net/ice: track DCF state of PF
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_flow_tunnel.h"
17 #include "sfc_log.h"
18 #include "sfc_ev.h"
19 #include "sfc_rx.h"
20 #include "sfc_mae_counter.h"
21 #include "sfc_kvargs.h"
22 #include "sfc_tweak.h"
23
24 /*
25  * Maximum number of Rx queue flush attempt in the case of failure or
26  * flush timeout
27  */
28 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
29
30 /*
31  * Time to wait between event queue polling attempts when waiting for Rx
32  * queue flush done or failed events.
33  */
34 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
35
36 /*
37  * Maximum number of event queue polling attempts when waiting for Rx queue
38  * flush done or failed events. It defines Rx queue flush attempt timeout
39  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
40  */
41 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
42
43 void
44 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
45 {
46         rxq_info->state |= SFC_RXQ_FLUSHED;
47         rxq_info->state &= ~SFC_RXQ_FLUSHING;
48 }
49
50 void
51 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
52 {
53         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
54         rxq_info->state &= ~SFC_RXQ_FLUSHING;
55 }
56
57 /* This returns the running counter, which is not bounded by ring size */
58 unsigned int
59 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq)
60 {
61         SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL);
62
63         return sa->priv.dp_rx->get_pushed(dp_rxq);
64 }
65
66 static int
67 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
68 {
69         int rc = 0;
70
71         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
72                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
73                 if (rc == 0)
74                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
75         }
76         return rc;
77 }
78
79 static void
80 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
81 {
82         unsigned int free_space;
83         unsigned int bulks;
84         void *objs[SFC_RX_REFILL_BULK];
85         efsys_dma_addr_t addr[RTE_DIM(objs)];
86         unsigned int added = rxq->added;
87         unsigned int id;
88         unsigned int i;
89         struct sfc_efx_rx_sw_desc *rxd;
90         struct rte_mbuf *m;
91         uint16_t port_id = rxq->dp.dpq.port_id;
92
93         free_space = rxq->max_fill_level - (added - rxq->completed);
94
95         if (free_space < rxq->refill_threshold)
96                 return;
97
98         bulks = free_space / RTE_DIM(objs);
99         /* refill_threshold guarantees that bulks is positive */
100         SFC_ASSERT(bulks > 0);
101
102         id = added & rxq->ptr_mask;
103         do {
104                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
105                                                   RTE_DIM(objs)) < 0)) {
106                         /*
107                          * It is hardly a safe way to increment counter
108                          * from different contexts, but all PMDs do it.
109                          */
110                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
111                                 RTE_DIM(objs);
112                         /* Return if we have posted nothing yet */
113                         if (added == rxq->added)
114                                 return;
115                         /* Push posted */
116                         break;
117                 }
118
119                 for (i = 0; i < RTE_DIM(objs);
120                      ++i, id = (id + 1) & rxq->ptr_mask) {
121                         m = objs[i];
122
123                         __rte_mbuf_raw_sanity_check(m);
124
125                         rxd = &rxq->sw_desc[id];
126                         rxd->mbuf = m;
127
128                         m->data_off = RTE_PKTMBUF_HEADROOM;
129                         m->port = port_id;
130
131                         addr[i] = rte_pktmbuf_iova(m);
132                 }
133
134                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135                              RTE_DIM(objs), rxq->completed, added);
136                 added += RTE_DIM(objs);
137         } while (--bulks > 0);
138
139         SFC_ASSERT(added != rxq->added);
140         rxq->added = added;
141         efx_rx_qpush(rxq->common, added, &rxq->pushed);
142         rxq->dp.dpq.dbells++;
143 }
144
145 static uint64_t
146 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
147 {
148         uint64_t mbuf_flags = 0;
149
150         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
151         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
152                 mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
153                 break;
154         case EFX_PKT_IPV4:
155                 mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
156                 break;
157         default:
158                 RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN != 0);
159                 SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) ==
160                            RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN);
161                 break;
162         }
163
164         switch ((desc_flags &
165                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
166         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
167         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
168                 mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
169                 break;
170         case EFX_PKT_TCP:
171         case EFX_PKT_UDP:
172                 mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
173                 break;
174         default:
175                 RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN != 0);
176                 SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) ==
177                            RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN);
178                 break;
179         }
180
181         return mbuf_flags;
182 }
183
184 static uint32_t
185 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
186 {
187         return RTE_PTYPE_L2_ETHER |
188                 ((desc_flags & EFX_PKT_IPV4) ?
189                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
190                 ((desc_flags & EFX_PKT_IPV6) ?
191                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
192                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
193                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
194 }
195
196 static const uint32_t *
197 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
198 {
199         static const uint32_t ptypes[] = {
200                 RTE_PTYPE_L2_ETHER,
201                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
202                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
203                 RTE_PTYPE_L4_TCP,
204                 RTE_PTYPE_L4_UDP,
205                 RTE_PTYPE_UNKNOWN
206         };
207
208         return ptypes;
209 }
210
211 static void
212 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
213                         struct rte_mbuf *m)
214 {
215         uint8_t *mbuf_data;
216
217
218         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
219                 return;
220
221         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
222
223         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
224                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
225                                                       EFX_RX_HASHALG_TOEPLITZ,
226                                                       mbuf_data);
227
228                 m->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
229         }
230 }
231
232 static uint16_t
233 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
234 {
235         struct sfc_dp_rxq *dp_rxq = rx_queue;
236         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
237         unsigned int completed;
238         unsigned int prefix_size = rxq->prefix_size;
239         unsigned int done_pkts = 0;
240         boolean_t discard_next = B_FALSE;
241         struct rte_mbuf *scatter_pkt = NULL;
242
243         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
244                 return 0;
245
246         sfc_ev_qpoll(rxq->evq);
247
248         completed = rxq->completed;
249         while (completed != rxq->pending && done_pkts < nb_pkts) {
250                 unsigned int id;
251                 struct sfc_efx_rx_sw_desc *rxd;
252                 struct rte_mbuf *m;
253                 unsigned int seg_len;
254                 unsigned int desc_flags;
255
256                 id = completed++ & rxq->ptr_mask;
257                 rxd = &rxq->sw_desc[id];
258                 m = rxd->mbuf;
259                 desc_flags = rxd->flags;
260
261                 if (discard_next)
262                         goto discard;
263
264                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
265                         goto discard;
266
267                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
268                         uint16_t tmp_size;
269                         int rc __rte_unused;
270
271                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
272                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
273                         SFC_ASSERT(rc == 0);
274                         seg_len = tmp_size;
275                 } else {
276                         seg_len = rxd->size - prefix_size;
277                 }
278
279                 rte_pktmbuf_data_len(m) = seg_len;
280                 rte_pktmbuf_pkt_len(m) = seg_len;
281
282                 if (scatter_pkt != NULL) {
283                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
284                                 rte_pktmbuf_free(scatter_pkt);
285                                 goto discard;
286                         }
287                         /* The packet to deliver */
288                         m = scatter_pkt;
289                 }
290
291                 if (desc_flags & EFX_PKT_CONT) {
292                         /* The packet is scattered, more fragments to come */
293                         scatter_pkt = m;
294                         /* Further fragments have no prefix */
295                         prefix_size = 0;
296                         continue;
297                 }
298
299                 /* Scattered packet is done */
300                 scatter_pkt = NULL;
301                 /* The first fragment of the packet has prefix */
302                 prefix_size = rxq->prefix_size;
303
304                 m->ol_flags =
305                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
306                 m->packet_type =
307                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
308
309                 /*
310                  * Extract RSS hash from the packet prefix and
311                  * set the corresponding field (if needed and possible)
312                  */
313                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
314
315                 m->data_off += prefix_size;
316
317                 *rx_pkts++ = m;
318                 done_pkts++;
319                 continue;
320
321 discard:
322                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
323                 rte_mbuf_raw_free(m);
324                 rxd->mbuf = NULL;
325         }
326
327         /* pending is only moved when entire packet is received */
328         SFC_ASSERT(scatter_pkt == NULL);
329
330         rxq->completed = completed;
331
332         sfc_efx_rx_qrefill(rxq);
333
334         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
335                 sfc_efx_rx_qprime(rxq);
336
337         return done_pkts;
338 }
339
340 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
341 static unsigned int
342 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
343 {
344         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
345
346         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
347                 return 0;
348
349         sfc_ev_qpoll(rxq->evq);
350
351         return rxq->pending - rxq->completed;
352 }
353
354 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
355 static int
356 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
357 {
358         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
359
360         if (unlikely(offset > rxq->ptr_mask))
361                 return -EINVAL;
362
363         /*
364          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
365          * it is required for the queue to be running, but the
366          * check is omitted because API design assumes that it
367          * is the duty of the caller to satisfy all conditions
368          */
369         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
370                    SFC_EFX_RXQ_FLAG_RUNNING);
371         sfc_ev_qpoll(rxq->evq);
372
373         /*
374          * There is a handful of reserved entries in the ring,
375          * but an explicit check whether the offset points to
376          * a reserved entry is neglected since the two checks
377          * below rely on the figures which take the HW limits
378          * into account and thus if an entry is reserved, the
379          * checks will fail and UNAVAIL code will be returned
380          */
381
382         if (offset < (rxq->pending - rxq->completed))
383                 return RTE_ETH_RX_DESC_DONE;
384
385         if (offset < (rxq->added - rxq->completed))
386                 return RTE_ETH_RX_DESC_AVAIL;
387
388         return RTE_ETH_RX_DESC_UNAVAIL;
389 }
390
391 boolean_t
392 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
393                      boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
394                      const char **error)
395 {
396         uint32_t effective_rx_scatter_max;
397         uint32_t rx_scatter_bufs;
398
399         effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
400         rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
401
402         if (rx_scatter_bufs > effective_rx_scatter_max) {
403                 if (rx_scatter_enabled)
404                         *error = "Possible number of Rx scatter buffers exceeds maximum number";
405                 else
406                         *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
407                 return B_FALSE;
408         }
409
410         return B_TRUE;
411 }
412
413 /** Get Rx datapath ops by the datapath RxQ handle */
414 const struct sfc_dp_rx *
415 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
416 {
417         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
418         struct rte_eth_dev *eth_dev;
419         struct sfc_adapter_priv *sap;
420
421         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
422         eth_dev = &rte_eth_devices[dpq->port_id];
423
424         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
425
426         return sap->dp_rx;
427 }
428
429 struct sfc_rxq_info *
430 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
431 {
432         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
433         struct rte_eth_dev *eth_dev;
434         struct sfc_adapter_shared *sas;
435
436         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
437         eth_dev = &rte_eth_devices[dpq->port_id];
438
439         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
440
441         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
442         return &sas->rxq_info[dpq->queue_id];
443 }
444
445 struct sfc_rxq *
446 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
447 {
448         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
449         struct rte_eth_dev *eth_dev;
450         struct sfc_adapter *sa;
451
452         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
453         eth_dev = &rte_eth_devices[dpq->port_id];
454
455         sa = sfc_adapter_by_eth_dev(eth_dev);
456
457         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
458         return &sa->rxq_ctrl[dpq->queue_id];
459 }
460
461 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
462 static int
463 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
464                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
465                           __rte_unused struct rte_mempool *mb_pool,
466                           unsigned int *rxq_entries,
467                           unsigned int *evq_entries,
468                           unsigned int *rxq_max_fill_level)
469 {
470         *rxq_entries = nb_rx_desc;
471         *evq_entries = nb_rx_desc;
472         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
473         return 0;
474 }
475
476 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
477 static int
478 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
479                    const struct rte_pci_addr *pci_addr, int socket_id,
480                    const struct sfc_dp_rx_qcreate_info *info,
481                    struct sfc_dp_rxq **dp_rxqp)
482 {
483         struct sfc_efx_rxq *rxq;
484         int rc;
485
486         rc = ENOTSUP;
487         if (info->nic_dma_info->nb_regions > 0)
488                 goto fail_nic_dma;
489
490         rc = ENOMEM;
491         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
492                                  RTE_CACHE_LINE_SIZE, socket_id);
493         if (rxq == NULL)
494                 goto fail_rxq_alloc;
495
496         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
497
498         rc = ENOMEM;
499         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
500                                          info->rxq_entries,
501                                          sizeof(*rxq->sw_desc),
502                                          RTE_CACHE_LINE_SIZE, socket_id);
503         if (rxq->sw_desc == NULL)
504                 goto fail_desc_alloc;
505
506         /* efx datapath is bound to efx control path */
507         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
508         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
509                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
510         rxq->ptr_mask = info->rxq_entries - 1;
511         rxq->batch_max = info->batch_max;
512         rxq->prefix_size = info->prefix_size;
513         rxq->max_fill_level = info->max_fill_level;
514         rxq->refill_threshold = info->refill_threshold;
515         rxq->buf_size = info->buf_size;
516         rxq->refill_mb_pool = info->refill_mb_pool;
517
518         *dp_rxqp = &rxq->dp;
519         return 0;
520
521 fail_desc_alloc:
522         rte_free(rxq);
523
524 fail_rxq_alloc:
525 fail_nic_dma:
526         return rc;
527 }
528
529 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
530 static void
531 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
532 {
533         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
534
535         rte_free(rxq->sw_desc);
536         rte_free(rxq);
537 }
538
539
540 /* Use qstop and qstart functions in the case of qstart failure */
541 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
542 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
543
544
545 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
546 static int
547 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
548                   __rte_unused unsigned int evq_read_ptr,
549                   const efx_rx_prefix_layout_t *pinfo)
550 {
551         /* libefx-based datapath is specific to libefx-based PMD */
552         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
553         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
554         int rc;
555
556         /*
557          * libefx API is used to extract information from Rx prefix and
558          * it guarantees consistency. Just do length check to ensure
559          * that we reserved space in Rx buffers correctly.
560          */
561         if (rxq->prefix_size != pinfo->erpl_length)
562                 return ENOTSUP;
563
564         rxq->common = crxq->common;
565
566         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
567
568         sfc_efx_rx_qrefill(rxq);
569
570         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
571
572         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
573                 rc = sfc_efx_rx_qprime(rxq);
574                 if (rc != 0)
575                         goto fail_rx_qprime;
576         }
577
578         return 0;
579
580 fail_rx_qprime:
581         sfc_efx_rx_qstop(dp_rxq, NULL);
582         sfc_efx_rx_qpurge(dp_rxq);
583         return rc;
584 }
585
586 static void
587 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
588                  __rte_unused unsigned int *evq_read_ptr)
589 {
590         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591
592         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
593
594         /* libefx-based datapath is bound to libefx-based PMD and uses
595          * event queue structure directly. So, there is no necessity to
596          * return EvQ read pointer.
597          */
598 }
599
600 static void
601 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
602 {
603         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
604         unsigned int i;
605         struct sfc_efx_rx_sw_desc *rxd;
606
607         for (i = rxq->completed; i != rxq->added; ++i) {
608                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
609                 rte_mbuf_raw_free(rxd->mbuf);
610                 rxd->mbuf = NULL;
611                 /* Packed stream relies on 0 in inactive SW desc.
612                  * Rx queue stop is not performance critical, so
613                  * there is no harm to do it always.
614                  */
615                 rxd->flags = 0;
616                 rxd->size = 0;
617         }
618
619         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
620 }
621
622 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
623 static int
624 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
625 {
626         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
627         int rc = 0;
628
629         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
630         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
631                 rc = sfc_efx_rx_qprime(rxq);
632                 if (rc != 0)
633                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
634         }
635         return rc;
636 }
637
638 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
639 static int
640 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
641 {
642         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
643
644         /* Cannot disarm, just disable rearm */
645         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
646         return 0;
647 }
648
649 struct sfc_dp_rx sfc_efx_rx = {
650         .dp = {
651                 .name           = SFC_KVARG_DATAPATH_EFX,
652                 .type           = SFC_DP_RX,
653                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_RX_EFX,
654         },
655         .features               = SFC_DP_RX_FEAT_INTR,
656         .dev_offload_capa       = RTE_ETH_RX_OFFLOAD_CHECKSUM |
657                                   RTE_ETH_RX_OFFLOAD_RSS_HASH,
658         .queue_offload_capa     = RTE_ETH_RX_OFFLOAD_SCATTER,
659         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
660         .qcreate                = sfc_efx_rx_qcreate,
661         .qdestroy               = sfc_efx_rx_qdestroy,
662         .qstart                 = sfc_efx_rx_qstart,
663         .qstop                  = sfc_efx_rx_qstop,
664         .qpurge                 = sfc_efx_rx_qpurge,
665         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
666         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
667         .qdesc_status           = sfc_efx_rx_qdesc_status,
668         .intr_enable            = sfc_efx_rx_intr_enable,
669         .intr_disable           = sfc_efx_rx_intr_disable,
670         .pkt_burst              = sfc_efx_recv_pkts,
671 };
672
673 static void
674 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
675 {
676         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
677         sfc_ethdev_qid_t ethdev_qid;
678         struct sfc_rxq_info *rxq_info;
679         struct sfc_rxq *rxq;
680         unsigned int retry_count;
681         unsigned int wait_count;
682         int rc;
683
684         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
685         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
686         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
687
688         rxq = &sa->rxq_ctrl[sw_index];
689
690         /*
691          * Retry Rx queue flushing in the case of flush failed or
692          * timeout. In the worst case it can delay for 6 seconds.
693          */
694         for (retry_count = 0;
695              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
696              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
697              ++retry_count) {
698                 rc = efx_rx_qflush(rxq->common);
699                 if (rc != 0) {
700                         rxq_info->state |= (rc == EALREADY) ?
701                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
702                         break;
703                 }
704                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
705                 rxq_info->state |= SFC_RXQ_FLUSHING;
706
707                 /*
708                  * Wait for Rx queue flush done or failed event at least
709                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
710                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
711                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
712                  */
713                 wait_count = 0;
714                 do {
715                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
716                         sfc_ev_qpoll(rxq->evq);
717                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
718                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
719
720                 if (rxq_info->state & SFC_RXQ_FLUSHING)
721                         sfc_err(sa, "RxQ %d (internal %u) flush timed out",
722                                 ethdev_qid, sw_index);
723
724                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
725                         sfc_err(sa, "RxQ %d (internal %u) flush failed",
726                                 ethdev_qid, sw_index);
727
728                 if (rxq_info->state & SFC_RXQ_FLUSHED)
729                         sfc_notice(sa, "RxQ %d (internal %u) flushed",
730                                    ethdev_qid, sw_index);
731         }
732
733         sa->priv.dp_rx->qpurge(rxq_info->dp);
734 }
735
736 static int
737 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
738 {
739         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
740         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
741         struct sfc_port *port = &sa->port;
742         int rc;
743
744         /*
745          * If promiscuous or all-multicast mode has been requested, setting
746          * filter for the default Rx queue might fail, in particular, while
747          * running over PCI function which is not a member of corresponding
748          * privilege groups; if this occurs, few iterations will be made to
749          * repeat this step without promiscuous and all-multicast flags set
750          */
751 retry:
752         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
753         if (rc == 0)
754                 return 0;
755         else if (rc != EOPNOTSUPP)
756                 return rc;
757
758         if (port->promisc) {
759                 sfc_warn(sa, "promiscuous mode has been requested, "
760                              "but the HW rejects it");
761                 sfc_warn(sa, "promiscuous mode will be disabled");
762
763                 port->promisc = B_FALSE;
764                 sa->eth_dev->data->promiscuous = 0;
765                 rc = sfc_set_rx_mode_unchecked(sa);
766                 if (rc != 0)
767                         return rc;
768
769                 goto retry;
770         }
771
772         if (port->allmulti) {
773                 sfc_warn(sa, "all-multicast mode has been requested, "
774                              "but the HW rejects it");
775                 sfc_warn(sa, "all-multicast mode will be disabled");
776
777                 port->allmulti = B_FALSE;
778                 sa->eth_dev->data->all_multicast = 0;
779                 rc = sfc_set_rx_mode_unchecked(sa);
780                 if (rc != 0)
781                         return rc;
782
783                 goto retry;
784         }
785
786         return rc;
787 }
788
789 int
790 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
791 {
792         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
793         sfc_ethdev_qid_t ethdev_qid;
794         struct sfc_rxq_info *rxq_info;
795         struct sfc_rxq *rxq;
796         struct sfc_evq *evq;
797         efx_rx_prefix_layout_t pinfo;
798         int rc;
799
800         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
801         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
802
803         sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
804
805         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
806         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
807
808         rxq = &sa->rxq_ctrl[sw_index];
809         evq = rxq->evq;
810
811         rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
812         if (rc != 0)
813                 goto fail_ev_qstart;
814
815         switch (rxq_info->type) {
816         case EFX_RXQ_TYPE_DEFAULT:
817                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
818                         rxq->buf_size,
819                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
820                         rxq_info->type_flags, evq->common, &rxq->common);
821                 break;
822         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
823                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
824                 struct rte_mempool_info mp_info;
825
826                 rc = rte_mempool_ops_get_info(mp, &mp_info);
827                 if (rc != 0) {
828                         /* Positive errno is used in the driver */
829                         rc = -rc;
830                         goto fail_mp_get_info;
831                 }
832                 if (mp_info.contig_block_size <= 0) {
833                         rc = EINVAL;
834                         goto fail_bad_contig_block_size;
835                 }
836                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
837                         mp_info.contig_block_size, rxq->buf_size,
838                         mp->header_size + mp->elt_size + mp->trailer_size,
839                         sa->rxd_wait_timeout_ns,
840                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
841                         evq->common, &rxq->common);
842                 break;
843         }
844         default:
845                 rc = ENOTSUP;
846         }
847         if (rc != 0)
848                 goto fail_rx_qcreate;
849
850         rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
851         if (rc != 0)
852                 goto fail_prefix_get_layout;
853
854         efx_rx_qenable(rxq->common);
855
856         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
857         if (rc != 0)
858                 goto fail_dp_qstart;
859
860         rxq_info->state |= SFC_RXQ_STARTED;
861
862         if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
863                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
864                 if (rc != 0)
865                         goto fail_mac_filter_default_rxq_set;
866         }
867
868         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
869         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
870                 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
871                         RTE_ETH_QUEUE_STATE_STARTED;
872
873         return 0;
874
875 fail_mac_filter_default_rxq_set:
876         sfc_rx_qflush(sa, sw_index);
877         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
878         rxq_info->state = SFC_RXQ_INITIALIZED;
879
880 fail_dp_qstart:
881         efx_rx_qdestroy(rxq->common);
882
883 fail_prefix_get_layout:
884 fail_rx_qcreate:
885 fail_bad_contig_block_size:
886 fail_mp_get_info:
887         sfc_ev_qstop(evq);
888
889 fail_ev_qstart:
890         return rc;
891 }
892
893 void
894 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
895 {
896         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
897         sfc_ethdev_qid_t ethdev_qid;
898         struct sfc_rxq_info *rxq_info;
899         struct sfc_rxq *rxq;
900
901         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
902         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
903
904         sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
905
906         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
907
908         if (rxq_info->state == SFC_RXQ_INITIALIZED)
909                 return;
910         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
911
912         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
913         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
914                 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
915                         RTE_ETH_QUEUE_STATE_STOPPED;
916
917         rxq = &sa->rxq_ctrl[sw_index];
918         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
919
920         if (ethdev_qid == 0)
921                 efx_mac_filter_default_rxq_clear(sa->nic);
922
923         sfc_rx_qflush(sa, sw_index);
924
925         rxq_info->state = SFC_RXQ_INITIALIZED;
926
927         efx_rx_qdestroy(rxq->common);
928
929         sfc_ev_qstop(rxq->evq);
930 }
931
932 static uint64_t
933 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
934 {
935         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
936         uint64_t no_caps = 0;
937
938         if (encp->enc_tunnel_encapsulations_supported == 0)
939                 no_caps |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
940
941         return ~no_caps;
942 }
943
944 uint64_t
945 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
946 {
947         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
948
949         return caps & sfc_rx_get_offload_mask(sa);
950 }
951
952 uint64_t
953 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
954 {
955         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
956 }
957
958 static int
959 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
960                    const struct rte_eth_rxconf *rx_conf,
961                    __rte_unused uint64_t offloads)
962 {
963         int rc = 0;
964
965         if (rx_conf->rx_thresh.pthresh != 0 ||
966             rx_conf->rx_thresh.hthresh != 0 ||
967             rx_conf->rx_thresh.wthresh != 0) {
968                 sfc_warn(sa,
969                         "RxQ prefetch/host/writeback thresholds are not supported");
970         }
971
972         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
973                 sfc_err(sa,
974                         "RxQ free threshold too large: %u vs maximum %u",
975                         rx_conf->rx_free_thresh, rxq_max_fill_level);
976                 rc = EINVAL;
977         }
978
979         if (rx_conf->rx_drop_en == 0) {
980                 sfc_err(sa, "RxQ drop disable is not supported");
981                 rc = EINVAL;
982         }
983
984         return rc;
985 }
986
987 static unsigned int
988 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
989 {
990         uint32_t data_off;
991         uint32_t order;
992
993         /* The mbuf object itself is always cache line aligned */
994         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
995
996         /* Data offset from mbuf object start */
997         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
998                 RTE_PKTMBUF_HEADROOM;
999
1000         order = MIN(order, rte_bsf32(data_off));
1001
1002         return 1u << order;
1003 }
1004
1005 static uint16_t
1006 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
1007 {
1008         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1009         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
1010         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
1011         uint16_t buf_size;
1012         unsigned int buf_aligned;
1013         unsigned int start_alignment;
1014         unsigned int end_padding_alignment;
1015
1016         /* Below it is assumed that both alignments are power of 2 */
1017         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1018         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1019
1020         /*
1021          * mbuf is always cache line aligned, double-check
1022          * that it meets rx buffer start alignment requirements.
1023          */
1024
1025         /* Start from mbuf pool data room size */
1026         buf_size = rte_pktmbuf_data_room_size(mb_pool);
1027
1028         /* Remove headroom */
1029         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1030                 sfc_err(sa,
1031                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1032                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1033                 return 0;
1034         }
1035         buf_size -= RTE_PKTMBUF_HEADROOM;
1036
1037         /* Calculate guaranteed data start alignment */
1038         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1039
1040         /* Reserve space for start alignment */
1041         if (buf_aligned < nic_align_start) {
1042                 start_alignment = nic_align_start - buf_aligned;
1043                 if (buf_size <= start_alignment) {
1044                         sfc_err(sa,
1045                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1046                                 mb_pool->name,
1047                                 rte_pktmbuf_data_room_size(mb_pool),
1048                                 RTE_PKTMBUF_HEADROOM, start_alignment);
1049                         return 0;
1050                 }
1051                 buf_aligned = nic_align_start;
1052                 buf_size -= start_alignment;
1053         } else {
1054                 start_alignment = 0;
1055         }
1056
1057         /* Make sure that end padding does not write beyond the buffer */
1058         if (buf_aligned < nic_align_end) {
1059                 /*
1060                  * Estimate space which can be lost. If guaranteed buffer
1061                  * size is odd, lost space is (nic_align_end - 1). More
1062                  * accurate formula is below.
1063                  */
1064                 end_padding_alignment = nic_align_end -
1065                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1066                 if (buf_size <= end_padding_alignment) {
1067                         sfc_err(sa,
1068                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1069                                 mb_pool->name,
1070                                 rte_pktmbuf_data_room_size(mb_pool),
1071                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1072                                 end_padding_alignment);
1073                         return 0;
1074                 }
1075                 buf_size -= end_padding_alignment;
1076         } else {
1077                 /*
1078                  * Start is aligned the same or better than end,
1079                  * just align length.
1080                  */
1081                 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1082         }
1083
1084         return buf_size;
1085 }
1086
1087 int
1088 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1089              uint16_t nb_rx_desc, unsigned int socket_id,
1090              const struct rte_eth_rxconf *rx_conf,
1091              struct rte_mempool *mb_pool)
1092 {
1093         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1094         sfc_ethdev_qid_t ethdev_qid;
1095         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1096         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1097         int rc;
1098         unsigned int rxq_entries;
1099         unsigned int evq_entries;
1100         unsigned int rxq_max_fill_level;
1101         uint64_t offloads;
1102         uint16_t buf_size;
1103         struct sfc_rxq_info *rxq_info;
1104         struct sfc_evq *evq;
1105         struct sfc_rxq *rxq;
1106         struct sfc_dp_rx_qcreate_info info;
1107         struct sfc_dp_rx_hw_limits hw_limits;
1108         uint16_t rx_free_thresh;
1109         const char *error;
1110
1111         memset(&hw_limits, 0, sizeof(hw_limits));
1112         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1113         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1114         hw_limits.evq_max_entries = sa->evq_max_entries;
1115         hw_limits.evq_min_entries = sa->evq_min_entries;
1116
1117         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1118                                             &rxq_entries, &evq_entries,
1119                                             &rxq_max_fill_level);
1120         if (rc != 0)
1121                 goto fail_size_up_rings;
1122         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1123         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1124         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1125
1126         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1127
1128         offloads = rx_conf->offloads;
1129         /* Add device level Rx offloads if the queue is an ethdev Rx queue */
1130         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1131                 offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1132
1133         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1134         if (rc != 0)
1135                 goto fail_bad_conf;
1136
1137         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1138         if (buf_size == 0) {
1139                 sfc_err(sa,
1140                         "RxQ %d (internal %u) mbuf pool object size is too small",
1141                         ethdev_qid, sw_index);
1142                 rc = EINVAL;
1143                 goto fail_bad_conf;
1144         }
1145
1146         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1147                                   encp->enc_rx_prefix_size,
1148                                   (offloads & RTE_ETH_RX_OFFLOAD_SCATTER),
1149                                   encp->enc_rx_scatter_max,
1150                                   &error)) {
1151                 sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1152                         ethdev_qid, sw_index, error);
1153                 sfc_err(sa,
1154                         "RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1155                         "PDU size %u plus Rx prefix %u bytes",
1156                         ethdev_qid, sw_index, buf_size,
1157                         (unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1158                 rc = EINVAL;
1159                 goto fail_bad_conf;
1160         }
1161
1162         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1163         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1164
1165         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1166         rxq_info->entries = rxq_entries;
1167
1168         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1169                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1170         else
1171                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1172
1173         rxq_info->type_flags |=
1174                 (offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ?
1175                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1176
1177         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1178             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1179              RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1180                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1181
1182         if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH)
1183                 rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1184
1185         if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0)
1186                 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_FLAG;
1187
1188         if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 ||
1189             sfc_flow_tunnel_is_active(sa))
1190                 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_MARK;
1191
1192         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1193                           evq_entries, socket_id, &evq);
1194         if (rc != 0)
1195                 goto fail_ev_qinit;
1196
1197         rxq = &sa->rxq_ctrl[sw_index];
1198         rxq->evq = evq;
1199         rxq->hw_index = sw_index;
1200         /*
1201          * If Rx refill threshold is specified (its value is non zero) in
1202          * Rx configuration, use specified value. Otherwise use 1/8 of
1203          * the Rx descriptors number as the default. It allows to keep
1204          * Rx ring full-enough and does not refill too aggressive if
1205          * packet rate is high.
1206          *
1207          * Since PMD refills in bulks waiting for full bulk may be
1208          * refilled (basically round down), it is better to round up
1209          * here to mitigate it a bit.
1210          */
1211         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1212                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1213         /* Rx refill threshold cannot be smaller than refill bulk */
1214         rxq_info->refill_threshold =
1215                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1216         rxq_info->refill_mb_pool = mb_pool;
1217
1218         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1219             (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH))
1220                 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1221         else
1222                 rxq_info->rxq_flags = 0;
1223
1224         rxq->buf_size = buf_size;
1225
1226         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_NIC_DMA_ADDR_RX_RING,
1227                            efx_rxq_size(sa->nic, rxq_info->entries),
1228                            socket_id, &rxq->mem);
1229         if (rc != 0)
1230                 goto fail_dma_alloc;
1231
1232         memset(&info, 0, sizeof(info));
1233         info.refill_mb_pool = rxq_info->refill_mb_pool;
1234         info.max_fill_level = rxq_max_fill_level;
1235         info.refill_threshold = rxq_info->refill_threshold;
1236         info.buf_size = buf_size;
1237         info.batch_max = encp->enc_rx_batch_max;
1238         info.prefix_size = encp->enc_rx_prefix_size;
1239
1240         if (sfc_flow_tunnel_is_active(sa))
1241                 info.user_mark_mask = SFC_FT_USER_MARK_MASK;
1242         else
1243                 info.user_mark_mask = UINT32_MAX;
1244
1245         info.flags = rxq_info->rxq_flags;
1246         info.rxq_entries = rxq_info->entries;
1247         info.rxq_hw_ring = rxq->mem.esm_base;
1248         info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1249         info.evq_entries = evq_entries;
1250         info.evq_hw_ring = evq->mem.esm_base;
1251         info.hw_index = rxq->hw_index;
1252         info.mem_bar = sa->mem_bar.esb_base;
1253         info.vi_window_shift = encp->enc_vi_window_shift;
1254         info.fcw_offset = sa->fcw_offset;
1255
1256         info.nic_dma_info = &sas->nic_dma_info;
1257
1258         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1259                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1260                                      socket_id, &info, &rxq_info->dp);
1261         if (rc != 0)
1262                 goto fail_dp_rx_qcreate;
1263
1264         evq->dp_rxq = rxq_info->dp;
1265
1266         rxq_info->state = SFC_RXQ_INITIALIZED;
1267
1268         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1269
1270         return 0;
1271
1272 fail_dp_rx_qcreate:
1273         sfc_dma_free(sa, &rxq->mem);
1274
1275 fail_dma_alloc:
1276         sfc_ev_qfini(evq);
1277
1278 fail_ev_qinit:
1279         rxq_info->entries = 0;
1280
1281 fail_bad_conf:
1282 fail_size_up_rings:
1283         sfc_log_init(sa, "failed %d", rc);
1284         return rc;
1285 }
1286
1287 void
1288 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1289 {
1290         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1291         sfc_ethdev_qid_t ethdev_qid;
1292         struct sfc_rxq_info *rxq_info;
1293         struct sfc_rxq *rxq;
1294
1295         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1296         ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1297
1298         if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1299                 sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1300
1301         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1302
1303         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1304
1305         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1306         rxq_info->dp = NULL;
1307
1308         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1309         rxq_info->entries = 0;
1310
1311         rxq = &sa->rxq_ctrl[sw_index];
1312
1313         sfc_dma_free(sa, &rxq->mem);
1314
1315         sfc_ev_qfini(rxq->evq);
1316         rxq->evq = NULL;
1317 }
1318
1319 /*
1320  * Mapping between RTE RSS hash functions and their EFX counterparts.
1321  */
1322 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1323         { RTE_ETH_RSS_NONFRAG_IPV4_TCP,
1324           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1325         { RTE_ETH_RSS_NONFRAG_IPV4_UDP,
1326           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1327         { RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_IPV6_TCP_EX,
1328           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1329         { RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_IPV6_UDP_EX,
1330           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1331         { RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
1332           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1333           EFX_RX_HASH(IPV4, 2TUPLE) },
1334         { RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
1335           RTE_ETH_RSS_IPV6_EX,
1336           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1337           EFX_RX_HASH(IPV6, 2TUPLE) }
1338 };
1339
1340 static efx_rx_hash_type_t
1341 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1342                             unsigned int *hash_type_flags_supported,
1343                             unsigned int nb_hash_type_flags_supported)
1344 {
1345         efx_rx_hash_type_t hash_type_masked = 0;
1346         unsigned int i, j;
1347
1348         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1349                 unsigned int class_tuple_lbn[] = {
1350                         EFX_RX_CLASS_IPV4_TCP_LBN,
1351                         EFX_RX_CLASS_IPV4_UDP_LBN,
1352                         EFX_RX_CLASS_IPV4_LBN,
1353                         EFX_RX_CLASS_IPV6_TCP_LBN,
1354                         EFX_RX_CLASS_IPV6_UDP_LBN,
1355                         EFX_RX_CLASS_IPV6_LBN
1356                 };
1357
1358                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1359                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1360                         unsigned int flag;
1361
1362                         tuple_mask <<= class_tuple_lbn[j];
1363                         flag = hash_type & tuple_mask;
1364
1365                         if (flag == hash_type_flags_supported[i])
1366                                 hash_type_masked |= flag;
1367                 }
1368         }
1369
1370         return hash_type_masked;
1371 }
1372
1373 int
1374 sfc_rx_hash_init(struct sfc_adapter *sa)
1375 {
1376         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1377         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1378         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1379         efx_rx_hash_alg_t alg;
1380         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1381         unsigned int nb_flags_supp;
1382         struct sfc_rss_hf_rte_to_efx *hf_map;
1383         struct sfc_rss_hf_rte_to_efx *entry;
1384         efx_rx_hash_type_t efx_hash_types;
1385         unsigned int i;
1386         int rc;
1387
1388         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1389                 alg = EFX_RX_HASHALG_TOEPLITZ;
1390         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1391                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1392         else
1393                 return EINVAL;
1394
1395         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1396                                          RTE_DIM(flags_supp), &nb_flags_supp);
1397         if (rc != 0)
1398                 return rc;
1399
1400         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1401                                    RTE_DIM(sfc_rss_hf_map),
1402                                    sizeof(*hf_map), 0, sa->socket_id);
1403         if (hf_map == NULL)
1404                 return ENOMEM;
1405
1406         entry = hf_map;
1407         efx_hash_types = 0;
1408         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1409                 efx_rx_hash_type_t ht;
1410
1411                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1412                                                  flags_supp, nb_flags_supp);
1413                 if (ht != 0) {
1414                         entry->rte = sfc_rss_hf_map[i].rte;
1415                         entry->efx = ht;
1416                         efx_hash_types |= ht;
1417                         ++entry;
1418                 }
1419         }
1420
1421         rss->hash_alg = alg;
1422         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1423         rss->hf_map = hf_map;
1424         rss->hash_types = efx_hash_types;
1425
1426         return 0;
1427 }
1428
1429 void
1430 sfc_rx_hash_fini(struct sfc_adapter *sa)
1431 {
1432         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1433
1434         rte_free(rss->hf_map);
1435 }
1436
1437 int
1438 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1439                      efx_rx_hash_type_t *efx)
1440 {
1441         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1442         efx_rx_hash_type_t hash_types = 0;
1443         unsigned int i;
1444
1445         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1446                 uint64_t rte_mask = rss->hf_map[i].rte;
1447
1448                 if ((rte & rte_mask) != 0) {
1449                         rte &= ~rte_mask;
1450                         hash_types |= rss->hf_map[i].efx;
1451                 }
1452         }
1453
1454         if (rte != 0) {
1455                 sfc_err(sa, "unsupported hash functions requested");
1456                 return EINVAL;
1457         }
1458
1459         *efx = hash_types;
1460
1461         return 0;
1462 }
1463
1464 uint64_t
1465 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1466 {
1467         uint64_t rte = 0;
1468         unsigned int i;
1469
1470         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1471                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1472
1473                 if ((efx & hash_type) == hash_type)
1474                         rte |= rss->hf_map[i].rte;
1475         }
1476
1477         return rte;
1478 }
1479
1480 static int
1481 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1482                             struct rte_eth_rss_conf *conf)
1483 {
1484         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1485         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1486         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1487         int rc;
1488
1489         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1490                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1491                     conf->rss_key != NULL)
1492                         return EINVAL;
1493         }
1494
1495         if (conf->rss_hf != 0) {
1496                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1497                 if (rc != 0)
1498                         return rc;
1499         }
1500
1501         if (conf->rss_key != NULL) {
1502                 if (conf->rss_key_len != sizeof(rss->key)) {
1503                         sfc_err(sa, "RSS key size is wrong (should be %zu)",
1504                                 sizeof(rss->key));
1505                         return EINVAL;
1506                 }
1507                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1508         }
1509
1510         rss->hash_types = efx_hash_types;
1511
1512         return 0;
1513 }
1514
1515 static int
1516 sfc_rx_rss_config(struct sfc_adapter *sa)
1517 {
1518         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1519         int rc = 0;
1520
1521         if (rss->channels > 0) {
1522                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1523                                            rss->hash_alg, rss->hash_types,
1524                                            B_TRUE);
1525                 if (rc != 0)
1526                         goto finish;
1527
1528                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1529                                           rss->key, sizeof(rss->key));
1530                 if (rc != 0)
1531                         goto finish;
1532
1533                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1534                                           rss->tbl, RTE_DIM(rss->tbl));
1535         }
1536
1537 finish:
1538         return rc;
1539 }
1540
1541 struct sfc_rxq_info *
1542 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1543                            sfc_ethdev_qid_t ethdev_qid)
1544 {
1545         sfc_sw_index_t sw_index;
1546
1547         SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1548         SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1549
1550         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1551         return &sas->rxq_info[sw_index];
1552 }
1553
1554 struct sfc_rxq *
1555 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1556 {
1557         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1558         sfc_sw_index_t sw_index;
1559
1560         SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1561         SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1562
1563         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1564         return &sa->rxq_ctrl[sw_index];
1565 }
1566
1567 int
1568 sfc_rx_start(struct sfc_adapter *sa)
1569 {
1570         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1571         sfc_sw_index_t sw_index;
1572         int rc;
1573
1574         sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1575                      sas->rxq_count);
1576
1577         rc = efx_rx_init(sa->nic);
1578         if (rc != 0)
1579                 goto fail_rx_init;
1580
1581         rc = sfc_rx_rss_config(sa);
1582         if (rc != 0)
1583                 goto fail_rss_config;
1584
1585         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1586                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1587                     (!sas->rxq_info[sw_index].deferred_start ||
1588                      sas->rxq_info[sw_index].deferred_started)) {
1589                         rc = sfc_rx_qstart(sa, sw_index);
1590                         if (rc != 0)
1591                                 goto fail_rx_qstart;
1592                 }
1593         }
1594
1595         return 0;
1596
1597 fail_rx_qstart:
1598         while (sw_index-- > 0)
1599                 sfc_rx_qstop(sa, sw_index);
1600
1601 fail_rss_config:
1602         efx_rx_fini(sa->nic);
1603
1604 fail_rx_init:
1605         sfc_log_init(sa, "failed %d", rc);
1606         return rc;
1607 }
1608
1609 void
1610 sfc_rx_stop(struct sfc_adapter *sa)
1611 {
1612         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1613         sfc_sw_index_t sw_index;
1614
1615         sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1616                      sas->rxq_count);
1617
1618         sw_index = sas->rxq_count;
1619         while (sw_index-- > 0) {
1620                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1621                         sfc_rx_qstop(sa, sw_index);
1622         }
1623
1624         efx_rx_fini(sa->nic);
1625 }
1626
1627 int
1628 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1629                   unsigned int extra_efx_type_flags)
1630 {
1631         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1632         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1633         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1634         unsigned int max_entries;
1635
1636         max_entries = encp->enc_rxq_max_ndescs;
1637         SFC_ASSERT(rte_is_power_of_2(max_entries));
1638
1639         rxq_info->max_entries = max_entries;
1640         rxq_info->type_flags = extra_efx_type_flags;
1641
1642         return 0;
1643 }
1644
1645 static int
1646 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1647 {
1648         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1649         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1650                                       sfc_rx_get_queue_offload_caps(sa);
1651         struct sfc_rss *rss = &sas->rss;
1652         int rc = 0;
1653
1654         switch (rxmode->mq_mode) {
1655         case RTE_ETH_MQ_RX_NONE:
1656                 /* No special checks are required */
1657                 break;
1658         case RTE_ETH_MQ_RX_RSS:
1659                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1660                         sfc_err(sa, "RSS is not available");
1661                         rc = EINVAL;
1662                 }
1663                 break;
1664         default:
1665                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1666                         rxmode->mq_mode);
1667                 rc = EINVAL;
1668         }
1669
1670         /*
1671          * Requested offloads are validated against supported by ethdev,
1672          * so unsupported offloads cannot be added as the result of
1673          * below check.
1674          */
1675         if ((rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM) !=
1676             (offloads_supported & RTE_ETH_RX_OFFLOAD_CHECKSUM)) {
1677                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1678                 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_CHECKSUM;
1679         }
1680
1681         if ((offloads_supported & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1682             (~rxmode->offloads & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1683                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1684                 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1685         }
1686
1687         return rc;
1688 }
1689
1690 /**
1691  * Destroy excess queues that are no longer needed after reconfiguration
1692  * or complete close.
1693  */
1694 static void
1695 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1696 {
1697         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1698         sfc_sw_index_t sw_index;
1699         sfc_ethdev_qid_t ethdev_qid;
1700
1701         SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1702
1703         /*
1704          * Finalize only ethdev queues since other ones are finalized only
1705          * on device close and they may require additional deinitialization.
1706          */
1707         ethdev_qid = sas->ethdev_rxq_count;
1708         while (--ethdev_qid >= (int)nb_rx_queues) {
1709                 struct sfc_rxq_info *rxq_info;
1710
1711                 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1712                 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1713                         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1714                                                                 ethdev_qid);
1715                         sfc_rx_qfini(sa, sw_index);
1716                 }
1717
1718         }
1719
1720         sas->ethdev_rxq_count = nb_rx_queues;
1721 }
1722
1723 /**
1724  * Initialize Rx subsystem.
1725  *
1726  * Called at device (re)configuration stage when number of receive queues is
1727  * specified together with other device level receive configuration.
1728  *
1729  * It should be used to allocate NUMA-unaware resources.
1730  */
1731 int
1732 sfc_rx_configure(struct sfc_adapter *sa)
1733 {
1734         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1735         struct sfc_rss *rss = &sas->rss;
1736         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1737         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1738         const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas);
1739         const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues;
1740         bool reconfigure;
1741         int rc;
1742
1743         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1744                      nb_rx_queues, sas->ethdev_rxq_count);
1745
1746         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1747         if (rc != 0)
1748                 goto fail_check_mode;
1749
1750         if (nb_rxq_total == sas->rxq_count) {
1751                 reconfigure = true;
1752                 goto configure_rss;
1753         }
1754
1755         if (sas->rxq_info == NULL) {
1756                 reconfigure = false;
1757                 rc = ENOMEM;
1758                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total,
1759                                                   sizeof(sas->rxq_info[0]), 0,
1760                                                   sa->socket_id);
1761                 if (sas->rxq_info == NULL)
1762                         goto fail_rxqs_alloc;
1763
1764                 /*
1765                  * Allocate primary process only RxQ control from heap
1766                  * since it should not be shared.
1767                  */
1768                 rc = ENOMEM;
1769                 sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0]));
1770                 if (sa->rxq_ctrl == NULL)
1771                         goto fail_rxqs_ctrl_alloc;
1772         } else {
1773                 struct sfc_rxq_info *new_rxq_info;
1774                 struct sfc_rxq *new_rxq_ctrl;
1775
1776                 reconfigure = true;
1777
1778                 /* Do not uninitialize reserved queues */
1779                 if (nb_rx_queues < sas->ethdev_rxq_count)
1780                         sfc_rx_fini_queues(sa, nb_rx_queues);
1781
1782                 rc = ENOMEM;
1783                 new_rxq_info =
1784                         rte_realloc(sas->rxq_info,
1785                                     nb_rxq_total * sizeof(sas->rxq_info[0]), 0);
1786                 if (new_rxq_info == NULL && nb_rxq_total > 0)
1787                         goto fail_rxqs_realloc;
1788
1789                 rc = ENOMEM;
1790                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1791                                        nb_rxq_total * sizeof(sa->rxq_ctrl[0]));
1792                 if (new_rxq_ctrl == NULL && nb_rxq_total > 0)
1793                         goto fail_rxqs_ctrl_realloc;
1794
1795                 sas->rxq_info = new_rxq_info;
1796                 sa->rxq_ctrl = new_rxq_ctrl;
1797                 if (nb_rxq_total > sas->rxq_count) {
1798                         unsigned int rxq_count = sas->rxq_count;
1799
1800                         memset(&sas->rxq_info[rxq_count], 0,
1801                                (nb_rxq_total - rxq_count) *
1802                                sizeof(sas->rxq_info[0]));
1803                         memset(&sa->rxq_ctrl[rxq_count], 0,
1804                                (nb_rxq_total - rxq_count) *
1805                                sizeof(sa->rxq_ctrl[0]));
1806                 }
1807         }
1808
1809         while (sas->ethdev_rxq_count < nb_rx_queues) {
1810                 sfc_sw_index_t sw_index;
1811
1812                 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1813                                                         sas->ethdev_rxq_count);
1814                 rc = sfc_rx_qinit_info(sa, sw_index, 0);
1815                 if (rc != 0)
1816                         goto fail_rx_qinit_info;
1817
1818                 sas->ethdev_rxq_count++;
1819         }
1820
1821         sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues;
1822
1823         if (!reconfigure) {
1824                 rc = sfc_mae_counter_rxq_init(sa);
1825                 if (rc != 0)
1826                         goto fail_count_rxq_init;
1827         }
1828
1829 configure_rss:
1830         rss->channels = (dev_conf->rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) ?
1831                          MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1832
1833         if (rss->channels > 0) {
1834                 struct rte_eth_rss_conf *adv_conf_rss;
1835                 sfc_sw_index_t sw_index;
1836
1837                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1838                         rss->tbl[sw_index] = sw_index % rss->channels;
1839
1840                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1841                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1842                 if (rc != 0)
1843                         goto fail_rx_process_adv_conf_rss;
1844         }
1845
1846         return 0;
1847
1848 fail_rx_process_adv_conf_rss:
1849         if (!reconfigure)
1850                 sfc_mae_counter_rxq_fini(sa);
1851
1852 fail_count_rxq_init:
1853 fail_rx_qinit_info:
1854 fail_rxqs_ctrl_realloc:
1855 fail_rxqs_realloc:
1856 fail_rxqs_ctrl_alloc:
1857 fail_rxqs_alloc:
1858         sfc_rx_close(sa);
1859
1860 fail_check_mode:
1861         sfc_log_init(sa, "failed %d", rc);
1862         return rc;
1863 }
1864
1865 /**
1866  * Shutdown Rx subsystem.
1867  *
1868  * Called at device close stage, for example, before device shutdown.
1869  */
1870 void
1871 sfc_rx_close(struct sfc_adapter *sa)
1872 {
1873         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1874
1875         sfc_rx_fini_queues(sa, 0);
1876         sfc_mae_counter_rxq_fini(sa);
1877
1878         rss->channels = 0;
1879
1880         free(sa->rxq_ctrl);
1881         sa->rxq_ctrl = NULL;
1882
1883         rte_free(sfc_sa2shared(sa)->rxq_info);
1884         sfc_sa2shared(sa)->rxq_info = NULL;
1885 }