common/sfc_efx/base: separate target EvQ and IRQ config
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58         int rc = 0;
59
60         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62                 if (rc == 0)
63                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64         }
65         return rc;
66 }
67
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71         unsigned int free_space;
72         unsigned int bulks;
73         void *objs[SFC_RX_REFILL_BULK];
74         efsys_dma_addr_t addr[RTE_DIM(objs)];
75         unsigned int added = rxq->added;
76         unsigned int id;
77         unsigned int i;
78         struct sfc_efx_rx_sw_desc *rxd;
79         struct rte_mbuf *m;
80         uint16_t port_id = rxq->dp.dpq.port_id;
81
82         free_space = rxq->max_fill_level - (added - rxq->completed);
83
84         if (free_space < rxq->refill_threshold)
85                 return;
86
87         bulks = free_space / RTE_DIM(objs);
88         /* refill_threshold guarantees that bulks is positive */
89         SFC_ASSERT(bulks > 0);
90
91         id = added & rxq->ptr_mask;
92         do {
93                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94                                                   RTE_DIM(objs)) < 0)) {
95                         /*
96                          * It is hardly a safe way to increment counter
97                          * from different contexts, but all PMDs do it.
98                          */
99                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100                                 RTE_DIM(objs);
101                         /* Return if we have posted nothing yet */
102                         if (added == rxq->added)
103                                 return;
104                         /* Push posted */
105                         break;
106                 }
107
108                 for (i = 0; i < RTE_DIM(objs);
109                      ++i, id = (id + 1) & rxq->ptr_mask) {
110                         m = objs[i];
111
112                         __rte_mbuf_raw_sanity_check(m);
113
114                         rxd = &rxq->sw_desc[id];
115                         rxd->mbuf = m;
116
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->port = port_id;
119
120                         addr[i] = rte_pktmbuf_iova(m);
121                 }
122
123                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124                              RTE_DIM(objs), rxq->completed, added);
125                 added += RTE_DIM(objs);
126         } while (--bulks > 0);
127
128         SFC_ASSERT(added != rxq->added);
129         rxq->added = added;
130         efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136         uint64_t mbuf_flags = 0;
137
138         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141                 break;
142         case EFX_PKT_IPV4:
143                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144                 break;
145         default:
146                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148                            PKT_RX_IP_CKSUM_UNKNOWN);
149                 break;
150         }
151
152         switch ((desc_flags &
153                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157                 break;
158         case EFX_PKT_TCP:
159         case EFX_PKT_UDP:
160                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161                 break;
162         default:
163                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165                            PKT_RX_L4_CKSUM_UNKNOWN);
166                 break;
167         }
168
169         return mbuf_flags;
170 }
171
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175         return RTE_PTYPE_L2_ETHER |
176                 ((desc_flags & EFX_PKT_IPV4) ?
177                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178                 ((desc_flags & EFX_PKT_IPV6) ?
179                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187         static const uint32_t ptypes[] = {
188                 RTE_PTYPE_L2_ETHER,
189                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191                 RTE_PTYPE_L4_TCP,
192                 RTE_PTYPE_L4_UDP,
193                 RTE_PTYPE_UNKNOWN
194         };
195
196         return ptypes;
197 }
198
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201                         struct rte_mbuf *m)
202 {
203         uint8_t *mbuf_data;
204
205
206         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207                 return;
208
209         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210
211         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213                                                       EFX_RX_HASHALG_TOEPLITZ,
214                                                       mbuf_data);
215
216                 m->ol_flags |= PKT_RX_RSS_HASH;
217         }
218 }
219
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223         struct sfc_dp_rxq *dp_rxq = rx_queue;
224         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225         unsigned int completed;
226         unsigned int prefix_size = rxq->prefix_size;
227         unsigned int done_pkts = 0;
228         boolean_t discard_next = B_FALSE;
229         struct rte_mbuf *scatter_pkt = NULL;
230
231         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232                 return 0;
233
234         sfc_ev_qpoll(rxq->evq);
235
236         completed = rxq->completed;
237         while (completed != rxq->pending && done_pkts < nb_pkts) {
238                 unsigned int id;
239                 struct sfc_efx_rx_sw_desc *rxd;
240                 struct rte_mbuf *m;
241                 unsigned int seg_len;
242                 unsigned int desc_flags;
243
244                 id = completed++ & rxq->ptr_mask;
245                 rxd = &rxq->sw_desc[id];
246                 m = rxd->mbuf;
247                 desc_flags = rxd->flags;
248
249                 if (discard_next)
250                         goto discard;
251
252                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253                         goto discard;
254
255                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
256                         uint16_t tmp_size;
257                         int rc __rte_unused;
258
259                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261                         SFC_ASSERT(rc == 0);
262                         seg_len = tmp_size;
263                 } else {
264                         seg_len = rxd->size - prefix_size;
265                 }
266
267                 rte_pktmbuf_data_len(m) = seg_len;
268                 rte_pktmbuf_pkt_len(m) = seg_len;
269
270                 if (scatter_pkt != NULL) {
271                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272                                 rte_pktmbuf_free(scatter_pkt);
273                                 goto discard;
274                         }
275                         /* The packet to deliver */
276                         m = scatter_pkt;
277                 }
278
279                 if (desc_flags & EFX_PKT_CONT) {
280                         /* The packet is scattered, more fragments to come */
281                         scatter_pkt = m;
282                         /* Further fragments have no prefix */
283                         prefix_size = 0;
284                         continue;
285                 }
286
287                 /* Scattered packet is done */
288                 scatter_pkt = NULL;
289                 /* The first fragment of the packet has prefix */
290                 prefix_size = rxq->prefix_size;
291
292                 m->ol_flags =
293                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294                 m->packet_type =
295                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296
297                 /*
298                  * Extract RSS hash from the packet prefix and
299                  * set the corresponding field (if needed and possible)
300                  */
301                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302
303                 m->data_off += prefix_size;
304
305                 *rx_pkts++ = m;
306                 done_pkts++;
307                 continue;
308
309 discard:
310                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311                 rte_mbuf_raw_free(m);
312                 rxd->mbuf = NULL;
313         }
314
315         /* pending is only moved when entire packet is received */
316         SFC_ASSERT(scatter_pkt == NULL);
317
318         rxq->completed = completed;
319
320         sfc_efx_rx_qrefill(rxq);
321
322         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323                 sfc_efx_rx_qprime(rxq);
324
325         return done_pkts;
326 }
327
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333
334         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335                 return 0;
336
337         sfc_ev_qpoll(rxq->evq);
338
339         return rxq->pending - rxq->completed;
340 }
341
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347
348         if (unlikely(offset > rxq->ptr_mask))
349                 return -EINVAL;
350
351         /*
352          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353          * it is required for the queue to be running, but the
354          * check is omitted because API design assumes that it
355          * is the duty of the caller to satisfy all conditions
356          */
357         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358                    SFC_EFX_RXQ_FLAG_RUNNING);
359         sfc_ev_qpoll(rxq->evq);
360
361         /*
362          * There is a handful of reserved entries in the ring,
363          * but an explicit check whether the offset points to
364          * a reserved entry is neglected since the two checks
365          * below rely on the figures which take the HW limits
366          * into account and thus if an entry is reserved, the
367          * checks will fail and UNAVAIL code will be returned
368          */
369
370         if (offset < (rxq->pending - rxq->completed))
371                 return RTE_ETH_RX_DESC_DONE;
372
373         if (offset < (rxq->added - rxq->completed))
374                 return RTE_ETH_RX_DESC_AVAIL;
375
376         return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381                      boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
382                      const char **error)
383 {
384         uint32_t effective_rx_scatter_max;
385         uint32_t rx_scatter_bufs;
386
387         effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
388         rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
389
390         if (rx_scatter_bufs > effective_rx_scatter_max) {
391                 if (rx_scatter_enabled)
392                         *error = "Possible number of Rx scatter buffers exceeds maximum number";
393                 else
394                         *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
395                 return B_FALSE;
396         }
397
398         return B_TRUE;
399 }
400
401 /** Get Rx datapath ops by the datapath RxQ handle */
402 const struct sfc_dp_rx *
403 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
404 {
405         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
406         struct rte_eth_dev *eth_dev;
407         struct sfc_adapter_priv *sap;
408
409         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
410         eth_dev = &rte_eth_devices[dpq->port_id];
411
412         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
413
414         return sap->dp_rx;
415 }
416
417 struct sfc_rxq_info *
418 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
419 {
420         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
421         struct rte_eth_dev *eth_dev;
422         struct sfc_adapter_shared *sas;
423
424         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
425         eth_dev = &rte_eth_devices[dpq->port_id];
426
427         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
428
429         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
430         return &sas->rxq_info[dpq->queue_id];
431 }
432
433 struct sfc_rxq *
434 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
435 {
436         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
437         struct rte_eth_dev *eth_dev;
438         struct sfc_adapter *sa;
439
440         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
441         eth_dev = &rte_eth_devices[dpq->port_id];
442
443         sa = sfc_adapter_by_eth_dev(eth_dev);
444
445         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
446         return &sa->rxq_ctrl[dpq->queue_id];
447 }
448
449 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
450 static int
451 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
452                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
453                           __rte_unused struct rte_mempool *mb_pool,
454                           unsigned int *rxq_entries,
455                           unsigned int *evq_entries,
456                           unsigned int *rxq_max_fill_level)
457 {
458         *rxq_entries = nb_rx_desc;
459         *evq_entries = nb_rx_desc;
460         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
461         return 0;
462 }
463
464 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
465 static int
466 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
467                    const struct rte_pci_addr *pci_addr, int socket_id,
468                    const struct sfc_dp_rx_qcreate_info *info,
469                    struct sfc_dp_rxq **dp_rxqp)
470 {
471         struct sfc_efx_rxq *rxq;
472         int rc;
473
474         rc = ENOMEM;
475         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
476                                  RTE_CACHE_LINE_SIZE, socket_id);
477         if (rxq == NULL)
478                 goto fail_rxq_alloc;
479
480         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
481
482         rc = ENOMEM;
483         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
484                                          info->rxq_entries,
485                                          sizeof(*rxq->sw_desc),
486                                          RTE_CACHE_LINE_SIZE, socket_id);
487         if (rxq->sw_desc == NULL)
488                 goto fail_desc_alloc;
489
490         /* efx datapath is bound to efx control path */
491         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
492         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
493                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
494         rxq->ptr_mask = info->rxq_entries - 1;
495         rxq->batch_max = info->batch_max;
496         rxq->prefix_size = info->prefix_size;
497         rxq->max_fill_level = info->max_fill_level;
498         rxq->refill_threshold = info->refill_threshold;
499         rxq->buf_size = info->buf_size;
500         rxq->refill_mb_pool = info->refill_mb_pool;
501
502         *dp_rxqp = &rxq->dp;
503         return 0;
504
505 fail_desc_alloc:
506         rte_free(rxq);
507
508 fail_rxq_alloc:
509         return rc;
510 }
511
512 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
513 static void
514 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
515 {
516         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
517
518         rte_free(rxq->sw_desc);
519         rte_free(rxq);
520 }
521
522
523 /* Use qstop and qstart functions in the case of qstart failure */
524 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
525 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
526
527
528 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
529 static int
530 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
531                   __rte_unused unsigned int evq_read_ptr,
532                   const efx_rx_prefix_layout_t *pinfo)
533 {
534         /* libefx-based datapath is specific to libefx-based PMD */
535         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
536         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
537         int rc;
538
539         /*
540          * libefx API is used to extract information from Rx prefix and
541          * it guarantees consistency. Just do length check to ensure
542          * that we reserved space in Rx buffers correctly.
543          */
544         if (rxq->prefix_size != pinfo->erpl_length)
545                 return ENOTSUP;
546
547         rxq->common = crxq->common;
548
549         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
550
551         sfc_efx_rx_qrefill(rxq);
552
553         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
554
555         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
556                 rc = sfc_efx_rx_qprime(rxq);
557                 if (rc != 0)
558                         goto fail_rx_qprime;
559         }
560
561         return 0;
562
563 fail_rx_qprime:
564         sfc_efx_rx_qstop(dp_rxq, NULL);
565         sfc_efx_rx_qpurge(dp_rxq);
566         return rc;
567 }
568
569 static void
570 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
571                  __rte_unused unsigned int *evq_read_ptr)
572 {
573         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
574
575         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
576
577         /* libefx-based datapath is bound to libefx-based PMD and uses
578          * event queue structure directly. So, there is no necessity to
579          * return EvQ read pointer.
580          */
581 }
582
583 static void
584 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
585 {
586         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
587         unsigned int i;
588         struct sfc_efx_rx_sw_desc *rxd;
589
590         for (i = rxq->completed; i != rxq->added; ++i) {
591                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
592                 rte_mbuf_raw_free(rxd->mbuf);
593                 rxd->mbuf = NULL;
594                 /* Packed stream relies on 0 in inactive SW desc.
595                  * Rx queue stop is not performance critical, so
596                  * there is no harm to do it always.
597                  */
598                 rxd->flags = 0;
599                 rxd->size = 0;
600         }
601
602         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
603 }
604
605 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
606 static int
607 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
608 {
609         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
610         int rc = 0;
611
612         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
613         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
614                 rc = sfc_efx_rx_qprime(rxq);
615                 if (rc != 0)
616                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
617         }
618         return rc;
619 }
620
621 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
622 static int
623 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
624 {
625         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
626
627         /* Cannot disarm, just disable rearm */
628         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
629         return 0;
630 }
631
632 struct sfc_dp_rx sfc_efx_rx = {
633         .dp = {
634                 .name           = SFC_KVARG_DATAPATH_EFX,
635                 .type           = SFC_DP_RX,
636                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_RX_EFX,
637         },
638         .features               = SFC_DP_RX_FEAT_INTR,
639         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
640                                   DEV_RX_OFFLOAD_RSS_HASH,
641         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
642         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
643         .qcreate                = sfc_efx_rx_qcreate,
644         .qdestroy               = sfc_efx_rx_qdestroy,
645         .qstart                 = sfc_efx_rx_qstart,
646         .qstop                  = sfc_efx_rx_qstop,
647         .qpurge                 = sfc_efx_rx_qpurge,
648         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
649         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
650         .qdesc_status           = sfc_efx_rx_qdesc_status,
651         .intr_enable            = sfc_efx_rx_intr_enable,
652         .intr_disable           = sfc_efx_rx_intr_disable,
653         .pkt_burst              = sfc_efx_recv_pkts,
654 };
655
656 static void
657 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
658 {
659         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
660         sfc_ethdev_qid_t ethdev_qid;
661         struct sfc_rxq_info *rxq_info;
662         struct sfc_rxq *rxq;
663         unsigned int retry_count;
664         unsigned int wait_count;
665         int rc;
666
667         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
668         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
669         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
670
671         rxq = &sa->rxq_ctrl[sw_index];
672
673         /*
674          * Retry Rx queue flushing in the case of flush failed or
675          * timeout. In the worst case it can delay for 6 seconds.
676          */
677         for (retry_count = 0;
678              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
679              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
680              ++retry_count) {
681                 rc = efx_rx_qflush(rxq->common);
682                 if (rc != 0) {
683                         rxq_info->state |= (rc == EALREADY) ?
684                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
685                         break;
686                 }
687                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
688                 rxq_info->state |= SFC_RXQ_FLUSHING;
689
690                 /*
691                  * Wait for Rx queue flush done or failed event at least
692                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
693                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
694                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
695                  */
696                 wait_count = 0;
697                 do {
698                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
699                         sfc_ev_qpoll(rxq->evq);
700                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
701                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
702
703                 if (rxq_info->state & SFC_RXQ_FLUSHING)
704                         sfc_err(sa, "RxQ %d (internal %u) flush timed out",
705                                 ethdev_qid, sw_index);
706
707                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
708                         sfc_err(sa, "RxQ %d (internal %u) flush failed",
709                                 ethdev_qid, sw_index);
710
711                 if (rxq_info->state & SFC_RXQ_FLUSHED)
712                         sfc_notice(sa, "RxQ %d (internal %u) flushed",
713                                    ethdev_qid, sw_index);
714         }
715
716         sa->priv.dp_rx->qpurge(rxq_info->dp);
717 }
718
719 static int
720 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
721 {
722         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
723         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
724         struct sfc_port *port = &sa->port;
725         int rc;
726
727         /*
728          * If promiscuous or all-multicast mode has been requested, setting
729          * filter for the default Rx queue might fail, in particular, while
730          * running over PCI function which is not a member of corresponding
731          * privilege groups; if this occurs, few iterations will be made to
732          * repeat this step without promiscuous and all-multicast flags set
733          */
734 retry:
735         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
736         if (rc == 0)
737                 return 0;
738         else if (rc != EOPNOTSUPP)
739                 return rc;
740
741         if (port->promisc) {
742                 sfc_warn(sa, "promiscuous mode has been requested, "
743                              "but the HW rejects it");
744                 sfc_warn(sa, "promiscuous mode will be disabled");
745
746                 port->promisc = B_FALSE;
747                 sa->eth_dev->data->promiscuous = 0;
748                 rc = sfc_set_rx_mode_unchecked(sa);
749                 if (rc != 0)
750                         return rc;
751
752                 goto retry;
753         }
754
755         if (port->allmulti) {
756                 sfc_warn(sa, "all-multicast mode has been requested, "
757                              "but the HW rejects it");
758                 sfc_warn(sa, "all-multicast mode will be disabled");
759
760                 port->allmulti = B_FALSE;
761                 sa->eth_dev->data->all_multicast = 0;
762                 rc = sfc_set_rx_mode_unchecked(sa);
763                 if (rc != 0)
764                         return rc;
765
766                 goto retry;
767         }
768
769         return rc;
770 }
771
772 int
773 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
774 {
775         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
776         sfc_ethdev_qid_t ethdev_qid;
777         struct sfc_rxq_info *rxq_info;
778         struct sfc_rxq *rxq;
779         struct sfc_evq *evq;
780         efx_rx_prefix_layout_t pinfo;
781         int rc;
782
783         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
784         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
785
786         sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
787
788         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
789         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
790
791         rxq = &sa->rxq_ctrl[sw_index];
792         evq = rxq->evq;
793
794         rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
795         if (rc != 0)
796                 goto fail_ev_qstart;
797
798         switch (rxq_info->type) {
799         case EFX_RXQ_TYPE_DEFAULT:
800                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
801                         rxq->buf_size,
802                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
803                         rxq_info->type_flags, evq->common, &rxq->common);
804                 break;
805         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
806                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
807                 struct rte_mempool_info mp_info;
808
809                 rc = rte_mempool_ops_get_info(mp, &mp_info);
810                 if (rc != 0) {
811                         /* Positive errno is used in the driver */
812                         rc = -rc;
813                         goto fail_mp_get_info;
814                 }
815                 if (mp_info.contig_block_size <= 0) {
816                         rc = EINVAL;
817                         goto fail_bad_contig_block_size;
818                 }
819                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
820                         mp_info.contig_block_size, rxq->buf_size,
821                         mp->header_size + mp->elt_size + mp->trailer_size,
822                         sa->rxd_wait_timeout_ns,
823                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
824                         evq->common, &rxq->common);
825                 break;
826         }
827         default:
828                 rc = ENOTSUP;
829         }
830         if (rc != 0)
831                 goto fail_rx_qcreate;
832
833         rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
834         if (rc != 0)
835                 goto fail_prefix_get_layout;
836
837         efx_rx_qenable(rxq->common);
838
839         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
840         if (rc != 0)
841                 goto fail_dp_qstart;
842
843         rxq_info->state |= SFC_RXQ_STARTED;
844
845         if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
846                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
847                 if (rc != 0)
848                         goto fail_mac_filter_default_rxq_set;
849         }
850
851         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
852         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
853                 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
854                         RTE_ETH_QUEUE_STATE_STARTED;
855
856         return 0;
857
858 fail_mac_filter_default_rxq_set:
859         sfc_rx_qflush(sa, sw_index);
860         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
861         rxq_info->state = SFC_RXQ_INITIALIZED;
862
863 fail_dp_qstart:
864         efx_rx_qdestroy(rxq->common);
865
866 fail_prefix_get_layout:
867 fail_rx_qcreate:
868 fail_bad_contig_block_size:
869 fail_mp_get_info:
870         sfc_ev_qstop(evq);
871
872 fail_ev_qstart:
873         return rc;
874 }
875
876 void
877 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
878 {
879         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
880         sfc_ethdev_qid_t ethdev_qid;
881         struct sfc_rxq_info *rxq_info;
882         struct sfc_rxq *rxq;
883
884         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
885         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
886
887         sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
888
889         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
890
891         if (rxq_info->state == SFC_RXQ_INITIALIZED)
892                 return;
893         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
894
895         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
896         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
897                 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
898                         RTE_ETH_QUEUE_STATE_STOPPED;
899
900         rxq = &sa->rxq_ctrl[sw_index];
901         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
902
903         if (ethdev_qid == 0)
904                 efx_mac_filter_default_rxq_clear(sa->nic);
905
906         sfc_rx_qflush(sa, sw_index);
907
908         rxq_info->state = SFC_RXQ_INITIALIZED;
909
910         efx_rx_qdestroy(rxq->common);
911
912         sfc_ev_qstop(rxq->evq);
913 }
914
915 static uint64_t
916 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
917 {
918         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
919         uint64_t no_caps = 0;
920
921         if (encp->enc_tunnel_encapsulations_supported == 0)
922                 no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
923
924         return ~no_caps;
925 }
926
927 uint64_t
928 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
929 {
930         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
931
932         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
933
934         return caps & sfc_rx_get_offload_mask(sa);
935 }
936
937 uint64_t
938 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
939 {
940         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
941 }
942
943 static int
944 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
945                    const struct rte_eth_rxconf *rx_conf,
946                    __rte_unused uint64_t offloads)
947 {
948         int rc = 0;
949
950         if (rx_conf->rx_thresh.pthresh != 0 ||
951             rx_conf->rx_thresh.hthresh != 0 ||
952             rx_conf->rx_thresh.wthresh != 0) {
953                 sfc_warn(sa,
954                         "RxQ prefetch/host/writeback thresholds are not supported");
955         }
956
957         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
958                 sfc_err(sa,
959                         "RxQ free threshold too large: %u vs maximum %u",
960                         rx_conf->rx_free_thresh, rxq_max_fill_level);
961                 rc = EINVAL;
962         }
963
964         if (rx_conf->rx_drop_en == 0) {
965                 sfc_err(sa, "RxQ drop disable is not supported");
966                 rc = EINVAL;
967         }
968
969         return rc;
970 }
971
972 static unsigned int
973 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
974 {
975         uint32_t data_off;
976         uint32_t order;
977
978         /* The mbuf object itself is always cache line aligned */
979         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
980
981         /* Data offset from mbuf object start */
982         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
983                 RTE_PKTMBUF_HEADROOM;
984
985         order = MIN(order, rte_bsf32(data_off));
986
987         return 1u << order;
988 }
989
990 static uint16_t
991 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
992 {
993         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
994         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
995         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
996         uint16_t buf_size;
997         unsigned int buf_aligned;
998         unsigned int start_alignment;
999         unsigned int end_padding_alignment;
1000
1001         /* Below it is assumed that both alignments are power of 2 */
1002         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1003         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1004
1005         /*
1006          * mbuf is always cache line aligned, double-check
1007          * that it meets rx buffer start alignment requirements.
1008          */
1009
1010         /* Start from mbuf pool data room size */
1011         buf_size = rte_pktmbuf_data_room_size(mb_pool);
1012
1013         /* Remove headroom */
1014         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1015                 sfc_err(sa,
1016                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1017                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1018                 return 0;
1019         }
1020         buf_size -= RTE_PKTMBUF_HEADROOM;
1021
1022         /* Calculate guaranteed data start alignment */
1023         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1024
1025         /* Reserve space for start alignment */
1026         if (buf_aligned < nic_align_start) {
1027                 start_alignment = nic_align_start - buf_aligned;
1028                 if (buf_size <= start_alignment) {
1029                         sfc_err(sa,
1030                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1031                                 mb_pool->name,
1032                                 rte_pktmbuf_data_room_size(mb_pool),
1033                                 RTE_PKTMBUF_HEADROOM, start_alignment);
1034                         return 0;
1035                 }
1036                 buf_aligned = nic_align_start;
1037                 buf_size -= start_alignment;
1038         } else {
1039                 start_alignment = 0;
1040         }
1041
1042         /* Make sure that end padding does not write beyond the buffer */
1043         if (buf_aligned < nic_align_end) {
1044                 /*
1045                  * Estimate space which can be lost. If guarnteed buffer
1046                  * size is odd, lost space is (nic_align_end - 1). More
1047                  * accurate formula is below.
1048                  */
1049                 end_padding_alignment = nic_align_end -
1050                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1051                 if (buf_size <= end_padding_alignment) {
1052                         sfc_err(sa,
1053                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1054                                 mb_pool->name,
1055                                 rte_pktmbuf_data_room_size(mb_pool),
1056                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1057                                 end_padding_alignment);
1058                         return 0;
1059                 }
1060                 buf_size -= end_padding_alignment;
1061         } else {
1062                 /*
1063                  * Start is aligned the same or better than end,
1064                  * just align length.
1065                  */
1066                 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1067         }
1068
1069         return buf_size;
1070 }
1071
1072 int
1073 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1074              uint16_t nb_rx_desc, unsigned int socket_id,
1075              const struct rte_eth_rxconf *rx_conf,
1076              struct rte_mempool *mb_pool)
1077 {
1078         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1079         sfc_ethdev_qid_t ethdev_qid;
1080         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1081         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1082         int rc;
1083         unsigned int rxq_entries;
1084         unsigned int evq_entries;
1085         unsigned int rxq_max_fill_level;
1086         uint64_t offloads;
1087         uint16_t buf_size;
1088         struct sfc_rxq_info *rxq_info;
1089         struct sfc_evq *evq;
1090         struct sfc_rxq *rxq;
1091         struct sfc_dp_rx_qcreate_info info;
1092         struct sfc_dp_rx_hw_limits hw_limits;
1093         uint16_t rx_free_thresh;
1094         const char *error;
1095
1096         memset(&hw_limits, 0, sizeof(hw_limits));
1097         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1098         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1099         hw_limits.evq_max_entries = sa->evq_max_entries;
1100         hw_limits.evq_min_entries = sa->evq_min_entries;
1101
1102         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1103                                             &rxq_entries, &evq_entries,
1104                                             &rxq_max_fill_level);
1105         if (rc != 0)
1106                 goto fail_size_up_rings;
1107         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1108         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1109         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1110
1111         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1112
1113         offloads = rx_conf->offloads;
1114         /* Add device level Rx offloads if the queue is an ethdev Rx queue */
1115         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1116                 offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1117
1118         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1119         if (rc != 0)
1120                 goto fail_bad_conf;
1121
1122         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1123         if (buf_size == 0) {
1124                 sfc_err(sa,
1125                         "RxQ %d (internal %u) mbuf pool object size is too small",
1126                         ethdev_qid, sw_index);
1127                 rc = EINVAL;
1128                 goto fail_bad_conf;
1129         }
1130
1131         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1132                                   encp->enc_rx_prefix_size,
1133                                   (offloads & DEV_RX_OFFLOAD_SCATTER),
1134                                   encp->enc_rx_scatter_max,
1135                                   &error)) {
1136                 sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1137                         ethdev_qid, sw_index, error);
1138                 sfc_err(sa,
1139                         "RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1140                         "PDU size %u plus Rx prefix %u bytes",
1141                         ethdev_qid, sw_index, buf_size,
1142                         (unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1143                 rc = EINVAL;
1144                 goto fail_bad_conf;
1145         }
1146
1147         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1148         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1149
1150         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1151         rxq_info->entries = rxq_entries;
1152
1153         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1154                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1155         else
1156                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1157
1158         rxq_info->type_flags =
1159                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1160                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1161
1162         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1163             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1164              DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1165                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1166
1167         if (offloads & DEV_RX_OFFLOAD_RSS_HASH)
1168                 rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1169
1170         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1171                           evq_entries, socket_id, &evq);
1172         if (rc != 0)
1173                 goto fail_ev_qinit;
1174
1175         rxq = &sa->rxq_ctrl[sw_index];
1176         rxq->evq = evq;
1177         rxq->hw_index = sw_index;
1178         /*
1179          * If Rx refill threshold is specified (its value is non zero) in
1180          * Rx configuration, use specified value. Otherwise use 1/8 of
1181          * the Rx descriptors number as the default. It allows to keep
1182          * Rx ring full-enough and does not refill too aggressive if
1183          * packet rate is high.
1184          *
1185          * Since PMD refills in bulks waiting for full bulk may be
1186          * refilled (basically round down), it is better to round up
1187          * here to mitigate it a bit.
1188          */
1189         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1190                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1191         /* Rx refill threshold cannot be smaller than refill bulk */
1192         rxq_info->refill_threshold =
1193                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1194         rxq_info->refill_mb_pool = mb_pool;
1195
1196         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1197             (offloads & DEV_RX_OFFLOAD_RSS_HASH))
1198                 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1199         else
1200                 rxq_info->rxq_flags = 0;
1201
1202         rxq->buf_size = buf_size;
1203
1204         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1205                            efx_rxq_size(sa->nic, rxq_info->entries),
1206                            socket_id, &rxq->mem);
1207         if (rc != 0)
1208                 goto fail_dma_alloc;
1209
1210         memset(&info, 0, sizeof(info));
1211         info.refill_mb_pool = rxq_info->refill_mb_pool;
1212         info.max_fill_level = rxq_max_fill_level;
1213         info.refill_threshold = rxq_info->refill_threshold;
1214         info.buf_size = buf_size;
1215         info.batch_max = encp->enc_rx_batch_max;
1216         info.prefix_size = encp->enc_rx_prefix_size;
1217         info.flags = rxq_info->rxq_flags;
1218         info.rxq_entries = rxq_info->entries;
1219         info.rxq_hw_ring = rxq->mem.esm_base;
1220         info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1221         info.evq_entries = evq_entries;
1222         info.evq_hw_ring = evq->mem.esm_base;
1223         info.hw_index = rxq->hw_index;
1224         info.mem_bar = sa->mem_bar.esb_base;
1225         info.vi_window_shift = encp->enc_vi_window_shift;
1226         info.fcw_offset = sa->fcw_offset;
1227
1228         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1229                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1230                                      socket_id, &info, &rxq_info->dp);
1231         if (rc != 0)
1232                 goto fail_dp_rx_qcreate;
1233
1234         evq->dp_rxq = rxq_info->dp;
1235
1236         rxq_info->state = SFC_RXQ_INITIALIZED;
1237
1238         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1239
1240         return 0;
1241
1242 fail_dp_rx_qcreate:
1243         sfc_dma_free(sa, &rxq->mem);
1244
1245 fail_dma_alloc:
1246         sfc_ev_qfini(evq);
1247
1248 fail_ev_qinit:
1249         rxq_info->entries = 0;
1250
1251 fail_bad_conf:
1252 fail_size_up_rings:
1253         sfc_log_init(sa, "failed %d", rc);
1254         return rc;
1255 }
1256
1257 void
1258 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1259 {
1260         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1261         sfc_ethdev_qid_t ethdev_qid;
1262         struct sfc_rxq_info *rxq_info;
1263         struct sfc_rxq *rxq;
1264
1265         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1266         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1267
1268         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1269                 sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1270
1271         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1272
1273         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1274
1275         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1276         rxq_info->dp = NULL;
1277
1278         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1279         rxq_info->entries = 0;
1280
1281         rxq = &sa->rxq_ctrl[sw_index];
1282
1283         sfc_dma_free(sa, &rxq->mem);
1284
1285         sfc_ev_qfini(rxq->evq);
1286         rxq->evq = NULL;
1287 }
1288
1289 /*
1290  * Mapping between RTE RSS hash functions and their EFX counterparts.
1291  */
1292 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1293         { ETH_RSS_NONFRAG_IPV4_TCP,
1294           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1295         { ETH_RSS_NONFRAG_IPV4_UDP,
1296           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1297         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1298           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1299         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1300           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1301         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1302           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1303           EFX_RX_HASH(IPV4, 2TUPLE) },
1304         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1305           ETH_RSS_IPV6_EX,
1306           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1307           EFX_RX_HASH(IPV6, 2TUPLE) }
1308 };
1309
1310 static efx_rx_hash_type_t
1311 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1312                             unsigned int *hash_type_flags_supported,
1313                             unsigned int nb_hash_type_flags_supported)
1314 {
1315         efx_rx_hash_type_t hash_type_masked = 0;
1316         unsigned int i, j;
1317
1318         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1319                 unsigned int class_tuple_lbn[] = {
1320                         EFX_RX_CLASS_IPV4_TCP_LBN,
1321                         EFX_RX_CLASS_IPV4_UDP_LBN,
1322                         EFX_RX_CLASS_IPV4_LBN,
1323                         EFX_RX_CLASS_IPV6_TCP_LBN,
1324                         EFX_RX_CLASS_IPV6_UDP_LBN,
1325                         EFX_RX_CLASS_IPV6_LBN
1326                 };
1327
1328                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1329                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1330                         unsigned int flag;
1331
1332                         tuple_mask <<= class_tuple_lbn[j];
1333                         flag = hash_type & tuple_mask;
1334
1335                         if (flag == hash_type_flags_supported[i])
1336                                 hash_type_masked |= flag;
1337                 }
1338         }
1339
1340         return hash_type_masked;
1341 }
1342
1343 int
1344 sfc_rx_hash_init(struct sfc_adapter *sa)
1345 {
1346         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1347         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1348         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1349         efx_rx_hash_alg_t alg;
1350         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1351         unsigned int nb_flags_supp;
1352         struct sfc_rss_hf_rte_to_efx *hf_map;
1353         struct sfc_rss_hf_rte_to_efx *entry;
1354         efx_rx_hash_type_t efx_hash_types;
1355         unsigned int i;
1356         int rc;
1357
1358         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1359                 alg = EFX_RX_HASHALG_TOEPLITZ;
1360         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1361                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1362         else
1363                 return EINVAL;
1364
1365         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1366                                          RTE_DIM(flags_supp), &nb_flags_supp);
1367         if (rc != 0)
1368                 return rc;
1369
1370         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1371                                    RTE_DIM(sfc_rss_hf_map),
1372                                    sizeof(*hf_map), 0, sa->socket_id);
1373         if (hf_map == NULL)
1374                 return ENOMEM;
1375
1376         entry = hf_map;
1377         efx_hash_types = 0;
1378         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1379                 efx_rx_hash_type_t ht;
1380
1381                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1382                                                  flags_supp, nb_flags_supp);
1383                 if (ht != 0) {
1384                         entry->rte = sfc_rss_hf_map[i].rte;
1385                         entry->efx = ht;
1386                         efx_hash_types |= ht;
1387                         ++entry;
1388                 }
1389         }
1390
1391         rss->hash_alg = alg;
1392         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1393         rss->hf_map = hf_map;
1394         rss->hash_types = efx_hash_types;
1395
1396         return 0;
1397 }
1398
1399 void
1400 sfc_rx_hash_fini(struct sfc_adapter *sa)
1401 {
1402         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1403
1404         rte_free(rss->hf_map);
1405 }
1406
1407 int
1408 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1409                      efx_rx_hash_type_t *efx)
1410 {
1411         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1412         efx_rx_hash_type_t hash_types = 0;
1413         unsigned int i;
1414
1415         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1416                 uint64_t rte_mask = rss->hf_map[i].rte;
1417
1418                 if ((rte & rte_mask) != 0) {
1419                         rte &= ~rte_mask;
1420                         hash_types |= rss->hf_map[i].efx;
1421                 }
1422         }
1423
1424         if (rte != 0) {
1425                 sfc_err(sa, "unsupported hash functions requested");
1426                 return EINVAL;
1427         }
1428
1429         *efx = hash_types;
1430
1431         return 0;
1432 }
1433
1434 uint64_t
1435 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1436 {
1437         uint64_t rte = 0;
1438         unsigned int i;
1439
1440         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1441                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1442
1443                 if ((efx & hash_type) == hash_type)
1444                         rte |= rss->hf_map[i].rte;
1445         }
1446
1447         return rte;
1448 }
1449
1450 static int
1451 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1452                             struct rte_eth_rss_conf *conf)
1453 {
1454         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1455         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1456         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1457         int rc;
1458
1459         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1460                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1461                     conf->rss_key != NULL)
1462                         return EINVAL;
1463         }
1464
1465         if (conf->rss_hf != 0) {
1466                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1467                 if (rc != 0)
1468                         return rc;
1469         }
1470
1471         if (conf->rss_key != NULL) {
1472                 if (conf->rss_key_len != sizeof(rss->key)) {
1473                         sfc_err(sa, "RSS key size is wrong (should be %zu)",
1474                                 sizeof(rss->key));
1475                         return EINVAL;
1476                 }
1477                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1478         }
1479
1480         rss->hash_types = efx_hash_types;
1481
1482         return 0;
1483 }
1484
1485 static int
1486 sfc_rx_rss_config(struct sfc_adapter *sa)
1487 {
1488         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1489         int rc = 0;
1490
1491         if (rss->channels > 0) {
1492                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1493                                            rss->hash_alg, rss->hash_types,
1494                                            B_TRUE);
1495                 if (rc != 0)
1496                         goto finish;
1497
1498                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1499                                           rss->key, sizeof(rss->key));
1500                 if (rc != 0)
1501                         goto finish;
1502
1503                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1504                                           rss->tbl, RTE_DIM(rss->tbl));
1505         }
1506
1507 finish:
1508         return rc;
1509 }
1510
1511 struct sfc_rxq_info *
1512 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1513                            sfc_ethdev_qid_t ethdev_qid)
1514 {
1515         sfc_sw_index_t sw_index;
1516
1517         SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1518         SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1519
1520         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1521         return &sas->rxq_info[sw_index];
1522 }
1523
1524 struct sfc_rxq *
1525 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1526 {
1527         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1528         sfc_sw_index_t sw_index;
1529
1530         SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1531         SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1532
1533         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1534         return &sa->rxq_ctrl[sw_index];
1535 }
1536
1537 int
1538 sfc_rx_start(struct sfc_adapter *sa)
1539 {
1540         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1541         sfc_sw_index_t sw_index;
1542         int rc;
1543
1544         sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1545                      sas->rxq_count);
1546
1547         rc = efx_rx_init(sa->nic);
1548         if (rc != 0)
1549                 goto fail_rx_init;
1550
1551         rc = sfc_rx_rss_config(sa);
1552         if (rc != 0)
1553                 goto fail_rss_config;
1554
1555         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1556                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1557                     (!sas->rxq_info[sw_index].deferred_start ||
1558                      sas->rxq_info[sw_index].deferred_started)) {
1559                         rc = sfc_rx_qstart(sa, sw_index);
1560                         if (rc != 0)
1561                                 goto fail_rx_qstart;
1562                 }
1563         }
1564
1565         return 0;
1566
1567 fail_rx_qstart:
1568         while (sw_index-- > 0)
1569                 sfc_rx_qstop(sa, sw_index);
1570
1571 fail_rss_config:
1572         efx_rx_fini(sa->nic);
1573
1574 fail_rx_init:
1575         sfc_log_init(sa, "failed %d", rc);
1576         return rc;
1577 }
1578
1579 void
1580 sfc_rx_stop(struct sfc_adapter *sa)
1581 {
1582         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1583         sfc_sw_index_t sw_index;
1584
1585         sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1586                      sas->rxq_count);
1587
1588         sw_index = sas->rxq_count;
1589         while (sw_index-- > 0) {
1590                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1591                         sfc_rx_qstop(sa, sw_index);
1592         }
1593
1594         efx_rx_fini(sa->nic);
1595 }
1596
1597 static int
1598 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1599 {
1600         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1601         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1602         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1603         unsigned int max_entries;
1604
1605         max_entries = encp->enc_rxq_max_ndescs;
1606         SFC_ASSERT(rte_is_power_of_2(max_entries));
1607
1608         rxq_info->max_entries = max_entries;
1609
1610         return 0;
1611 }
1612
1613 static int
1614 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1615 {
1616         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1617         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1618                                       sfc_rx_get_queue_offload_caps(sa);
1619         struct sfc_rss *rss = &sas->rss;
1620         int rc = 0;
1621
1622         switch (rxmode->mq_mode) {
1623         case ETH_MQ_RX_NONE:
1624                 /* No special checks are required */
1625                 break;
1626         case ETH_MQ_RX_RSS:
1627                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1628                         sfc_err(sa, "RSS is not available");
1629                         rc = EINVAL;
1630                 }
1631                 break;
1632         default:
1633                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1634                         rxmode->mq_mode);
1635                 rc = EINVAL;
1636         }
1637
1638         /*
1639          * Requested offloads are validated against supported by ethdev,
1640          * so unsupported offloads cannot be added as the result of
1641          * below check.
1642          */
1643         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1644             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1645                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1646                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1647         }
1648
1649         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1650             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1651                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1652                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1653         }
1654
1655         return rc;
1656 }
1657
1658 /**
1659  * Destroy excess queues that are no longer needed after reconfiguration
1660  * or complete close.
1661  */
1662 static void
1663 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1664 {
1665         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1666         sfc_sw_index_t sw_index;
1667         sfc_ethdev_qid_t ethdev_qid;
1668
1669         SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1670
1671         /*
1672          * Finalize only ethdev queues since other ones are finalized only
1673          * on device close and they may require additional deinitializaton.
1674          */
1675         ethdev_qid = sas->ethdev_rxq_count;
1676         while (--ethdev_qid >= (int)nb_rx_queues) {
1677                 struct sfc_rxq_info *rxq_info;
1678
1679                 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1680                 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1681                         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1682                                                                 ethdev_qid);
1683                         sfc_rx_qfini(sa, sw_index);
1684                 }
1685
1686         }
1687
1688         sas->ethdev_rxq_count = nb_rx_queues;
1689 }
1690
1691 /**
1692  * Initialize Rx subsystem.
1693  *
1694  * Called at device (re)configuration stage when number of receive queues is
1695  * specified together with other device level receive configuration.
1696  *
1697  * It should be used to allocate NUMA-unaware resources.
1698  */
1699 int
1700 sfc_rx_configure(struct sfc_adapter *sa)
1701 {
1702         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1703         struct sfc_rss *rss = &sas->rss;
1704         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1705         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1706         int rc;
1707
1708         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1709                      nb_rx_queues, sas->ethdev_rxq_count);
1710
1711         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1712         if (rc != 0)
1713                 goto fail_check_mode;
1714
1715         if (nb_rx_queues == sas->rxq_count)
1716                 goto configure_rss;
1717
1718         if (sas->rxq_info == NULL) {
1719                 rc = ENOMEM;
1720                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1721                                                   sizeof(sas->rxq_info[0]), 0,
1722                                                   sa->socket_id);
1723                 if (sas->rxq_info == NULL)
1724                         goto fail_rxqs_alloc;
1725
1726                 /*
1727                  * Allocate primary process only RxQ control from heap
1728                  * since it should not be shared.
1729                  */
1730                 rc = ENOMEM;
1731                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1732                 if (sa->rxq_ctrl == NULL)
1733                         goto fail_rxqs_ctrl_alloc;
1734         } else {
1735                 struct sfc_rxq_info *new_rxq_info;
1736                 struct sfc_rxq *new_rxq_ctrl;
1737
1738                 if (nb_rx_queues < sas->ethdev_rxq_count)
1739                         sfc_rx_fini_queues(sa, nb_rx_queues);
1740
1741                 rc = ENOMEM;
1742                 new_rxq_info =
1743                         rte_realloc(sas->rxq_info,
1744                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1745                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1746                         goto fail_rxqs_realloc;
1747
1748                 rc = ENOMEM;
1749                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1750                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1751                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1752                         goto fail_rxqs_ctrl_realloc;
1753
1754                 sas->rxq_info = new_rxq_info;
1755                 sa->rxq_ctrl = new_rxq_ctrl;
1756                 if (nb_rx_queues > sas->rxq_count) {
1757                         unsigned int rxq_count = sas->rxq_count;
1758
1759                         memset(&sas->rxq_info[rxq_count], 0,
1760                                (nb_rx_queues - rxq_count) *
1761                                sizeof(sas->rxq_info[0]));
1762                         memset(&sa->rxq_ctrl[rxq_count], 0,
1763                                (nb_rx_queues - rxq_count) *
1764                                sizeof(sa->rxq_ctrl[0]));
1765                 }
1766         }
1767
1768         while (sas->ethdev_rxq_count < nb_rx_queues) {
1769                 sfc_sw_index_t sw_index;
1770
1771                 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1772                                                         sas->ethdev_rxq_count);
1773                 rc = sfc_rx_qinit_info(sa, sw_index);
1774                 if (rc != 0)
1775                         goto fail_rx_qinit_info;
1776
1777                 sas->ethdev_rxq_count++;
1778         }
1779
1780         sas->rxq_count = sas->ethdev_rxq_count;
1781
1782 configure_rss:
1783         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1784                          MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1785
1786         if (rss->channels > 0) {
1787                 struct rte_eth_rss_conf *adv_conf_rss;
1788                 sfc_sw_index_t sw_index;
1789
1790                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1791                         rss->tbl[sw_index] = sw_index % rss->channels;
1792
1793                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1794                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1795                 if (rc != 0)
1796                         goto fail_rx_process_adv_conf_rss;
1797         }
1798
1799         return 0;
1800
1801 fail_rx_process_adv_conf_rss:
1802 fail_rx_qinit_info:
1803 fail_rxqs_ctrl_realloc:
1804 fail_rxqs_realloc:
1805 fail_rxqs_ctrl_alloc:
1806 fail_rxqs_alloc:
1807         sfc_rx_close(sa);
1808
1809 fail_check_mode:
1810         sfc_log_init(sa, "failed %d", rc);
1811         return rc;
1812 }
1813
1814 /**
1815  * Shutdown Rx subsystem.
1816  *
1817  * Called at device close stage, for example, before device shutdown.
1818  */
1819 void
1820 sfc_rx_close(struct sfc_adapter *sa)
1821 {
1822         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1823
1824         sfc_rx_fini_queues(sa, 0);
1825
1826         rss->channels = 0;
1827
1828         free(sa->rxq_ctrl);
1829         sa->rxq_ctrl = NULL;
1830
1831         rte_free(sfc_sa2shared(sa)->rxq_info);
1832         sfc_sa2shared(sa)->rxq_info = NULL;
1833 }