a9217ada9d9b6b1ab96fe2bf5b2955eef9dadfe0
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58         int rc = 0;
59
60         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62                 if (rc == 0)
63                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64         }
65         return rc;
66 }
67
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71         unsigned int free_space;
72         unsigned int bulks;
73         void *objs[SFC_RX_REFILL_BULK];
74         efsys_dma_addr_t addr[RTE_DIM(objs)];
75         unsigned int added = rxq->added;
76         unsigned int id;
77         unsigned int i;
78         struct sfc_efx_rx_sw_desc *rxd;
79         struct rte_mbuf *m;
80         uint16_t port_id = rxq->dp.dpq.port_id;
81
82         free_space = rxq->max_fill_level - (added - rxq->completed);
83
84         if (free_space < rxq->refill_threshold)
85                 return;
86
87         bulks = free_space / RTE_DIM(objs);
88         /* refill_threshold guarantees that bulks is positive */
89         SFC_ASSERT(bulks > 0);
90
91         id = added & rxq->ptr_mask;
92         do {
93                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94                                                   RTE_DIM(objs)) < 0)) {
95                         /*
96                          * It is hardly a safe way to increment counter
97                          * from different contexts, but all PMDs do it.
98                          */
99                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100                                 RTE_DIM(objs);
101                         /* Return if we have posted nothing yet */
102                         if (added == rxq->added)
103                                 return;
104                         /* Push posted */
105                         break;
106                 }
107
108                 for (i = 0; i < RTE_DIM(objs);
109                      ++i, id = (id + 1) & rxq->ptr_mask) {
110                         m = objs[i];
111
112                         MBUF_RAW_ALLOC_CHECK(m);
113
114                         rxd = &rxq->sw_desc[id];
115                         rxd->mbuf = m;
116
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->port = port_id;
119
120                         addr[i] = rte_pktmbuf_iova(m);
121                 }
122
123                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124                              RTE_DIM(objs), rxq->completed, added);
125                 added += RTE_DIM(objs);
126         } while (--bulks > 0);
127
128         SFC_ASSERT(added != rxq->added);
129         rxq->added = added;
130         efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136         uint64_t mbuf_flags = 0;
137
138         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141                 break;
142         case EFX_PKT_IPV4:
143                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144                 break;
145         default:
146                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148                            PKT_RX_IP_CKSUM_UNKNOWN);
149                 break;
150         }
151
152         switch ((desc_flags &
153                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157                 break;
158         case EFX_PKT_TCP:
159         case EFX_PKT_UDP:
160                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161                 break;
162         default:
163                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165                            PKT_RX_L4_CKSUM_UNKNOWN);
166                 break;
167         }
168
169         return mbuf_flags;
170 }
171
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175         return RTE_PTYPE_L2_ETHER |
176                 ((desc_flags & EFX_PKT_IPV4) ?
177                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178                 ((desc_flags & EFX_PKT_IPV6) ?
179                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187         static const uint32_t ptypes[] = {
188                 RTE_PTYPE_L2_ETHER,
189                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191                 RTE_PTYPE_L4_TCP,
192                 RTE_PTYPE_L4_UDP,
193                 RTE_PTYPE_UNKNOWN
194         };
195
196         return ptypes;
197 }
198
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201                         struct rte_mbuf *m)
202 {
203         uint8_t *mbuf_data;
204
205
206         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207                 return;
208
209         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210
211         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213                                                       EFX_RX_HASHALG_TOEPLITZ,
214                                                       mbuf_data);
215
216                 m->ol_flags |= PKT_RX_RSS_HASH;
217         }
218 }
219
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223         struct sfc_dp_rxq *dp_rxq = rx_queue;
224         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225         unsigned int completed;
226         unsigned int prefix_size = rxq->prefix_size;
227         unsigned int done_pkts = 0;
228         boolean_t discard_next = B_FALSE;
229         struct rte_mbuf *scatter_pkt = NULL;
230
231         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232                 return 0;
233
234         sfc_ev_qpoll(rxq->evq);
235
236         completed = rxq->completed;
237         while (completed != rxq->pending && done_pkts < nb_pkts) {
238                 unsigned int id;
239                 struct sfc_efx_rx_sw_desc *rxd;
240                 struct rte_mbuf *m;
241                 unsigned int seg_len;
242                 unsigned int desc_flags;
243
244                 id = completed++ & rxq->ptr_mask;
245                 rxd = &rxq->sw_desc[id];
246                 m = rxd->mbuf;
247                 desc_flags = rxd->flags;
248
249                 if (discard_next)
250                         goto discard;
251
252                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253                         goto discard;
254
255                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
256                         uint16_t tmp_size;
257                         int rc __rte_unused;
258
259                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261                         SFC_ASSERT(rc == 0);
262                         seg_len = tmp_size;
263                 } else {
264                         seg_len = rxd->size - prefix_size;
265                 }
266
267                 rte_pktmbuf_data_len(m) = seg_len;
268                 rte_pktmbuf_pkt_len(m) = seg_len;
269
270                 if (scatter_pkt != NULL) {
271                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272                                 rte_pktmbuf_free(scatter_pkt);
273                                 goto discard;
274                         }
275                         /* The packet to deliver */
276                         m = scatter_pkt;
277                 }
278
279                 if (desc_flags & EFX_PKT_CONT) {
280                         /* The packet is scattered, more fragments to come */
281                         scatter_pkt = m;
282                         /* Further fragments have no prefix */
283                         prefix_size = 0;
284                         continue;
285                 }
286
287                 /* Scattered packet is done */
288                 scatter_pkt = NULL;
289                 /* The first fragment of the packet has prefix */
290                 prefix_size = rxq->prefix_size;
291
292                 m->ol_flags =
293                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294                 m->packet_type =
295                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296
297                 /*
298                  * Extract RSS hash from the packet prefix and
299                  * set the corresponding field (if needed and possible)
300                  */
301                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302
303                 m->data_off += prefix_size;
304
305                 *rx_pkts++ = m;
306                 done_pkts++;
307                 continue;
308
309 discard:
310                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311                 rte_mbuf_raw_free(m);
312                 rxd->mbuf = NULL;
313         }
314
315         /* pending is only moved when entire packet is received */
316         SFC_ASSERT(scatter_pkt == NULL);
317
318         rxq->completed = completed;
319
320         sfc_efx_rx_qrefill(rxq);
321
322         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323                 sfc_efx_rx_qprime(rxq);
324
325         return done_pkts;
326 }
327
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333
334         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335                 return 0;
336
337         sfc_ev_qpoll(rxq->evq);
338
339         return rxq->pending - rxq->completed;
340 }
341
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347
348         if (unlikely(offset > rxq->ptr_mask))
349                 return -EINVAL;
350
351         /*
352          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353          * it is required for the queue to be running, but the
354          * check is omitted because API design assumes that it
355          * is the duty of the caller to satisfy all conditions
356          */
357         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358                    SFC_EFX_RXQ_FLAG_RUNNING);
359         sfc_ev_qpoll(rxq->evq);
360
361         /*
362          * There is a handful of reserved entries in the ring,
363          * but an explicit check whether the offset points to
364          * a reserved entry is neglected since the two checks
365          * below rely on the figures which take the HW limits
366          * into account and thus if an entry is reserved, the
367          * checks will fail and UNAVAIL code will be returned
368          */
369
370         if (offset < (rxq->pending - rxq->completed))
371                 return RTE_ETH_RX_DESC_DONE;
372
373         if (offset < (rxq->added - rxq->completed))
374                 return RTE_ETH_RX_DESC_AVAIL;
375
376         return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381                      boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
382                      const char **error)
383 {
384         uint32_t effective_rx_scatter_max;
385         uint32_t rx_scatter_bufs;
386
387         effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
388         rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
389
390         if (rx_scatter_bufs > effective_rx_scatter_max) {
391                 if (rx_scatter_enabled)
392                         *error = "Possible number of Rx scatter buffers exceeds maximum number";
393                 else
394                         *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
395                 return B_FALSE;
396         }
397
398         return B_TRUE;
399 }
400
401 /** Get Rx datapath ops by the datapath RxQ handle */
402 const struct sfc_dp_rx *
403 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
404 {
405         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
406         struct rte_eth_dev *eth_dev;
407         struct sfc_adapter_priv *sap;
408
409         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
410         eth_dev = &rte_eth_devices[dpq->port_id];
411
412         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
413
414         return sap->dp_rx;
415 }
416
417 struct sfc_rxq_info *
418 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
419 {
420         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
421         struct rte_eth_dev *eth_dev;
422         struct sfc_adapter_shared *sas;
423
424         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
425         eth_dev = &rte_eth_devices[dpq->port_id];
426
427         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
428
429         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
430         return &sas->rxq_info[dpq->queue_id];
431 }
432
433 struct sfc_rxq *
434 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
435 {
436         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
437         struct rte_eth_dev *eth_dev;
438         struct sfc_adapter *sa;
439
440         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
441         eth_dev = &rte_eth_devices[dpq->port_id];
442
443         sa = sfc_adapter_by_eth_dev(eth_dev);
444
445         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
446         return &sa->rxq_ctrl[dpq->queue_id];
447 }
448
449 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
450 static int
451 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
452                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
453                           __rte_unused struct rte_mempool *mb_pool,
454                           unsigned int *rxq_entries,
455                           unsigned int *evq_entries,
456                           unsigned int *rxq_max_fill_level)
457 {
458         *rxq_entries = nb_rx_desc;
459         *evq_entries = nb_rx_desc;
460         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
461         return 0;
462 }
463
464 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
465 static int
466 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
467                    const struct rte_pci_addr *pci_addr, int socket_id,
468                    const struct sfc_dp_rx_qcreate_info *info,
469                    struct sfc_dp_rxq **dp_rxqp)
470 {
471         struct sfc_efx_rxq *rxq;
472         int rc;
473
474         rc = ENOMEM;
475         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
476                                  RTE_CACHE_LINE_SIZE, socket_id);
477         if (rxq == NULL)
478                 goto fail_rxq_alloc;
479
480         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
481
482         rc = ENOMEM;
483         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
484                                          info->rxq_entries,
485                                          sizeof(*rxq->sw_desc),
486                                          RTE_CACHE_LINE_SIZE, socket_id);
487         if (rxq->sw_desc == NULL)
488                 goto fail_desc_alloc;
489
490         /* efx datapath is bound to efx control path */
491         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
492         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
493                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
494         rxq->ptr_mask = info->rxq_entries - 1;
495         rxq->batch_max = info->batch_max;
496         rxq->prefix_size = info->prefix_size;
497         rxq->max_fill_level = info->max_fill_level;
498         rxq->refill_threshold = info->refill_threshold;
499         rxq->buf_size = info->buf_size;
500         rxq->refill_mb_pool = info->refill_mb_pool;
501
502         *dp_rxqp = &rxq->dp;
503         return 0;
504
505 fail_desc_alloc:
506         rte_free(rxq);
507
508 fail_rxq_alloc:
509         return rc;
510 }
511
512 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
513 static void
514 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
515 {
516         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
517
518         rte_free(rxq->sw_desc);
519         rte_free(rxq);
520 }
521
522
523 /* Use qstop and qstart functions in the case of qstart failure */
524 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
525 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
526
527
528 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
529 static int
530 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
531                   __rte_unused unsigned int evq_read_ptr)
532 {
533         /* libefx-based datapath is specific to libefx-based PMD */
534         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
535         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
536         int rc;
537
538         rxq->common = crxq->common;
539
540         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
541
542         sfc_efx_rx_qrefill(rxq);
543
544         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
545
546         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
547                 rc = sfc_efx_rx_qprime(rxq);
548                 if (rc != 0)
549                         goto fail_rx_qprime;
550         }
551
552         return 0;
553
554 fail_rx_qprime:
555         sfc_efx_rx_qstop(dp_rxq, NULL);
556         sfc_efx_rx_qpurge(dp_rxq);
557         return rc;
558 }
559
560 static void
561 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
562                  __rte_unused unsigned int *evq_read_ptr)
563 {
564         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
565
566         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
567
568         /* libefx-based datapath is bound to libefx-based PMD and uses
569          * event queue structure directly. So, there is no necessity to
570          * return EvQ read pointer.
571          */
572 }
573
574 static void
575 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
576 {
577         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
578         unsigned int i;
579         struct sfc_efx_rx_sw_desc *rxd;
580
581         for (i = rxq->completed; i != rxq->added; ++i) {
582                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
583                 rte_mbuf_raw_free(rxd->mbuf);
584                 rxd->mbuf = NULL;
585                 /* Packed stream relies on 0 in inactive SW desc.
586                  * Rx queue stop is not performance critical, so
587                  * there is no harm to do it always.
588                  */
589                 rxd->flags = 0;
590                 rxd->size = 0;
591         }
592
593         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
594 }
595
596 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
597 static int
598 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
599 {
600         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
601         int rc = 0;
602
603         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
604         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
605                 rc = sfc_efx_rx_qprime(rxq);
606                 if (rc != 0)
607                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
608         }
609         return rc;
610 }
611
612 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
613 static int
614 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
615 {
616         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
617
618         /* Cannot disarm, just disable rearm */
619         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
620         return 0;
621 }
622
623 struct sfc_dp_rx sfc_efx_rx = {
624         .dp = {
625                 .name           = SFC_KVARG_DATAPATH_EFX,
626                 .type           = SFC_DP_RX,
627                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_RX_EFX,
628         },
629         .features               = SFC_DP_RX_FEAT_INTR,
630         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
631                                   DEV_RX_OFFLOAD_RSS_HASH,
632         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
633         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
634         .qcreate                = sfc_efx_rx_qcreate,
635         .qdestroy               = sfc_efx_rx_qdestroy,
636         .qstart                 = sfc_efx_rx_qstart,
637         .qstop                  = sfc_efx_rx_qstop,
638         .qpurge                 = sfc_efx_rx_qpurge,
639         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
640         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
641         .qdesc_status           = sfc_efx_rx_qdesc_status,
642         .intr_enable            = sfc_efx_rx_intr_enable,
643         .intr_disable           = sfc_efx_rx_intr_disable,
644         .pkt_burst              = sfc_efx_recv_pkts,
645 };
646
647 static void
648 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
649 {
650         struct sfc_rxq_info *rxq_info;
651         struct sfc_rxq *rxq;
652         unsigned int retry_count;
653         unsigned int wait_count;
654         int rc;
655
656         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
657         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
658
659         rxq = &sa->rxq_ctrl[sw_index];
660
661         /*
662          * Retry Rx queue flushing in the case of flush failed or
663          * timeout. In the worst case it can delay for 6 seconds.
664          */
665         for (retry_count = 0;
666              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
667              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
668              ++retry_count) {
669                 rc = efx_rx_qflush(rxq->common);
670                 if (rc != 0) {
671                         rxq_info->state |= (rc == EALREADY) ?
672                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
673                         break;
674                 }
675                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
676                 rxq_info->state |= SFC_RXQ_FLUSHING;
677
678                 /*
679                  * Wait for Rx queue flush done or failed event at least
680                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
681                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
682                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
683                  */
684                 wait_count = 0;
685                 do {
686                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
687                         sfc_ev_qpoll(rxq->evq);
688                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
689                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
690
691                 if (rxq_info->state & SFC_RXQ_FLUSHING)
692                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
693
694                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
695                         sfc_err(sa, "RxQ %u flush failed", sw_index);
696
697                 if (rxq_info->state & SFC_RXQ_FLUSHED)
698                         sfc_notice(sa, "RxQ %u flushed", sw_index);
699         }
700
701         sa->priv.dp_rx->qpurge(rxq_info->dp);
702 }
703
704 static int
705 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
706 {
707         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
708         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
709         struct sfc_port *port = &sa->port;
710         int rc;
711
712         /*
713          * If promiscuous or all-multicast mode has been requested, setting
714          * filter for the default Rx queue might fail, in particular, while
715          * running over PCI function which is not a member of corresponding
716          * privilege groups; if this occurs, few iterations will be made to
717          * repeat this step without promiscuous and all-multicast flags set
718          */
719 retry:
720         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
721         if (rc == 0)
722                 return 0;
723         else if (rc != EOPNOTSUPP)
724                 return rc;
725
726         if (port->promisc) {
727                 sfc_warn(sa, "promiscuous mode has been requested, "
728                              "but the HW rejects it");
729                 sfc_warn(sa, "promiscuous mode will be disabled");
730
731                 port->promisc = B_FALSE;
732                 sa->eth_dev->data->promiscuous = 0;
733                 rc = sfc_set_rx_mode_unchecked(sa);
734                 if (rc != 0)
735                         return rc;
736
737                 goto retry;
738         }
739
740         if (port->allmulti) {
741                 sfc_warn(sa, "all-multicast mode has been requested, "
742                              "but the HW rejects it");
743                 sfc_warn(sa, "all-multicast mode will be disabled");
744
745                 port->allmulti = B_FALSE;
746                 sa->eth_dev->data->all_multicast = 0;
747                 rc = sfc_set_rx_mode_unchecked(sa);
748                 if (rc != 0)
749                         return rc;
750
751                 goto retry;
752         }
753
754         return rc;
755 }
756
757 int
758 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
759 {
760         struct sfc_rxq_info *rxq_info;
761         struct sfc_rxq *rxq;
762         struct sfc_evq *evq;
763         int rc;
764
765         sfc_log_init(sa, "sw_index=%u", sw_index);
766
767         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
768
769         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
770         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
771
772         rxq = &sa->rxq_ctrl[sw_index];
773         evq = rxq->evq;
774
775         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
776         if (rc != 0)
777                 goto fail_ev_qstart;
778
779         switch (rxq_info->type) {
780         case EFX_RXQ_TYPE_DEFAULT:
781                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
782                         rxq->buf_size,
783                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
784                         rxq_info->type_flags, evq->common, &rxq->common);
785                 break;
786         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
787                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
788                 struct rte_mempool_info mp_info;
789
790                 rc = rte_mempool_ops_get_info(mp, &mp_info);
791                 if (rc != 0) {
792                         /* Positive errno is used in the driver */
793                         rc = -rc;
794                         goto fail_mp_get_info;
795                 }
796                 if (mp_info.contig_block_size <= 0) {
797                         rc = EINVAL;
798                         goto fail_bad_contig_block_size;
799                 }
800                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
801                         mp_info.contig_block_size, rxq->buf_size,
802                         mp->header_size + mp->elt_size + mp->trailer_size,
803                         sa->rxd_wait_timeout_ns,
804                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
805                         evq->common, &rxq->common);
806                 break;
807         }
808         default:
809                 rc = ENOTSUP;
810         }
811         if (rc != 0)
812                 goto fail_rx_qcreate;
813
814         efx_rx_qenable(rxq->common);
815
816         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
817         if (rc != 0)
818                 goto fail_dp_qstart;
819
820         rxq_info->state |= SFC_RXQ_STARTED;
821
822         if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
823                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
824                 if (rc != 0)
825                         goto fail_mac_filter_default_rxq_set;
826         }
827
828         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
829         sa->eth_dev->data->rx_queue_state[sw_index] =
830                 RTE_ETH_QUEUE_STATE_STARTED;
831
832         return 0;
833
834 fail_mac_filter_default_rxq_set:
835         sfc_rx_qflush(sa, sw_index);
836         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
837         rxq_info->state = SFC_RXQ_INITIALIZED;
838
839 fail_dp_qstart:
840         efx_rx_qdestroy(rxq->common);
841
842 fail_rx_qcreate:
843 fail_bad_contig_block_size:
844 fail_mp_get_info:
845         sfc_ev_qstop(evq);
846
847 fail_ev_qstart:
848         return rc;
849 }
850
851 void
852 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
853 {
854         struct sfc_rxq_info *rxq_info;
855         struct sfc_rxq *rxq;
856
857         sfc_log_init(sa, "sw_index=%u", sw_index);
858
859         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
860
861         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
862
863         if (rxq_info->state == SFC_RXQ_INITIALIZED)
864                 return;
865         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
866
867         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
868         sa->eth_dev->data->rx_queue_state[sw_index] =
869                 RTE_ETH_QUEUE_STATE_STOPPED;
870
871         rxq = &sa->rxq_ctrl[sw_index];
872         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
873
874         if (sw_index == 0)
875                 efx_mac_filter_default_rxq_clear(sa->nic);
876
877         sfc_rx_qflush(sa, sw_index);
878
879         rxq_info->state = SFC_RXQ_INITIALIZED;
880
881         efx_rx_qdestroy(rxq->common);
882
883         sfc_ev_qstop(rxq->evq);
884 }
885
886 static uint64_t
887 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
888 {
889         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
890         uint64_t no_caps = 0;
891
892         if (encp->enc_tunnel_encapsulations_supported == 0)
893                 no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
894
895         return ~no_caps;
896 }
897
898 uint64_t
899 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
900 {
901         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
902
903         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
904
905         return caps & sfc_rx_get_offload_mask(sa);
906 }
907
908 uint64_t
909 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
910 {
911         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
912 }
913
914 static int
915 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
916                    const struct rte_eth_rxconf *rx_conf,
917                    __rte_unused uint64_t offloads)
918 {
919         int rc = 0;
920
921         if (rx_conf->rx_thresh.pthresh != 0 ||
922             rx_conf->rx_thresh.hthresh != 0 ||
923             rx_conf->rx_thresh.wthresh != 0) {
924                 sfc_warn(sa,
925                         "RxQ prefetch/host/writeback thresholds are not supported");
926         }
927
928         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
929                 sfc_err(sa,
930                         "RxQ free threshold too large: %u vs maximum %u",
931                         rx_conf->rx_free_thresh, rxq_max_fill_level);
932                 rc = EINVAL;
933         }
934
935         if (rx_conf->rx_drop_en == 0) {
936                 sfc_err(sa, "RxQ drop disable is not supported");
937                 rc = EINVAL;
938         }
939
940         return rc;
941 }
942
943 static unsigned int
944 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
945 {
946         uint32_t data_off;
947         uint32_t order;
948
949         /* The mbuf object itself is always cache line aligned */
950         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
951
952         /* Data offset from mbuf object start */
953         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
954                 RTE_PKTMBUF_HEADROOM;
955
956         order = MIN(order, rte_bsf32(data_off));
957
958         return 1u << order;
959 }
960
961 static uint16_t
962 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
963 {
964         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
965         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
966         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
967         uint16_t buf_size;
968         unsigned int buf_aligned;
969         unsigned int start_alignment;
970         unsigned int end_padding_alignment;
971
972         /* Below it is assumed that both alignments are power of 2 */
973         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
974         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
975
976         /*
977          * mbuf is always cache line aligned, double-check
978          * that it meets rx buffer start alignment requirements.
979          */
980
981         /* Start from mbuf pool data room size */
982         buf_size = rte_pktmbuf_data_room_size(mb_pool);
983
984         /* Remove headroom */
985         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
986                 sfc_err(sa,
987                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
988                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
989                 return 0;
990         }
991         buf_size -= RTE_PKTMBUF_HEADROOM;
992
993         /* Calculate guaranteed data start alignment */
994         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
995
996         /* Reserve space for start alignment */
997         if (buf_aligned < nic_align_start) {
998                 start_alignment = nic_align_start - buf_aligned;
999                 if (buf_size <= start_alignment) {
1000                         sfc_err(sa,
1001                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1002                                 mb_pool->name,
1003                                 rte_pktmbuf_data_room_size(mb_pool),
1004                                 RTE_PKTMBUF_HEADROOM, start_alignment);
1005                         return 0;
1006                 }
1007                 buf_aligned = nic_align_start;
1008                 buf_size -= start_alignment;
1009         } else {
1010                 start_alignment = 0;
1011         }
1012
1013         /* Make sure that end padding does not write beyond the buffer */
1014         if (buf_aligned < nic_align_end) {
1015                 /*
1016                  * Estimate space which can be lost. If guarnteed buffer
1017                  * size is odd, lost space is (nic_align_end - 1). More
1018                  * accurate formula is below.
1019                  */
1020                 end_padding_alignment = nic_align_end -
1021                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1022                 if (buf_size <= end_padding_alignment) {
1023                         sfc_err(sa,
1024                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1025                                 mb_pool->name,
1026                                 rte_pktmbuf_data_room_size(mb_pool),
1027                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1028                                 end_padding_alignment);
1029                         return 0;
1030                 }
1031                 buf_size -= end_padding_alignment;
1032         } else {
1033                 /*
1034                  * Start is aligned the same or better than end,
1035                  * just align length.
1036                  */
1037                 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1038         }
1039
1040         return buf_size;
1041 }
1042
1043 int
1044 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1045              uint16_t nb_rx_desc, unsigned int socket_id,
1046              const struct rte_eth_rxconf *rx_conf,
1047              struct rte_mempool *mb_pool)
1048 {
1049         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1050         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1051         int rc;
1052         unsigned int rxq_entries;
1053         unsigned int evq_entries;
1054         unsigned int rxq_max_fill_level;
1055         uint64_t offloads;
1056         uint16_t buf_size;
1057         struct sfc_rxq_info *rxq_info;
1058         struct sfc_evq *evq;
1059         struct sfc_rxq *rxq;
1060         struct sfc_dp_rx_qcreate_info info;
1061         struct sfc_dp_rx_hw_limits hw_limits;
1062         uint16_t rx_free_thresh;
1063         const char *error;
1064
1065         memset(&hw_limits, 0, sizeof(hw_limits));
1066         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1067         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1068         hw_limits.evq_max_entries = sa->evq_max_entries;
1069         hw_limits.evq_min_entries = sa->evq_min_entries;
1070
1071         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1072                                             &rxq_entries, &evq_entries,
1073                                             &rxq_max_fill_level);
1074         if (rc != 0)
1075                 goto fail_size_up_rings;
1076         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1077         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1078         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1079
1080         offloads = rx_conf->offloads |
1081                 sa->eth_dev->data->dev_conf.rxmode.offloads;
1082         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1083         if (rc != 0)
1084                 goto fail_bad_conf;
1085
1086         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1087         if (buf_size == 0) {
1088                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1089                         sw_index);
1090                 rc = EINVAL;
1091                 goto fail_bad_conf;
1092         }
1093
1094         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1095                                   encp->enc_rx_prefix_size,
1096                                   (offloads & DEV_RX_OFFLOAD_SCATTER),
1097                                   encp->enc_rx_scatter_max,
1098                                   &error)) {
1099                 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1100                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1101                         "PDU size %u plus Rx prefix %u bytes",
1102                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1103                         encp->enc_rx_prefix_size);
1104                 rc = EINVAL;
1105                 goto fail_bad_conf;
1106         }
1107
1108         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1109         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1110
1111         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1112         rxq_info->entries = rxq_entries;
1113
1114         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1115                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1116         else
1117                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1118
1119         rxq_info->type_flags =
1120                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1121                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1122
1123         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1124             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1125              DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1126                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1127
1128         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1129                           evq_entries, socket_id, &evq);
1130         if (rc != 0)
1131                 goto fail_ev_qinit;
1132
1133         rxq = &sa->rxq_ctrl[sw_index];
1134         rxq->evq = evq;
1135         rxq->hw_index = sw_index;
1136         /*
1137          * If Rx refill threshold is specified (its value is non zero) in
1138          * Rx configuration, use specified value. Otherwise use 1/8 of
1139          * the Rx descriptors number as the default. It allows to keep
1140          * Rx ring full-enough and does not refill too aggressive if
1141          * packet rate is high.
1142          *
1143          * Since PMD refills in bulks waiting for full bulk may be
1144          * refilled (basically round down), it is better to round up
1145          * here to mitigate it a bit.
1146          */
1147         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1148                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1149         /* Rx refill threshold cannot be smaller than refill bulk */
1150         rxq_info->refill_threshold =
1151                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1152         rxq_info->refill_mb_pool = mb_pool;
1153
1154         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1155             (offloads & DEV_RX_OFFLOAD_RSS_HASH))
1156                 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1157         else
1158                 rxq_info->rxq_flags = 0;
1159
1160         rxq->buf_size = buf_size;
1161
1162         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1163                            efx_rxq_size(sa->nic, rxq_info->entries),
1164                            socket_id, &rxq->mem);
1165         if (rc != 0)
1166                 goto fail_dma_alloc;
1167
1168         memset(&info, 0, sizeof(info));
1169         info.refill_mb_pool = rxq_info->refill_mb_pool;
1170         info.max_fill_level = rxq_max_fill_level;
1171         info.refill_threshold = rxq_info->refill_threshold;
1172         info.buf_size = buf_size;
1173         info.batch_max = encp->enc_rx_batch_max;
1174         info.prefix_size = encp->enc_rx_prefix_size;
1175         info.flags = rxq_info->rxq_flags;
1176         info.rxq_entries = rxq_info->entries;
1177         info.rxq_hw_ring = rxq->mem.esm_base;
1178         info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1179         info.evq_entries = evq_entries;
1180         info.evq_hw_ring = evq->mem.esm_base;
1181         info.hw_index = rxq->hw_index;
1182         info.mem_bar = sa->mem_bar.esb_base;
1183         info.vi_window_shift = encp->enc_vi_window_shift;
1184
1185         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1186                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1187                                      socket_id, &info, &rxq_info->dp);
1188         if (rc != 0)
1189                 goto fail_dp_rx_qcreate;
1190
1191         evq->dp_rxq = rxq_info->dp;
1192
1193         rxq_info->state = SFC_RXQ_INITIALIZED;
1194
1195         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1196
1197         return 0;
1198
1199 fail_dp_rx_qcreate:
1200         sfc_dma_free(sa, &rxq->mem);
1201
1202 fail_dma_alloc:
1203         sfc_ev_qfini(evq);
1204
1205 fail_ev_qinit:
1206         rxq_info->entries = 0;
1207
1208 fail_bad_conf:
1209 fail_size_up_rings:
1210         sfc_log_init(sa, "failed %d", rc);
1211         return rc;
1212 }
1213
1214 void
1215 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1216 {
1217         struct sfc_rxq_info *rxq_info;
1218         struct sfc_rxq *rxq;
1219
1220         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1221         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1222
1223         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1224
1225         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1226
1227         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1228         rxq_info->dp = NULL;
1229
1230         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1231         rxq_info->entries = 0;
1232
1233         rxq = &sa->rxq_ctrl[sw_index];
1234
1235         sfc_dma_free(sa, &rxq->mem);
1236
1237         sfc_ev_qfini(rxq->evq);
1238         rxq->evq = NULL;
1239 }
1240
1241 /*
1242  * Mapping between RTE RSS hash functions and their EFX counterparts.
1243  */
1244 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1245         { ETH_RSS_NONFRAG_IPV4_TCP,
1246           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1247         { ETH_RSS_NONFRAG_IPV4_UDP,
1248           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1249         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1250           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1251         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1252           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1253         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1254           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1255           EFX_RX_HASH(IPV4, 2TUPLE) },
1256         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1257           ETH_RSS_IPV6_EX,
1258           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1259           EFX_RX_HASH(IPV6, 2TUPLE) }
1260 };
1261
1262 static efx_rx_hash_type_t
1263 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1264                             unsigned int *hash_type_flags_supported,
1265                             unsigned int nb_hash_type_flags_supported)
1266 {
1267         efx_rx_hash_type_t hash_type_masked = 0;
1268         unsigned int i, j;
1269
1270         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1271                 unsigned int class_tuple_lbn[] = {
1272                         EFX_RX_CLASS_IPV4_TCP_LBN,
1273                         EFX_RX_CLASS_IPV4_UDP_LBN,
1274                         EFX_RX_CLASS_IPV4_LBN,
1275                         EFX_RX_CLASS_IPV6_TCP_LBN,
1276                         EFX_RX_CLASS_IPV6_UDP_LBN,
1277                         EFX_RX_CLASS_IPV6_LBN
1278                 };
1279
1280                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1281                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1282                         unsigned int flag;
1283
1284                         tuple_mask <<= class_tuple_lbn[j];
1285                         flag = hash_type & tuple_mask;
1286
1287                         if (flag == hash_type_flags_supported[i])
1288                                 hash_type_masked |= flag;
1289                 }
1290         }
1291
1292         return hash_type_masked;
1293 }
1294
1295 int
1296 sfc_rx_hash_init(struct sfc_adapter *sa)
1297 {
1298         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1299         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1300         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1301         efx_rx_hash_alg_t alg;
1302         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1303         unsigned int nb_flags_supp;
1304         struct sfc_rss_hf_rte_to_efx *hf_map;
1305         struct sfc_rss_hf_rte_to_efx *entry;
1306         efx_rx_hash_type_t efx_hash_types;
1307         unsigned int i;
1308         int rc;
1309
1310         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1311                 alg = EFX_RX_HASHALG_TOEPLITZ;
1312         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1313                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1314         else
1315                 return EINVAL;
1316
1317         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1318                                          RTE_DIM(flags_supp), &nb_flags_supp);
1319         if (rc != 0)
1320                 return rc;
1321
1322         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1323                                    RTE_DIM(sfc_rss_hf_map),
1324                                    sizeof(*hf_map), 0, sa->socket_id);
1325         if (hf_map == NULL)
1326                 return ENOMEM;
1327
1328         entry = hf_map;
1329         efx_hash_types = 0;
1330         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1331                 efx_rx_hash_type_t ht;
1332
1333                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1334                                                  flags_supp, nb_flags_supp);
1335                 if (ht != 0) {
1336                         entry->rte = sfc_rss_hf_map[i].rte;
1337                         entry->efx = ht;
1338                         efx_hash_types |= ht;
1339                         ++entry;
1340                 }
1341         }
1342
1343         rss->hash_alg = alg;
1344         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1345         rss->hf_map = hf_map;
1346         rss->hash_types = efx_hash_types;
1347
1348         return 0;
1349 }
1350
1351 void
1352 sfc_rx_hash_fini(struct sfc_adapter *sa)
1353 {
1354         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1355
1356         rte_free(rss->hf_map);
1357 }
1358
1359 int
1360 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1361                      efx_rx_hash_type_t *efx)
1362 {
1363         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1364         efx_rx_hash_type_t hash_types = 0;
1365         unsigned int i;
1366
1367         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1368                 uint64_t rte_mask = rss->hf_map[i].rte;
1369
1370                 if ((rte & rte_mask) != 0) {
1371                         rte &= ~rte_mask;
1372                         hash_types |= rss->hf_map[i].efx;
1373                 }
1374         }
1375
1376         if (rte != 0) {
1377                 sfc_err(sa, "unsupported hash functions requested");
1378                 return EINVAL;
1379         }
1380
1381         *efx = hash_types;
1382
1383         return 0;
1384 }
1385
1386 uint64_t
1387 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1388 {
1389         uint64_t rte = 0;
1390         unsigned int i;
1391
1392         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1393                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1394
1395                 if ((efx & hash_type) == hash_type)
1396                         rte |= rss->hf_map[i].rte;
1397         }
1398
1399         return rte;
1400 }
1401
1402 static int
1403 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1404                             struct rte_eth_rss_conf *conf)
1405 {
1406         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1407         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1408         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1409         int rc;
1410
1411         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1412                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1413                     conf->rss_key != NULL)
1414                         return EINVAL;
1415         }
1416
1417         if (conf->rss_hf != 0) {
1418                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1419                 if (rc != 0)
1420                         return rc;
1421         }
1422
1423         if (conf->rss_key != NULL) {
1424                 if (conf->rss_key_len != sizeof(rss->key)) {
1425                         sfc_err(sa, "RSS key size is wrong (should be %zu)",
1426                                 sizeof(rss->key));
1427                         return EINVAL;
1428                 }
1429                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1430         }
1431
1432         rss->hash_types = efx_hash_types;
1433
1434         return 0;
1435 }
1436
1437 static int
1438 sfc_rx_rss_config(struct sfc_adapter *sa)
1439 {
1440         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1441         int rc = 0;
1442
1443         if (rss->channels > 0) {
1444                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1445                                            rss->hash_alg, rss->hash_types,
1446                                            B_TRUE);
1447                 if (rc != 0)
1448                         goto finish;
1449
1450                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1451                                           rss->key, sizeof(rss->key));
1452                 if (rc != 0)
1453                         goto finish;
1454
1455                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1456                                           rss->tbl, RTE_DIM(rss->tbl));
1457         }
1458
1459 finish:
1460         return rc;
1461 }
1462
1463 int
1464 sfc_rx_start(struct sfc_adapter *sa)
1465 {
1466         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1467         unsigned int sw_index;
1468         int rc;
1469
1470         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1471
1472         rc = efx_rx_init(sa->nic);
1473         if (rc != 0)
1474                 goto fail_rx_init;
1475
1476         rc = sfc_rx_rss_config(sa);
1477         if (rc != 0)
1478                 goto fail_rss_config;
1479
1480         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1481                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1482                     (!sas->rxq_info[sw_index].deferred_start ||
1483                      sas->rxq_info[sw_index].deferred_started)) {
1484                         rc = sfc_rx_qstart(sa, sw_index);
1485                         if (rc != 0)
1486                                 goto fail_rx_qstart;
1487                 }
1488         }
1489
1490         return 0;
1491
1492 fail_rx_qstart:
1493         while (sw_index-- > 0)
1494                 sfc_rx_qstop(sa, sw_index);
1495
1496 fail_rss_config:
1497         efx_rx_fini(sa->nic);
1498
1499 fail_rx_init:
1500         sfc_log_init(sa, "failed %d", rc);
1501         return rc;
1502 }
1503
1504 void
1505 sfc_rx_stop(struct sfc_adapter *sa)
1506 {
1507         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1508         unsigned int sw_index;
1509
1510         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1511
1512         sw_index = sas->rxq_count;
1513         while (sw_index-- > 0) {
1514                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1515                         sfc_rx_qstop(sa, sw_index);
1516         }
1517
1518         efx_rx_fini(sa->nic);
1519 }
1520
1521 static int
1522 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1523 {
1524         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1525         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1526         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1527         unsigned int max_entries;
1528
1529         max_entries = encp->enc_rxq_max_ndescs;
1530         SFC_ASSERT(rte_is_power_of_2(max_entries));
1531
1532         rxq_info->max_entries = max_entries;
1533
1534         return 0;
1535 }
1536
1537 static int
1538 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1539 {
1540         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1541         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1542                                       sfc_rx_get_queue_offload_caps(sa);
1543         struct sfc_rss *rss = &sas->rss;
1544         int rc = 0;
1545
1546         switch (rxmode->mq_mode) {
1547         case ETH_MQ_RX_NONE:
1548                 /* No special checks are required */
1549                 break;
1550         case ETH_MQ_RX_RSS:
1551                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1552                         sfc_err(sa, "RSS is not available");
1553                         rc = EINVAL;
1554                 }
1555                 break;
1556         default:
1557                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1558                         rxmode->mq_mode);
1559                 rc = EINVAL;
1560         }
1561
1562         /*
1563          * Requested offloads are validated against supported by ethdev,
1564          * so unsupported offloads cannot be added as the result of
1565          * below check.
1566          */
1567         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1568             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1569                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1570                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1571         }
1572
1573         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1574             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1575                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1576                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1577         }
1578
1579         return rc;
1580 }
1581
1582 /**
1583  * Destroy excess queues that are no longer needed after reconfiguration
1584  * or complete close.
1585  */
1586 static void
1587 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1588 {
1589         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1590         int sw_index;
1591
1592         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1593
1594         sw_index = sas->rxq_count;
1595         while (--sw_index >= (int)nb_rx_queues) {
1596                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1597                         sfc_rx_qfini(sa, sw_index);
1598         }
1599
1600         sas->rxq_count = nb_rx_queues;
1601 }
1602
1603 /**
1604  * Initialize Rx subsystem.
1605  *
1606  * Called at device (re)configuration stage when number of receive queues is
1607  * specified together with other device level receive configuration.
1608  *
1609  * It should be used to allocate NUMA-unaware resources.
1610  */
1611 int
1612 sfc_rx_configure(struct sfc_adapter *sa)
1613 {
1614         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1615         struct sfc_rss *rss = &sas->rss;
1616         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1617         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1618         int rc;
1619
1620         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1621                      nb_rx_queues, sas->rxq_count);
1622
1623         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1624         if (rc != 0)
1625                 goto fail_check_mode;
1626
1627         if (nb_rx_queues == sas->rxq_count)
1628                 goto configure_rss;
1629
1630         if (sas->rxq_info == NULL) {
1631                 rc = ENOMEM;
1632                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1633                                                   sizeof(sas->rxq_info[0]), 0,
1634                                                   sa->socket_id);
1635                 if (sas->rxq_info == NULL)
1636                         goto fail_rxqs_alloc;
1637
1638                 /*
1639                  * Allocate primary process only RxQ control from heap
1640                  * since it should not be shared.
1641                  */
1642                 rc = ENOMEM;
1643                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1644                 if (sa->rxq_ctrl == NULL)
1645                         goto fail_rxqs_ctrl_alloc;
1646         } else {
1647                 struct sfc_rxq_info *new_rxq_info;
1648                 struct sfc_rxq *new_rxq_ctrl;
1649
1650                 if (nb_rx_queues < sas->rxq_count)
1651                         sfc_rx_fini_queues(sa, nb_rx_queues);
1652
1653                 rc = ENOMEM;
1654                 new_rxq_info =
1655                         rte_realloc(sas->rxq_info,
1656                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1657                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1658                         goto fail_rxqs_realloc;
1659
1660                 rc = ENOMEM;
1661                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1662                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1663                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1664                         goto fail_rxqs_ctrl_realloc;
1665
1666                 sas->rxq_info = new_rxq_info;
1667                 sa->rxq_ctrl = new_rxq_ctrl;
1668                 if (nb_rx_queues > sas->rxq_count) {
1669                         memset(&sas->rxq_info[sas->rxq_count], 0,
1670                                (nb_rx_queues - sas->rxq_count) *
1671                                sizeof(sas->rxq_info[0]));
1672                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1673                                (nb_rx_queues - sas->rxq_count) *
1674                                sizeof(sa->rxq_ctrl[0]));
1675                 }
1676         }
1677
1678         while (sas->rxq_count < nb_rx_queues) {
1679                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1680                 if (rc != 0)
1681                         goto fail_rx_qinit_info;
1682
1683                 sas->rxq_count++;
1684         }
1685
1686 configure_rss:
1687         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1688                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1689
1690         if (rss->channels > 0) {
1691                 struct rte_eth_rss_conf *adv_conf_rss;
1692                 unsigned int sw_index;
1693
1694                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1695                         rss->tbl[sw_index] = sw_index % rss->channels;
1696
1697                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1698                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1699                 if (rc != 0)
1700                         goto fail_rx_process_adv_conf_rss;
1701         }
1702
1703         return 0;
1704
1705 fail_rx_process_adv_conf_rss:
1706 fail_rx_qinit_info:
1707 fail_rxqs_ctrl_realloc:
1708 fail_rxqs_realloc:
1709 fail_rxqs_ctrl_alloc:
1710 fail_rxqs_alloc:
1711         sfc_rx_close(sa);
1712
1713 fail_check_mode:
1714         sfc_log_init(sa, "failed %d", rc);
1715         return rc;
1716 }
1717
1718 /**
1719  * Shutdown Rx subsystem.
1720  *
1721  * Called at device close stage, for example, before device shutdown.
1722  */
1723 void
1724 sfc_rx_close(struct sfc_adapter *sa)
1725 {
1726         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1727
1728         sfc_rx_fini_queues(sa, 0);
1729
1730         rss->channels = 0;
1731
1732         free(sa->rxq_ctrl);
1733         sa->rxq_ctrl = NULL;
1734
1735         rte_free(sfc_sa2shared(sa)->rxq_info);
1736         sfc_sa2shared(sa)->rxq_info = NULL;
1737 }