t *last;
162         uint8_t supp;
163         unsigned int i;
164
165         if (item == NULL) {
166                 rte_flow_error_set(error, EINVAL,
167                                    RTE_FLOW_ERROR_TYPE_ITEM, NULL,
168                                    "NULL item");
169                 return -rte_errno;
170         }
171
172         if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
173                 rte_flow_error_set(error, EINVAL,
174                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
175                                    "Mask or last is set without spec");
176                 return -rte_errno;
177         }
178
179         /*
180          * If "mask" is not set, default mask is used,
181          * but if default mask is NULL, "mask" should be set
182          */
183         if (item->mask == NULL) {
184                 if (def_mask == NULL) {
185                         rte_flow_error_set(error, EINVAL,
186                                 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
187                                 "Mask should be specified");
188                         return -rte_errno;
189                 }
190
191                 mask = def_mask;
192         } else {
193                 mask = item->mask;
194         }
195
196         spec = item->spec;
197         last = item->last;
198
199         if (spec == NULL)
200                 goto exit;
201
202         /*
203          * If field values in "last" are either 0 or equal to the corresponding
204          * values in "spec" then they are ignored
205          */
206         if (last != NULL &&
207             !sfc_flow_is_zero(last, size) &&
208             memcmp(last, spec, size) != 0) {
209                 rte_flow_error_set(error, ENOTSUP,
210                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
211                                    "Ranging is not supported");
212                 return -rte_errno;
213         }
214
215         if (supp_mask == NULL) {
216                 rte_flow_error_set(error, EINVAL,
217                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
218                         "Supported mask for item should be specified");
219                 return -rte_errno;
220         }
221
222         /* Check that mask does not ask for more match than supp_mask */
223         for (i = 0; i < size; i++) {
224                 supp = ((const uint8_t *)supp_mask)[i];
225
226                 if (~supp & mask[i]) {
227                         rte_flow_error_set(error, ENOTSUP,
228                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
229                                            "Item's field is not supported");
230                         return -rte_errno;
231                 }
232         }
233
234 exit:
235         *spec_ptr = spec;
236         *mask_ptr = mask;
237         return 0;
238 }
239
240 /*
241  * Protocol parsers.
242  * Masking is not supported, so masks in items should be either
243  * full or empty (zeroed) and set only for supported fields which
244  * are specified in the supp_mask.
245  */
246
247 static int
248 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
249                     __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
250                     __rte_unused struct rte_flow_error *error)
251 {
252         return 0;
253 }
254
255 /**
256  * Convert Ethernet item to EFX filter specification.
257  *
258  * @param item[in]
259  *   Item specification. Outer frame specification may only comprise
260  *   source/destination addresses and Ethertype field.
261  *   Inner frame specification may contain destination address only.
262  *   There is support for individual/group mask as well as for empty and full.
263  *   If the mask is NULL, default mask will be used. Ranging is not supported.
264  * @param efx_spec[in, out]
265  *   EFX filter specification to update.
266  * @param[out] error
267  *   Perform verbose error reporting if not NULL.
268  */
269 static int
270 sfc_flow_parse_eth(const struct rte_flow_item *item,
271                    struct sfc_flow_parse_ctx *parse_ctx,
272                    struct rte_flow_error *error)
273 {
274         int rc;
275         efx_filter_spec_t *efx_spec = parse_ctx->filter;
276         const struct rte_flow_item_eth *spec = NULL;
277         const struct rte_flow_item_eth *mask = NULL;
278         const struct rte_flow_item_eth supp_mask = {
279                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280                 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
281                 .type = 0xffff,
282         };
283         const struct rte_flow_item_eth ifrm_supp_mask = {
284                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
285         };
286         const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
287                 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
288         };
289         const struct rte_flow_item_eth *supp_mask_p;
290         const struct rte_flow_item_eth *def_mask_p;
291         uint8_t *loc_mac = NULL;
292         boolean_t is_ifrm = (efx_spec->efs_encap_type !=
293                 EFX_TUNNEL_PROTOCOL_NONE);
294
295         if (is_ifrm) {
296                 supp_mask_p = &ifrm_supp_mask;
297                 def_mask_p = &ifrm_supp_mask;
298                 loc_mac = efx_spec->efs_ifrm_loc_mac;
299         } else {
300                 supp_mask_p = &supp_mask;
301                 def_mask_p = &rte_flow_item_eth_mask;
302                 loc_mac = efx_spec->efs_loc_mac;
303         }
304
305         rc = sfc_flow_parse_init(item,
306                                  (const void **)&spec,
307                                  (const void **)&mask,
308                                  supp_mask_p, def_mask_p,
309                                  sizeof(struct rte_flow_item_eth),
310                                  error);
311         if (rc != 0)
312                 return rc;
313
314         /* If "spec" is not set, could be any Ethernet */
315         if (spec == NULL)
316                 return 0;
317
318         if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
319                 efx_spec->efs_match_flags |= is_ifrm ?
320                         EFX_FILTER_MATCH_IFRM_LOC_MAC :
321                         EFX_FILTER_MATCH_LOC_MAC;
322                 rte_memcpy(loc_mac, spec->dst.addr_bytes,
323                            EFX_MAC_ADDR_LEN);
324         } else if (memcmp(mask->dst.addr_bytes, ig_mask,
325                           EFX_MAC_ADDR_LEN) == 0) {
326                 if (rte_is_unicast_ether_addr(&spec->dst))
327                         efx_spec->efs_match_flags |= is_ifrm ?
328                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
329                                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
330                 else
331                         efx_spec->efs_match_flags |= is_ifrm ?
332                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
333                                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
334         } else if (!rte_is_zero_ether_addr(&mask->dst)) {
335                 goto fail_bad_mask;
336         }
337
338         /*
339          * ifrm_supp_mask ensures that the source address and
340          * ethertype masks are equal to zero in inner frame,
341          * so these fields are filled in only for the outer frame
342          */
343         if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
344                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
345                 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
346                            EFX_MAC_ADDR_LEN);
347         } else if (!rte_is_zero_ether_addr(&mask->src)) {
348                 goto fail_bad_mask;
349         }
350
351         /*
352          * Ether type is in big-endian byte order in item and
353          * in little-endian in efx_spec, so byte swap is used
354          */
355         if (mask->type == supp_mask.type) {
356                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
357                 efx_spec->efs_ether_type = rte_bswap16(spec->type);
358         } else if (mask->type != 0) {
359                 goto fail_bad_mask;
360         }
361
362         return 0;
363
364 fail_bad_mask:
365         rte_flow_error_set(error, EINVAL,
366                            RTE_FLOW_ERROR_TYPE_ITEM, item,
367                            "Bad mask in the ETH pattern item");
368         return -rte_errno;
369 }
370
371 /**
372  * Convert VLAN item to EFX filter specification.
373  *
374  * @param item[in]
375  *   Item specification. Only VID field is supported.
376  *   The mask can not be NULL. Ranging is not supported.
377  * @param efx_spec[in, out]
378  *   EFX filter specification to update.
379  * @param[out] error
380  *   Perform verbose error reporting if not NULL.
381  */
382 static int
383 sfc_flow_parse_vlan(const struct rte_flow_item *item,
384                     struct sfc_flow_parse_ctx *parse_ctx,
385                     struct rte_flow_error *error)
386 {
387         int rc;
388         uint16_t vid;
389         efx_filter_spec_t *efx_spec = parse_ctx->filter;
390         const struct rte_flow_item_vlan *spec = NULL;
391         const struct rte_flow_item_vlan *mask = NULL;
392         const struct rte_flow_item_vlan supp_mask = {
393                 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
394                 .inner_type = RTE_BE16(0xffff),
395         };
396
397         rc = sfc_flow_parse_init(item,
398                                  (const void **)&spec,
399                                  (const void **)&mask,
400                                  &supp_mask,
401                                  NULL,
402                                  sizeof(struct rte_flow_item_vlan),
403                                  error);
404         if (rc != 0)
405                 return rc;
406
407         /*
408          * VID is in big-endian byte order in item and
409          * in little-endian in efx_spec, so byte swap is used.
410          * If two VLAN items are included, the first matches
411          * the outer tag and the next matches the inner tag.
412          */
413         if (mask->tci == supp_mask.tci) {
414                 /* Apply mask to keep VID only */
415                 vid = rte_bswap16(spec->tci & mask->tci);
416
417                 if (!(efx_spec->efs_match_flags &
418                       EFX_FILTER_MATCH_OUTER_VID)) {
419                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
420                         efx_spec->efs_outer_vid = vid;
421                 } else if (!(efx_spec->efs_match_flags &
422                              EFX_FILTER_MATCH_INNER_VID)) {
423                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
424                         efx_spec->efs_inner_vid = vid;
425                 } else {
426                         rte_flow_error_set(error, EINVAL,
427                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
428                                            "More than two VLAN items");
429                         return -rte_errno;
430                 }
431         } else {
432                 rte_flow_error_set(error, EINVAL,
433                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
434                                    "VLAN ID in TCI match is required");
435                 return -rte_errno;
436         }
437
438         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
439                 rte_flow_error_set(error, EINVAL,
440                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                    "VLAN TPID matching is not supported");
442                 return -rte_errno;
443         }
444         if (mask->inner_type == supp_mask.inner_type) {
445                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
446                 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
447         } else if (mask->inner_type) {
448                 rte_flow_error_set(error, EINVAL,
449                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
450                                    "Bad mask for VLAN inner_type");
451                 return -rte_errno;
452         }
453
454         return 0;
455 }
456
457 /**
458  * Convert IPv4 item to EFX filter specification.
459  *
460  * @param item[in]
461  *   Item specification. Only source and destination addresses and
462  *   protocol fields are supported. If the mask is NULL, default
463  *   mask will be used. Ranging is not supported.
464  * @param efx_spec[in, out]
465  *   EFX filter specification to update.
466  * @param[out] error
467  *   Perform verbose error reporting if not NULL.
468  */
469 static int
470 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
471                     struct sfc_flow_parse_ctx *parse_ctx,
472                     struct rte_flow_error *error)
473 {
474         int rc;
475         efx_filter_spec_t *efx_spec = parse_ctx->filter;
476         const struct rte_flow_item_ipv4 *spec = NULL;
477         const struct rte_flow_item_ipv4 *mask = NULL;
478         const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
479         const struct rte_flow_item_ipv4 supp_mask = {
480                 .hdr = {
481                         .src_addr = 0xffffffff,
482                         .dst_addr = 0xffffffff,
483                         .next_proto_id = 0xff,
484                 }
485         };
486
487         rc = sfc_flow_parse_init(item,
488                                  (const void **)&spec,
489                                  (const void **)&mask,
490                                  &supp_mask,
491                                  &rte_flow_item_ipv4_mask,
492                                  sizeof(struct rte_flow_item_ipv4),
493                                  error);
494         if (rc != 0)
495                 return rc;
496
497         /*
498          * Filtering by IPv4 source and destination addresses requires
499          * the appropriate ETHER_TYPE in hardware filters
500          */
501         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
502                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
503                 efx_spec->efs_ether_type = ether_type_ipv4;
504         } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
505                 rte_flow_error_set(error, EINVAL,
506                         RTE_FLOW_ERROR_TYPE_ITEM, item,
507                         "Ethertype in pattern with IPV4 item should be appropriate");
508                 return -rte_errno;
509         }
510
511         if (spec == NULL)
512                 return 0;
513
514         /*
515          * IPv4 addresses are in big-endian byte order in item and in
516          * efx_spec
517          */
518         if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
519                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
520                 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
521         } else if (mask->hdr.src_addr != 0) {
522                 goto fail_bad_mask;
523         }
524
525         if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
526                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
527                 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
528         } else if (mask->hdr.dst_addr != 0) {
529                 goto fail_bad_mask;
530         }
531
532         if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
533                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
534                 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
535         } else if (mask->hdr.next_proto_id != 0) {
536                 goto fail_bad_mask;
537         }
538
539         return 0;
540
541 fail_bad_mask:
542         rte_flow_error_set(error, EINVAL,
543                            RTE_FLOW_ERROR_TYPE_ITEM, item,
544                            "Bad mask in the IPV4 pattern item");
545         return -rte_errno;
546 }
547
548 /**
549  * Convert IPv6 item to EFX filter specification.
550  *
551  * @param item[in]
552  *   Item specification. Only source and destination addresses and
553  *   next header fields are supported. If the mask is NULL, default
554  *   mask will be used. Ranging is not supported.
555  * @param efx_spec[in, out]
556  *   EFX filter specification to update.
557  * @param[out] error
558  *   Perform verbose error reporting if not NULL.
559  */
560 static int
561 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
562                     struct sfc_flow_parse_ctx *parse_ctx,
563                     struct rte_flow_error *error)
564 {
565         int rc;
566         efx_filter_spec_t *efx_spec = parse_ctx->filter;
567         const struct rte_flow_item_ipv6 *spec = NULL;
568         const struct rte_flow_item_ipv6 *mask = NULL;
569         const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
570         const struct rte_flow_item_ipv6 supp_mask = {
571                 .hdr = {
572                         .src_addr = { 0xff, 0xff, 0xff, 0xff,
573                                       0xff, 0xff, 0xff, 0xff,
574                                       0xff, 0xff, 0xff, 0xff,
575                                       0xff, 0xff, 0xff, 0xff },
576                         .dst_addr = { 0xff, 0xff, 0xff, 0xff,
577                                       0xff, 0xff, 0xff, 0xff,
578                                       0xff, 0xff, 0xff, 0xff,
579                                       0xff, 0xff, 0xff, 0xff },
580                         .proto = 0xff,
581                 }
582         };
583
584         rc = sfc_flow_parse_init(item,
585                                  (const void **)&spec,
586                                  (const void **)&mask,
587                                  &supp_mask,
588                                  &rte_flow_item_ipv6_mask,
589                                  sizeof(struct rte_flow_item_ipv6),
590                                  error);
591         if (rc != 0)
592                 return rc;
593
594         /*
595          * Filtering by IPv6 source and destination addresses requires
596          * the appropriate ETHER_TYPE in hardware filters
597          */
598         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
599                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
600                 efx_spec->efs_ether_type = ether_type_ipv6;
601         } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
602                 rte_flow_error_set(error, EINVAL,
603                         RTE_FLOW_ERROR_TYPE_ITEM, item,
604                         "Ethertype in pattern with IPV6 item should be appropriate");
605                 return -rte_errno;
606         }
607
608         if (spec == NULL)
609                 return 0;
610
611         /*
612          * IPv6 addresses are in big-endian byte order in item and in
613          * efx_spec
614          */
615         if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
616                    sizeof(mask->hdr.src_addr)) == 0) {
617                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
618
619                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
620                                  sizeof(spec->hdr.src_addr));
621                 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
622                            sizeof(efx_spec->efs_rem_host));
623         } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
624                                      sizeof(mask->hdr.src_addr))) {
625                 goto fail_bad_mask;
626         }
627
628         if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
629                    sizeof(mask->hdr.dst_addr)) == 0) {
630                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
631
632                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
633                                  sizeof(spec->hdr.dst_addr));
634                 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
635                            sizeof(efx_spec->efs_loc_host));
636         } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
637                                      sizeof(mask->hdr.dst_addr))) {
638                 goto fail_bad_mask;
639         }
640
641         if (mask->hdr.proto == supp_mask.hdr.proto) {
642                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
643                 efx_spec->efs_ip_proto = spec->hdr.proto;
644         } else if (mask->hdr.proto != 0) {
645                 goto fail_bad_mask;
646         }
647
648         return 0;
649
650 fail_bad_mask:
651         rte_flow_error_set(error, EINVAL,
652                            RTE_FLOW_ERROR_TYPE_ITEM, item,
653                            "Bad mask in the IPV6 pattern item");
654         return -rte_errno;
655 }
656
657 /**
658  * Convert TCP item to EFX filter specification.
659  *
660  * @param item[in]
661  *   Item specification. Only source and destination ports fields
662  *   are supported. If the mask is NULL, default mask will be used.
663  *   Ranging is not supported.
664  * @param efx_spec[in, out]
665  *   EFX filter specification to update.
666  * @param[out] error
667  *   Perform verbose error reporting if not NULL.
668  */
669 static int
670 sfc_flow_parse_tcp(const struct rte_flow_item *item,
671                    struct sfc_flow_parse_ctx *parse_ctx,
672                    struct rte_flow_error *error)
673 {
674         int rc;
675         efx_filter_spec_t *efx_spec = parse_ctx->filter;
676         const struct rte_flow_item_tcp *spec = NULL;
677         const struct rte_flow_item_tcp *mask = NULL;
678         const struct rte_flow_item_tcp supp_mask = {
679                 .hdr = {
680                         .src_port = 0xffff,
681                         .dst_port = 0xffff,
682                 }
683         };
684
685         rc = sfc_flow_parse_init(item,
686                                  (const void **)&spec,
687                                  (const void **)&mask,
688                                  &supp_mask,
689                                  &rte_flow_item_tcp_mask,
690                                  sizeof(struct rte_flow_item_tcp),
691                                  error);
692         if (rc != 0)
693                 return rc;
694
695         /*
696          * Filtering by TCP source and destination ports requires
697          * the appropriate IP_PROTO in hardware filters
698          */
699         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
700                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
701                 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
702         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
703                 rte_flow_error_set(error, EINVAL,
704                         RTE_FLOW_ERROR_TYPE_ITEM, item,
705                         "IP proto in pattern with TCP item should be appropriate");
706                 return -rte_errno;
707         }
708
709         if (spec == NULL)
710                 return 0;
711
712         /*
713          * Source and destination ports are in big-endian byte order in item and
714          * in little-endian in efx_spec, so byte swap is used
715          */
716         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
717                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
718                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
719         } else if (mask->hdr.src_port != 0) {
720                 goto fail_bad_mask;
721         }
722
723         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
724                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
725                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
726         } else if (mask->hdr.dst_port != 0) {
727                 goto fail_bad_mask;
728         }
729
730         return 0;
731
732 fail_bad_mask:
733         rte_flow_error_set(error, EINVAL,
734                            RTE_FLOW_ERROR_TYPE_ITEM, item,
735                            "Bad mask in the TCP pattern item");
736         return -rte_errno;
737 }
738
739 /**
740  * Convert UDP item to EFX filter specification.
741  *
742  * @param item[in]
743  *   Item specification. Only source and destination ports fields
744  *   are supported. If the mask is NULL, default mask will be used.
745  *   Ranging is not supported.
746  * @param efx_spec[in, out]
747  *   EFX filter specification to update.
748  * @param[out] error
749  *   Perform verbose error reporting if not NULL.
750  */
751 static int
752 sfc_flow_parse_udp(const struct rte_flow_item *item,
753                    struct sfc_flow_parse_ctx *parse_ctx,
754                    struct rte_flow_error *error)
755 {
756         int rc;
757         efx_filter_spec_t *efx_spec = parse_ctx->filter;
758         const struct rte_flow_item_udp *spec = NULL;
759         const struct rte_flow_item_udp *mask = NULL;
760         const struct rte_flow_item_udp supp_mask = {
761                 .hdr = {
762                         .src_port = 0xffff,
763                         .dst_port = 0xffff,
764                 }
765         };
766
767         rc = sfc_flow_parse_init(item,
768                                  (const void **)&spec,
769                                  (const void **)&mask,
770                                  &supp_mask,
771                                  &rte_flow_item_udp_mask,
772                                  sizeof(struct rte_flow_item_udp),
773                                  error);
774         if (rc != 0)
775                 return rc;
776
777         /*
778          * Filtering by UDP source and destination ports requires
779          * the appropriate IP_PROTO in hardware filters
780          */
781         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
782                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
783                 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
784         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
785                 rte_flow_error_set(error, EINVAL,
786                         RTE_FLOW_ERROR_TYPE_ITEM, item,
787                         "IP proto in pattern with UDP item should be appropriate");
788                 return -rte_errno;
789         }
790
791         if (spec == NULL)
792                 return 0;
793
794         /*
795          * Source and destination ports are in big-endian byte order in item and
796          * in little-endian in efx_spec, so byte swap is used
797          */
798         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
799                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
800                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
801         } else if (mask->hdr.src_port != 0) {
802                 goto fail_bad_mask;
803         }
804
805         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
806                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
807                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
808         } else if (mask->hdr.dst_port != 0) {
809                 goto fail_bad_mask;
810         }
811
812         return 0;
813
814 fail_bad_mask:
815         rte_flow_error_set(error, EINVAL,
816                            RTE_FLOW_ERROR_TYPE_ITEM, item,
817                            "Bad mask in the UDP pattern item");
818         return -rte_errno;
819 }
820
821 /*
822  * Filters for encapsulated packets match based on the EtherType and IP
823  * protocol in the outer frame.
824  */
825 static int
826 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
827                                         efx_filter_spec_t *efx_spec,
828                                         uint8_t ip_proto,
829                                         struct rte_flow_error *error)
830 {
831         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
832                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
833                 efx_spec->efs_ip_proto = ip_proto;
834         } else if (efx_spec->efs_ip_proto != ip_proto) {
835                 switch (ip_proto) {
836                 case EFX_IPPROTO_UDP:
837                         rte_flow_error_set(error, EINVAL,
838                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
839                                 "Outer IP header protocol must be UDP "
840                                 "in VxLAN/GENEVE pattern");
841                         return -rte_errno;
842
843                 case EFX_IPPROTO_GRE:
844                         rte_flow_error_set(error, EINVAL,
845                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
846                                 "Outer IP header protocol must be GRE "
847                                 "in NVGRE pattern");
848                         return -rte_errno;
849
850                 default:
851                         rte_flow_error_set(error, EINVAL,
852                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
853                                 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
854                                 "are supported");
855                         return -rte_errno;
856                 }
857         }
858
859         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
860             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
861             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
862                 rte_flow_error_set(error, EINVAL,
863                         RTE_FLOW_ERROR_TYPE_ITEM, item,
864                         "Outer frame EtherType in pattern with tunneling "
865                         "must be IPv4 or IPv6");
866                 return -rte_errno;
867         }
868
869         return 0;
870 }
871
872 static int
873 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
874                                   const uint8_t *vni_or_vsid_val,
875                                   const uint8_t *vni_or_vsid_mask,
876                                   const struct rte_flow_item *item,
877                                   struct rte_flow_error *error)
878 {
879         const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
880                 0xff, 0xff, 0xff
881         };
882
883         if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
884                    EFX_VNI_OR_VSID_LEN) == 0) {
885                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
886                 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
887                            EFX_VNI_OR_VSID_LEN);
888         } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
889                 rte_flow_error_set(error, EINVAL,
890                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
891                                    "Unsupported VNI/VSID mask");
892                 return -rte_errno;
893         }
894
895         return 0;
896 }
897
898 /**
899  * Convert VXLAN item to EFX filter specification.
900  *
901  * @param item[in]
902  *   Item specification. Only VXLAN network identifier field is supported.
903  *   If the mask is NULL, default mask will be used.
904  *   Ranging is not supported.
905  * @param efx_spec[in, out]
906  *   EFX filter specification to update.
907  * @param[out] error
908  *   Perform verbose error reporting if not NULL.
909  */
910 static int
911 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
912                      struct sfc_flow_parse_ctx *parse_ctx,
913                      struct rte_flow_error *error)
914 {
915         int rc;
916         efx_filter_spec_t *efx_spec = parse_ctx->filter;
917         const struct rte_flow_item_vxlan *spec = NULL;
918         const struct rte_flow_item_vxlan *mask = NULL;
919         const struct rte_flow_item_vxlan supp_mask = {
920                 .vni = { 0xff, 0xff, 0xff }
921         };
922
923         rc = sfc_flow_parse_init(item,
924                                  (const void **)&spec,
925                                  (const void **)&mask,
926                                  &supp_mask,
927                                  &rte_flow_item_vxlan_mask,
928                                  sizeof(struct rte_flow_item_vxlan),
929                                  error);
930         if (rc != 0)
931                 return rc;
932
933         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
934                                                      EFX_IPPROTO_UDP, error);
935         if (rc != 0)
936                 return rc;
937
938         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
939         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
940
941         if (spec == NULL)
942                 return 0;
943
944         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
945                                                mask->vni, item, error);
946
947         return rc;
948 }
949
950 /**
951  * Convert GENEVE item to EFX filter specification.
952  *
953  * @param item[in]
954  *   Item specification. Only Virtual Network Identifier and protocol type
955  *   fields are supported. But protocol type can be only Ethernet (0x6558).
956  *   If the mask is NULL, default mask will be used.
957  *   Ranging is not supported.
958  * @param efx_spec[in, out]
959  *   EFX filter specification to update.
960  * @param[out] error
961  *   Perform verbose error reporting if not NULL.
962  */
963 static int
964 sfc_flow_parse_geneve(const struct rte_flow_item *item,
965                       struct sfc_flow_parse_ctx *parse_ctx,
966                       struct rte_flow_error *error)
967 {
968         int rc;
969         efx_filter_spec_t *efx_spec = parse_ctx->filter;
970         const struct rte_flow_item_geneve *spec = NULL;
971         const struct rte_flow_item_geneve *mask = NULL;
972         const struct rte_flow_item_geneve supp_mask = {
973                 .protocol = RTE_BE16(0xffff),
974                 .vni = { 0xff, 0xff, 0xff }
975         };
976
977         rc = sfc_flow_parse_init(item,
978                                  (const void **)&spec,
979                                  (const void **)&mask,
980                                  &supp_mask,
981                                  &rte_flow_item_geneve_mask,
982                                  sizeof(struct rte_flow_item_geneve),
983                                  error);
984         if (rc != 0)
985                 return rc;
986
987         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
988                                                      EFX_IPPROTO_UDP, error);
989         if (rc != 0)
990                 return rc;
991
992         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
993         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
994
995         if (spec == NULL)
996                 return 0;
997
998         if (mask->protocol == supp_mask.protocol) {
999                 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
1000                         rte_flow_error_set(error, EINVAL,
1001                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1002                                 "GENEVE encap. protocol must be Ethernet "
1003                                 "(0x6558) in the GENEVE pattern item");
1004                         return -rte_errno;
1005                 }
1006         } else if (mask->protocol != 0) {
1007                 rte_flow_error_set(error, EINVAL,
1008                         RTE_FLOW_ERROR_TYPE_ITEM, item,
1009                         "Unsupported mask for GENEVE encap. protocol");
1010                 return -rte_errno;
1011         }
1012
1013         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1014                                                mask->vni, item, error);
1015
1016         return rc;
1017 }
1018
1019 /**
1020  * Convert NVGRE item to EFX filter specification.
1021  *
1022  * @param item[in]
1023  *   Item specification. Only virtual subnet ID field is supported.
1024  *   If the mask is NULL, default mask will be used.
1025  *   Ranging is not supported.
1026  * @param efx_spec[in, out]
1027  *   EFX filter specification to update.
1028  * @param[out] error
1029  *   Perform verbose error reporting if not NULL.
1030  */
1031 static int
1032 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1033                      struct sfc_flow_parse_ctx *parse_ctx,
1034                      struct rte_flow_error *error)
1035 {
1036         int rc;
1037         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1038         const struct rte_flow_item_nvgre *spec = NULL;
1039         const struct rte_flow_item_nvgre *mask = NULL;
1040         const struct rte_flow_item_nvgre supp_mask = {
1041                 .tni = { 0xff, 0xff, 0xff }
1042         };
1043
1044         rc = sfc_flow_parse_init(item,
1045                                  (const void **)&spec,
1046                                  (const void **)&mask,
1047                                  &supp_mask,
1048                                  &rte_flow_item_nvgre_mask,
1049                                  sizeof(struct rte_flow_item_nvgre),
1050                                  error);
1051         if (rc != 0)
1052                 return rc;
1053
1054         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1055                                                      EFX_IPPROTO_GRE, error);
1056         if (rc != 0)
1057                 return rc;
1058
1059         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1060         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1061
1062         if (spec == NULL)
1063                 return 0;
1064
1065         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1066                                                mask->tni, item, error);
1067
1068         return rc;
1069 }
1070
1071 /**
1072  * Convert PPPoEx item to EFX filter specification.
1073  *
1074  * @param item[in]
1075  *   Item specification.
1076  *   Matching on PPPoEx fields is not supported.
1077  *   This item can only be used to set or validate the EtherType filter.
1078  *   Only zero masks are allowed.
1079  *   Ranging is not supported.
1080  * @param efx_spec[in, out]
1081  *   EFX filter specification to update.
1082  * @param[out] error
1083  *   Perform verbose error reporting if not NULL.
1084  */
1085 static int
1086 sfc_flow_parse_pppoex(const struct rte_flow_item *item,
1087                       struct sfc_flow_parse_ctx *parse_ctx,
1088                       struct rte_flow_error *error)
1089 {
1090         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1091         const struct rte_flow_item_pppoe *spec = NULL;
1092         const struct rte_flow_item_pppoe *mask = NULL;
1093         const struct rte_flow_item_pppoe supp_mask = {};
1094         const struct rte_flow_item_pppoe def_mask = {};
1095         uint16_t ether_type;
1096         int rc;
1097
1098         rc = sfc_flow_parse_init(item,
1099                                  (const void **)&spec,
1100                                  (const void **)&mask,
1101                                  &supp_mask,
1102                                  &def_mask,
1103                                  sizeof(struct rte_flow_item_pppoe),
1104                                  error);
1105         if (rc != 0)
1106                 return rc;
1107
1108         if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED)
1109                 ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY;
1110         else
1111                 ether_type = RTE_ETHER_TYPE_PPPOE_SESSION;
1112
1113         if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) {
1114                 if (efx_spec->efs_ether_type != ether_type) {
1115                         rte_flow_error_set(error, EINVAL,
1116                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
1117                                            "Invalid EtherType for a PPPoE flow item");
1118                         return -rte_errno;
1119                 }
1120         } else {
1121                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1122                 efx_spec->efs_ether_type = ether_type;
1123         }
1124
1125         return 0;
1126 }
1127
1128 static const struct sfc_flow_item sfc_flow_items[] = {
1129         {
1130                 .type = RTE_FLOW_ITEM_TYPE_VOID,
1131                 .name = "VOID",
1132                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1133                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1134                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135                 .parse = sfc_flow_parse_void,
1136         },
1137         {
1138                 .type = RTE_FLOW_ITEM_TYPE_ETH,
1139                 .name = "ETH",
1140                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1141                 .layer = SFC_FLOW_ITEM_L2,
1142                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1143                 .parse = sfc_flow_parse_eth,
1144         },
1145         {
1146                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1147                 .name = "VLAN",
1148                 .prev_layer = SFC_FLOW_ITEM_L2,
1149                 .layer = SFC_FLOW_ITEM_L2,
1150                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1151                 .parse = sfc_flow_parse_vlan,
1152         },
1153         {
1154                 .type = RTE_FLOW_ITEM_TYPE_PPPOED,
1155                 .name = "PPPOED",
1156                 .prev_layer = SFC_FLOW_ITEM_L2,
1157                 .layer = SFC_FLOW_ITEM_L2,
1158                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1159                 .parse = sfc_flow_parse_pppoex,
1160         },
1161         {
1162                 .type = RTE_FLOW_ITEM_TYPE_PPPOES,
1163                 .name = "PPPOES",
1164                 .prev_layer = SFC_FLOW_ITEM_L2,
1165                 .layer = SFC_FLOW_ITEM_L2,
1166                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1167                 .parse = sfc_flow_parse_pppoex,
1168         },
1169         {
1170                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1171                 .name = "IPV4",
1172                 .prev_layer = SFC_FLOW_ITEM_L2,
1173                 .layer = SFC_FLOW_ITEM_L3,
1174                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1175                 .parse = sfc_flow_parse_ipv4,
1176         },
1177         {
1178                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1179                 .name = "IPV6",
1180                 .prev_layer = SFC_FLOW_ITEM_L2,
1181                 .layer = SFC_FLOW_ITEM_L3,
1182                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1183                 .parse = sfc_flow_parse_ipv6,
1184         },
1185         {
1186                 .type = RTE_FLOW_ITEM_TYPE_TCP,
1187                 .name = "TCP",
1188                 .prev_layer = SFC_FLOW_ITEM_L3,
1189                 .layer = SFC_FLOW_ITEM_L4,
1190                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1191                 .parse = sfc_flow_parse_tcp,
1192         },
1193         {
1194                 .type = RTE_FLOW_ITEM_TYPE_UDP,
1195                 .name = "UDP",
1196                 .prev_layer = SFC_FLOW_ITEM_L3,
1197                 .layer = SFC_FLOW_ITEM_L4,
1198                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1199                 .parse = sfc_flow_parse_udp,
1200         },
1201         {
1202                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1203                 .name = "VXLAN",
1204                 .prev_layer = SFC_FLOW_ITEM_L4,
1205                 .layer = SFC_FLOW_ITEM_START_LAYER,
1206                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1207                 .parse = sfc_flow_parse_vxlan,
1208         },
1209         {
1210                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1211                 .name = "GENEVE",
1212                 .prev_layer = SFC_FLOW_ITEM_L4,
1213                 .layer = SFC_FLOW_ITEM_START_LAYER,
1214                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1215                 .parse = sfc_flow_parse_geneve,
1216         },
1217         {
1218                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1219                 .name = "NVGRE",
1220                 .prev_layer = SFC_FLOW_ITEM_L3,
1221                 .layer = SFC_FLOW_ITEM_START_LAYER,
1222                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1223                 .parse = sfc_flow_parse_nvgre,
1224         },
1225 };
1226
1227 /*
1228  * Protocol-independent flow API support
1229  */
1230 static int
1231 sfc_flow_parse_attr(struct sfc_adapter *sa,
1232                     const struct rte_flow_attr *attr,
1233                     struct rte_flow *flow,
1234                     struct rte_flow_error *error)
1235 {
1236         struct sfc_flow_spec *spec = &flow->spec;
1237         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1238         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1239         struct sfc_mae *mae = &sa->mae;
1240
1241         if (attr == NULL) {
1242                 rte_flow_error_set(error, EINVAL,
1243                                    RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1244                                    "NULL attribute");
1245                 return -rte_errno;
1246         }
1247         if (attr->group != 0) {
1248                 rte_flow_error_set(error, ENOTSUP,
1249                                    RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1250                                    "Groups are not supported");
1251                 return -rte_errno;
1252         }
1253         if (attr->egress != 0) {
1254                 rte_flow_error_set(error, ENOTSUP,
1255                                    RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1256                                    "Egress is not supported");
1257                 return -rte_errno;
1258         }
1259         if (attr->ingress == 0) {
1260                 rte_flow_error_set(error, ENOTSUP,
1261                                    RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1262                                    "Ingress is compulsory");
1263                 return -rte_errno;
1264         }
1265         if (attr->transfer == 0) {
1266                 if (attr->priority != 0) {
1267                         rte_flow_error_set(error, ENOTSUP,
1268                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1269                                            attr, "Priorities are unsupported");
1270                         return -rte_errno;
1271                 }
1272                 spec->type = SFC_FLOW_SPEC_FILTER;
1273                 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1274                 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1275                 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1276         } else {
1277                 if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1278                         rte_flow_error_set(error, ENOTSUP,
1279                                            RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1280                                            attr, "Transfer is not supported");
1281                         return -rte_errno;
1282                 }
1283                 if (attr->priority > mae->nb_action_rule_prios_max) {
1284                         rte_flow_error_set(error, ENOTSUP,
1285                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1286                                            attr, "Unsupported priority level");
1287                         return -rte_errno;
1288                 }
1289                 spec->type = SFC_FLOW_SPEC_MAE;
1290                 spec_mae->priority = attr->priority;
1291                 spec_mae->match_spec = NULL;
1292                 spec_mae->action_set = NULL;
1293                 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1294         }
1295
1296         return 0;
1297 }
1298
1299 /* Get item from array sfc_flow_items */
1300 static const struct sfc_flow_item *
1301 sfc_flow_get_item(const struct sfc_flow_item *items,
1302                   unsigned int nb_items,
1303                   enum rte_flow_item_type type)
1304 {
1305         unsigned int i;
1306
1307         for (i = 0; i < nb_items; i++)
1308                 if (items[i].type == type)
1309                         return &items[i];
1310
1311         return NULL;
1312 }
1313
1314 int
1315 sfc_flow_parse_pattern(struct sfc_adapter *sa,
1316                        const struct sfc_flow_item *flow_items,
1317                        unsigned int nb_flow_items,
1318                        const struct rte_flow_item pattern[],
1319                        struct sfc_flow_parse_ctx *parse_ctx,
1320                        struct rte_flow_error *error)
1321 {
1322         int rc;
1323         unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1324         boolean_t is_ifrm = B_FALSE;
1325         const struct sfc_flow_item *item;
1326
1327         if (pattern == NULL) {
1328                 rte_flow_error_set(error, EINVAL,
1329                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1330                                    "NULL pattern");
1331                 return -rte_errno;
1332         }
1333
1334         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1335                 item = sfc_flow_get_item(flow_items, nb_flow_items,
1336                                          pattern->type);
1337                 if (item == NULL) {
1338                         rte_flow_error_set(error, ENOTSUP,
1339                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1340                                            "Unsupported pattern item");
1341                         return -rte_errno;
1342                 }
1343
1344                 /*
1345                  * Omitting one or several protocol layers at the beginning
1346                  * of pattern is supported
1347                  */
1348                 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1349                     prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1350                     item->prev_layer != prev_layer) {
1351                         rte_flow_error_set(error, ENOTSUP,
1352                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1353                                            "Unexpected sequence of pattern items");
1354                         return -rte_errno;
1355                 }
1356
1357                 /*
1358                  * Allow only VOID and ETH pattern items in the inner frame.
1359                  * Also check that there is only one tunneling protocol.
1360                  */
1361                 switch (item->type) {
1362                 case RTE_FLOW_ITEM_TYPE_VOID:
1363                 case RTE_FLOW_ITEM_TYPE_ETH:
1364                         break;
1365
1366                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1367                 case RTE_FLOW_ITEM_TYPE_GENEVE:
1368                 case RTE_FLOW_ITEM_TYPE_NVGRE:
1369                         if (is_ifrm) {
1370                                 rte_flow_error_set(error, EINVAL,
1371                                         RTE_FLOW_ERROR_TYPE_ITEM,
1372                                         pattern,
1373                                         "More than one tunneling protocol");
1374                                 return -rte_errno;
1375                         }
1376                         is_ifrm = B_TRUE;
1377                         break;
1378
1379                 default:
1380                         if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1381                             is_ifrm) {
1382                                 rte_flow_error_set(error, EINVAL,
1383                                         RTE_FLOW_ERROR_TYPE_ITEM,
1384                                         pattern,
1385                                         "There is an unsupported pattern item "
1386                                         "in the inner frame");
1387                                 return -rte_errno;
1388                         }
1389                         break;
1390                 }
1391
1392                 if (parse_ctx->type != item->ctx_type) {
1393                         rte_flow_error_set(error, EINVAL,
1394                                         RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1395                                         "Parse context type mismatch");
1396                         return -rte_errno;
1397                 }
1398
1399                 rc = item->parse(pattern, parse_ctx, error);
1400                 if (rc != 0) {
1401                         sfc_err(sa, "failed to parse item %s: %s",
1402                                 item->name, strerror(-rc));
1403                         return rc;
1404                 }
1405
1406                 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1407                         prev_layer = item->layer;
1408         }
1409
1410         return 0;
1411 }
1412
1413 static int
1414 sfc_flow_parse_queue(struct sfc_adapter *sa,
1415                      const struct rte_flow_action_queue *queue,
1416                      struct rte_flow *flow)
1417 {
1418         struct sfc_flow_spec *spec = &flow->spec;
1419         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1420         struct sfc_rxq *rxq;
1421         struct sfc_rxq_info *rxq_info;
1422
1423         if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count)
1424                 return -EINVAL;
1425
1426         rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index);
1427         spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1428
1429         rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1430         spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1431                                             SFC_RXQ_FLAG_RSS_HASH);
1432
1433         return 0;
1434 }
1435
1436 static int
1437 sfc_flow_parse_rss(struct sfc_adapter *sa,
1438                    const struct rte_flow_action_rss *action_rss,
1439                    struct rte_flow *flow)
1440 {
1441         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1442         struct sfc_rss *rss = &sas->rss;
1443         sfc_ethdev_qid_t ethdev_qid;
1444         struct sfc_rxq *rxq;
1445         unsigned int rxq_hw_index_min;
1446         unsigned int rxq_hw_index_max;
1447         efx_rx_hash_type_t efx_hash_types;
1448         const uint8_t *rss_key;
1449         struct sfc_flow_spec *spec = &flow->spec;
1450         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1451         struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1452         unsigned int i;
1453
1454         if (action_rss->queue_num == 0)
1455                 return -EINVAL;
1456
1457         ethdev_qid = sfc_sa2shared(sa)->ethdev_rxq_count - 1;
1458         rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1459         rxq_hw_index_min = rxq->hw_index;
1460         rxq_hw_index_max = 0;
1461
1462         for (i = 0; i < action_rss->queue_num; ++i) {
1463                 ethdev_qid = action_rss->queue[i];
1464
1465                 if ((unsigned int)ethdev_qid >=
1466                     sfc_sa2shared(sa)->ethdev_rxq_count)
1467                         return -EINVAL;
1468
1469                 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1470
1471                 if (rxq->hw_index < rxq_hw_index_min)
1472                         rxq_hw_index_min = rxq->hw_index;
1473
1474                 if (rxq->hw_index > rxq_hw_index_max)
1475                         rxq_hw_index_max = rxq->hw_index;
1476         }
1477
1478         switch (action_rss->func) {
1479         case RTE_ETH_HASH_FUNCTION_DEFAULT:
1480         case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1481                 break;
1482         default:
1483                 return -EINVAL;
1484         }
1485
1486         if (action_rss->level)
1487                 return -EINVAL;
1488
1489         /*
1490          * Dummy RSS action with only one queue and no specific settings
1491          * for hash types and key does not require dedicated RSS context
1492          * and may be simplified to single queue action.
1493          */
1494         if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1495             action_rss->key_len == 0) {
1496                 spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1497                 return 0;
1498         }
1499
1500         if (action_rss->types) {
1501                 int rc;
1502
1503                 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1504                                           &efx_hash_types);
1505                 if (rc != 0)
1506                         return -rc;
1507         } else {
1508                 unsigned int i;
1509
1510                 efx_hash_types = 0;
1511                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
1512                         efx_hash_types |= rss->hf_map[i].efx;
1513         }
1514
1515         if (action_rss->key_len) {
1516                 if (action_rss->key_len != sizeof(rss->key))
1517                         return -EINVAL;
1518
1519                 rss_key = action_rss->key;
1520         } else {
1521                 rss_key = rss->key;
1522         }
1523
1524         spec_filter->rss = B_TRUE;
1525
1526         sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1527         sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1528         sfc_rss_conf->rss_hash_types = efx_hash_types;
1529         rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1530
1531         for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1532                 unsigned int nb_queues = action_rss->queue_num;
1533                 struct sfc_rxq *rxq;
1534
1535                 ethdev_qid = action_rss->queue[i % nb_queues];
1536                 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1537                 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1538         }
1539
1540         return 0;
1541 }
1542
1543 static int
1544 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1545                     unsigned int filters_count)
1546 {
1547         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1548         unsigned int i;
1549         int ret = 0;
1550
1551         for (i = 0; i < filters_count; i++) {
1552                 int rc;
1553
1554                 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1555                 if (ret == 0 && rc != 0) {
1556                         sfc_err(sa, "failed to remove filter specification "
1557                                 "(rc = %d)", rc);
1558                         ret = rc;
1559                 }
1560         }
1561
1562         return ret;
1563 }
1564
1565 static int
1566 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1567 {
1568         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1569         unsigned int i;
1570         int rc = 0;
1571
1572         for (i = 0; i < spec_filter->count; i++) {
1573                 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1574                 if (rc != 0) {
1575                         sfc_flow_spec_flush(sa, spec, i);
1576                         break;
1577                 }
1578         }
1579
1580         return rc;
1581 }
1582
1583 static int
1584 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1585 {
1586         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1587
1588         return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1589 }
1590
1591 static int
1592 sfc_flow_filter_insert(struct sfc_adapter *sa,
1593                        struct rte_flow *flow)
1594 {
1595         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1596         struct sfc_rss *rss = &sas->rss;
1597         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1598         struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1599         uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1600         boolean_t create_context;
1601         unsigned int i;
1602         int rc = 0;
1603
1604         create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1605                         rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1606
1607         if (create_context) {
1608                 unsigned int rss_spread;
1609                 unsigned int rss_hash_types;
1610                 uint8_t *rss_key;
1611
1612                 if (spec_filter->rss) {
1613                         rss_spread = MIN(flow_rss->rxq_hw_index_max -
1614                                         flow_rss->rxq_hw_index_min + 1,
1615                                         EFX_MAXRSS);
1616                         rss_hash_types = flow_rss->rss_hash_types;
1617                         rss_key = flow_rss->rss_key;
1618                 } else {
1619                         /*
1620                          * Initialize dummy RSS context parameters to have
1621                          * valid RSS hash. Use default RSS hash function and
1622                          * key.
1623                          */
1624                         rss_spread = 1;
1625                         rss_hash_types = rss->hash_types;
1626                         rss_key = rss->key;
1627                 }
1628
1629                 rc = efx_rx_scale_context_alloc(sa->nic,
1630                                                 EFX_RX_SCALE_EXCLUSIVE,
1631                                                 rss_spread,
1632                                                 &efs_rss_context);
1633                 if (rc != 0)
1634                         goto fail_scale_context_alloc;
1635
1636                 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1637                                            rss->hash_alg,
1638                                            rss_hash_types, B_TRUE);
1639                 if (rc != 0)
1640                         goto fail_scale_mode_set;
1641
1642                 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1643                                           rss_key, sizeof(rss->key));
1644                 if (rc != 0)
1645                         goto fail_scale_key_set;
1646         } else {
1647                 efs_rss_context = rss->dummy_rss_context;
1648         }
1649
1650         if (spec_filter->rss || spec_filter->rss_hash_required) {
1651                 /*
1652                  * At this point, fully elaborated filter specifications
1653                  * have been produced from the template. To make sure that
1654                  * RSS behaviour is consistent between them, set the same
1655                  * RSS context value everywhere.
1656                  */
1657                 for (i = 0; i < spec_filter->count; i++) {
1658                         efx_filter_spec_t *spec = &spec_filter->filters[i];
1659
1660                         spec->efs_rss_context = efs_rss_context;
1661                         spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1662                         if (spec_filter->rss)
1663                                 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1664                 }
1665         }
1666
1667         rc = sfc_flow_spec_insert(sa, &flow->spec);
1668         if (rc != 0)
1669                 goto fail_filter_insert;
1670
1671         if (create_context) {
1672                 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1673                 unsigned int *tbl;
1674
1675                 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1676
1677                 /*
1678                  * Scale table is set after filter insertion because
1679                  * the table entries are relative to the base RxQ ID
1680                  * and the latter is submitted to the HW by means of
1681                  * inserting a filter, so by the time of the request
1682                  * the HW knows all the information needed to verify
1683                  * the table entries, and the operation will succeed
1684                  */
1685                 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1686                                           tbl, RTE_DIM(flow_rss->rss_tbl));
1687                 if (rc != 0)
1688                         goto fail_scale_tbl_set;
1689
1690                 /* Remember created dummy RSS context */
1691                 if (!spec_filter->rss)
1692                         rss->dummy_rss_context = efs_rss_context;
1693         }
1694
1695         return 0;
1696
1697 fail_scale_tbl_set:
1698         sfc_flow_spec_remove(sa, &flow->spec);
1699
1700 fail_filter_insert:
1701 fail_scale_key_set:
1702 fail_scale_mode_set:
1703         if (create_context)
1704                 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1705
1706 fail_scale_context_alloc:
1707         return rc;
1708 }
1709
1710 static int
1711 sfc_flow_filter_remove(struct sfc_adapter *sa,
1712                        struct rte_flow *flow)
1713 {
1714         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1715         int rc = 0;
1716
1717         rc = sfc_flow_spec_remove(sa, &flow->spec);
1718         if (rc != 0)
1719                 return rc;
1720
1721         if (spec_filter->rss) {
1722                 /*
1723                  * All specifications for a given flow rule have the same RSS
1724                  * context, so that RSS context value is taken from the first
1725                  * filter specification
1726                  */
1727                 efx_filter_spec_t *spec = &spec_filter->filters[0];
1728
1729                 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1730         }
1731
1732         return rc;
1733 }
1734
1735 static int
1736 sfc_flow_parse_mark(struct sfc_adapter *sa,
1737                     const struct rte_flow_action_mark *mark,
1738                     struct rte_flow *flow)
1739 {
1740         struct sfc_flow_spec *spec = &flow->spec;
1741         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1742         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1743
1744         if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1745                 return EINVAL;
1746
1747         spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1748         spec_filter->template.efs_mark = mark->id;
1749
1750         return 0;
1751 }
1752
1753 static int
1754 sfc_flow_parse_actions(struct sfc_adapter *sa,
1755                        const struct rte_flow_action actions[],
1756                        struct rte_flow *flow,
1757                        struct rte_flow_error *error)
1758 {
1759         int rc;
1760         struct sfc_flow_spec *spec = &flow->spec;
1761         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1762         const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1763         const uint64_t rx_metadata = sa->negotiated_rx_metadata;
1764         uint32_t actions_set = 0;
1765         const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1766                                            (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1767                                            (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1768         const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1769                                            (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1770
1771         if (actions == NULL) {
1772                 rte_flow_error_set(error, EINVAL,
1773                                    RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1774                                    "NULL actions");
1775                 return -rte_errno;
1776         }
1777
1778         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1779                 switch (actions->type) {
1780                 case RTE_FLOW_ACTION_TYPE_VOID:
1781                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1782                                                actions_set);
1783                         break;
1784
1785                 case RTE_FLOW_ACTION_TYPE_QUEUE:
1786                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1787                                                actions_set);
1788                         if ((actions_set & fate_actions_mask) != 0)
1789                                 goto fail_fate_actions;
1790
1791                         rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1792                         if (rc != 0) {
1793                                 rte_flow_error_set(error, EINVAL,
1794                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1795                                         "Bad QUEUE action");
1796                                 return -rte_errno;
1797                         }
1798                         break;
1799
1800                 case RTE_FLOW_ACTION_TYPE_RSS:
1801                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1802                                                actions_set);
1803                         if ((actions_set & fate_actions_mask) != 0)
1804                                 goto fail_fate_actions;
1805
1806                         rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1807                         if (rc != 0) {
1808                                 rte_flow_error_set(error, -rc,
1809                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1810                                         "Bad RSS action");
1811                                 return -rte_errno;
1812                         }
1813                         break;
1814
1815                 case RTE_FLOW_ACTION_TYPE_DROP:
1816                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1817                                                actions_set);
1818                         if ((actions_set & fate_actions_mask) != 0)
1819                                 goto fail_fate_actions;
1820
1821                         spec_filter->template.efs_dmaq_id =
1822                                 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1823                         break;
1824
1825                 case RTE_FLOW_ACTION_TYPE_FLAG:
1826                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1827                                                actions_set);
1828                         if ((actions_set & mark_actions_mask) != 0)
1829                                 goto fail_actions_overlap;
1830
1831                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1832                                 rte_flow_error_set(error, ENOTSUP,
1833                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1834                                         "FLAG action is not supported on the current Rx datapath");
1835                                 return -rte_errno;
1836                         } else if ((rx_metadata &
1837                                     RTE_ETH_RX_METADATA_USER_FLAG) == 0) {
1838                                 rte_flow_error_set(error, ENOTSUP,
1839                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1840                                         "flag delivery has not been negotiated");
1841                                 return -rte_errno;
1842                         }
1843
1844                         spec_filter->template.efs_flags |=
1845                                 EFX_FILTER_FLAG_ACTION_FLAG;
1846                         break;
1847
1848                 case RTE_FLOW_ACTION_TYPE_MARK:
1849                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1850                                                actions_set);
1851                         if ((actions_set & mark_actions_mask) != 0)
1852                                 goto fail_actions_overlap;
1853
1854                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1855                                 rte_flow_error_set(error, ENOTSUP,
1856                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1857                                         "MARK action is not supported on the current Rx datapath");
1858                                 return -rte_errno;
1859                         } else if ((rx_metadata &
1860                                     RTE_ETH_RX_METADATA_USER_MARK) == 0) {
1861                                 rte_flow_error_set(error, ENOTSUP,
1862                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1863                                         "mark delivery has not been negotiated");
1864                                 return -rte_errno;
1865                         }
1866
1867                         rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1868                         if (rc != 0) {
1869                                 rte_flow_error_set(error, rc,
1870                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1871                                         "Bad MARK action");
1872                                 return -rte_errno;
1873                         }
1874                         break;
1875
1876                 default:
1877                         rte_flow_error_set(error, ENOTSUP,
1878                                            RTE_FLOW_ERROR_TYPE_ACTION, actions,
1879                                            "Action is not supported");
1880                         return -rte_errno;
1881                 }
1882
1883                 actions_set |= (1UL << actions->type);
1884         }
1885
1886         /* When fate is unknown, drop traffic. */
1887         if ((actions_set & fate_actions_mask) == 0) {
1888                 spec_filter->template.efs_dmaq_id =
1889                         EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1890         }
1891
1892         return 0;
1893
1894 fail_fate_actions:
1895         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1896                            "Cannot combine several fate-deciding actions, "
1897                            "choose between QUEUE, RSS or DROP");
1898         return -rte_errno;
1899
1900 fail_actions_overlap:
1901         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1902                            "Overlapping actions are not supported");
1903         return -rte_errno;
1904 }
1905
1906 /**
1907  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1908  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1909  * specifications after copying.
1910  *
1911  * @param spec[in, out]
1912  *   SFC flow specification to update.
1913  * @param filters_count_for_one_val[in]
1914  *   How many specifications should have the same match flag, what is the
1915  *   number of specifications before copying.
1916  * @param error[out]
1917  *   Perform verbose error reporting if not NULL.
1918  */
1919 static int
1920 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1921                                unsigned int filters_count_for_one_val,
1922                                struct rte_flow_error *error)
1923 {
1924         unsigned int i;
1925         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1926         static const efx_filter_match_flags_t vals[] = {
1927                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1928                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1929         };
1930
1931         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1932                 rte_flow_error_set(error, EINVAL,
1933                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1934                         "Number of specifications is incorrect while copying "
1935                         "by unknown destination flags");
1936                 return -rte_errno;
1937         }
1938
1939         for (i = 0; i < spec_filter->count; i++) {
1940                 /* The check above ensures that divisor can't be zero here */
1941                 spec_filter->filters[i].efs_match_flags |=
1942                         vals[i / filters_count_for_one_val];
1943         }
1944
1945         return 0;
1946 }
1947
1948 /**
1949  * Check that the following conditions are met:
1950  * - the list of supported filters has a filter
1951  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1952  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1953  *   be inserted.
1954  *
1955  * @param match[in]
1956  *   The match flags of filter.
1957  * @param spec[in]
1958  *   Specification to be supplemented.
1959  * @param filter[in]
1960  *   SFC filter with list of supported filters.
1961  */
1962 static boolean_t
1963 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1964                                  __rte_unused efx_filter_spec_t *spec,
1965                                  struct sfc_filter *filter)
1966 {
1967         unsigned int i;
1968         efx_filter_match_flags_t match_mcast_dst;
1969
1970         match_mcast_dst =
1971                 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1972                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1973         for (i = 0; i < filter->supported_match_num; i++) {
1974                 if (match_mcast_dst == filter->supported_match[i])
1975                         return B_TRUE;
1976         }
1977
1978         return B_FALSE;
1979 }
1980
1981 /**
1982  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1983  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1984  * specifications after copying.
1985  *
1986  * @param spec[in, out]
1987  *   SFC flow specification to update.
1988  * @param filters_count_for_one_val[in]
1989  *   How many specifications should have the same EtherType value, what is the
1990  *   number of specifications before copying.
1991  * @param error[out]
1992  *   Perform verbose error reporting if not NULL.
1993  */
1994 static int
1995 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1996                         unsigned int filters_count_for_one_val,
1997                         struct rte_flow_error *error)
1998 {
1999         unsigned int i;
2000         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2001         static const uint16_t vals[] = {
2002                 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
2003         };
2004
2005         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2006                 rte_flow_error_set(error, EINVAL,
2007                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2008                         "Number of specifications is incorrect "
2009                         "while copying by Ethertype");
2010                 return -rte_errno;
2011         }
2012
2013         for (i = 0; i < spec_filter->count; i++) {
2014                 spec_filter->filters[i].efs_match_flags |=
2015                         EFX_FILTER_MATCH_ETHER_TYPE;
2016
2017                 /*
2018                  * The check above ensures that
2019                  * filters_count_for_one_val is not 0
2020                  */
2021                 spec_filter->filters[i].efs_ether_type =
2022                         vals[i / filters_count_for_one_val];
2023         }
2024
2025         return 0;
2026 }
2027
2028 /**
2029  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
2030  * in the same specifications after copying.
2031  *
2032  * @param spec[in, out]
2033  *   SFC flow specification to update.
2034  * @param filters_count_for_one_val[in]
2035  *   How many specifications should have the same match flag, what is the
2036  *   number of specifications before copying.
2037  * @param error[out]
2038  *   Perform verbose error reporting if not NULL.
2039  */
2040 static int
2041 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
2042                             unsigned int filters_count_for_one_val,
2043                             struct rte_flow_error *error)
2044 {
2045         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2046         unsigned int i;
2047
2048         if (filters_count_for_one_val != spec_filter->count) {
2049                 rte_flow_error_set(error, EINVAL,
2050                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2051                         "Number of specifications is incorrect "
2052                         "while copying by outer VLAN ID");
2053                 return -rte_errno;
2054         }
2055
2056         for (i = 0; i < spec_filter->count; i++) {
2057                 spec_filter->filters[i].efs_match_flags |=
2058                         EFX_FILTER_MATCH_OUTER_VID;
2059
2060                 spec_filter->filters[i].efs_outer_vid = 0;
2061         }
2062
2063         return 0;
2064 }
2065
2066 /**
2067  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
2068  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
2069  * specifications after copying.
2070  *
2071  * @param spec[in, out]
2072  *   SFC flow specification to update.
2073  * @param filters_count_for_one_val[in]
2074  *   How many specifications should have the same match flag, what is the
2075  *   number of specifications before copying.
2076  * @param error[out]
2077  *   Perform verbose error reporting if not NULL.
2078  */
2079 static int
2080 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
2081                                     unsigned int filters_count_for_one_val,
2082                                     struct rte_flow_error *error)
2083 {
2084         unsigned int i;
2085         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2086         static const efx_filter_match_flags_t vals[] = {
2087                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2088                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
2089         };
2090
2091         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2092                 rte_flow_error_set(error, EINVAL,
2093                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2094                         "Number of specifications is incorrect while copying "
2095                         "by inner frame unknown destination flags");
2096                 return -rte_errno;
2097         }
2098
2099         for (i = 0; i < spec_filter->count; i++) {
2100                 /* The check above ensures that divisor can't be zero here */
2101                 spec_filter->filters[i].efs_match_flags |=
2102                         vals[i / filters_count_for_one_val];
2103         }
2104
2105         return 0;
2106 }
2107
2108 /**
2109  * Check that the following conditions are met:
2110  * - the specification corresponds to a filter for encapsulated traffic
2111  * - the list of supported filters has a filter
2112  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2113  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2114  *   be inserted.
2115  *
2116  * @param match[in]
2117  *   The match flags of filter.
2118  * @param spec[in]
2119  *   Specification to be supplemented.
2120  * @param filter[in]
2121  *   SFC filter with list of supported filters.
2122  */
2123 static boolean_t
2124 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2125                                       efx_filter_spec_t *spec,
2126                                       struct sfc_filter *filter)
2127 {
2128         unsigned int i;
2129         efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2130         efx_filter_match_flags_t match_mcast_dst;
2131
2132         if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2133                 return B_FALSE;
2134
2135         match_mcast_dst =
2136                 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2137                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2138         for (i = 0; i < filter->supported_match_num; i++) {
2139                 if (match_mcast_dst == filter->supported_match[i])
2140                         return B_TRUE;
2141         }
2142
2143         return B_FALSE;
2144 }
2145
2146 /**
2147  * Check that the list of supported filters has a filter that differs
2148  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2149  * in this case that filter will be used and the flag
2150  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2151  *
2152  * @param match[in]
2153  *   The match flags of filter.
2154  * @param spec[in]
2155  *   Specification to be supplemented.
2156  * @param filter[in]
2157  *   SFC filter with list of supported filters.
2158  */
2159 static boolean_t
2160 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2161                               __rte_unused efx_filter_spec_t *spec,
2162                               struct sfc_filter *filter)
2163 {
2164         unsigned int i;
2165         efx_filter_match_flags_t match_without_vid =
2166                 match & ~EFX_FILTER_MATCH_OUTER_VID;
2167
2168         for (i = 0; i < filter->supported_match_num; i++) {
2169                 if (match_without_vid == filter->supported_match[i])
2170                         return B_FALSE;
2171         }
2172
2173         return B_TRUE;
2174 }
2175
2176 /*
2177  * Match flags that can be automatically added to filters.
2178  * Selecting the last minimum when searching for the copy flag ensures that the
2179  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2180  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2181  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2182  * filters.
2183  */
2184 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2185         {
2186                 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2187                 .vals_count = 2,
2188                 .set_vals = sfc_flow_set_unknown_dst_flags,
2189                 .spec_check = sfc_flow_check_unknown_dst_flags,
2190         },
2191         {
2192                 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
2193                 .vals_count = 2,
2194                 .set_vals = sfc_flow_set_ethertypes,
2195                 .spec_check = NULL,
2196         },
2197         {
2198                 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2199                 .vals_count = 2,
2200                 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2201                 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2202         },
2203         {
2204                 .flag = EFX_FILTER_MATCH_OUTER_VID,
2205                 .vals_count = 1,
2206                 .set_vals = sfc_flow_set_outer_vid_flag,
2207                 .spec_check = sfc_flow_check_outer_vid_flag,
2208         },
2209 };
2210
2211 /* Get item from array sfc_flow_copy_flags */
2212 static const struct sfc_flow_copy_flag *
2213 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2214 {
2215         unsigned int i;
2216
2217         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2218                 if (sfc_flow_copy_flags[i].flag == flag)
2219                         return &sfc_flow_copy_flags[i];
2220         }
2221
2222         return NULL;
2223 }
2224
2225 /**
2226  * Make copies of the specifications, set match flag and values
2227  * of the field that corresponds to it.
2228  *
2229  * @param spec[in, out]
2230  *   SFC flow specification to update.
2231  * @param flag[in]
2232  *   The match flag to add.
2233  * @param error[out]
2234  *   Perform verbose error reporting if not NULL.
2235  */
2236 static int
2237 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2238                              efx_filter_match_flags_t flag,
2239                              struct rte_flow_error *error)
2240 {
2241         unsigned int i;
2242         unsigned int new_filters_count;
2243         unsigned int filters_count_for_one_val;
2244         const struct sfc_flow_copy_flag *copy_flag;
2245         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2246         int rc;
2247
2248         copy_flag = sfc_flow_get_copy_flag(flag);
2249         if (copy_flag == NULL) {
2250                 rte_flow_error_set(error, ENOTSUP,
2251                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2252                                    "Unsupported spec field for copying");
2253                 return -rte_errno;
2254         }
2255
2256         new_filters_count = spec_filter->count * copy_flag->vals_count;
2257         if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2258                 rte_flow_error_set(error, EINVAL,
2259                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2260                         "Too much EFX specifications in the flow rule");
2261                 return -rte_errno;
2262         }
2263
2264         /* Copy filters specifications */
2265         for (i = spec_filter->count; i < new_filters_count; i++) {
2266                 spec_filter->filters[i] =
2267                         spec_filter->filters[i - spec_filter->count];
2268         }
2269
2270         filters_count_for_one_val = spec_filter->count;
2271         spec_filter->count = new_filters_count;
2272
2273         rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2274         if (rc != 0)
2275                 return rc;
2276
2277         return 0;
2278 }
2279
2280 /**
2281  * Check that the given set of match flags missing in the original filter spec
2282  * could be covered by adding spec copies which specify the corresponding
2283  * flags and packet field values to match.
2284  *
2285  * @param miss_flags[in]
2286  *   Flags that are missing until the supported filter.
2287  * @param spec[in]
2288  *   Specification to be supplemented.
2289  * @param filter[in]
2290  *   SFC filter.
2291  *
2292  * @return
2293  *   Number of specifications after copy or 0, if the flags can not be added.
2294  */
2295 static unsigned int
2296 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2297                              efx_filter_spec_t *spec,
2298                              struct sfc_filter *filter)
2299 {
2300         unsigned int i;
2301         efx_filter_match_flags_t copy_flags = 0;
2302         efx_filter_match_flags_t flag;
2303         efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2304         sfc_flow_spec_check *check;
2305         unsigned int multiplier = 1;
2306
2307         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2308                 flag = sfc_flow_copy_flags[i].flag;
2309                 check = sfc_flow_copy_flags[i].spec_check;
2310                 if ((flag & miss_flags) == flag) {
2311                         if (check != NULL && (!check(match, spec, filter)))
2312                                 continue;
2313
2314                         copy_flags |= flag;
2315                         multiplier *= sfc_flow_copy_flags[i].vals_count;
2316                 }
2317         }
2318
2319         if (copy_flags == miss_flags)
2320                 return multiplier;
2321
2322         return 0;
2323 }
2324
2325 /**
2326  * Attempt to supplement the specification template to the minimally
2327  * supported set of match flags. To do this, it is necessary to copy
2328  * the specifications, filling them with the values of fields that
2329  * correspond to the missing flags.
2330  * The necessary and sufficient filter is built from the fewest number
2331  * of copies which could be made to cover the minimally required set
2332  * of flags.
2333  *
2334  * @param sa[in]
2335  *   SFC adapter.
2336  * @param spec[in, out]
2337  *   SFC flow specification to update.
2338  * @param error[out]
2339  *   Perform verbose error reporting if not NULL.
2340  */
2341 static int
2342 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2343                                struct sfc_flow_spec *spec,
2344                                struct rte_flow_error *error)
2345 {
2346         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2347         struct sfc_filter *filter = &sa->filter;
2348         efx_filter_match_flags_t miss_flags;
2349         efx_filter_match_flags_t min_miss_flags = 0;
2350         efx_filter_match_flags_t match;
2351         unsigned int min_multiplier = UINT_MAX;
2352         unsigned int multiplier;
2353         unsigned int i;
2354         int rc;
2355
2356         match = spec_filter->template.efs_match_flags;
2357         for (i = 0; i < filter->supported_match_num; i++) {
2358                 if ((match & filter->supported_match[i]) == match) {
2359                         miss_flags = filter->supported_match[i] & (~match);
2360                         multiplier = sfc_flow_check_missing_flags(miss_flags,
2361                                 &spec_filter->template, filter);
2362                         if (multiplier > 0) {
2363                                 if (multiplier <= min_multiplier) {
2364                                         min_multiplier = multiplier;
2365                                         min_miss_flags = miss_flags;
2366                                 }
2367                         }
2368                 }
2369         }
2370
2371         if (min_multiplier == UINT_MAX) {
2372                 rte_flow_error_set(error, ENOTSUP,
2373                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2374                                    "The flow rule pattern is unsupported");
2375                 return -rte_errno;
2376         }
2377
2378         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2379                 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2380
2381                 if ((flag & min_miss_flags) == flag) {
2382                         rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2383                         if (rc != 0)
2384                                 return rc;
2385                 }
2386         }
2387
2388         return 0;
2389 }
2390
2391 /**
2392  * Check that set of match flags is referred to by a filter. Filter is
2393  * described by match flags with the ability to add OUTER_VID and INNER_VID
2394  * flags.
2395  *
2396  * @param match_flags[in]
2397  *   Set of match flags.
2398  * @param flags_pattern[in]
2399  *   Pattern of filter match flags.
2400  */
2401 static boolean_t
2402 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2403                             efx_filter_match_flags_t flags_pattern)
2404 {
2405         if ((match_flags & flags_pattern) != flags_pattern)
2406                 return B_FALSE;
2407
2408         switch (match_flags & ~flags_pattern) {
2409         case 0:
2410         case EFX_FILTER_MATCH_OUTER_VID:
2411         case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2412                 return B_TRUE;
2413         default:
2414                 return B_FALSE;
2415         }
2416 }
2417
2418 /**
2419  * Check whether the spec maps to a hardware filter which is known to be
2420  * ineffective despite being valid.
2421  *
2422  * @param filter[in]
2423  *   SFC filter with list of supported filters.
2424  * @param spec[in]
2425  *   SFC flow specification.
2426  */
2427 static boolean_t
2428 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2429                                   struct sfc_flow_spec *spec)
2430 {
2431         unsigned int i;
2432         uint16_t ether_type;
2433         uint8_t ip_proto;
2434         efx_filter_match_flags_t match_flags;
2435         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2436
2437         for (i = 0; i < spec_filter->count; i++) {
2438                 match_flags = spec_filter->filters[i].efs_match_flags;
2439
2440                 if (sfc_flow_is_match_with_vids(match_flags,
2441                                                 EFX_FILTER_MATCH_ETHER_TYPE) ||
2442                     sfc_flow_is_match_with_vids(match_flags,
2443                                                 EFX_FILTER_MATCH_ETHER_TYPE |
2444                                                 EFX_FILTER_MATCH_LOC_MAC)) {
2445                         ether_type = spec_filter->filters[i].efs_ether_type;
2446                         if (filter->supports_ip_proto_or_addr_filter &&
2447                             (ether_type == EFX_ETHER_TYPE_IPV4 ||
2448                              ether_type == EFX_ETHER_TYPE_IPV6))
2449                                 return B_TRUE;
2450                 } else if (sfc_flow_is_match_with_vids(match_flags,
2451                                 EFX_FILTER_MATCH_ETHER_TYPE |
2452                                 EFX_FILTER_MATCH_IP_PROTO) ||
2453                            sfc_flow_is_match_with_vids(match_flags,
2454                                 EFX_FILTER_MATCH_ETHER_TYPE |
2455                                 EFX_FILTER_MATCH_IP_PROTO |
2456                                 EFX_FILTER_MATCH_LOC_MAC)) {
2457                         ip_proto = spec_filter->filters[i].efs_ip_proto;
2458                         if (filter->supports_rem_or_local_port_filter &&
2459                             (ip_proto == EFX_IPPROTO_TCP ||
2460                              ip_proto == EFX_IPPROTO_UDP))
2461                                 return B_TRUE;
2462                 }
2463         }
2464
2465         return B_FALSE;
2466 }
2467
2468 static int
2469 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2470                               struct rte_flow *flow,
2471                               struct rte_flow_error *error)
2472 {
2473         struct sfc_flow_spec *spec = &flow->spec;
2474         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2475         efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2476         efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2477         int rc;
2478
2479         /* Initialize the first filter spec with template */
2480         spec_filter->filters[0] = *spec_tmpl;
2481         spec_filter->count = 1;
2482
2483         if (!sfc_filter_is_match_supported(sa, match_flags)) {
2484                 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2485                 if (rc != 0)
2486                         return rc;
2487         }
2488
2489         if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2490                 rte_flow_error_set(error, ENOTSUP,
2491                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2492                         "The flow rule pattern is unsupported");
2493                 return -rte_errno;
2494         }
2495
2496         return 0;
2497 }
2498
2499 static int
2500 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2501                              const struct rte_flow_item pattern[],
2502                              const struct rte_flow_action actions[],
2503                              struct rte_flow *flow,
2504                              struct rte_flow_error *error)
2505 {
2506         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2507         struct sfc_flow_spec *spec = &flow->spec;
2508         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2509         struct sfc_flow_parse_ctx ctx;
2510         int rc;
2511
2512         ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2513         ctx.filter = &spec_filter->template;
2514
2515         rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items),
2516                                     pattern, &ctx, error);
2517         if (rc != 0)
2518                 goto fail_bad_value;
2519
2520         rc = sfc_flow_parse_actions(sa, actions, flow, error);
2521         if (rc != 0)
2522                 goto fail_bad_value;
2523
2524         rc = sfc_flow_validate_match_flags(sa, flow, error);
2525         if (rc != 0)
2526                 goto fail_bad_value;
2527
2528         return 0;
2529
2530 fail_bad_value:
2531         return rc;
2532 }
2533
2534 static int
2535 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2536                           const struct rte_flow_item pattern[],
2537                           const struct rte_flow_action actions[],
2538                           struct rte_flow *flow,
2539                           struct rte_flow_error *error)
2540 {
2541         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2542         struct sfc_flow_spec *spec = &flow->spec;
2543         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2544         int rc;
2545
2546         rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2547         if (rc != 0)
2548                 return rc;
2549
2550         rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error);
2551         if (rc != 0)
2552                 return rc;
2553
2554         return 0;
2555 }
2556
2557 static int
2558 sfc_flow_parse(struct rte_eth_dev *dev,
2559                const struct rte_flow_attr *attr,
2560                const struct rte_flow_item pattern[],
2561                const struct rte_flow_action actions[],
2562                struct rte_flow *flow,
2563                struct rte_flow_error *error)
2564 {
2565         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2566         const struct sfc_flow_ops_by_spec *ops;
2567         int rc;
2568
2569         rc = sfc_flow_parse_attr(sa, attr, flow, error);
2570         if (rc != 0)
2571                 return rc;
2572
2573         ops = sfc_flow_get_ops_by_spec(flow);
2574         if (ops == NULL || ops->parse == NULL) {
2575                 rte_flow_error_set(error, ENOTSUP,
2576                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2577                                    "No backend to handle this flow");
2578                 return -rte_errno;
2579         }
2580
2581         return ops->parse(dev, pattern, actions, flow, error);
2582 }
2583
2584 static struct rte_flow *
2585 sfc_flow_zmalloc(struct rte_flow_error *error)
2586 {
2587         struct rte_flow *flow;
2588
2589         flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2590         if (flow == NULL) {
2591                 rte_flow_error_set(error, ENOMEM,
2592                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2593                                    "Failed to allocate memory");
2594         }
2595
2596         return flow;
2597 }
2598
2599 static void
2600 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2601 {
2602         const struct sfc_flow_ops_by_spec *ops;
2603
2604         ops = sfc_flow_get_ops_by_spec(flow);
2605         if (ops != NULL && ops->cleanup != NULL)
2606                 ops->cleanup(sa, flow);
2607
2608         rte_free(flow);
2609 }
2610
2611 static int
2612 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2613                 struct rte_flow_error *error)
2614 {
2615         const struct sfc_flow_ops_by_spec *ops;
2616         int rc;
2617
2618         ops = sfc_flow_get_ops_by_spec(flow);
2619         if (ops == NULL || ops->insert == NULL) {
2620                 rte_flow_error_set(error, ENOTSUP,
2621                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2622                                    "No backend to handle this flow");
2623                 return rte_errno;
2624         }
2625
2626         rc = ops->insert(sa, flow);
2627         if (rc != 0) {
2628                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2629                                    NULL, "Failed to insert the flow rule");
2630         }
2631
2632         return rc;
2633 }
2634
2635 static int
2636 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2637                 struct rte_flow_error *error)
2638 {
2639         const struct sfc_flow_ops_by_spec *ops;
2640         int rc;
2641
2642         ops = sfc_flow_get_ops_by_spec(flow);
2643         if (ops == NULL || ops->remove == NULL) {
2644                 rte_flow_error_set(error, ENOTSUP,
2645                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2646                                    "No backend to handle this flow");
2647                 return rte_errno;
2648         }
2649
2650         rc = ops->remove(sa, flow);
2651         if (rc != 0) {
2652                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2653                                    NULL, "Failed to remove the flow rule");
2654         }
2655
2656         return rc;
2657 }
2658
2659 static int
2660 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2661                 struct rte_flow_error *error)
2662 {
2663         const struct sfc_flow_ops_by_spec *ops;
2664         int rc = 0;
2665
2666         ops = sfc_flow_get_ops_by_spec(flow);
2667         if (ops == NULL) {
2668                 rte_flow_error_set(error, ENOTSUP,
2669                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2670                                    "No backend to handle this flow");
2671                 return -rte_errno;
2672         }
2673
2674         if (ops->verify != NULL) {
2675                 SFC_ASSERT(sfc_adapter_is_locked(sa));
2676                 rc = ops->verify(sa, flow);
2677         }
2678
2679         if (rc != 0) {
2680                 rte_flow_error_set(error, rc,
2681                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2682                         "Failed to verify flow validity with FW");
2683                 return -rte_errno;
2684         }
2685
2686         return 0;
2687 }
2688
2689 static int
2690 sfc_flow_validate(struct rte_eth_dev *dev,
2691                   const struct rte_flow_attr *attr,
2692                   const struct rte_flow_item pattern[],
2693                   const struct rte_flow_action actions[],
2694                   struct rte_flow_error *error)
2695 {
2696         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2697         struct rte_flow *flow;
2698         int rc;
2699
2700         flow = sfc_flow_zmalloc(error);
2701         if (flow == NULL)
2702                 return -rte_errno;
2703
2704         sfc_adapter_lock(sa);
2705
2706         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2707         if (rc == 0)
2708                 rc = sfc_flow_verify(sa, flow, error);
2709
2710         sfc_flow_free(sa, flow);
2711
2712         sfc_adapter_unlock(sa);
2713
2714         return rc;
2715 }
2716
2717 static struct rte_flow *
2718 sfc_flow_create(struct rte_eth_dev *dev,
2719                 const struct rte_flow_attr *attr,
2720                 const struct rte_flow_item pattern[],
2721                 const struct rte_flow_action actions[],
2722                 struct rte_flow_error *error)
2723 {
2724         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2725         struct rte_flow *flow = NULL;
2726         int rc;
2727
2728         flow = sfc_flow_zmalloc(error);
2729         if (flow == NULL)
2730                 goto fail_no_mem;
2731
2732         sfc_adapter_lock(sa);
2733
2734         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2735         if (rc != 0)
2736                 goto fail_bad_value;
2737
2738         TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2739
2740         if (sa->state == SFC_ETHDEV_STARTED) {
2741                 rc = sfc_flow_insert(sa, flow, error);
2742                 if (rc != 0)
2743                         goto fail_flow_insert;
2744         }
2745
2746         sfc_adapter_unlock(sa);
2747
2748         return flow;
2749
2750 fail_flow_insert:
2751         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2752
2753 fail_bad_value:
2754         sfc_flow_free(sa, flow);
2755         sfc_adapter_unlock(sa);
2756
2757 fail_no_mem:
2758         return NULL;
2759 }
2760
2761 static int
2762 sfc_flow_destroy(struct rte_eth_dev *dev,
2763                  struct rte_flow *flow,
2764                  struct rte_flow_error *error)
2765 {
2766         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2767         struct rte_flow *flow_ptr;
2768         int rc = EINVAL;
2769
2770         sfc_adapter_lock(sa);
2771
2772         TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2773                 if (flow_ptr == flow)
2774                         rc = 0;
2775         }
2776         if (rc != 0) {
2777                 rte_flow_error_set(error, rc,
2778                                    RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2779                                    "Failed to find flow rule to destroy");
2780                 goto fail_bad_value;
2781         }
2782
2783         if (sa->state == SFC_ETHDEV_STARTED)
2784                 rc = sfc_flow_remove(sa, flow, error);
2785
2786         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2787         sfc_flow_free(sa, flow);
2788
2789 fail_bad_value:
2790         sfc_adapter_unlock(sa);
2791
2792         return -rc;
2793 }
2794
2795 static int
2796 sfc_flow_flush(struct rte_eth_dev *dev,
2797                struct rte_flow_error *error)
2798 {
2799         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2800         struct rte_flow *flow;
2801         int ret = 0;
2802
2803         sfc_adapter_lock(sa);
2804
2805         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2806                 if (sa->state == SFC_ETHDEV_STARTED) {
2807                         int rc;
2808
2809                         rc = sfc_flow_remove(sa, flow, error);
2810                         if (rc != 0)
2811                                 ret = rc;
2812                 }
2813
2814                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2815                 sfc_flow_free(sa, flow);
2816         }
2817
2818         sfc_adapter_unlock(sa);
2819
2820         return -ret;
2821 }
2822
2823 static int
2824 sfc_flow_query(struct rte_eth_dev *dev,
2825                struct rte_flow *flow,
2826                const struct rte_flow_action *action,
2827                void *data,
2828                struct rte_flow_error *error)
2829 {
2830         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2831         const struct sfc_flow_ops_by_spec *ops;
2832         int ret;
2833
2834         sfc_adapter_lock(sa);
2835
2836         ops = sfc_flow_get_ops_by_spec(flow);
2837         if (ops == NULL || ops->query == NULL) {
2838                 ret = rte_flow_error_set(error, ENOTSUP,
2839                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2840                         "No backend to handle this flow");
2841                 goto fail_no_backend;
2842         }
2843
2844         if (sa->state != SFC_ETHDEV_STARTED) {
2845                 ret = rte_flow_error_set(error, EINVAL,
2846                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2847                         "Can't query the flow: the adapter is not started");
2848                 goto fail_not_started;
2849         }
2850
2851         ret = ops->query(dev, flow, action, data, error);
2852         if (ret != 0)
2853                 goto fail_query;
2854
2855         sfc_adapter_unlock(sa);
2856
2857         return 0;
2858
2859 fail_query:
2860 fail_not_started:
2861 fail_no_backend:
2862         sfc_adapter_unlock(sa);
2863         return ret;
2864 }
2865
2866 static int
2867 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2868                  struct rte_flow_error *error)
2869 {
2870         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2871         int ret = 0;
2872
2873         sfc_adapter_lock(sa);
2874         if (sa->state != SFC_ETHDEV_INITIALIZED) {
2875                 rte_flow_error_set(error, EBUSY,
2876                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2877                                    NULL, "please close the port first");
2878                 ret = -rte_errno;
2879         } else {
2880                 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2881         }
2882         sfc_adapter_unlock(sa);
2883
2884         return ret;
2885 }
2886
2887 const struct rte_flow_ops sfc_flow_ops = {
2888         .validate = sfc_flow_validate,
2889         .create = sfc_flow_create,
2890         .destroy = sfc_flow_destroy,
2891         .flush = sfc_flow_flush,
2892         .query = sfc_flow_query,
2893         .isolate = sfc_flow_isolate,
2894 };
2895
2896 void
2897 sfc_flow_init(struct sfc_adapter *sa)
2898 {
2899         SFC_ASSERT(sfc_adapter_is_locked(sa));
2900
2901         TAILQ_INIT(&sa->flow_list);
2902 }
2903
2904 void
2905 sfc_flow_fini(struct sfc_adapter *sa)
2906 {
2907         struct rte_flow *flow;
2908
2909         SFC_ASSERT(sfc_adapter_is_locked(sa));
2910
2911         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2912                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2913                 sfc_flow_free(sa, flow);
2914         }
2915 }
2916
2917 void
2918 sfc_flow_stop(struct sfc_adapter *sa)
2919 {
2920         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2921         struct sfc_rss *rss = &sas->rss;
2922         struct rte_flow *flow;
2923
2924         SFC_ASSERT(sfc_adapter_is_locked(sa));
2925
2926         TAILQ_FOREACH(flow, &sa->flow_list, entries)
2927                 sfc_flow_remove(sa, flow, NULL);
2928
2929         if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2930                 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2931                 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2932         }
2933
2934         /*
2935          * MAE counter service is not stopped on flow rule remove to avoid
2936          * extra work. Make sure that it is stopped here.
2937          */
2938         sfc_mae_counter_stop(sa);
2939 }
2940
2941 int
2942 sfc_flow_start(struct sfc_adapter *sa)
2943 {
2944         struct rte_flow *flow;
2945         int rc = 0;
2946
2947         sfc_log_init(sa, "entry");
2948
2949         SFC_ASSERT(sfc_adapter_is_locked(sa));
2950
2951         TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2952                 rc = sfc_flow_insert(sa, flow, NULL);
2953                 if (rc != 0)
2954                         goto fail_bad_flow;
2955         }
2956
2957         sfc_log_init(sa, "done");
2958
2959 fail_bad_flow:
2960         return rc;
2961 }