support systemd service convention for runtime directory
[dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61
62 #define TAP_GSO_MBUFS_PER_CORE  128
63 #define TAP_GSO_MBUF_SEG_SIZE   128
64 #define TAP_GSO_MBUF_CACHE_SIZE 4
65 #define TAP_GSO_MBUFS_NUM \
66         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70
71 #define TAP_IOV_DEFAULT_MAX 1024
72
73 #define TAP_RX_OFFLOAD (RTE_ETH_RX_OFFLOAD_SCATTER |    \
74                         RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | \
75                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM |  \
76                         RTE_ETH_RX_OFFLOAD_TCP_CKSUM)
77
78 #define TAP_TX_OFFLOAD (RTE_ETH_TX_OFFLOAD_MULTI_SEGS | \
79                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \
80                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |  \
81                         RTE_ETH_TX_OFFLOAD_TCP_CKSUM |  \
82                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
83
84 static int tap_devices_count;
85
86 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
87         "UNKNOWN", "TUN", "TAP"
88 };
89
90 static const char *valid_arguments[] = {
91         ETH_TAP_IFACE_ARG,
92         ETH_TAP_REMOTE_ARG,
93         ETH_TAP_MAC_ARG,
94         NULL
95 };
96
97 static volatile uint32_t tap_trigger;   /* Rx trigger */
98
99 static struct rte_eth_link pmd_link = {
100         .link_speed = RTE_ETH_SPEED_NUM_10G,
101         .link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
102         .link_status = RTE_ETH_LINK_DOWN,
103         .link_autoneg = RTE_ETH_LINK_FIXED,
104 };
105
106 static void
107 tap_trigger_cb(int sig __rte_unused)
108 {
109         /* Valid trigger values are nonzero */
110         tap_trigger = (tap_trigger + 1) | 0x80000000;
111 }
112
113 /* Specifies on what netdevices the ioctl should be applied */
114 enum ioctl_mode {
115         LOCAL_AND_REMOTE,
116         LOCAL_ONLY,
117         REMOTE_ONLY,
118 };
119
120 /* Message header to synchronize queues via IPC */
121 struct ipc_queues {
122         char port_name[RTE_DEV_NAME_MAX_LEN];
123         int rxq_count;
124         int txq_count;
125         /*
126          * The file descriptors are in the dedicated part
127          * of the Unix message to be translated by the kernel.
128          */
129 };
130
131 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
132
133 /**
134  * Tun/Tap allocation routine
135  *
136  * @param[in] pmd
137  *   Pointer to private structure.
138  *
139  * @param[in] is_keepalive
140  *   Keepalive flag
141  *
142  * @return
143  *   -1 on failure, fd on success
144  */
145 static int
146 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
147 {
148         struct ifreq ifr;
149 #ifdef IFF_MULTI_QUEUE
150         unsigned int features;
151 #endif
152         int fd, signo, flags;
153
154         memset(&ifr, 0, sizeof(struct ifreq));
155
156         /*
157          * Do not set IFF_NO_PI as packet information header will be needed
158          * to check if a received packet has been truncated.
159          */
160         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
161                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
162         strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
163
164         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
165         if (fd < 0) {
166                 TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
167                 goto error;
168         }
169
170 #ifdef IFF_MULTI_QUEUE
171         /* Grab the TUN features to verify we can work multi-queue */
172         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
173                 TAP_LOG(ERR, "unable to get TUN/TAP features");
174                 goto error;
175         }
176         TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
177
178         if (features & IFF_MULTI_QUEUE) {
179                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
180                         RTE_PMD_TAP_MAX_QUEUES);
181                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
182         } else
183 #endif
184         {
185                 ifr.ifr_flags |= IFF_ONE_QUEUE;
186                 TAP_LOG(DEBUG, "  Single queue only support");
187         }
188
189         /* Set the TUN/TAP configuration and set the name if needed */
190         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
191                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
192                         ifr.ifr_name, strerror(errno));
193                 goto error;
194         }
195
196         /*
197          * Name passed to kernel might be wildcard like dtun%d
198          * and need to find the resulting device.
199          */
200         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
201         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
202
203         if (is_keepalive) {
204                 /*
205                  * Detach the TUN/TAP keep-alive queue
206                  * to avoid traffic through it
207                  */
208                 ifr.ifr_flags = IFF_DETACH_QUEUE;
209                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
210                         TAP_LOG(WARNING,
211                                 "Unable to detach keep-alive queue for %s: %s",
212                                 ifr.ifr_name, strerror(errno));
213                         goto error;
214                 }
215         }
216
217         flags = fcntl(fd, F_GETFL);
218         if (flags == -1) {
219                 TAP_LOG(WARNING,
220                         "Unable to get %s current flags\n",
221                         ifr.ifr_name);
222                 goto error;
223         }
224
225         /* Always set the file descriptor to non-blocking */
226         flags |= O_NONBLOCK;
227         if (fcntl(fd, F_SETFL, flags) < 0) {
228                 TAP_LOG(WARNING,
229                         "Unable to set %s to nonblocking: %s",
230                         ifr.ifr_name, strerror(errno));
231                 goto error;
232         }
233
234         /* Find a free realtime signal */
235         for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
236                 struct sigaction sa;
237
238                 if (sigaction(signo, NULL, &sa) == -1) {
239                         TAP_LOG(WARNING,
240                                 "Unable to get current rt-signal %d handler",
241                                 signo);
242                         goto error;
243                 }
244
245                 /* Already have the handler we want on this signal  */
246                 if (sa.sa_handler == tap_trigger_cb)
247                         break;
248
249                 /* Is handler in use by application */
250                 if (sa.sa_handler != SIG_DFL) {
251                         TAP_LOG(DEBUG,
252                                 "Skipping used rt-signal %d", signo);
253                         continue;
254                 }
255
256                 sa = (struct sigaction) {
257                         .sa_flags = SA_RESTART,
258                         .sa_handler = tap_trigger_cb,
259                 };
260
261                 if (sigaction(signo, &sa, NULL) == -1) {
262                         TAP_LOG(WARNING,
263                                 "Unable to set rt-signal %d handler\n", signo);
264                         goto error;
265                 }
266
267                 /* Found a good signal to use */
268                 TAP_LOG(DEBUG,
269                         "Using rt-signal %d", signo);
270                 break;
271         }
272
273         if (signo == SIGRTMAX) {
274                 TAP_LOG(WARNING, "All rt-signals are in use\n");
275
276                 /* Disable trigger globally in case of error */
277                 tap_trigger = 0;
278                 TAP_LOG(NOTICE, "No Rx trigger signal available\n");
279         } else {
280                 /* Enable signal on file descriptor */
281                 if (fcntl(fd, F_SETSIG, signo) < 0) {
282                         TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
283                                 signo, fd, strerror(errno));
284                         goto error;
285                 }
286                 if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
287                         TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
288                                 strerror(errno));
289                         goto error;
290                 }
291
292                 if (fcntl(fd, F_SETOWN, getpid()) < 0) {
293                         TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
294                                 strerror(errno));
295                         goto error;
296                 }
297         }
298         return fd;
299
300 error:
301         if (fd >= 0)
302                 close(fd);
303         return -1;
304 }
305
306 static void
307 tap_verify_csum(struct rte_mbuf *mbuf)
308 {
309         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
310         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
311         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
312         unsigned int l2_len = sizeof(struct rte_ether_hdr);
313         unsigned int l3_len;
314         uint16_t cksum = 0;
315         void *l3_hdr;
316         void *l4_hdr;
317         struct rte_udp_hdr *udp_hdr;
318
319         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
320                 l2_len += 4;
321         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
322                 l2_len += 8;
323         /* Don't verify checksum for packets with discontinuous L2 header */
324         if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
325                      rte_pktmbuf_data_len(mbuf)))
326                 return;
327         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
328         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
329                 struct rte_ipv4_hdr *iph = l3_hdr;
330
331                 l3_len = rte_ipv4_hdr_len(iph);
332                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
333                         return;
334                 /* check that the total length reported by header is not
335                  * greater than the total received size
336                  */
337                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
338                                 rte_pktmbuf_data_len(mbuf))
339                         return;
340
341                 cksum = ~rte_raw_cksum(iph, l3_len);
342                 mbuf->ol_flags |= cksum ?
343                         RTE_MBUF_F_RX_IP_CKSUM_BAD :
344                         RTE_MBUF_F_RX_IP_CKSUM_GOOD;
345         } else if (l3 == RTE_PTYPE_L3_IPV6) {
346                 struct rte_ipv6_hdr *iph = l3_hdr;
347
348                 l3_len = sizeof(struct rte_ipv6_hdr);
349                 /* check that the total length reported by header is not
350                  * greater than the total received size
351                  */
352                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
353                                 rte_pktmbuf_data_len(mbuf))
354                         return;
355         } else {
356                 /* - RTE_PTYPE_L3_IPV4_EXT_UNKNOWN cannot happen because
357                  *   mbuf->packet_type is filled by rte_net_get_ptype() which
358                  *   never returns this value.
359                  * - IPv6 extensions are not supported.
360                  */
361                 return;
362         }
363         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
364                 int cksum_ok;
365
366                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
367                 /* Don't verify checksum for multi-segment packets. */
368                 if (mbuf->nb_segs > 1)
369                         return;
370                 if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
371                         if (l4 == RTE_PTYPE_L4_UDP) {
372                                 udp_hdr = (struct rte_udp_hdr *)l4_hdr;
373                                 if (udp_hdr->dgram_cksum == 0) {
374                                         /*
375                                          * For IPv4, a zero UDP checksum
376                                          * indicates that the sender did not
377                                          * generate one [RFC 768].
378                                          */
379                                         mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE;
380                                         return;
381                                 }
382                         }
383                         cksum_ok = !rte_ipv4_udptcp_cksum_verify(l3_hdr,
384                                                                  l4_hdr);
385                 } else { /* l3 == RTE_PTYPE_L3_IPV6, checked above */
386                         cksum_ok = !rte_ipv6_udptcp_cksum_verify(l3_hdr,
387                                                                  l4_hdr);
388                 }
389                 mbuf->ol_flags |= cksum_ok ?
390                         RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
391         }
392 }
393
394 static void
395 tap_rxq_pool_free(struct rte_mbuf *pool)
396 {
397         struct rte_mbuf *mbuf = pool;
398         uint16_t nb_segs = 1;
399
400         if (mbuf == NULL)
401                 return;
402
403         while (mbuf->next) {
404                 mbuf = mbuf->next;
405                 nb_segs++;
406         }
407         pool->nb_segs = nb_segs;
408         rte_pktmbuf_free(pool);
409 }
410
411 /* Callback to handle the rx burst of packets to the correct interface and
412  * file descriptor(s) in a multi-queue setup.
413  */
414 static uint16_t
415 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
416 {
417         struct rx_queue *rxq = queue;
418         struct pmd_process_private *process_private;
419         uint16_t num_rx;
420         unsigned long num_rx_bytes = 0;
421         uint32_t trigger = tap_trigger;
422
423         if (trigger == rxq->trigger_seen)
424                 return 0;
425
426         process_private = rte_eth_devices[rxq->in_port].process_private;
427         for (num_rx = 0; num_rx < nb_pkts; ) {
428                 struct rte_mbuf *mbuf = rxq->pool;
429                 struct rte_mbuf *seg = NULL;
430                 struct rte_mbuf *new_tail = NULL;
431                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
432                 int len;
433
434                 len = readv(process_private->rxq_fds[rxq->queue_id],
435                         *rxq->iovecs,
436                         1 + (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ?
437                              rxq->nb_rx_desc : 1));
438                 if (len < (int)sizeof(struct tun_pi))
439                         break;
440
441                 /* Packet couldn't fit in the provided mbuf */
442                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
443                         rxq->stats.ierrors++;
444                         continue;
445                 }
446
447                 len -= sizeof(struct tun_pi);
448
449                 mbuf->pkt_len = len;
450                 mbuf->port = rxq->in_port;
451                 while (1) {
452                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
453
454                         if (unlikely(!buf)) {
455                                 rxq->stats.rx_nombuf++;
456                                 /* No new buf has been allocated: do nothing */
457                                 if (!new_tail || !seg)
458                                         goto end;
459
460                                 seg->next = NULL;
461                                 tap_rxq_pool_free(mbuf);
462
463                                 goto end;
464                         }
465                         seg = seg ? seg->next : mbuf;
466                         if (rxq->pool == mbuf)
467                                 rxq->pool = buf;
468                         if (new_tail)
469                                 new_tail->next = buf;
470                         new_tail = buf;
471                         new_tail->next = seg->next;
472
473                         /* iovecs[0] is reserved for packet info (pi) */
474                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
475                                 buf->buf_len - data_off;
476                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
477                                 (char *)buf->buf_addr + data_off;
478
479                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
480                         seg->data_off = data_off;
481
482                         len -= seg->data_len;
483                         if (len <= 0)
484                                 break;
485                         mbuf->nb_segs++;
486                         /* First segment has headroom, not the others */
487                         data_off = 0;
488                 }
489                 seg->next = NULL;
490                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
491                                                       RTE_PTYPE_ALL_MASK);
492                 if (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
493                         tap_verify_csum(mbuf);
494
495                 /* account for the receive frame */
496                 bufs[num_rx++] = mbuf;
497                 num_rx_bytes += mbuf->pkt_len;
498         }
499 end:
500         rxq->stats.ipackets += num_rx;
501         rxq->stats.ibytes += num_rx_bytes;
502
503         if (trigger && num_rx < nb_pkts)
504                 rxq->trigger_seen = trigger;
505
506         return num_rx;
507 }
508
509 /* Finalize l4 checksum calculation */
510 static void
511 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
512                 uint32_t l4_raw_cksum)
513 {
514         if (l4_cksum) {
515                 uint32_t cksum;
516
517                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
518                 cksum += l4_phdr_cksum;
519
520                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
521                 cksum = (~cksum) & 0xffff;
522                 if (cksum == 0)
523                         cksum = 0xffff;
524                 *l4_cksum = cksum;
525         }
526 }
527
528 /* Accumulate L4 raw checksums */
529 static void
530 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
531                         uint32_t *l4_raw_cksum)
532 {
533         if (l4_cksum == NULL)
534                 return;
535
536         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
537 }
538
539 /* L3 and L4 pseudo headers checksum offloads */
540 static void
541 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
542                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
543                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
544 {
545         void *l3_hdr = packet + l2_len;
546
547         if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
548                 struct rte_ipv4_hdr *iph = l3_hdr;
549                 uint16_t cksum;
550
551                 iph->hdr_checksum = 0;
552                 cksum = rte_raw_cksum(iph, l3_len);
553                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
554         }
555         if (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
556                 void *l4_hdr;
557
558                 l4_hdr = packet + l2_len + l3_len;
559                 if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM)
560                         *l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
561                 else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM)
562                         *l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
563                 else
564                         return;
565                 **l4_cksum = 0;
566                 if (ol_flags & RTE_MBUF_F_TX_IPV4)
567                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
568                 else
569                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
570                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
571         }
572 }
573
574 static inline int
575 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
576                         struct rte_mbuf **pmbufs,
577                         uint16_t *num_packets, unsigned long *num_tx_bytes)
578 {
579         int i;
580         uint16_t l234_hlen;
581         struct pmd_process_private *process_private;
582
583         process_private = rte_eth_devices[txq->out_port].process_private;
584
585         for (i = 0; i < num_mbufs; i++) {
586                 struct rte_mbuf *mbuf = pmbufs[i];
587                 struct iovec iovecs[mbuf->nb_segs + 2];
588                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
589                 struct rte_mbuf *seg = mbuf;
590                 char m_copy[mbuf->data_len];
591                 int proto;
592                 int n;
593                 int j;
594                 int k; /* current index in iovecs for copying segments */
595                 uint16_t seg_len; /* length of first segment */
596                 uint16_t nb_segs;
597                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
598                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
599                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
600                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
601
602                 l4_cksum = NULL;
603                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
604                         /*
605                          * TUN and TAP are created with IFF_NO_PI disabled.
606                          * For TUN PMD this mandatory as fields are used by
607                          * Kernel tun.c to determine whether its IP or non IP
608                          * packets.
609                          *
610                          * The logic fetches the first byte of data from mbuf
611                          * then compares whether its v4 or v6. If first byte
612                          * is 4 or 6, then protocol field is updated.
613                          */
614                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
615                         proto = (*buff_data & 0xf0);
616                         pi.proto = (proto == 0x40) ?
617                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
618                                 ((proto == 0x60) ?
619                                         rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
620                                         0x00);
621                 }
622
623                 k = 0;
624                 iovecs[k].iov_base = &pi;
625                 iovecs[k].iov_len = sizeof(pi);
626                 k++;
627
628                 nb_segs = mbuf->nb_segs;
629                 if (txq->csum &&
630                     ((mbuf->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4) ||
631                       (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM ||
632                       (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM))) {
633                         is_cksum = 1;
634
635                         /* Support only packets with at least layer 4
636                          * header included in the first segment
637                          */
638                         seg_len = rte_pktmbuf_data_len(mbuf);
639                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
640                         if (seg_len < l234_hlen)
641                                 return -1;
642
643                         /* To change checksums, work on a * copy of l2, l3
644                          * headers + l4 pseudo header
645                          */
646                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
647                                         l234_hlen);
648                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
649                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
650                                        &l4_cksum, &l4_phdr_cksum,
651                                        &l4_raw_cksum);
652                         iovecs[k].iov_base = m_copy;
653                         iovecs[k].iov_len = l234_hlen;
654                         k++;
655
656                         /* Update next iovecs[] beyond l2, l3, l4 headers */
657                         if (seg_len > l234_hlen) {
658                                 iovecs[k].iov_len = seg_len - l234_hlen;
659                                 iovecs[k].iov_base =
660                                         rte_pktmbuf_mtod(seg, char *) +
661                                                 l234_hlen;
662                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
663                                         iovecs[k].iov_len, l4_cksum,
664                                         &l4_raw_cksum);
665                                 k++;
666                                 nb_segs++;
667                         }
668                         seg = seg->next;
669                 }
670
671                 for (j = k; j <= nb_segs; j++) {
672                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
673                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
674                         if (is_cksum)
675                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
676                                         iovecs[j].iov_len, l4_cksum,
677                                         &l4_raw_cksum);
678                         seg = seg->next;
679                 }
680
681                 if (is_cksum)
682                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
683
684                 /* copy the tx frame data */
685                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
686                 if (n <= 0)
687                         return -1;
688
689                 (*num_packets)++;
690                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
691         }
692         return 0;
693 }
694
695 /* Callback to handle sending packets from the tap interface
696  */
697 static uint16_t
698 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
699 {
700         struct tx_queue *txq = queue;
701         uint16_t num_tx = 0;
702         uint16_t num_packets = 0;
703         unsigned long num_tx_bytes = 0;
704         uint32_t max_size;
705         int i;
706
707         if (unlikely(nb_pkts == 0))
708                 return 0;
709
710         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
711         max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
712         for (i = 0; i < nb_pkts; i++) {
713                 struct rte_mbuf *mbuf_in = bufs[num_tx];
714                 struct rte_mbuf **mbuf;
715                 uint16_t num_mbufs = 0;
716                 uint16_t tso_segsz = 0;
717                 int ret;
718                 int num_tso_mbufs;
719                 uint16_t hdrs_len;
720                 uint64_t tso;
721
722                 tso = mbuf_in->ol_flags & RTE_MBUF_F_TX_TCP_SEG;
723                 if (tso) {
724                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
725
726                         /* TCP segmentation implies TCP checksum offload */
727                         mbuf_in->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
728
729                         /* gso size is calculated without RTE_ETHER_CRC_LEN */
730                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
731                                         mbuf_in->l4_len;
732                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
733                         if (unlikely(tso_segsz == hdrs_len) ||
734                                 tso_segsz > *txq->mtu) {
735                                 txq->stats.errs++;
736                                 break;
737                         }
738                         gso_ctx->gso_size = tso_segsz;
739                         /* 'mbuf_in' packet to segment */
740                         num_tso_mbufs = rte_gso_segment(mbuf_in,
741                                 gso_ctx, /* gso control block */
742                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
743                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
744
745                         /* ret contains the number of new created mbufs */
746                         if (num_tso_mbufs < 0)
747                                 break;
748
749                         if (num_tso_mbufs >= 1) {
750                                 mbuf = gso_mbufs;
751                                 num_mbufs = num_tso_mbufs;
752                         } else {
753                                 /* 0 means it can be transmitted directly
754                                  * without gso.
755                                  */
756                                 mbuf = &mbuf_in;
757                                 num_mbufs = 1;
758                         }
759                 } else {
760                         /* stats.errs will be incremented */
761                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
762                                 break;
763
764                         /* ret 0 indicates no new mbufs were created */
765                         num_tso_mbufs = 0;
766                         mbuf = &mbuf_in;
767                         num_mbufs = 1;
768                 }
769
770                 ret = tap_write_mbufs(txq, num_mbufs, mbuf,
771                                 &num_packets, &num_tx_bytes);
772                 if (ret == -1) {
773                         txq->stats.errs++;
774                         /* free tso mbufs */
775                         if (num_tso_mbufs > 0)
776                                 rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
777                         break;
778                 }
779                 num_tx++;
780                 /* free original mbuf */
781                 rte_pktmbuf_free(mbuf_in);
782                 /* free tso mbufs */
783                 if (num_tso_mbufs > 0)
784                         rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
785         }
786
787         txq->stats.opackets += num_packets;
788         txq->stats.errs += nb_pkts - num_tx;
789         txq->stats.obytes += num_tx_bytes;
790
791         return num_tx;
792 }
793
794 static const char *
795 tap_ioctl_req2str(unsigned long request)
796 {
797         switch (request) {
798         case SIOCSIFFLAGS:
799                 return "SIOCSIFFLAGS";
800         case SIOCGIFFLAGS:
801                 return "SIOCGIFFLAGS";
802         case SIOCGIFHWADDR:
803                 return "SIOCGIFHWADDR";
804         case SIOCSIFHWADDR:
805                 return "SIOCSIFHWADDR";
806         case SIOCSIFMTU:
807                 return "SIOCSIFMTU";
808         }
809         return "UNKNOWN";
810 }
811
812 static int
813 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
814           struct ifreq *ifr, int set, enum ioctl_mode mode)
815 {
816         short req_flags = ifr->ifr_flags;
817         int remote = pmd->remote_if_index &&
818                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
819
820         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
821                 return 0;
822         /*
823          * If there is a remote netdevice, apply ioctl on it, then apply it on
824          * the tap netdevice.
825          */
826 apply:
827         if (remote)
828                 strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
829         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
830                 strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
831         switch (request) {
832         case SIOCSIFFLAGS:
833                 /* fetch current flags to leave other flags untouched */
834                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
835                         goto error;
836                 if (set)
837                         ifr->ifr_flags |= req_flags;
838                 else
839                         ifr->ifr_flags &= ~req_flags;
840                 break;
841         case SIOCGIFFLAGS:
842         case SIOCGIFHWADDR:
843         case SIOCSIFHWADDR:
844         case SIOCSIFMTU:
845                 break;
846         default:
847                 TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
848                         pmd->name);
849                 return -EINVAL;
850         }
851         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
852                 goto error;
853         if (remote-- && mode == LOCAL_AND_REMOTE)
854                 goto apply;
855         return 0;
856
857 error:
858         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
859                 tap_ioctl_req2str(request), strerror(errno), errno);
860         return -errno;
861 }
862
863 static int
864 tap_link_set_down(struct rte_eth_dev *dev)
865 {
866         struct pmd_internals *pmd = dev->data->dev_private;
867         struct ifreq ifr = { .ifr_flags = IFF_UP };
868
869         dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
870         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
871 }
872
873 static int
874 tap_link_set_up(struct rte_eth_dev *dev)
875 {
876         struct pmd_internals *pmd = dev->data->dev_private;
877         struct ifreq ifr = { .ifr_flags = IFF_UP };
878
879         dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
880         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
881 }
882
883 static int
884 tap_dev_start(struct rte_eth_dev *dev)
885 {
886         int err, i;
887
888         err = tap_intr_handle_set(dev, 1);
889         if (err)
890                 return err;
891
892         err = tap_link_set_up(dev);
893         if (err)
894                 return err;
895
896         for (i = 0; i < dev->data->nb_tx_queues; i++)
897                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
898         for (i = 0; i < dev->data->nb_rx_queues; i++)
899                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
900
901         return err;
902 }
903
904 /* This function gets called when the current port gets stopped.
905  */
906 static int
907 tap_dev_stop(struct rte_eth_dev *dev)
908 {
909         int i;
910
911         for (i = 0; i < dev->data->nb_tx_queues; i++)
912                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
913         for (i = 0; i < dev->data->nb_rx_queues; i++)
914                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
915
916         tap_intr_handle_set(dev, 0);
917         tap_link_set_down(dev);
918
919         return 0;
920 }
921
922 static int
923 tap_dev_configure(struct rte_eth_dev *dev)
924 {
925         struct pmd_internals *pmd = dev->data->dev_private;
926
927         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
928                 TAP_LOG(ERR,
929                         "%s: number of rx queues %d exceeds max num of queues %d",
930                         dev->device->name,
931                         dev->data->nb_rx_queues,
932                         RTE_PMD_TAP_MAX_QUEUES);
933                 return -1;
934         }
935         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
936                 TAP_LOG(ERR,
937                         "%s: number of tx queues %d exceeds max num of queues %d",
938                         dev->device->name,
939                         dev->data->nb_tx_queues,
940                         RTE_PMD_TAP_MAX_QUEUES);
941                 return -1;
942         }
943         if (dev->data->nb_rx_queues != dev->data->nb_tx_queues) {
944                 TAP_LOG(ERR,
945                         "%s: number of rx queues %d must be equal to number of tx queues %d",
946                         dev->device->name,
947                         dev->data->nb_rx_queues,
948                         dev->data->nb_tx_queues);
949                 return -1;
950         }
951
952         TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
953                 dev->device->name, pmd->name, dev->data->nb_tx_queues);
954
955         TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
956                 dev->device->name, pmd->name, dev->data->nb_rx_queues);
957
958         return 0;
959 }
960
961 static uint32_t
962 tap_dev_speed_capa(void)
963 {
964         uint32_t speed = pmd_link.link_speed;
965         uint32_t capa = 0;
966
967         if (speed >= RTE_ETH_SPEED_NUM_10M)
968                 capa |= RTE_ETH_LINK_SPEED_10M;
969         if (speed >= RTE_ETH_SPEED_NUM_100M)
970                 capa |= RTE_ETH_LINK_SPEED_100M;
971         if (speed >= RTE_ETH_SPEED_NUM_1G)
972                 capa |= RTE_ETH_LINK_SPEED_1G;
973         if (speed >= RTE_ETH_SPEED_NUM_5G)
974                 capa |= RTE_ETH_LINK_SPEED_2_5G;
975         if (speed >= RTE_ETH_SPEED_NUM_5G)
976                 capa |= RTE_ETH_LINK_SPEED_5G;
977         if (speed >= RTE_ETH_SPEED_NUM_10G)
978                 capa |= RTE_ETH_LINK_SPEED_10G;
979         if (speed >= RTE_ETH_SPEED_NUM_20G)
980                 capa |= RTE_ETH_LINK_SPEED_20G;
981         if (speed >= RTE_ETH_SPEED_NUM_25G)
982                 capa |= RTE_ETH_LINK_SPEED_25G;
983         if (speed >= RTE_ETH_SPEED_NUM_40G)
984                 capa |= RTE_ETH_LINK_SPEED_40G;
985         if (speed >= RTE_ETH_SPEED_NUM_50G)
986                 capa |= RTE_ETH_LINK_SPEED_50G;
987         if (speed >= RTE_ETH_SPEED_NUM_56G)
988                 capa |= RTE_ETH_LINK_SPEED_56G;
989         if (speed >= RTE_ETH_SPEED_NUM_100G)
990                 capa |= RTE_ETH_LINK_SPEED_100G;
991
992         return capa;
993 }
994
995 static int
996 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
997 {
998         struct pmd_internals *internals = dev->data->dev_private;
999
1000         dev_info->if_index = internals->if_index;
1001         dev_info->max_mac_addrs = 1;
1002         dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
1003         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
1004         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
1005         dev_info->min_rx_bufsize = 0;
1006         dev_info->speed_capa = tap_dev_speed_capa();
1007         dev_info->rx_queue_offload_capa = TAP_RX_OFFLOAD;
1008         dev_info->rx_offload_capa = dev_info->rx_queue_offload_capa;
1009         dev_info->tx_queue_offload_capa = TAP_TX_OFFLOAD;
1010         dev_info->tx_offload_capa = dev_info->tx_queue_offload_capa;
1011         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
1012         /*
1013          * limitation: TAP supports all of IP, UDP and TCP hash
1014          * functions together and not in partial combinations
1015          */
1016         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
1017         dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1018
1019         return 0;
1020 }
1021
1022 static int
1023 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
1024 {
1025         unsigned int i, imax;
1026         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
1027         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
1028         unsigned long rx_nombuf = 0, ierrors = 0;
1029         const struct pmd_internals *pmd = dev->data->dev_private;
1030
1031         /* rx queue statistics */
1032         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1033                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1034         for (i = 0; i < imax; i++) {
1035                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
1036                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
1037                 rx_total += tap_stats->q_ipackets[i];
1038                 rx_bytes_total += tap_stats->q_ibytes[i];
1039                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
1040                 ierrors += pmd->rxq[i].stats.ierrors;
1041         }
1042
1043         /* tx queue statistics */
1044         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1045                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1046
1047         for (i = 0; i < imax; i++) {
1048                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
1049                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1050                 tx_total += tap_stats->q_opackets[i];
1051                 tx_err_total += pmd->txq[i].stats.errs;
1052                 tx_bytes_total += tap_stats->q_obytes[i];
1053         }
1054
1055         tap_stats->ipackets = rx_total;
1056         tap_stats->ibytes = rx_bytes_total;
1057         tap_stats->ierrors = ierrors;
1058         tap_stats->rx_nombuf = rx_nombuf;
1059         tap_stats->opackets = tx_total;
1060         tap_stats->oerrors = tx_err_total;
1061         tap_stats->obytes = tx_bytes_total;
1062         return 0;
1063 }
1064
1065 static int
1066 tap_stats_reset(struct rte_eth_dev *dev)
1067 {
1068         int i;
1069         struct pmd_internals *pmd = dev->data->dev_private;
1070
1071         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1072                 pmd->rxq[i].stats.ipackets = 0;
1073                 pmd->rxq[i].stats.ibytes = 0;
1074                 pmd->rxq[i].stats.ierrors = 0;
1075                 pmd->rxq[i].stats.rx_nombuf = 0;
1076
1077                 pmd->txq[i].stats.opackets = 0;
1078                 pmd->txq[i].stats.errs = 0;
1079                 pmd->txq[i].stats.obytes = 0;
1080         }
1081
1082         return 0;
1083 }
1084
1085 static int
1086 tap_dev_close(struct rte_eth_dev *dev)
1087 {
1088         int i;
1089         struct pmd_internals *internals = dev->data->dev_private;
1090         struct pmd_process_private *process_private = dev->process_private;
1091         struct rx_queue *rxq;
1092
1093         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1094                 rte_free(dev->process_private);
1095                 return 0;
1096         }
1097
1098         tap_link_set_down(dev);
1099         if (internals->nlsk_fd != -1) {
1100                 tap_flow_flush(dev, NULL);
1101                 tap_flow_implicit_flush(internals, NULL);
1102                 tap_nl_final(internals->nlsk_fd);
1103                 internals->nlsk_fd = -1;
1104         }
1105
1106         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1107                 if (process_private->rxq_fds[i] != -1) {
1108                         rxq = &internals->rxq[i];
1109                         close(process_private->rxq_fds[i]);
1110                         process_private->rxq_fds[i] = -1;
1111                         tap_rxq_pool_free(rxq->pool);
1112                         rte_free(rxq->iovecs);
1113                         rxq->pool = NULL;
1114                         rxq->iovecs = NULL;
1115                 }
1116                 if (process_private->txq_fds[i] != -1) {
1117                         close(process_private->txq_fds[i]);
1118                         process_private->txq_fds[i] = -1;
1119                 }
1120         }
1121
1122         if (internals->remote_if_index) {
1123                 /* Restore initial remote state */
1124                 int ret = ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1125                                 &internals->remote_initial_flags);
1126                 if (ret)
1127                         TAP_LOG(ERR, "restore remote state failed: %d", ret);
1128
1129         }
1130
1131         rte_mempool_free(internals->gso_ctx_mp);
1132         internals->gso_ctx_mp = NULL;
1133
1134         if (internals->ka_fd != -1) {
1135                 close(internals->ka_fd);
1136                 internals->ka_fd = -1;
1137         }
1138
1139         /* mac_addrs must not be freed alone because part of dev_private */
1140         dev->data->mac_addrs = NULL;
1141
1142         internals = dev->data->dev_private;
1143         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
1144                 tuntap_types[internals->type], rte_socket_id());
1145
1146         if (internals->ioctl_sock != -1) {
1147                 close(internals->ioctl_sock);
1148                 internals->ioctl_sock = -1;
1149         }
1150         rte_free(dev->process_private);
1151         if (tap_devices_count == 1)
1152                 rte_mp_action_unregister(TAP_MP_KEY);
1153         tap_devices_count--;
1154         /*
1155          * Since TUN device has no more opened file descriptors
1156          * it will be removed from kernel
1157          */
1158
1159         return 0;
1160 }
1161
1162 static void
1163 tap_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1164 {
1165         struct rx_queue *rxq = dev->data->rx_queues[qid];
1166         struct pmd_process_private *process_private;
1167
1168         if (!rxq)
1169                 return;
1170         process_private = rte_eth_devices[rxq->in_port].process_private;
1171         if (process_private->rxq_fds[rxq->queue_id] != -1) {
1172                 close(process_private->rxq_fds[rxq->queue_id]);
1173                 process_private->rxq_fds[rxq->queue_id] = -1;
1174                 tap_rxq_pool_free(rxq->pool);
1175                 rte_free(rxq->iovecs);
1176                 rxq->pool = NULL;
1177                 rxq->iovecs = NULL;
1178         }
1179 }
1180
1181 static void
1182 tap_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1183 {
1184         struct tx_queue *txq = dev->data->tx_queues[qid];
1185         struct pmd_process_private *process_private;
1186
1187         if (!txq)
1188                 return;
1189         process_private = rte_eth_devices[txq->out_port].process_private;
1190
1191         if (process_private->txq_fds[txq->queue_id] != -1) {
1192                 close(process_private->txq_fds[txq->queue_id]);
1193                 process_private->txq_fds[txq->queue_id] = -1;
1194         }
1195 }
1196
1197 static int
1198 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1199 {
1200         struct rte_eth_link *dev_link = &dev->data->dev_link;
1201         struct pmd_internals *pmd = dev->data->dev_private;
1202         struct ifreq ifr = { .ifr_flags = 0 };
1203
1204         if (pmd->remote_if_index) {
1205                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1206                 if (!(ifr.ifr_flags & IFF_UP) ||
1207                     !(ifr.ifr_flags & IFF_RUNNING)) {
1208                         dev_link->link_status = RTE_ETH_LINK_DOWN;
1209                         return 0;
1210                 }
1211         }
1212         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1213         dev_link->link_status =
1214                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1215                  RTE_ETH_LINK_UP :
1216                  RTE_ETH_LINK_DOWN);
1217         return 0;
1218 }
1219
1220 static int
1221 tap_promisc_enable(struct rte_eth_dev *dev)
1222 {
1223         struct pmd_internals *pmd = dev->data->dev_private;
1224         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1225         int ret;
1226
1227         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1228         if (ret != 0)
1229                 return ret;
1230
1231         if (pmd->remote_if_index && !pmd->flow_isolate) {
1232                 dev->data->promiscuous = 1;
1233                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1234                 if (ret != 0) {
1235                         /* Rollback promisc flag */
1236                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1237                         /*
1238                          * rte_eth_dev_promiscuous_enable() rollback
1239                          * dev->data->promiscuous in the case of failure.
1240                          */
1241                         return ret;
1242                 }
1243         }
1244
1245         return 0;
1246 }
1247
1248 static int
1249 tap_promisc_disable(struct rte_eth_dev *dev)
1250 {
1251         struct pmd_internals *pmd = dev->data->dev_private;
1252         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1253         int ret;
1254
1255         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1256         if (ret != 0)
1257                 return ret;
1258
1259         if (pmd->remote_if_index && !pmd->flow_isolate) {
1260                 dev->data->promiscuous = 0;
1261                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1262                 if (ret != 0) {
1263                         /* Rollback promisc flag */
1264                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1265                         /*
1266                          * rte_eth_dev_promiscuous_disable() rollback
1267                          * dev->data->promiscuous in the case of failure.
1268                          */
1269                         return ret;
1270                 }
1271         }
1272
1273         return 0;
1274 }
1275
1276 static int
1277 tap_allmulti_enable(struct rte_eth_dev *dev)
1278 {
1279         struct pmd_internals *pmd = dev->data->dev_private;
1280         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1281         int ret;
1282
1283         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1284         if (ret != 0)
1285                 return ret;
1286
1287         if (pmd->remote_if_index && !pmd->flow_isolate) {
1288                 dev->data->all_multicast = 1;
1289                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1290                 if (ret != 0) {
1291                         /* Rollback allmulti flag */
1292                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1293                         /*
1294                          * rte_eth_dev_allmulticast_enable() rollback
1295                          * dev->data->all_multicast in the case of failure.
1296                          */
1297                         return ret;
1298                 }
1299         }
1300
1301         return 0;
1302 }
1303
1304 static int
1305 tap_allmulti_disable(struct rte_eth_dev *dev)
1306 {
1307         struct pmd_internals *pmd = dev->data->dev_private;
1308         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1309         int ret;
1310
1311         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1312         if (ret != 0)
1313                 return ret;
1314
1315         if (pmd->remote_if_index && !pmd->flow_isolate) {
1316                 dev->data->all_multicast = 0;
1317                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1318                 if (ret != 0) {
1319                         /* Rollback allmulti flag */
1320                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1321                         /*
1322                          * rte_eth_dev_allmulticast_disable() rollback
1323                          * dev->data->all_multicast in the case of failure.
1324                          */
1325                         return ret;
1326                 }
1327         }
1328
1329         return 0;
1330 }
1331
1332 static int
1333 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1334 {
1335         struct pmd_internals *pmd = dev->data->dev_private;
1336         enum ioctl_mode mode = LOCAL_ONLY;
1337         struct ifreq ifr;
1338         int ret;
1339
1340         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1341                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1342                         dev->device->name);
1343                 return -ENOTSUP;
1344         }
1345
1346         if (rte_is_zero_ether_addr(mac_addr)) {
1347                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1348                         dev->device->name);
1349                 return -EINVAL;
1350         }
1351         /* Check the actual current MAC address on the tap netdevice */
1352         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1353         if (ret < 0)
1354                 return ret;
1355         if (rte_is_same_ether_addr(
1356                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1357                         mac_addr))
1358                 return 0;
1359         /* Check the current MAC address on the remote */
1360         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1361         if (ret < 0)
1362                 return ret;
1363         if (!rte_is_same_ether_addr(
1364                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1365                         mac_addr))
1366                 mode = LOCAL_AND_REMOTE;
1367         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1368         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1369         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1370         if (ret < 0)
1371                 return ret;
1372         rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1373         if (pmd->remote_if_index && !pmd->flow_isolate) {
1374                 /* Replace MAC redirection rule after a MAC change */
1375                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1376                 if (ret < 0) {
1377                         TAP_LOG(ERR,
1378                                 "%s: Couldn't delete MAC redirection rule",
1379                                 dev->device->name);
1380                         return ret;
1381                 }
1382                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1383                 if (ret < 0) {
1384                         TAP_LOG(ERR,
1385                                 "%s: Couldn't add MAC redirection rule",
1386                                 dev->device->name);
1387                         return ret;
1388                 }
1389         }
1390
1391         return 0;
1392 }
1393
1394 static int
1395 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1396 {
1397         uint32_t gso_types;
1398         char pool_name[64];
1399         struct pmd_internals *pmd = dev->data->dev_private;
1400         int ret;
1401
1402         /* initialize GSO context */
1403         gso_types = RTE_ETH_TX_OFFLOAD_TCP_TSO;
1404         if (!pmd->gso_ctx_mp) {
1405                 /*
1406                  * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
1407                  * bytes size per mbuf use this pool for both direct and
1408                  * indirect mbufs
1409                  */
1410                 ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
1411                                 dev->device->name);
1412                 if (ret < 0 || ret >= (int)sizeof(pool_name)) {
1413                         TAP_LOG(ERR,
1414                                 "%s: failed to create mbuf pool name for device %s,"
1415                                 "device name too long or output error, ret: %d\n",
1416                                 pmd->name, dev->device->name, ret);
1417                         return -ENAMETOOLONG;
1418                 }
1419                 pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
1420                         TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
1421                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1422                         SOCKET_ID_ANY);
1423                 if (!pmd->gso_ctx_mp) {
1424                         TAP_LOG(ERR,
1425                                 "%s: failed to create mbuf pool for device %s\n",
1426                                 pmd->name, dev->device->name);
1427                         return -1;
1428                 }
1429         }
1430
1431         gso_ctx->direct_pool = pmd->gso_ctx_mp;
1432         gso_ctx->indirect_pool = pmd->gso_ctx_mp;
1433         gso_ctx->gso_types = gso_types;
1434         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1435         gso_ctx->flag = 0;
1436
1437         return 0;
1438 }
1439
1440 static int
1441 tap_setup_queue(struct rte_eth_dev *dev,
1442                 struct pmd_internals *internals,
1443                 uint16_t qid,
1444                 int is_rx)
1445 {
1446         int ret;
1447         int *fd;
1448         int *other_fd;
1449         const char *dir;
1450         struct pmd_internals *pmd = dev->data->dev_private;
1451         struct pmd_process_private *process_private = dev->process_private;
1452         struct rx_queue *rx = &internals->rxq[qid];
1453         struct tx_queue *tx = &internals->txq[qid];
1454         struct rte_gso_ctx *gso_ctx;
1455
1456         if (is_rx) {
1457                 fd = &process_private->rxq_fds[qid];
1458                 other_fd = &process_private->txq_fds[qid];
1459                 dir = "rx";
1460                 gso_ctx = NULL;
1461         } else {
1462                 fd = &process_private->txq_fds[qid];
1463                 other_fd = &process_private->rxq_fds[qid];
1464                 dir = "tx";
1465                 gso_ctx = &tx->gso_ctx;
1466         }
1467         if (*fd != -1) {
1468                 /* fd for this queue already exists */
1469                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1470                         pmd->name, *fd, dir, qid);
1471                 gso_ctx = NULL;
1472         } else if (*other_fd != -1) {
1473                 /* Only other_fd exists. dup it */
1474                 *fd = dup(*other_fd);
1475                 if (*fd < 0) {
1476                         *fd = -1;
1477                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1478                         return -1;
1479                 }
1480                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1481                         pmd->name, *other_fd, dir, qid, *fd);
1482         } else {
1483                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1484                 *fd = tun_alloc(pmd, 0);
1485                 if (*fd < 0) {
1486                         *fd = -1; /* restore original value */
1487                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1488                         return -1;
1489                 }
1490                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1491                         pmd->name, dir, qid, *fd);
1492         }
1493
1494         tx->mtu = &dev->data->mtu;
1495         rx->rxmode = &dev->data->dev_conf.rxmode;
1496         if (gso_ctx) {
1497                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1498                 if (ret)
1499                         return -1;
1500         }
1501
1502         tx->type = pmd->type;
1503
1504         return *fd;
1505 }
1506
1507 static int
1508 tap_rx_queue_setup(struct rte_eth_dev *dev,
1509                    uint16_t rx_queue_id,
1510                    uint16_t nb_rx_desc,
1511                    unsigned int socket_id,
1512                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1513                    struct rte_mempool *mp)
1514 {
1515         struct pmd_internals *internals = dev->data->dev_private;
1516         struct pmd_process_private *process_private = dev->process_private;
1517         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1518         struct rte_mbuf **tmp = &rxq->pool;
1519         long iov_max = sysconf(_SC_IOV_MAX);
1520
1521         if (iov_max <= 0) {
1522                 TAP_LOG(WARNING,
1523                         "_SC_IOV_MAX is not defined. Using %d as default",
1524                         TAP_IOV_DEFAULT_MAX);
1525                 iov_max = TAP_IOV_DEFAULT_MAX;
1526         }
1527         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1528         struct iovec (*iovecs)[nb_desc + 1];
1529         int data_off = RTE_PKTMBUF_HEADROOM;
1530         int ret = 0;
1531         int fd;
1532         int i;
1533
1534         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1535                 TAP_LOG(WARNING,
1536                         "nb_rx_queues %d too small or mempool NULL",
1537                         dev->data->nb_rx_queues);
1538                 return -1;
1539         }
1540
1541         rxq->mp = mp;
1542         rxq->trigger_seen = 1; /* force initial burst */
1543         rxq->in_port = dev->data->port_id;
1544         rxq->queue_id = rx_queue_id;
1545         rxq->nb_rx_desc = nb_desc;
1546         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1547                                     socket_id);
1548         if (!iovecs) {
1549                 TAP_LOG(WARNING,
1550                         "%s: Couldn't allocate %d RX descriptors",
1551                         dev->device->name, nb_desc);
1552                 return -ENOMEM;
1553         }
1554         rxq->iovecs = iovecs;
1555
1556         dev->data->rx_queues[rx_queue_id] = rxq;
1557         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1558         if (fd == -1) {
1559                 ret = fd;
1560                 goto error;
1561         }
1562
1563         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1564         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1565
1566         for (i = 1; i <= nb_desc; i++) {
1567                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1568                 if (!*tmp) {
1569                         TAP_LOG(WARNING,
1570                                 "%s: couldn't allocate memory for queue %d",
1571                                 dev->device->name, rx_queue_id);
1572                         ret = -ENOMEM;
1573                         goto error;
1574                 }
1575                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1576                 (*rxq->iovecs)[i].iov_base =
1577                         (char *)(*tmp)->buf_addr + data_off;
1578                 data_off = 0;
1579                 tmp = &(*tmp)->next;
1580         }
1581
1582         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1583                 internals->name, rx_queue_id,
1584                 process_private->rxq_fds[rx_queue_id]);
1585
1586         return 0;
1587
1588 error:
1589         tap_rxq_pool_free(rxq->pool);
1590         rxq->pool = NULL;
1591         rte_free(rxq->iovecs);
1592         rxq->iovecs = NULL;
1593         return ret;
1594 }
1595
1596 static int
1597 tap_tx_queue_setup(struct rte_eth_dev *dev,
1598                    uint16_t tx_queue_id,
1599                    uint16_t nb_tx_desc __rte_unused,
1600                    unsigned int socket_id __rte_unused,
1601                    const struct rte_eth_txconf *tx_conf)
1602 {
1603         struct pmd_internals *internals = dev->data->dev_private;
1604         struct pmd_process_private *process_private = dev->process_private;
1605         struct tx_queue *txq;
1606         int ret;
1607         uint64_t offloads;
1608
1609         if (tx_queue_id >= dev->data->nb_tx_queues)
1610                 return -1;
1611         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1612         txq = dev->data->tx_queues[tx_queue_id];
1613         txq->out_port = dev->data->port_id;
1614         txq->queue_id = tx_queue_id;
1615
1616         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1617         txq->csum = !!(offloads &
1618                         (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1619                          RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1620                          RTE_ETH_TX_OFFLOAD_TCP_CKSUM));
1621
1622         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1623         if (ret == -1)
1624                 return -1;
1625         TAP_LOG(DEBUG,
1626                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1627                 internals->name, tx_queue_id,
1628                 process_private->txq_fds[tx_queue_id],
1629                 txq->csum ? "on" : "off");
1630
1631         return 0;
1632 }
1633
1634 static int
1635 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1636 {
1637         struct pmd_internals *pmd = dev->data->dev_private;
1638         struct ifreq ifr = { .ifr_mtu = mtu };
1639
1640         return tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1641 }
1642
1643 static int
1644 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1645                      struct rte_ether_addr *mc_addr_set __rte_unused,
1646                      uint32_t nb_mc_addr __rte_unused)
1647 {
1648         /*
1649          * Nothing to do actually: the tap has no filtering whatsoever, every
1650          * packet is received.
1651          */
1652         return 0;
1653 }
1654
1655 static int
1656 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1657 {
1658         struct rte_eth_dev *dev = arg;
1659         struct pmd_internals *pmd = dev->data->dev_private;
1660         struct ifinfomsg *info = NLMSG_DATA(nh);
1661
1662         if (nh->nlmsg_type != RTM_NEWLINK ||
1663             (info->ifi_index != pmd->if_index &&
1664              info->ifi_index != pmd->remote_if_index))
1665                 return 0;
1666         return tap_link_update(dev, 0);
1667 }
1668
1669 static void
1670 tap_dev_intr_handler(void *cb_arg)
1671 {
1672         struct rte_eth_dev *dev = cb_arg;
1673         struct pmd_internals *pmd = dev->data->dev_private;
1674
1675         if (rte_intr_fd_get(pmd->intr_handle) >= 0)
1676                 tap_nl_recv(rte_intr_fd_get(pmd->intr_handle),
1677                             tap_nl_msg_handler, dev);
1678 }
1679
1680 static int
1681 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1682 {
1683         struct pmd_internals *pmd = dev->data->dev_private;
1684         int ret;
1685
1686         /* In any case, disable interrupt if the conf is no longer there. */
1687         if (!dev->data->dev_conf.intr_conf.lsc) {
1688                 if (rte_intr_fd_get(pmd->intr_handle) != -1)
1689                         goto clean;
1690
1691                 return 0;
1692         }
1693         if (set) {
1694                 rte_intr_fd_set(pmd->intr_handle, tap_nl_init(RTMGRP_LINK));
1695                 if (unlikely(rte_intr_fd_get(pmd->intr_handle) == -1))
1696                         return -EBADF;
1697                 return rte_intr_callback_register(
1698                         pmd->intr_handle, tap_dev_intr_handler, dev);
1699         }
1700
1701 clean:
1702         do {
1703                 ret = rte_intr_callback_unregister(pmd->intr_handle,
1704                         tap_dev_intr_handler, dev);
1705                 if (ret >= 0) {
1706                         break;
1707                 } else if (ret == -EAGAIN) {
1708                         rte_delay_ms(100);
1709                 } else {
1710                         TAP_LOG(ERR, "intr callback unregister failed: %d",
1711                                      ret);
1712                         break;
1713                 }
1714         } while (true);
1715
1716         if (rte_intr_fd_get(pmd->intr_handle) >= 0) {
1717                 tap_nl_final(rte_intr_fd_get(pmd->intr_handle));
1718                 rte_intr_fd_set(pmd->intr_handle, -1);
1719         }
1720
1721         return 0;
1722 }
1723
1724 static int
1725 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1726 {
1727         int err;
1728
1729         err = tap_lsc_intr_handle_set(dev, set);
1730         if (err < 0) {
1731                 if (!set)
1732                         tap_rx_intr_vec_set(dev, 0);
1733                 return err;
1734         }
1735         err = tap_rx_intr_vec_set(dev, set);
1736         if (err && set)
1737                 tap_lsc_intr_handle_set(dev, 0);
1738         return err;
1739 }
1740
1741 static const uint32_t*
1742 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1743 {
1744         static const uint32_t ptypes[] = {
1745                 RTE_PTYPE_INNER_L2_ETHER,
1746                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1747                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1748                 RTE_PTYPE_INNER_L3_IPV4,
1749                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1750                 RTE_PTYPE_INNER_L3_IPV6,
1751                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1752                 RTE_PTYPE_INNER_L4_FRAG,
1753                 RTE_PTYPE_INNER_L4_UDP,
1754                 RTE_PTYPE_INNER_L4_TCP,
1755                 RTE_PTYPE_INNER_L4_SCTP,
1756                 RTE_PTYPE_L2_ETHER,
1757                 RTE_PTYPE_L2_ETHER_VLAN,
1758                 RTE_PTYPE_L2_ETHER_QINQ,
1759                 RTE_PTYPE_L3_IPV4,
1760                 RTE_PTYPE_L3_IPV4_EXT,
1761                 RTE_PTYPE_L3_IPV6_EXT,
1762                 RTE_PTYPE_L3_IPV6,
1763                 RTE_PTYPE_L4_FRAG,
1764                 RTE_PTYPE_L4_UDP,
1765                 RTE_PTYPE_L4_TCP,
1766                 RTE_PTYPE_L4_SCTP,
1767         };
1768
1769         return ptypes;
1770 }
1771
1772 static int
1773 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1774                   struct rte_eth_fc_conf *fc_conf)
1775 {
1776         fc_conf->mode = RTE_ETH_FC_NONE;
1777         return 0;
1778 }
1779
1780 static int
1781 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1782                   struct rte_eth_fc_conf *fc_conf)
1783 {
1784         if (fc_conf->mode != RTE_ETH_FC_NONE)
1785                 return -ENOTSUP;
1786         return 0;
1787 }
1788
1789 /**
1790  * DPDK callback to update the RSS hash configuration.
1791  *
1792  * @param dev
1793  *   Pointer to Ethernet device structure.
1794  * @param[in] rss_conf
1795  *   RSS configuration data.
1796  *
1797  * @return
1798  *   0 on success, a negative errno value otherwise and rte_errno is set.
1799  */
1800 static int
1801 tap_rss_hash_update(struct rte_eth_dev *dev,
1802                 struct rte_eth_rss_conf *rss_conf)
1803 {
1804         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1805                 rte_errno = EINVAL;
1806                 return -rte_errno;
1807         }
1808         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1809                 /*
1810                  * Currently TAP RSS key is hard coded
1811                  * and cannot be updated
1812                  */
1813                 TAP_LOG(ERR,
1814                         "port %u RSS key cannot be updated",
1815                         dev->data->port_id);
1816                 rte_errno = EINVAL;
1817                 return -rte_errno;
1818         }
1819         return 0;
1820 }
1821
1822 static int
1823 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1824 {
1825         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1826
1827         return 0;
1828 }
1829
1830 static int
1831 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1832 {
1833         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1834
1835         return 0;
1836 }
1837
1838 static int
1839 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1840 {
1841         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1842
1843         return 0;
1844 }
1845
1846 static int
1847 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1848 {
1849         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1850
1851         return 0;
1852 }
1853 static const struct eth_dev_ops ops = {
1854         .dev_start              = tap_dev_start,
1855         .dev_stop               = tap_dev_stop,
1856         .dev_close              = tap_dev_close,
1857         .dev_configure          = tap_dev_configure,
1858         .dev_infos_get          = tap_dev_info,
1859         .rx_queue_setup         = tap_rx_queue_setup,
1860         .tx_queue_setup         = tap_tx_queue_setup,
1861         .rx_queue_start         = tap_rx_queue_start,
1862         .tx_queue_start         = tap_tx_queue_start,
1863         .rx_queue_stop          = tap_rx_queue_stop,
1864         .tx_queue_stop          = tap_tx_queue_stop,
1865         .rx_queue_release       = tap_rx_queue_release,
1866         .tx_queue_release       = tap_tx_queue_release,
1867         .flow_ctrl_get          = tap_flow_ctrl_get,
1868         .flow_ctrl_set          = tap_flow_ctrl_set,
1869         .link_update            = tap_link_update,
1870         .dev_set_link_up        = tap_link_set_up,
1871         .dev_set_link_down      = tap_link_set_down,
1872         .promiscuous_enable     = tap_promisc_enable,
1873         .promiscuous_disable    = tap_promisc_disable,
1874         .allmulticast_enable    = tap_allmulti_enable,
1875         .allmulticast_disable   = tap_allmulti_disable,
1876         .mac_addr_set           = tap_mac_set,
1877         .mtu_set                = tap_mtu_set,
1878         .set_mc_addr_list       = tap_set_mc_addr_list,
1879         .stats_get              = tap_stats_get,
1880         .stats_reset            = tap_stats_reset,
1881         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1882         .rss_hash_update        = tap_rss_hash_update,
1883         .flow_ops_get           = tap_dev_flow_ops_get,
1884 };
1885
1886 static int
1887 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1888                    char *remote_iface, struct rte_ether_addr *mac_addr,
1889                    enum rte_tuntap_type type)
1890 {
1891         int numa_node = rte_socket_id();
1892         struct rte_eth_dev *dev;
1893         struct pmd_internals *pmd;
1894         struct pmd_process_private *process_private;
1895         const char *tuntap_name = tuntap_types[type];
1896         struct rte_eth_dev_data *data;
1897         struct ifreq ifr;
1898         int i;
1899
1900         TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1901
1902         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1903         if (!dev) {
1904                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1905                                 tuntap_name);
1906                 goto error_exit_nodev;
1907         }
1908
1909         process_private = (struct pmd_process_private *)
1910                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1911                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1912
1913         if (process_private == NULL) {
1914                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1915                 return -1;
1916         }
1917         pmd = dev->data->dev_private;
1918         dev->process_private = process_private;
1919         pmd->dev = dev;
1920         strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1921         pmd->type = type;
1922         pmd->ka_fd = -1;
1923         pmd->nlsk_fd = -1;
1924         pmd->gso_ctx_mp = NULL;
1925
1926         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1927         if (pmd->ioctl_sock == -1) {
1928                 TAP_LOG(ERR,
1929                         "%s Unable to get a socket for management: %s",
1930                         tuntap_name, strerror(errno));
1931                 goto error_exit;
1932         }
1933
1934         /* Allocate interrupt instance */
1935         pmd->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
1936         if (pmd->intr_handle == NULL) {
1937                 TAP_LOG(ERR, "Failed to allocate intr handle");
1938                 goto error_exit;
1939         }
1940
1941         /* Setup some default values */
1942         data = dev->data;
1943         data->dev_private = pmd;
1944         data->dev_flags = RTE_ETH_DEV_INTR_LSC |
1945                                 RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1946         data->numa_node = numa_node;
1947
1948         data->dev_link = pmd_link;
1949         data->mac_addrs = &pmd->eth_addr;
1950         /* Set the number of RX and TX queues */
1951         data->nb_rx_queues = 0;
1952         data->nb_tx_queues = 0;
1953
1954         dev->dev_ops = &ops;
1955         dev->rx_pkt_burst = pmd_rx_burst;
1956         dev->tx_pkt_burst = pmd_tx_burst;
1957
1958         rte_intr_type_set(pmd->intr_handle, RTE_INTR_HANDLE_EXT);
1959         rte_intr_fd_set(pmd->intr_handle, -1);
1960         dev->intr_handle = pmd->intr_handle;
1961
1962         /* Presetup the fds to -1 as being not valid */
1963         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1964                 process_private->rxq_fds[i] = -1;
1965                 process_private->txq_fds[i] = -1;
1966         }
1967
1968         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1969                 if (rte_is_zero_ether_addr(mac_addr))
1970                         rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
1971                 else
1972                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1973         }
1974
1975         /*
1976          * Allocate a TUN device keep-alive file descriptor that will only be
1977          * closed when the TUN device itself is closed or removed.
1978          * This keep-alive file descriptor will guarantee that the TUN device
1979          * exists even when all of its queues are closed
1980          */
1981         pmd->ka_fd = tun_alloc(pmd, 1);
1982         if (pmd->ka_fd == -1) {
1983                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1984                 goto error_exit;
1985         }
1986         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1987
1988         ifr.ifr_mtu = dev->data->mtu;
1989         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1990                 goto error_exit;
1991
1992         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1993                 memset(&ifr, 0, sizeof(struct ifreq));
1994                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1995                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1996                                 RTE_ETHER_ADDR_LEN);
1997                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1998                         goto error_exit;
1999         }
2000
2001         /*
2002          * Set up everything related to rte_flow:
2003          * - netlink socket
2004          * - tap / remote if_index
2005          * - mandatory QDISCs
2006          * - rte_flow actual/implicit lists
2007          * - implicit rules
2008          */
2009         pmd->nlsk_fd = tap_nl_init(0);
2010         if (pmd->nlsk_fd == -1) {
2011                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
2012                         pmd->name);
2013                 goto disable_rte_flow;
2014         }
2015         pmd->if_index = if_nametoindex(pmd->name);
2016         if (!pmd->if_index) {
2017                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
2018                 goto disable_rte_flow;
2019         }
2020         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
2021                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
2022                         pmd->name);
2023                 goto disable_rte_flow;
2024         }
2025         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
2026                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2027                         pmd->name);
2028                 goto disable_rte_flow;
2029         }
2030         LIST_INIT(&pmd->flows);
2031
2032         if (strlen(remote_iface)) {
2033                 pmd->remote_if_index = if_nametoindex(remote_iface);
2034                 if (!pmd->remote_if_index) {
2035                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
2036                                 pmd->name, remote_iface);
2037                         goto error_remote;
2038                 }
2039                 strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
2040
2041                 /* Save state of remote device */
2042                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
2043
2044                 /* Replicate remote MAC address */
2045                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
2046                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2047                                 pmd->name, pmd->remote_iface);
2048                         goto error_remote;
2049                 }
2050                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
2051                            RTE_ETHER_ADDR_LEN);
2052                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
2053                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
2054                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2055                                 pmd->name, remote_iface);
2056                         goto error_remote;
2057                 }
2058
2059                 /*
2060                  * Flush usually returns negative value because it tries to
2061                  * delete every QDISC (and on a running device, one QDISC at
2062                  * least is needed). Ignore negative return value.
2063                  */
2064                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
2065                 if (qdisc_create_ingress(pmd->nlsk_fd,
2066                                          pmd->remote_if_index) < 0) {
2067                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2068                                 pmd->remote_iface);
2069                         goto error_remote;
2070                 }
2071                 LIST_INIT(&pmd->implicit_flows);
2072                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
2073                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
2074                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
2075                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
2076                         TAP_LOG(ERR,
2077                                 "%s: failed to create implicit rules.",
2078                                 pmd->name);
2079                         goto error_remote;
2080                 }
2081         }
2082
2083         rte_eth_dev_probing_finish(dev);
2084         return 0;
2085
2086 disable_rte_flow:
2087         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2088                 strerror(errno), errno);
2089         if (strlen(remote_iface)) {
2090                 TAP_LOG(ERR, "Remote feature requires flow support.");
2091                 goto error_exit;
2092         }
2093         rte_eth_dev_probing_finish(dev);
2094         return 0;
2095
2096 error_remote:
2097         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2098                 strerror(errno), errno);
2099         tap_flow_implicit_flush(pmd, NULL);
2100
2101 error_exit:
2102         if (pmd->nlsk_fd != -1)
2103                 close(pmd->nlsk_fd);
2104         if (pmd->ka_fd != -1)
2105                 close(pmd->ka_fd);
2106         if (pmd->ioctl_sock != -1)
2107                 close(pmd->ioctl_sock);
2108         /* mac_addrs must not be freed alone because part of dev_private */
2109         dev->data->mac_addrs = NULL;
2110         rte_eth_dev_release_port(dev);
2111         rte_intr_instance_free(pmd->intr_handle);
2112
2113 error_exit_nodev:
2114         TAP_LOG(ERR, "%s Unable to initialize %s",
2115                 tuntap_name, rte_vdev_device_name(vdev));
2116
2117         return -EINVAL;
2118 }
2119
2120 /* make sure name is a possible Linux network device name */
2121 static bool
2122 is_valid_iface(const char *name)
2123 {
2124         if (*name == '\0')
2125                 return false;
2126
2127         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2128                 return false;
2129
2130         while (*name) {
2131                 if (*name == '/' || *name == ':' || isspace(*name))
2132                         return false;
2133                 name++;
2134         }
2135         return true;
2136 }
2137
2138 static int
2139 set_interface_name(const char *key __rte_unused,
2140                    const char *value,
2141                    void *extra_args)
2142 {
2143         char *name = (char *)extra_args;
2144
2145         if (value) {
2146                 if (!is_valid_iface(value)) {
2147                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2148                                 value);
2149                         return -1;
2150                 }
2151                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2152         } else {
2153                 /* use tap%d which causes kernel to choose next available */
2154                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2155         }
2156         return 0;
2157 }
2158
2159 static int
2160 set_remote_iface(const char *key __rte_unused,
2161                  const char *value,
2162                  void *extra_args)
2163 {
2164         char *name = (char *)extra_args;
2165
2166         if (value) {
2167                 if (!is_valid_iface(value)) {
2168                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2169                                 value);
2170                         return -1;
2171                 }
2172                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2173         }
2174
2175         return 0;
2176 }
2177
2178 static int parse_user_mac(struct rte_ether_addr *user_mac,
2179                 const char *value)
2180 {
2181         unsigned int index = 0;
2182         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2183
2184         if (user_mac == NULL || value == NULL)
2185                 return 0;
2186
2187         strlcpy(mac_temp, value, sizeof(mac_temp));
2188         mac_byte = strtok(mac_temp, ":");
2189
2190         while ((mac_byte != NULL) &&
2191                         (strlen(mac_byte) <= 2) &&
2192                         (strlen(mac_byte) == strspn(mac_byte,
2193                                         ETH_TAP_CMP_MAC_FMT))) {
2194                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2195                 mac_byte = strtok(NULL, ":");
2196         }
2197
2198         return index;
2199 }
2200
2201 static int
2202 set_mac_type(const char *key __rte_unused,
2203              const char *value,
2204              void *extra_args)
2205 {
2206         struct rte_ether_addr *user_mac = extra_args;
2207
2208         if (!value)
2209                 return 0;
2210
2211         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2212                 static int iface_idx;
2213
2214                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
2215                 memcpy((char *)user_mac->addr_bytes, "\0dtap",
2216                         RTE_ETHER_ADDR_LEN);
2217                 user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2218                         iface_idx++ + '0';
2219                 goto success;
2220         }
2221
2222         if (parse_user_mac(user_mac, value) != 6)
2223                 goto error;
2224 success:
2225         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2226         return 0;
2227
2228 error:
2229         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2230                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2231         return -1;
2232 }
2233
2234 /*
2235  * Open a TUN interface device. TUN PMD
2236  * 1) sets tap_type as false
2237  * 2) intakes iface as argument.
2238  * 3) as interface is virtual set speed to 10G
2239  */
2240 static int
2241 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2242 {
2243         const char *name, *params;
2244         int ret;
2245         struct rte_kvargs *kvlist = NULL;
2246         char tun_name[RTE_ETH_NAME_MAX_LEN];
2247         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2248         struct rte_eth_dev *eth_dev;
2249
2250         name = rte_vdev_device_name(dev);
2251         params = rte_vdev_device_args(dev);
2252         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2253
2254         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2255             strlen(params) == 0) {
2256                 eth_dev = rte_eth_dev_attach_secondary(name);
2257                 if (!eth_dev) {
2258                         TAP_LOG(ERR, "Failed to probe %s", name);
2259                         return -1;
2260                 }
2261                 eth_dev->dev_ops = &ops;
2262                 eth_dev->device = &dev->device;
2263                 rte_eth_dev_probing_finish(eth_dev);
2264                 return 0;
2265         }
2266
2267         /* use tun%d which causes kernel to choose next available */
2268         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2269
2270         if (params && (params[0] != '\0')) {
2271                 TAP_LOG(DEBUG, "parameters (%s)", params);
2272
2273                 kvlist = rte_kvargs_parse(params, valid_arguments);
2274                 if (kvlist) {
2275                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2276                                 ret = rte_kvargs_process(kvlist,
2277                                         ETH_TAP_IFACE_ARG,
2278                                         &set_interface_name,
2279                                         tun_name);
2280
2281                                 if (ret == -1)
2282                                         goto leave;
2283                         }
2284                 }
2285         }
2286         pmd_link.link_speed = RTE_ETH_SPEED_NUM_10G;
2287
2288         TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2289
2290         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2291                                  ETH_TUNTAP_TYPE_TUN);
2292
2293 leave:
2294         if (ret == -1) {
2295                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2296                         name, tun_name);
2297         }
2298         rte_kvargs_free(kvlist);
2299
2300         return ret;
2301 }
2302
2303 /* Request queue file descriptors from secondary to primary. */
2304 static int
2305 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2306 {
2307         int ret;
2308         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2309         struct rte_mp_msg request, *reply;
2310         struct rte_mp_reply replies;
2311         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2312         struct ipc_queues *reply_param;
2313         struct pmd_process_private *process_private = dev->process_private;
2314         int queue, fd_iterator;
2315
2316         /* Prepare the request */
2317         memset(&request, 0, sizeof(request));
2318         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2319         strlcpy(request_param->port_name, port_name,
2320                 sizeof(request_param->port_name));
2321         request.len_param = sizeof(*request_param);
2322         /* Send request and receive reply */
2323         ret = rte_mp_request_sync(&request, &replies, &timeout);
2324         if (ret < 0 || replies.nb_received != 1) {
2325                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2326                         rte_errno);
2327                 return -1;
2328         }
2329         reply = &replies.msgs[0];
2330         reply_param = (struct ipc_queues *)reply->param;
2331         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2332
2333         /* Attach the queues from received file descriptors */
2334         if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2335                 TAP_LOG(ERR, "Unexpected number of fds received");
2336                 return -1;
2337         }
2338
2339         dev->data->nb_rx_queues = reply_param->rxq_count;
2340         dev->data->nb_tx_queues = reply_param->txq_count;
2341         fd_iterator = 0;
2342         for (queue = 0; queue < reply_param->rxq_count; queue++)
2343                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2344         for (queue = 0; queue < reply_param->txq_count; queue++)
2345                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2346         free(reply);
2347         return 0;
2348 }
2349
2350 /* Send the queue file descriptors from the primary process to secondary. */
2351 static int
2352 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2353 {
2354         struct rte_eth_dev *dev;
2355         struct pmd_process_private *process_private;
2356         struct rte_mp_msg reply;
2357         const struct ipc_queues *request_param =
2358                 (const struct ipc_queues *)request->param;
2359         struct ipc_queues *reply_param =
2360                 (struct ipc_queues *)reply.param;
2361         uint16_t port_id;
2362         int queue;
2363         int ret;
2364
2365         /* Get requested port */
2366         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2367         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2368         if (ret) {
2369                 TAP_LOG(ERR, "Failed to get port id for %s",
2370                         request_param->port_name);
2371                 return -1;
2372         }
2373         dev = &rte_eth_devices[port_id];
2374         process_private = dev->process_private;
2375
2376         /* Fill file descriptors for all queues */
2377         reply.num_fds = 0;
2378         reply_param->rxq_count = 0;
2379         if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2380                         RTE_MP_MAX_FD_NUM){
2381                 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2382                 return -1;
2383         }
2384
2385         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2386                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2387                 reply_param->rxq_count++;
2388         }
2389         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2390
2391         reply_param->txq_count = 0;
2392         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2393                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2394                 reply_param->txq_count++;
2395         }
2396         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2397
2398         /* Send reply */
2399         strlcpy(reply.name, request->name, sizeof(reply.name));
2400         strlcpy(reply_param->port_name, request_param->port_name,
2401                 sizeof(reply_param->port_name));
2402         reply.len_param = sizeof(*reply_param);
2403         if (rte_mp_reply(&reply, peer) < 0) {
2404                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2405                 return -1;
2406         }
2407         return 0;
2408 }
2409
2410 /* Open a TAP interface device.
2411  */
2412 static int
2413 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2414 {
2415         const char *name, *params;
2416         int ret;
2417         struct rte_kvargs *kvlist = NULL;
2418         int speed;
2419         char tap_name[RTE_ETH_NAME_MAX_LEN];
2420         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2421         struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2422         struct rte_eth_dev *eth_dev;
2423         int tap_devices_count_increased = 0;
2424
2425         name = rte_vdev_device_name(dev);
2426         params = rte_vdev_device_args(dev);
2427
2428         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2429                 eth_dev = rte_eth_dev_attach_secondary(name);
2430                 if (!eth_dev) {
2431                         TAP_LOG(ERR, "Failed to probe %s", name);
2432                         return -1;
2433                 }
2434                 eth_dev->dev_ops = &ops;
2435                 eth_dev->device = &dev->device;
2436                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2437                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2438                 if (!rte_eal_primary_proc_alive(NULL)) {
2439                         TAP_LOG(ERR, "Primary process is missing");
2440                         return -1;
2441                 }
2442                 eth_dev->process_private = (struct pmd_process_private *)
2443                         rte_zmalloc_socket(name,
2444                                 sizeof(struct pmd_process_private),
2445                                 RTE_CACHE_LINE_SIZE,
2446                                 eth_dev->device->numa_node);
2447                 if (eth_dev->process_private == NULL) {
2448                         TAP_LOG(ERR,
2449                                 "Failed to alloc memory for process private");
2450                         return -1;
2451                 }
2452
2453                 ret = tap_mp_attach_queues(name, eth_dev);
2454                 if (ret != 0)
2455                         return -1;
2456                 rte_eth_dev_probing_finish(eth_dev);
2457                 return 0;
2458         }
2459
2460         speed = RTE_ETH_SPEED_NUM_10G;
2461
2462         /* use tap%d which causes kernel to choose next available */
2463         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2464         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2465
2466         if (params && (params[0] != '\0')) {
2467                 TAP_LOG(DEBUG, "parameters (%s)", params);
2468
2469                 kvlist = rte_kvargs_parse(params, valid_arguments);
2470                 if (kvlist) {
2471                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2472                                 ret = rte_kvargs_process(kvlist,
2473                                                          ETH_TAP_IFACE_ARG,
2474                                                          &set_interface_name,
2475                                                          tap_name);
2476                                 if (ret == -1)
2477                                         goto leave;
2478                         }
2479
2480                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2481                                 ret = rte_kvargs_process(kvlist,
2482                                                          ETH_TAP_REMOTE_ARG,
2483                                                          &set_remote_iface,
2484                                                          remote_iface);
2485                                 if (ret == -1)
2486                                         goto leave;
2487                         }
2488
2489                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2490                                 ret = rte_kvargs_process(kvlist,
2491                                                          ETH_TAP_MAC_ARG,
2492                                                          &set_mac_type,
2493                                                          &user_mac);
2494                                 if (ret == -1)
2495                                         goto leave;
2496                         }
2497                 }
2498         }
2499         pmd_link.link_speed = speed;
2500
2501         TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2502
2503         /* Register IPC feed callback */
2504         if (!tap_devices_count) {
2505                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2506                 if (ret < 0 && rte_errno != ENOTSUP) {
2507                         TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2508                                 strerror(rte_errno));
2509                         goto leave;
2510                 }
2511         }
2512         tap_devices_count++;
2513         tap_devices_count_increased = 1;
2514         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2515                 ETH_TUNTAP_TYPE_TAP);
2516
2517 leave:
2518         if (ret == -1) {
2519                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2520                         name, tap_name);
2521                 if (tap_devices_count_increased == 1) {
2522                         if (tap_devices_count == 1)
2523                                 rte_mp_action_unregister(TAP_MP_KEY);
2524                         tap_devices_count--;
2525                 }
2526         }
2527         rte_kvargs_free(kvlist);
2528
2529         return ret;
2530 }
2531
2532 /* detach a TUNTAP device.
2533  */
2534 static int
2535 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2536 {
2537         struct rte_eth_dev *eth_dev = NULL;
2538
2539         /* find the ethdev entry */
2540         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2541         if (!eth_dev)
2542                 return 0;
2543
2544         tap_dev_close(eth_dev);
2545         rte_eth_dev_release_port(eth_dev);
2546
2547         return 0;
2548 }
2549
2550 static struct rte_vdev_driver pmd_tun_drv = {
2551         .probe = rte_pmd_tun_probe,
2552         .remove = rte_pmd_tap_remove,
2553 };
2554
2555 static struct rte_vdev_driver pmd_tap_drv = {
2556         .probe = rte_pmd_tap_probe,
2557         .remove = rte_pmd_tap_remove,
2558 };
2559
2560 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2561 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2562 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2563 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2564                               ETH_TAP_IFACE_ARG "=<string> ");
2565 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2566                               ETH_TAP_IFACE_ARG "=<string> "
2567                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2568                               ETH_TAP_REMOTE_ARG "=<string>");
2569 RTE_LOG_REGISTER_DEFAULT(tap_logtype, NOTICE);