net/hns3: fix secondary process reference count
[dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61
62 #define TAP_GSO_MBUFS_PER_CORE  128
63 #define TAP_GSO_MBUF_SEG_SIZE   128
64 #define TAP_GSO_MBUF_CACHE_SIZE 4
65 #define TAP_GSO_MBUFS_NUM \
66         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70
71 #define TAP_IOV_DEFAULT_MAX 1024
72
73 #define TAP_RX_OFFLOAD (RTE_ETH_RX_OFFLOAD_SCATTER |    \
74                         RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | \
75                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM |  \
76                         RTE_ETH_RX_OFFLOAD_TCP_CKSUM)
77
78 #define TAP_TX_OFFLOAD (RTE_ETH_TX_OFFLOAD_MULTI_SEGS | \
79                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \
80                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |  \
81                         RTE_ETH_TX_OFFLOAD_TCP_CKSUM |  \
82                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
83
84 static int tap_devices_count;
85
86 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
87         "UNKNOWN", "TUN", "TAP"
88 };
89
90 static const char *valid_arguments[] = {
91         ETH_TAP_IFACE_ARG,
92         ETH_TAP_REMOTE_ARG,
93         ETH_TAP_MAC_ARG,
94         NULL
95 };
96
97 static volatile uint32_t tap_trigger;   /* Rx trigger */
98
99 static struct rte_eth_link pmd_link = {
100         .link_speed = RTE_ETH_SPEED_NUM_10G,
101         .link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
102         .link_status = RTE_ETH_LINK_DOWN,
103         .link_autoneg = RTE_ETH_LINK_FIXED,
104 };
105
106 static void
107 tap_trigger_cb(int sig __rte_unused)
108 {
109         /* Valid trigger values are nonzero */
110         tap_trigger = (tap_trigger + 1) | 0x80000000;
111 }
112
113 /* Specifies on what netdevices the ioctl should be applied */
114 enum ioctl_mode {
115         LOCAL_AND_REMOTE,
116         LOCAL_ONLY,
117         REMOTE_ONLY,
118 };
119
120 /* Message header to synchronize queues via IPC */
121 struct ipc_queues {
122         char port_name[RTE_DEV_NAME_MAX_LEN];
123         int rxq_count;
124         int txq_count;
125         /*
126          * The file descriptors are in the dedicated part
127          * of the Unix message to be translated by the kernel.
128          */
129 };
130
131 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
132
133 /**
134  * Tun/Tap allocation routine
135  *
136  * @param[in] pmd
137  *   Pointer to private structure.
138  *
139  * @param[in] is_keepalive
140  *   Keepalive flag
141  *
142  * @return
143  *   -1 on failure, fd on success
144  */
145 static int
146 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
147 {
148         struct ifreq ifr;
149 #ifdef IFF_MULTI_QUEUE
150         unsigned int features;
151 #endif
152         int fd, signo, flags;
153
154         memset(&ifr, 0, sizeof(struct ifreq));
155
156         /*
157          * Do not set IFF_NO_PI as packet information header will be needed
158          * to check if a received packet has been truncated.
159          */
160         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
161                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
162         strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
163
164         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
165         if (fd < 0) {
166                 TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
167                 goto error;
168         }
169
170 #ifdef IFF_MULTI_QUEUE
171         /* Grab the TUN features to verify we can work multi-queue */
172         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
173                 TAP_LOG(ERR, "unable to get TUN/TAP features");
174                 goto error;
175         }
176         TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
177
178         if (features & IFF_MULTI_QUEUE) {
179                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
180                         RTE_PMD_TAP_MAX_QUEUES);
181                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
182         } else
183 #endif
184         {
185                 ifr.ifr_flags |= IFF_ONE_QUEUE;
186                 TAP_LOG(DEBUG, "  Single queue only support");
187         }
188
189         /* Set the TUN/TAP configuration and set the name if needed */
190         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
191                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
192                         ifr.ifr_name, strerror(errno));
193                 goto error;
194         }
195
196         /*
197          * Name passed to kernel might be wildcard like dtun%d
198          * and need to find the resulting device.
199          */
200         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
201         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
202
203         if (is_keepalive) {
204                 /*
205                  * Detach the TUN/TAP keep-alive queue
206                  * to avoid traffic through it
207                  */
208                 ifr.ifr_flags = IFF_DETACH_QUEUE;
209                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
210                         TAP_LOG(WARNING,
211                                 "Unable to detach keep-alive queue for %s: %s",
212                                 ifr.ifr_name, strerror(errno));
213                         goto error;
214                 }
215         }
216
217         flags = fcntl(fd, F_GETFL);
218         if (flags == -1) {
219                 TAP_LOG(WARNING,
220                         "Unable to get %s current flags\n",
221                         ifr.ifr_name);
222                 goto error;
223         }
224
225         /* Always set the file descriptor to non-blocking */
226         flags |= O_NONBLOCK;
227         if (fcntl(fd, F_SETFL, flags) < 0) {
228                 TAP_LOG(WARNING,
229                         "Unable to set %s to nonblocking: %s",
230                         ifr.ifr_name, strerror(errno));
231                 goto error;
232         }
233
234         /* Find a free realtime signal */
235         for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
236                 struct sigaction sa;
237
238                 if (sigaction(signo, NULL, &sa) == -1) {
239                         TAP_LOG(WARNING,
240                                 "Unable to get current rt-signal %d handler",
241                                 signo);
242                         goto error;
243                 }
244
245                 /* Already have the handler we want on this signal  */
246                 if (sa.sa_handler == tap_trigger_cb)
247                         break;
248
249                 /* Is handler in use by application */
250                 if (sa.sa_handler != SIG_DFL) {
251                         TAP_LOG(DEBUG,
252                                 "Skipping used rt-signal %d", signo);
253                         continue;
254                 }
255
256                 sa = (struct sigaction) {
257                         .sa_flags = SA_RESTART,
258                         .sa_handler = tap_trigger_cb,
259                 };
260
261                 if (sigaction(signo, &sa, NULL) == -1) {
262                         TAP_LOG(WARNING,
263                                 "Unable to set rt-signal %d handler\n", signo);
264                         goto error;
265                 }
266
267                 /* Found a good signal to use */
268                 TAP_LOG(DEBUG,
269                         "Using rt-signal %d", signo);
270                 break;
271         }
272
273         if (signo == SIGRTMAX) {
274                 TAP_LOG(WARNING, "All rt-signals are in use\n");
275
276                 /* Disable trigger globally in case of error */
277                 tap_trigger = 0;
278                 TAP_LOG(NOTICE, "No Rx trigger signal available\n");
279         } else {
280                 /* Enable signal on file descriptor */
281                 if (fcntl(fd, F_SETSIG, signo) < 0) {
282                         TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
283                                 signo, fd, strerror(errno));
284                         goto error;
285                 }
286                 if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
287                         TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
288                                 strerror(errno));
289                         goto error;
290                 }
291
292                 if (fcntl(fd, F_SETOWN, getpid()) < 0) {
293                         TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
294                                 strerror(errno));
295                         goto error;
296                 }
297         }
298         return fd;
299
300 error:
301         if (fd >= 0)
302                 close(fd);
303         return -1;
304 }
305
306 static void
307 tap_verify_csum(struct rte_mbuf *mbuf)
308 {
309         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
310         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
311         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
312         unsigned int l2_len = sizeof(struct rte_ether_hdr);
313         unsigned int l3_len;
314         uint16_t cksum = 0;
315         void *l3_hdr;
316         void *l4_hdr;
317         struct rte_udp_hdr *udp_hdr;
318
319         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
320                 l2_len += 4;
321         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
322                 l2_len += 8;
323         /* Don't verify checksum for packets with discontinuous L2 header */
324         if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
325                      rte_pktmbuf_data_len(mbuf)))
326                 return;
327         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
328         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
329                 struct rte_ipv4_hdr *iph = l3_hdr;
330
331                 l3_len = rte_ipv4_hdr_len(iph);
332                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
333                         return;
334                 /* check that the total length reported by header is not
335                  * greater than the total received size
336                  */
337                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
338                                 rte_pktmbuf_data_len(mbuf))
339                         return;
340
341                 cksum = ~rte_raw_cksum(iph, l3_len);
342                 mbuf->ol_flags |= cksum ?
343                         RTE_MBUF_F_RX_IP_CKSUM_BAD :
344                         RTE_MBUF_F_RX_IP_CKSUM_GOOD;
345         } else if (l3 == RTE_PTYPE_L3_IPV6) {
346                 struct rte_ipv6_hdr *iph = l3_hdr;
347
348                 l3_len = sizeof(struct rte_ipv6_hdr);
349                 /* check that the total length reported by header is not
350                  * greater than the total received size
351                  */
352                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
353                                 rte_pktmbuf_data_len(mbuf))
354                         return;
355         } else {
356                 /* - RTE_PTYPE_L3_IPV4_EXT_UNKNOWN cannot happen because
357                  *   mbuf->packet_type is filled by rte_net_get_ptype() which
358                  *   never returns this value.
359                  * - IPv6 extensions are not supported.
360                  */
361                 return;
362         }
363         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
364                 int cksum_ok;
365
366                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
367                 /* Don't verify checksum for multi-segment packets. */
368                 if (mbuf->nb_segs > 1)
369                         return;
370                 if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
371                         if (l4 == RTE_PTYPE_L4_UDP) {
372                                 udp_hdr = (struct rte_udp_hdr *)l4_hdr;
373                                 if (udp_hdr->dgram_cksum == 0) {
374                                         /*
375                                          * For IPv4, a zero UDP checksum
376                                          * indicates that the sender did not
377                                          * generate one [RFC 768].
378                                          */
379                                         mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE;
380                                         return;
381                                 }
382                         }
383                         cksum_ok = !rte_ipv4_udptcp_cksum_verify(l3_hdr,
384                                                                  l4_hdr);
385                 } else { /* l3 == RTE_PTYPE_L3_IPV6, checked above */
386                         cksum_ok = !rte_ipv6_udptcp_cksum_verify(l3_hdr,
387                                                                  l4_hdr);
388                 }
389                 mbuf->ol_flags |= cksum_ok ?
390                         RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
391         }
392 }
393
394 static void
395 tap_rxq_pool_free(struct rte_mbuf *pool)
396 {
397         struct rte_mbuf *mbuf = pool;
398         uint16_t nb_segs = 1;
399
400         if (mbuf == NULL)
401                 return;
402
403         while (mbuf->next) {
404                 mbuf = mbuf->next;
405                 nb_segs++;
406         }
407         pool->nb_segs = nb_segs;
408         rte_pktmbuf_free(pool);
409 }
410
411 /* Callback to handle the rx burst of packets to the correct interface and
412  * file descriptor(s) in a multi-queue setup.
413  */
414 static uint16_t
415 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
416 {
417         struct rx_queue *rxq = queue;
418         struct pmd_process_private *process_private;
419         uint16_t num_rx;
420         unsigned long num_rx_bytes = 0;
421         uint32_t trigger = tap_trigger;
422
423         if (trigger == rxq->trigger_seen)
424                 return 0;
425
426         process_private = rte_eth_devices[rxq->in_port].process_private;
427         for (num_rx = 0; num_rx < nb_pkts; ) {
428                 struct rte_mbuf *mbuf = rxq->pool;
429                 struct rte_mbuf *seg = NULL;
430                 struct rte_mbuf *new_tail = NULL;
431                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
432                 int len;
433
434                 len = readv(process_private->rxq_fds[rxq->queue_id],
435                         *rxq->iovecs,
436                         1 + (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ?
437                              rxq->nb_rx_desc : 1));
438                 if (len < (int)sizeof(struct tun_pi))
439                         break;
440
441                 /* Packet couldn't fit in the provided mbuf */
442                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
443                         rxq->stats.ierrors++;
444                         continue;
445                 }
446
447                 len -= sizeof(struct tun_pi);
448
449                 mbuf->pkt_len = len;
450                 mbuf->port = rxq->in_port;
451                 while (1) {
452                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
453
454                         if (unlikely(!buf)) {
455                                 rxq->stats.rx_nombuf++;
456                                 /* No new buf has been allocated: do nothing */
457                                 if (!new_tail || !seg)
458                                         goto end;
459
460                                 seg->next = NULL;
461                                 tap_rxq_pool_free(mbuf);
462
463                                 goto end;
464                         }
465                         seg = seg ? seg->next : mbuf;
466                         if (rxq->pool == mbuf)
467                                 rxq->pool = buf;
468                         if (new_tail)
469                                 new_tail->next = buf;
470                         new_tail = buf;
471                         new_tail->next = seg->next;
472
473                         /* iovecs[0] is reserved for packet info (pi) */
474                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
475                                 buf->buf_len - data_off;
476                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
477                                 (char *)buf->buf_addr + data_off;
478
479                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
480                         seg->data_off = data_off;
481
482                         len -= seg->data_len;
483                         if (len <= 0)
484                                 break;
485                         mbuf->nb_segs++;
486                         /* First segment has headroom, not the others */
487                         data_off = 0;
488                 }
489                 seg->next = NULL;
490                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
491                                                       RTE_PTYPE_ALL_MASK);
492                 if (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
493                         tap_verify_csum(mbuf);
494
495                 /* account for the receive frame */
496                 bufs[num_rx++] = mbuf;
497                 num_rx_bytes += mbuf->pkt_len;
498         }
499 end:
500         rxq->stats.ipackets += num_rx;
501         rxq->stats.ibytes += num_rx_bytes;
502
503         if (trigger && num_rx < nb_pkts)
504                 rxq->trigger_seen = trigger;
505
506         return num_rx;
507 }
508
509 /* Finalize l4 checksum calculation */
510 static void
511 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
512                 uint32_t l4_raw_cksum)
513 {
514         if (l4_cksum) {
515                 uint32_t cksum;
516
517                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
518                 cksum += l4_phdr_cksum;
519
520                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
521                 cksum = (~cksum) & 0xffff;
522                 if (cksum == 0)
523                         cksum = 0xffff;
524                 *l4_cksum = cksum;
525         }
526 }
527
528 /* Accumaulate L4 raw checksums */
529 static void
530 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
531                         uint32_t *l4_raw_cksum)
532 {
533         if (l4_cksum == NULL)
534                 return;
535
536         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
537 }
538
539 /* L3 and L4 pseudo headers checksum offloads */
540 static void
541 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
542                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
543                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
544 {
545         void *l3_hdr = packet + l2_len;
546
547         if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
548                 struct rte_ipv4_hdr *iph = l3_hdr;
549                 uint16_t cksum;
550
551                 iph->hdr_checksum = 0;
552                 cksum = rte_raw_cksum(iph, l3_len);
553                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
554         }
555         if (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
556                 void *l4_hdr;
557
558                 l4_hdr = packet + l2_len + l3_len;
559                 if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM)
560                         *l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
561                 else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM)
562                         *l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
563                 else
564                         return;
565                 **l4_cksum = 0;
566                 if (ol_flags & RTE_MBUF_F_TX_IPV4)
567                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
568                 else
569                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
570                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
571         }
572 }
573
574 static inline int
575 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
576                         struct rte_mbuf **pmbufs,
577                         uint16_t *num_packets, unsigned long *num_tx_bytes)
578 {
579         int i;
580         uint16_t l234_hlen;
581         struct pmd_process_private *process_private;
582
583         process_private = rte_eth_devices[txq->out_port].process_private;
584
585         for (i = 0; i < num_mbufs; i++) {
586                 struct rte_mbuf *mbuf = pmbufs[i];
587                 struct iovec iovecs[mbuf->nb_segs + 2];
588                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
589                 struct rte_mbuf *seg = mbuf;
590                 char m_copy[mbuf->data_len];
591                 int proto;
592                 int n;
593                 int j;
594                 int k; /* current index in iovecs for copying segments */
595                 uint16_t seg_len; /* length of first segment */
596                 uint16_t nb_segs;
597                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
598                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
599                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
600                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
601
602                 l4_cksum = NULL;
603                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
604                         /*
605                          * TUN and TAP are created with IFF_NO_PI disabled.
606                          * For TUN PMD this mandatory as fields are used by
607                          * Kernel tun.c to determine whether its IP or non IP
608                          * packets.
609                          *
610                          * The logic fetches the first byte of data from mbuf
611                          * then compares whether its v4 or v6. If first byte
612                          * is 4 or 6, then protocol field is updated.
613                          */
614                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
615                         proto = (*buff_data & 0xf0);
616                         pi.proto = (proto == 0x40) ?
617                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
618                                 ((proto == 0x60) ?
619                                         rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
620                                         0x00);
621                 }
622
623                 k = 0;
624                 iovecs[k].iov_base = &pi;
625                 iovecs[k].iov_len = sizeof(pi);
626                 k++;
627
628                 nb_segs = mbuf->nb_segs;
629                 if (txq->csum &&
630                     ((mbuf->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4) ||
631                       (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM ||
632                       (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM))) {
633                         is_cksum = 1;
634
635                         /* Support only packets with at least layer 4
636                          * header included in the first segment
637                          */
638                         seg_len = rte_pktmbuf_data_len(mbuf);
639                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
640                         if (seg_len < l234_hlen)
641                                 return -1;
642
643                         /* To change checksums, work on a * copy of l2, l3
644                          * headers + l4 pseudo header
645                          */
646                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
647                                         l234_hlen);
648                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
649                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
650                                        &l4_cksum, &l4_phdr_cksum,
651                                        &l4_raw_cksum);
652                         iovecs[k].iov_base = m_copy;
653                         iovecs[k].iov_len = l234_hlen;
654                         k++;
655
656                         /* Update next iovecs[] beyond l2, l3, l4 headers */
657                         if (seg_len > l234_hlen) {
658                                 iovecs[k].iov_len = seg_len - l234_hlen;
659                                 iovecs[k].iov_base =
660                                         rte_pktmbuf_mtod(seg, char *) +
661                                                 l234_hlen;
662                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
663                                         iovecs[k].iov_len, l4_cksum,
664                                         &l4_raw_cksum);
665                                 k++;
666                                 nb_segs++;
667                         }
668                         seg = seg->next;
669                 }
670
671                 for (j = k; j <= nb_segs; j++) {
672                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
673                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
674                         if (is_cksum)
675                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
676                                         iovecs[j].iov_len, l4_cksum,
677                                         &l4_raw_cksum);
678                         seg = seg->next;
679                 }
680
681                 if (is_cksum)
682                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
683
684                 /* copy the tx frame data */
685                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
686                 if (n <= 0)
687                         return -1;
688
689                 (*num_packets)++;
690                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
691         }
692         return 0;
693 }
694
695 /* Callback to handle sending packets from the tap interface
696  */
697 static uint16_t
698 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
699 {
700         struct tx_queue *txq = queue;
701         uint16_t num_tx = 0;
702         uint16_t num_packets = 0;
703         unsigned long num_tx_bytes = 0;
704         uint32_t max_size;
705         int i;
706
707         if (unlikely(nb_pkts == 0))
708                 return 0;
709
710         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
711         max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
712         for (i = 0; i < nb_pkts; i++) {
713                 struct rte_mbuf *mbuf_in = bufs[num_tx];
714                 struct rte_mbuf **mbuf;
715                 uint16_t num_mbufs = 0;
716                 uint16_t tso_segsz = 0;
717                 int ret;
718                 int num_tso_mbufs;
719                 uint16_t hdrs_len;
720                 uint64_t tso;
721
722                 tso = mbuf_in->ol_flags & RTE_MBUF_F_TX_TCP_SEG;
723                 if (tso) {
724                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
725
726                         /* TCP segmentation implies TCP checksum offload */
727                         mbuf_in->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
728
729                         /* gso size is calculated without RTE_ETHER_CRC_LEN */
730                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
731                                         mbuf_in->l4_len;
732                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
733                         if (unlikely(tso_segsz == hdrs_len) ||
734                                 tso_segsz > *txq->mtu) {
735                                 txq->stats.errs++;
736                                 break;
737                         }
738                         gso_ctx->gso_size = tso_segsz;
739                         /* 'mbuf_in' packet to segment */
740                         num_tso_mbufs = rte_gso_segment(mbuf_in,
741                                 gso_ctx, /* gso control block */
742                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
743                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
744
745                         /* ret contains the number of new created mbufs */
746                         if (num_tso_mbufs < 0)
747                                 break;
748
749                         if (num_tso_mbufs >= 1) {
750                                 mbuf = gso_mbufs;
751                                 num_mbufs = num_tso_mbufs;
752                         } else {
753                                 /* 0 means it can be transmitted directly
754                                  * without gso.
755                                  */
756                                 mbuf = &mbuf_in;
757                                 num_mbufs = 1;
758                         }
759                 } else {
760                         /* stats.errs will be incremented */
761                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
762                                 break;
763
764                         /* ret 0 indicates no new mbufs were created */
765                         num_tso_mbufs = 0;
766                         mbuf = &mbuf_in;
767                         num_mbufs = 1;
768                 }
769
770                 ret = tap_write_mbufs(txq, num_mbufs, mbuf,
771                                 &num_packets, &num_tx_bytes);
772                 if (ret == -1) {
773                         txq->stats.errs++;
774                         /* free tso mbufs */
775                         if (num_tso_mbufs > 0)
776                                 rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
777                         break;
778                 }
779                 num_tx++;
780                 /* free original mbuf */
781                 rte_pktmbuf_free(mbuf_in);
782                 /* free tso mbufs */
783                 if (num_tso_mbufs > 0)
784                         rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
785         }
786
787         txq->stats.opackets += num_packets;
788         txq->stats.errs += nb_pkts - num_tx;
789         txq->stats.obytes += num_tx_bytes;
790
791         return num_tx;
792 }
793
794 static const char *
795 tap_ioctl_req2str(unsigned long request)
796 {
797         switch (request) {
798         case SIOCSIFFLAGS:
799                 return "SIOCSIFFLAGS";
800         case SIOCGIFFLAGS:
801                 return "SIOCGIFFLAGS";
802         case SIOCGIFHWADDR:
803                 return "SIOCGIFHWADDR";
804         case SIOCSIFHWADDR:
805                 return "SIOCSIFHWADDR";
806         case SIOCSIFMTU:
807                 return "SIOCSIFMTU";
808         }
809         return "UNKNOWN";
810 }
811
812 static int
813 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
814           struct ifreq *ifr, int set, enum ioctl_mode mode)
815 {
816         short req_flags = ifr->ifr_flags;
817         int remote = pmd->remote_if_index &&
818                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
819
820         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
821                 return 0;
822         /*
823          * If there is a remote netdevice, apply ioctl on it, then apply it on
824          * the tap netdevice.
825          */
826 apply:
827         if (remote)
828                 strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
829         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
830                 strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
831         switch (request) {
832         case SIOCSIFFLAGS:
833                 /* fetch current flags to leave other flags untouched */
834                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
835                         goto error;
836                 if (set)
837                         ifr->ifr_flags |= req_flags;
838                 else
839                         ifr->ifr_flags &= ~req_flags;
840                 break;
841         case SIOCGIFFLAGS:
842         case SIOCGIFHWADDR:
843         case SIOCSIFHWADDR:
844         case SIOCSIFMTU:
845                 break;
846         default:
847                 TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
848                         pmd->name);
849                 return -EINVAL;
850         }
851         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
852                 goto error;
853         if (remote-- && mode == LOCAL_AND_REMOTE)
854                 goto apply;
855         return 0;
856
857 error:
858         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
859                 tap_ioctl_req2str(request), strerror(errno), errno);
860         return -errno;
861 }
862
863 static int
864 tap_link_set_down(struct rte_eth_dev *dev)
865 {
866         struct pmd_internals *pmd = dev->data->dev_private;
867         struct ifreq ifr = { .ifr_flags = IFF_UP };
868
869         dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
870         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
871 }
872
873 static int
874 tap_link_set_up(struct rte_eth_dev *dev)
875 {
876         struct pmd_internals *pmd = dev->data->dev_private;
877         struct ifreq ifr = { .ifr_flags = IFF_UP };
878
879         dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
880         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
881 }
882
883 static int
884 tap_dev_start(struct rte_eth_dev *dev)
885 {
886         int err, i;
887
888         err = tap_intr_handle_set(dev, 1);
889         if (err)
890                 return err;
891
892         err = tap_link_set_up(dev);
893         if (err)
894                 return err;
895
896         for (i = 0; i < dev->data->nb_tx_queues; i++)
897                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
898         for (i = 0; i < dev->data->nb_rx_queues; i++)
899                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
900
901         return err;
902 }
903
904 /* This function gets called when the current port gets stopped.
905  */
906 static int
907 tap_dev_stop(struct rte_eth_dev *dev)
908 {
909         int i;
910
911         for (i = 0; i < dev->data->nb_tx_queues; i++)
912                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
913         for (i = 0; i < dev->data->nb_rx_queues; i++)
914                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
915
916         tap_intr_handle_set(dev, 0);
917         tap_link_set_down(dev);
918
919         return 0;
920 }
921
922 static int
923 tap_dev_configure(struct rte_eth_dev *dev)
924 {
925         struct pmd_internals *pmd = dev->data->dev_private;
926
927         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
928                 TAP_LOG(ERR,
929                         "%s: number of rx queues %d exceeds max num of queues %d",
930                         dev->device->name,
931                         dev->data->nb_rx_queues,
932                         RTE_PMD_TAP_MAX_QUEUES);
933                 return -1;
934         }
935         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
936                 TAP_LOG(ERR,
937                         "%s: number of tx queues %d exceeds max num of queues %d",
938                         dev->device->name,
939                         dev->data->nb_tx_queues,
940                         RTE_PMD_TAP_MAX_QUEUES);
941                 return -1;
942         }
943
944         TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
945                 dev->device->name, pmd->name, dev->data->nb_tx_queues);
946
947         TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
948                 dev->device->name, pmd->name, dev->data->nb_rx_queues);
949
950         return 0;
951 }
952
953 static uint32_t
954 tap_dev_speed_capa(void)
955 {
956         uint32_t speed = pmd_link.link_speed;
957         uint32_t capa = 0;
958
959         if (speed >= RTE_ETH_SPEED_NUM_10M)
960                 capa |= RTE_ETH_LINK_SPEED_10M;
961         if (speed >= RTE_ETH_SPEED_NUM_100M)
962                 capa |= RTE_ETH_LINK_SPEED_100M;
963         if (speed >= RTE_ETH_SPEED_NUM_1G)
964                 capa |= RTE_ETH_LINK_SPEED_1G;
965         if (speed >= RTE_ETH_SPEED_NUM_5G)
966                 capa |= RTE_ETH_LINK_SPEED_2_5G;
967         if (speed >= RTE_ETH_SPEED_NUM_5G)
968                 capa |= RTE_ETH_LINK_SPEED_5G;
969         if (speed >= RTE_ETH_SPEED_NUM_10G)
970                 capa |= RTE_ETH_LINK_SPEED_10G;
971         if (speed >= RTE_ETH_SPEED_NUM_20G)
972                 capa |= RTE_ETH_LINK_SPEED_20G;
973         if (speed >= RTE_ETH_SPEED_NUM_25G)
974                 capa |= RTE_ETH_LINK_SPEED_25G;
975         if (speed >= RTE_ETH_SPEED_NUM_40G)
976                 capa |= RTE_ETH_LINK_SPEED_40G;
977         if (speed >= RTE_ETH_SPEED_NUM_50G)
978                 capa |= RTE_ETH_LINK_SPEED_50G;
979         if (speed >= RTE_ETH_SPEED_NUM_56G)
980                 capa |= RTE_ETH_LINK_SPEED_56G;
981         if (speed >= RTE_ETH_SPEED_NUM_100G)
982                 capa |= RTE_ETH_LINK_SPEED_100G;
983
984         return capa;
985 }
986
987 static int
988 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
989 {
990         struct pmd_internals *internals = dev->data->dev_private;
991
992         dev_info->if_index = internals->if_index;
993         dev_info->max_mac_addrs = 1;
994         dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
995         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
996         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
997         dev_info->min_rx_bufsize = 0;
998         dev_info->speed_capa = tap_dev_speed_capa();
999         dev_info->rx_queue_offload_capa = TAP_RX_OFFLOAD;
1000         dev_info->rx_offload_capa = dev_info->rx_queue_offload_capa;
1001         dev_info->tx_queue_offload_capa = TAP_TX_OFFLOAD;
1002         dev_info->tx_offload_capa = dev_info->tx_queue_offload_capa;
1003         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
1004         /*
1005          * limitation: TAP supports all of IP, UDP and TCP hash
1006          * functions together and not in partial combinations
1007          */
1008         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
1009         dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1010
1011         return 0;
1012 }
1013
1014 static int
1015 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
1016 {
1017         unsigned int i, imax;
1018         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
1019         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
1020         unsigned long rx_nombuf = 0, ierrors = 0;
1021         const struct pmd_internals *pmd = dev->data->dev_private;
1022
1023         /* rx queue statistics */
1024         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1025                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1026         for (i = 0; i < imax; i++) {
1027                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
1028                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
1029                 rx_total += tap_stats->q_ipackets[i];
1030                 rx_bytes_total += tap_stats->q_ibytes[i];
1031                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
1032                 ierrors += pmd->rxq[i].stats.ierrors;
1033         }
1034
1035         /* tx queue statistics */
1036         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1037                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1038
1039         for (i = 0; i < imax; i++) {
1040                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
1041                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1042                 tx_total += tap_stats->q_opackets[i];
1043                 tx_err_total += pmd->txq[i].stats.errs;
1044                 tx_bytes_total += tap_stats->q_obytes[i];
1045         }
1046
1047         tap_stats->ipackets = rx_total;
1048         tap_stats->ibytes = rx_bytes_total;
1049         tap_stats->ierrors = ierrors;
1050         tap_stats->rx_nombuf = rx_nombuf;
1051         tap_stats->opackets = tx_total;
1052         tap_stats->oerrors = tx_err_total;
1053         tap_stats->obytes = tx_bytes_total;
1054         return 0;
1055 }
1056
1057 static int
1058 tap_stats_reset(struct rte_eth_dev *dev)
1059 {
1060         int i;
1061         struct pmd_internals *pmd = dev->data->dev_private;
1062
1063         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1064                 pmd->rxq[i].stats.ipackets = 0;
1065                 pmd->rxq[i].stats.ibytes = 0;
1066                 pmd->rxq[i].stats.ierrors = 0;
1067                 pmd->rxq[i].stats.rx_nombuf = 0;
1068
1069                 pmd->txq[i].stats.opackets = 0;
1070                 pmd->txq[i].stats.errs = 0;
1071                 pmd->txq[i].stats.obytes = 0;
1072         }
1073
1074         return 0;
1075 }
1076
1077 static int
1078 tap_dev_close(struct rte_eth_dev *dev)
1079 {
1080         int i;
1081         struct pmd_internals *internals = dev->data->dev_private;
1082         struct pmd_process_private *process_private = dev->process_private;
1083         struct rx_queue *rxq;
1084
1085         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1086                 rte_free(dev->process_private);
1087                 return 0;
1088         }
1089
1090         tap_link_set_down(dev);
1091         if (internals->nlsk_fd != -1) {
1092                 tap_flow_flush(dev, NULL);
1093                 tap_flow_implicit_flush(internals, NULL);
1094                 tap_nl_final(internals->nlsk_fd);
1095                 internals->nlsk_fd = -1;
1096         }
1097
1098         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1099                 if (process_private->rxq_fds[i] != -1) {
1100                         rxq = &internals->rxq[i];
1101                         close(process_private->rxq_fds[i]);
1102                         process_private->rxq_fds[i] = -1;
1103                         tap_rxq_pool_free(rxq->pool);
1104                         rte_free(rxq->iovecs);
1105                         rxq->pool = NULL;
1106                         rxq->iovecs = NULL;
1107                 }
1108                 if (process_private->txq_fds[i] != -1) {
1109                         close(process_private->txq_fds[i]);
1110                         process_private->txq_fds[i] = -1;
1111                 }
1112         }
1113
1114         if (internals->remote_if_index) {
1115                 /* Restore initial remote state */
1116                 int ret = ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1117                                 &internals->remote_initial_flags);
1118                 if (ret)
1119                         TAP_LOG(ERR, "restore remote state failed: %d", ret);
1120
1121         }
1122
1123         rte_mempool_free(internals->gso_ctx_mp);
1124         internals->gso_ctx_mp = NULL;
1125
1126         if (internals->ka_fd != -1) {
1127                 close(internals->ka_fd);
1128                 internals->ka_fd = -1;
1129         }
1130
1131         /* mac_addrs must not be freed alone because part of dev_private */
1132         dev->data->mac_addrs = NULL;
1133
1134         internals = dev->data->dev_private;
1135         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
1136                 tuntap_types[internals->type], rte_socket_id());
1137
1138         if (internals->ioctl_sock != -1) {
1139                 close(internals->ioctl_sock);
1140                 internals->ioctl_sock = -1;
1141         }
1142         rte_free(dev->process_private);
1143         if (tap_devices_count == 1)
1144                 rte_mp_action_unregister(TAP_MP_KEY);
1145         tap_devices_count--;
1146         /*
1147          * Since TUN device has no more opened file descriptors
1148          * it will be removed from kernel
1149          */
1150
1151         return 0;
1152 }
1153
1154 static void
1155 tap_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1156 {
1157         struct rx_queue *rxq = dev->data->rx_queues[qid];
1158         struct pmd_process_private *process_private;
1159
1160         if (!rxq)
1161                 return;
1162         process_private = rte_eth_devices[rxq->in_port].process_private;
1163         if (process_private->rxq_fds[rxq->queue_id] != -1) {
1164                 close(process_private->rxq_fds[rxq->queue_id]);
1165                 process_private->rxq_fds[rxq->queue_id] = -1;
1166                 tap_rxq_pool_free(rxq->pool);
1167                 rte_free(rxq->iovecs);
1168                 rxq->pool = NULL;
1169                 rxq->iovecs = NULL;
1170         }
1171 }
1172
1173 static void
1174 tap_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1175 {
1176         struct tx_queue *txq = dev->data->tx_queues[qid];
1177         struct pmd_process_private *process_private;
1178
1179         if (!txq)
1180                 return;
1181         process_private = rte_eth_devices[txq->out_port].process_private;
1182
1183         if (process_private->txq_fds[txq->queue_id] != -1) {
1184                 close(process_private->txq_fds[txq->queue_id]);
1185                 process_private->txq_fds[txq->queue_id] = -1;
1186         }
1187 }
1188
1189 static int
1190 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1191 {
1192         struct rte_eth_link *dev_link = &dev->data->dev_link;
1193         struct pmd_internals *pmd = dev->data->dev_private;
1194         struct ifreq ifr = { .ifr_flags = 0 };
1195
1196         if (pmd->remote_if_index) {
1197                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1198                 if (!(ifr.ifr_flags & IFF_UP) ||
1199                     !(ifr.ifr_flags & IFF_RUNNING)) {
1200                         dev_link->link_status = RTE_ETH_LINK_DOWN;
1201                         return 0;
1202                 }
1203         }
1204         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1205         dev_link->link_status =
1206                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1207                  RTE_ETH_LINK_UP :
1208                  RTE_ETH_LINK_DOWN);
1209         return 0;
1210 }
1211
1212 static int
1213 tap_promisc_enable(struct rte_eth_dev *dev)
1214 {
1215         struct pmd_internals *pmd = dev->data->dev_private;
1216         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1217         int ret;
1218
1219         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1220         if (ret != 0)
1221                 return ret;
1222
1223         if (pmd->remote_if_index && !pmd->flow_isolate) {
1224                 dev->data->promiscuous = 1;
1225                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1226                 if (ret != 0) {
1227                         /* Rollback promisc flag */
1228                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1229                         /*
1230                          * rte_eth_dev_promiscuous_enable() rollback
1231                          * dev->data->promiscuous in the case of failure.
1232                          */
1233                         return ret;
1234                 }
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int
1241 tap_promisc_disable(struct rte_eth_dev *dev)
1242 {
1243         struct pmd_internals *pmd = dev->data->dev_private;
1244         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1245         int ret;
1246
1247         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1248         if (ret != 0)
1249                 return ret;
1250
1251         if (pmd->remote_if_index && !pmd->flow_isolate) {
1252                 dev->data->promiscuous = 0;
1253                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1254                 if (ret != 0) {
1255                         /* Rollback promisc flag */
1256                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1257                         /*
1258                          * rte_eth_dev_promiscuous_disable() rollback
1259                          * dev->data->promiscuous in the case of failure.
1260                          */
1261                         return ret;
1262                 }
1263         }
1264
1265         return 0;
1266 }
1267
1268 static int
1269 tap_allmulti_enable(struct rte_eth_dev *dev)
1270 {
1271         struct pmd_internals *pmd = dev->data->dev_private;
1272         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1273         int ret;
1274
1275         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1276         if (ret != 0)
1277                 return ret;
1278
1279         if (pmd->remote_if_index && !pmd->flow_isolate) {
1280                 dev->data->all_multicast = 1;
1281                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1282                 if (ret != 0) {
1283                         /* Rollback allmulti flag */
1284                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1285                         /*
1286                          * rte_eth_dev_allmulticast_enable() rollback
1287                          * dev->data->all_multicast in the case of failure.
1288                          */
1289                         return ret;
1290                 }
1291         }
1292
1293         return 0;
1294 }
1295
1296 static int
1297 tap_allmulti_disable(struct rte_eth_dev *dev)
1298 {
1299         struct pmd_internals *pmd = dev->data->dev_private;
1300         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1301         int ret;
1302
1303         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1304         if (ret != 0)
1305                 return ret;
1306
1307         if (pmd->remote_if_index && !pmd->flow_isolate) {
1308                 dev->data->all_multicast = 0;
1309                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1310                 if (ret != 0) {
1311                         /* Rollback allmulti flag */
1312                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1313                         /*
1314                          * rte_eth_dev_allmulticast_disable() rollback
1315                          * dev->data->all_multicast in the case of failure.
1316                          */
1317                         return ret;
1318                 }
1319         }
1320
1321         return 0;
1322 }
1323
1324 static int
1325 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1326 {
1327         struct pmd_internals *pmd = dev->data->dev_private;
1328         enum ioctl_mode mode = LOCAL_ONLY;
1329         struct ifreq ifr;
1330         int ret;
1331
1332         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1333                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1334                         dev->device->name);
1335                 return -ENOTSUP;
1336         }
1337
1338         if (rte_is_zero_ether_addr(mac_addr)) {
1339                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1340                         dev->device->name);
1341                 return -EINVAL;
1342         }
1343         /* Check the actual current MAC address on the tap netdevice */
1344         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1345         if (ret < 0)
1346                 return ret;
1347         if (rte_is_same_ether_addr(
1348                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1349                         mac_addr))
1350                 return 0;
1351         /* Check the current MAC address on the remote */
1352         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1353         if (ret < 0)
1354                 return ret;
1355         if (!rte_is_same_ether_addr(
1356                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1357                         mac_addr))
1358                 mode = LOCAL_AND_REMOTE;
1359         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1360         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1361         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1362         if (ret < 0)
1363                 return ret;
1364         rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1365         if (pmd->remote_if_index && !pmd->flow_isolate) {
1366                 /* Replace MAC redirection rule after a MAC change */
1367                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1368                 if (ret < 0) {
1369                         TAP_LOG(ERR,
1370                                 "%s: Couldn't delete MAC redirection rule",
1371                                 dev->device->name);
1372                         return ret;
1373                 }
1374                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1375                 if (ret < 0) {
1376                         TAP_LOG(ERR,
1377                                 "%s: Couldn't add MAC redirection rule",
1378                                 dev->device->name);
1379                         return ret;
1380                 }
1381         }
1382
1383         return 0;
1384 }
1385
1386 static int
1387 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1388 {
1389         uint32_t gso_types;
1390         char pool_name[64];
1391         struct pmd_internals *pmd = dev->data->dev_private;
1392         int ret;
1393
1394         /* initialize GSO context */
1395         gso_types = RTE_ETH_TX_OFFLOAD_TCP_TSO;
1396         if (!pmd->gso_ctx_mp) {
1397                 /*
1398                  * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
1399                  * bytes size per mbuf use this pool for both direct and
1400                  * indirect mbufs
1401                  */
1402                 ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
1403                                 dev->device->name);
1404                 if (ret < 0 || ret >= (int)sizeof(pool_name)) {
1405                         TAP_LOG(ERR,
1406                                 "%s: failed to create mbuf pool name for device %s,"
1407                                 "device name too long or output error, ret: %d\n",
1408                                 pmd->name, dev->device->name, ret);
1409                         return -ENAMETOOLONG;
1410                 }
1411                 pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
1412                         TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
1413                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1414                         SOCKET_ID_ANY);
1415                 if (!pmd->gso_ctx_mp) {
1416                         TAP_LOG(ERR,
1417                                 "%s: failed to create mbuf pool for device %s\n",
1418                                 pmd->name, dev->device->name);
1419                         return -1;
1420                 }
1421         }
1422
1423         gso_ctx->direct_pool = pmd->gso_ctx_mp;
1424         gso_ctx->indirect_pool = pmd->gso_ctx_mp;
1425         gso_ctx->gso_types = gso_types;
1426         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1427         gso_ctx->flag = 0;
1428
1429         return 0;
1430 }
1431
1432 static int
1433 tap_setup_queue(struct rte_eth_dev *dev,
1434                 struct pmd_internals *internals,
1435                 uint16_t qid,
1436                 int is_rx)
1437 {
1438         int ret;
1439         int *fd;
1440         int *other_fd;
1441         const char *dir;
1442         struct pmd_internals *pmd = dev->data->dev_private;
1443         struct pmd_process_private *process_private = dev->process_private;
1444         struct rx_queue *rx = &internals->rxq[qid];
1445         struct tx_queue *tx = &internals->txq[qid];
1446         struct rte_gso_ctx *gso_ctx;
1447
1448         if (is_rx) {
1449                 fd = &process_private->rxq_fds[qid];
1450                 other_fd = &process_private->txq_fds[qid];
1451                 dir = "rx";
1452                 gso_ctx = NULL;
1453         } else {
1454                 fd = &process_private->txq_fds[qid];
1455                 other_fd = &process_private->rxq_fds[qid];
1456                 dir = "tx";
1457                 gso_ctx = &tx->gso_ctx;
1458         }
1459         if (*fd != -1) {
1460                 /* fd for this queue already exists */
1461                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1462                         pmd->name, *fd, dir, qid);
1463                 gso_ctx = NULL;
1464         } else if (*other_fd != -1) {
1465                 /* Only other_fd exists. dup it */
1466                 *fd = dup(*other_fd);
1467                 if (*fd < 0) {
1468                         *fd = -1;
1469                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1470                         return -1;
1471                 }
1472                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1473                         pmd->name, *other_fd, dir, qid, *fd);
1474         } else {
1475                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1476                 *fd = tun_alloc(pmd, 0);
1477                 if (*fd < 0) {
1478                         *fd = -1; /* restore original value */
1479                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1480                         return -1;
1481                 }
1482                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1483                         pmd->name, dir, qid, *fd);
1484         }
1485
1486         tx->mtu = &dev->data->mtu;
1487         rx->rxmode = &dev->data->dev_conf.rxmode;
1488         if (gso_ctx) {
1489                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1490                 if (ret)
1491                         return -1;
1492         }
1493
1494         tx->type = pmd->type;
1495
1496         return *fd;
1497 }
1498
1499 static int
1500 tap_rx_queue_setup(struct rte_eth_dev *dev,
1501                    uint16_t rx_queue_id,
1502                    uint16_t nb_rx_desc,
1503                    unsigned int socket_id,
1504                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1505                    struct rte_mempool *mp)
1506 {
1507         struct pmd_internals *internals = dev->data->dev_private;
1508         struct pmd_process_private *process_private = dev->process_private;
1509         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1510         struct rte_mbuf **tmp = &rxq->pool;
1511         long iov_max = sysconf(_SC_IOV_MAX);
1512
1513         if (iov_max <= 0) {
1514                 TAP_LOG(WARNING,
1515                         "_SC_IOV_MAX is not defined. Using %d as default",
1516                         TAP_IOV_DEFAULT_MAX);
1517                 iov_max = TAP_IOV_DEFAULT_MAX;
1518         }
1519         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1520         struct iovec (*iovecs)[nb_desc + 1];
1521         int data_off = RTE_PKTMBUF_HEADROOM;
1522         int ret = 0;
1523         int fd;
1524         int i;
1525
1526         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1527                 TAP_LOG(WARNING,
1528                         "nb_rx_queues %d too small or mempool NULL",
1529                         dev->data->nb_rx_queues);
1530                 return -1;
1531         }
1532
1533         rxq->mp = mp;
1534         rxq->trigger_seen = 1; /* force initial burst */
1535         rxq->in_port = dev->data->port_id;
1536         rxq->queue_id = rx_queue_id;
1537         rxq->nb_rx_desc = nb_desc;
1538         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1539                                     socket_id);
1540         if (!iovecs) {
1541                 TAP_LOG(WARNING,
1542                         "%s: Couldn't allocate %d RX descriptors",
1543                         dev->device->name, nb_desc);
1544                 return -ENOMEM;
1545         }
1546         rxq->iovecs = iovecs;
1547
1548         dev->data->rx_queues[rx_queue_id] = rxq;
1549         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1550         if (fd == -1) {
1551                 ret = fd;
1552                 goto error;
1553         }
1554
1555         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1556         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1557
1558         for (i = 1; i <= nb_desc; i++) {
1559                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1560                 if (!*tmp) {
1561                         TAP_LOG(WARNING,
1562                                 "%s: couldn't allocate memory for queue %d",
1563                                 dev->device->name, rx_queue_id);
1564                         ret = -ENOMEM;
1565                         goto error;
1566                 }
1567                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1568                 (*rxq->iovecs)[i].iov_base =
1569                         (char *)(*tmp)->buf_addr + data_off;
1570                 data_off = 0;
1571                 tmp = &(*tmp)->next;
1572         }
1573
1574         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1575                 internals->name, rx_queue_id,
1576                 process_private->rxq_fds[rx_queue_id]);
1577
1578         return 0;
1579
1580 error:
1581         tap_rxq_pool_free(rxq->pool);
1582         rxq->pool = NULL;
1583         rte_free(rxq->iovecs);
1584         rxq->iovecs = NULL;
1585         return ret;
1586 }
1587
1588 static int
1589 tap_tx_queue_setup(struct rte_eth_dev *dev,
1590                    uint16_t tx_queue_id,
1591                    uint16_t nb_tx_desc __rte_unused,
1592                    unsigned int socket_id __rte_unused,
1593                    const struct rte_eth_txconf *tx_conf)
1594 {
1595         struct pmd_internals *internals = dev->data->dev_private;
1596         struct pmd_process_private *process_private = dev->process_private;
1597         struct tx_queue *txq;
1598         int ret;
1599         uint64_t offloads;
1600
1601         if (tx_queue_id >= dev->data->nb_tx_queues)
1602                 return -1;
1603         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1604         txq = dev->data->tx_queues[tx_queue_id];
1605         txq->out_port = dev->data->port_id;
1606         txq->queue_id = tx_queue_id;
1607
1608         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1609         txq->csum = !!(offloads &
1610                         (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1611                          RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1612                          RTE_ETH_TX_OFFLOAD_TCP_CKSUM));
1613
1614         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1615         if (ret == -1)
1616                 return -1;
1617         TAP_LOG(DEBUG,
1618                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1619                 internals->name, tx_queue_id,
1620                 process_private->txq_fds[tx_queue_id],
1621                 txq->csum ? "on" : "off");
1622
1623         return 0;
1624 }
1625
1626 static int
1627 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1628 {
1629         struct pmd_internals *pmd = dev->data->dev_private;
1630         struct ifreq ifr = { .ifr_mtu = mtu };
1631
1632         return tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1633 }
1634
1635 static int
1636 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1637                      struct rte_ether_addr *mc_addr_set __rte_unused,
1638                      uint32_t nb_mc_addr __rte_unused)
1639 {
1640         /*
1641          * Nothing to do actually: the tap has no filtering whatsoever, every
1642          * packet is received.
1643          */
1644         return 0;
1645 }
1646
1647 static int
1648 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1649 {
1650         struct rte_eth_dev *dev = arg;
1651         struct pmd_internals *pmd = dev->data->dev_private;
1652         struct ifinfomsg *info = NLMSG_DATA(nh);
1653
1654         if (nh->nlmsg_type != RTM_NEWLINK ||
1655             (info->ifi_index != pmd->if_index &&
1656              info->ifi_index != pmd->remote_if_index))
1657                 return 0;
1658         return tap_link_update(dev, 0);
1659 }
1660
1661 static void
1662 tap_dev_intr_handler(void *cb_arg)
1663 {
1664         struct rte_eth_dev *dev = cb_arg;
1665         struct pmd_internals *pmd = dev->data->dev_private;
1666
1667         tap_nl_recv(rte_intr_fd_get(pmd->intr_handle),
1668                     tap_nl_msg_handler, dev);
1669 }
1670
1671 static int
1672 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1673 {
1674         struct pmd_internals *pmd = dev->data->dev_private;
1675         int ret;
1676
1677         /* In any case, disable interrupt if the conf is no longer there. */
1678         if (!dev->data->dev_conf.intr_conf.lsc) {
1679                 if (rte_intr_fd_get(pmd->intr_handle) != -1)
1680                         goto clean;
1681
1682                 return 0;
1683         }
1684         if (set) {
1685                 rte_intr_fd_set(pmd->intr_handle, tap_nl_init(RTMGRP_LINK));
1686                 if (unlikely(rte_intr_fd_get(pmd->intr_handle) == -1))
1687                         return -EBADF;
1688                 return rte_intr_callback_register(
1689                         pmd->intr_handle, tap_dev_intr_handler, dev);
1690         }
1691
1692 clean:
1693         do {
1694                 ret = rte_intr_callback_unregister(pmd->intr_handle,
1695                         tap_dev_intr_handler, dev);
1696                 if (ret >= 0) {
1697                         break;
1698                 } else if (ret == -EAGAIN) {
1699                         rte_delay_ms(100);
1700                 } else {
1701                         TAP_LOG(ERR, "intr callback unregister failed: %d",
1702                                      ret);
1703                         break;
1704                 }
1705         } while (true);
1706
1707         tap_nl_final(rte_intr_fd_get(pmd->intr_handle));
1708         rte_intr_fd_set(pmd->intr_handle, -1);
1709
1710         return 0;
1711 }
1712
1713 static int
1714 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1715 {
1716         int err;
1717
1718         err = tap_lsc_intr_handle_set(dev, set);
1719         if (err < 0) {
1720                 if (!set)
1721                         tap_rx_intr_vec_set(dev, 0);
1722                 return err;
1723         }
1724         err = tap_rx_intr_vec_set(dev, set);
1725         if (err && set)
1726                 tap_lsc_intr_handle_set(dev, 0);
1727         return err;
1728 }
1729
1730 static const uint32_t*
1731 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1732 {
1733         static const uint32_t ptypes[] = {
1734                 RTE_PTYPE_INNER_L2_ETHER,
1735                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1736                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1737                 RTE_PTYPE_INNER_L3_IPV4,
1738                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1739                 RTE_PTYPE_INNER_L3_IPV6,
1740                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1741                 RTE_PTYPE_INNER_L4_FRAG,
1742                 RTE_PTYPE_INNER_L4_UDP,
1743                 RTE_PTYPE_INNER_L4_TCP,
1744                 RTE_PTYPE_INNER_L4_SCTP,
1745                 RTE_PTYPE_L2_ETHER,
1746                 RTE_PTYPE_L2_ETHER_VLAN,
1747                 RTE_PTYPE_L2_ETHER_QINQ,
1748                 RTE_PTYPE_L3_IPV4,
1749                 RTE_PTYPE_L3_IPV4_EXT,
1750                 RTE_PTYPE_L3_IPV6_EXT,
1751                 RTE_PTYPE_L3_IPV6,
1752                 RTE_PTYPE_L4_FRAG,
1753                 RTE_PTYPE_L4_UDP,
1754                 RTE_PTYPE_L4_TCP,
1755                 RTE_PTYPE_L4_SCTP,
1756         };
1757
1758         return ptypes;
1759 }
1760
1761 static int
1762 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1763                   struct rte_eth_fc_conf *fc_conf)
1764 {
1765         fc_conf->mode = RTE_ETH_FC_NONE;
1766         return 0;
1767 }
1768
1769 static int
1770 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1771                   struct rte_eth_fc_conf *fc_conf)
1772 {
1773         if (fc_conf->mode != RTE_ETH_FC_NONE)
1774                 return -ENOTSUP;
1775         return 0;
1776 }
1777
1778 /**
1779  * DPDK callback to update the RSS hash configuration.
1780  *
1781  * @param dev
1782  *   Pointer to Ethernet device structure.
1783  * @param[in] rss_conf
1784  *   RSS configuration data.
1785  *
1786  * @return
1787  *   0 on success, a negative errno value otherwise and rte_errno is set.
1788  */
1789 static int
1790 tap_rss_hash_update(struct rte_eth_dev *dev,
1791                 struct rte_eth_rss_conf *rss_conf)
1792 {
1793         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1794                 rte_errno = EINVAL;
1795                 return -rte_errno;
1796         }
1797         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1798                 /*
1799                  * Currently TAP RSS key is hard coded
1800                  * and cannot be updated
1801                  */
1802                 TAP_LOG(ERR,
1803                         "port %u RSS key cannot be updated",
1804                         dev->data->port_id);
1805                 rte_errno = EINVAL;
1806                 return -rte_errno;
1807         }
1808         return 0;
1809 }
1810
1811 static int
1812 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1813 {
1814         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1815
1816         return 0;
1817 }
1818
1819 static int
1820 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1821 {
1822         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1823
1824         return 0;
1825 }
1826
1827 static int
1828 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1829 {
1830         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1831
1832         return 0;
1833 }
1834
1835 static int
1836 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1837 {
1838         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1839
1840         return 0;
1841 }
1842 static const struct eth_dev_ops ops = {
1843         .dev_start              = tap_dev_start,
1844         .dev_stop               = tap_dev_stop,
1845         .dev_close              = tap_dev_close,
1846         .dev_configure          = tap_dev_configure,
1847         .dev_infos_get          = tap_dev_info,
1848         .rx_queue_setup         = tap_rx_queue_setup,
1849         .tx_queue_setup         = tap_tx_queue_setup,
1850         .rx_queue_start         = tap_rx_queue_start,
1851         .tx_queue_start         = tap_tx_queue_start,
1852         .rx_queue_stop          = tap_rx_queue_stop,
1853         .tx_queue_stop          = tap_tx_queue_stop,
1854         .rx_queue_release       = tap_rx_queue_release,
1855         .tx_queue_release       = tap_tx_queue_release,
1856         .flow_ctrl_get          = tap_flow_ctrl_get,
1857         .flow_ctrl_set          = tap_flow_ctrl_set,
1858         .link_update            = tap_link_update,
1859         .dev_set_link_up        = tap_link_set_up,
1860         .dev_set_link_down      = tap_link_set_down,
1861         .promiscuous_enable     = tap_promisc_enable,
1862         .promiscuous_disable    = tap_promisc_disable,
1863         .allmulticast_enable    = tap_allmulti_enable,
1864         .allmulticast_disable   = tap_allmulti_disable,
1865         .mac_addr_set           = tap_mac_set,
1866         .mtu_set                = tap_mtu_set,
1867         .set_mc_addr_list       = tap_set_mc_addr_list,
1868         .stats_get              = tap_stats_get,
1869         .stats_reset            = tap_stats_reset,
1870         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1871         .rss_hash_update        = tap_rss_hash_update,
1872         .flow_ops_get           = tap_dev_flow_ops_get,
1873 };
1874
1875 static int
1876 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1877                    char *remote_iface, struct rte_ether_addr *mac_addr,
1878                    enum rte_tuntap_type type)
1879 {
1880         int numa_node = rte_socket_id();
1881         struct rte_eth_dev *dev;
1882         struct pmd_internals *pmd;
1883         struct pmd_process_private *process_private;
1884         const char *tuntap_name = tuntap_types[type];
1885         struct rte_eth_dev_data *data;
1886         struct ifreq ifr;
1887         int i;
1888
1889         TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1890
1891         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1892         if (!dev) {
1893                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1894                                 tuntap_name);
1895                 goto error_exit_nodev;
1896         }
1897
1898         process_private = (struct pmd_process_private *)
1899                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1900                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1901
1902         if (process_private == NULL) {
1903                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1904                 return -1;
1905         }
1906         pmd = dev->data->dev_private;
1907         dev->process_private = process_private;
1908         pmd->dev = dev;
1909         strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1910         pmd->type = type;
1911         pmd->ka_fd = -1;
1912         pmd->nlsk_fd = -1;
1913         pmd->gso_ctx_mp = NULL;
1914
1915         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1916         if (pmd->ioctl_sock == -1) {
1917                 TAP_LOG(ERR,
1918                         "%s Unable to get a socket for management: %s",
1919                         tuntap_name, strerror(errno));
1920                 goto error_exit;
1921         }
1922
1923         /* Allocate interrupt instance */
1924         pmd->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
1925         if (pmd->intr_handle == NULL) {
1926                 TAP_LOG(ERR, "Failed to allocate intr handle");
1927                 goto error_exit;
1928         }
1929
1930         /* Setup some default values */
1931         data = dev->data;
1932         data->dev_private = pmd;
1933         data->dev_flags = RTE_ETH_DEV_INTR_LSC |
1934                                 RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1935         data->numa_node = numa_node;
1936
1937         data->dev_link = pmd_link;
1938         data->mac_addrs = &pmd->eth_addr;
1939         /* Set the number of RX and TX queues */
1940         data->nb_rx_queues = 0;
1941         data->nb_tx_queues = 0;
1942
1943         dev->dev_ops = &ops;
1944         dev->rx_pkt_burst = pmd_rx_burst;
1945         dev->tx_pkt_burst = pmd_tx_burst;
1946
1947         rte_intr_type_set(pmd->intr_handle, RTE_INTR_HANDLE_EXT);
1948         rte_intr_fd_set(pmd->intr_handle, -1);
1949         dev->intr_handle = pmd->intr_handle;
1950
1951         /* Presetup the fds to -1 as being not valid */
1952         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1953                 process_private->rxq_fds[i] = -1;
1954                 process_private->txq_fds[i] = -1;
1955         }
1956
1957         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1958                 if (rte_is_zero_ether_addr(mac_addr))
1959                         rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
1960                 else
1961                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1962         }
1963
1964         /*
1965          * Allocate a TUN device keep-alive file descriptor that will only be
1966          * closed when the TUN device itself is closed or removed.
1967          * This keep-alive file descriptor will guarantee that the TUN device
1968          * exists even when all of its queues are closed
1969          */
1970         pmd->ka_fd = tun_alloc(pmd, 1);
1971         if (pmd->ka_fd == -1) {
1972                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1973                 goto error_exit;
1974         }
1975         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1976
1977         ifr.ifr_mtu = dev->data->mtu;
1978         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1979                 goto error_exit;
1980
1981         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1982                 memset(&ifr, 0, sizeof(struct ifreq));
1983                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1984                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1985                                 RTE_ETHER_ADDR_LEN);
1986                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1987                         goto error_exit;
1988         }
1989
1990         /*
1991          * Set up everything related to rte_flow:
1992          * - netlink socket
1993          * - tap / remote if_index
1994          * - mandatory QDISCs
1995          * - rte_flow actual/implicit lists
1996          * - implicit rules
1997          */
1998         pmd->nlsk_fd = tap_nl_init(0);
1999         if (pmd->nlsk_fd == -1) {
2000                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
2001                         pmd->name);
2002                 goto disable_rte_flow;
2003         }
2004         pmd->if_index = if_nametoindex(pmd->name);
2005         if (!pmd->if_index) {
2006                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
2007                 goto disable_rte_flow;
2008         }
2009         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
2010                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
2011                         pmd->name);
2012                 goto disable_rte_flow;
2013         }
2014         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
2015                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2016                         pmd->name);
2017                 goto disable_rte_flow;
2018         }
2019         LIST_INIT(&pmd->flows);
2020
2021         if (strlen(remote_iface)) {
2022                 pmd->remote_if_index = if_nametoindex(remote_iface);
2023                 if (!pmd->remote_if_index) {
2024                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
2025                                 pmd->name, remote_iface);
2026                         goto error_remote;
2027                 }
2028                 strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
2029
2030                 /* Save state of remote device */
2031                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
2032
2033                 /* Replicate remote MAC address */
2034                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
2035                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2036                                 pmd->name, pmd->remote_iface);
2037                         goto error_remote;
2038                 }
2039                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
2040                            RTE_ETHER_ADDR_LEN);
2041                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
2042                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
2043                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2044                                 pmd->name, remote_iface);
2045                         goto error_remote;
2046                 }
2047
2048                 /*
2049                  * Flush usually returns negative value because it tries to
2050                  * delete every QDISC (and on a running device, one QDISC at
2051                  * least is needed). Ignore negative return value.
2052                  */
2053                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
2054                 if (qdisc_create_ingress(pmd->nlsk_fd,
2055                                          pmd->remote_if_index) < 0) {
2056                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2057                                 pmd->remote_iface);
2058                         goto error_remote;
2059                 }
2060                 LIST_INIT(&pmd->implicit_flows);
2061                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
2062                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
2063                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
2064                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
2065                         TAP_LOG(ERR,
2066                                 "%s: failed to create implicit rules.",
2067                                 pmd->name);
2068                         goto error_remote;
2069                 }
2070         }
2071
2072         rte_eth_dev_probing_finish(dev);
2073         return 0;
2074
2075 disable_rte_flow:
2076         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2077                 strerror(errno), errno);
2078         if (strlen(remote_iface)) {
2079                 TAP_LOG(ERR, "Remote feature requires flow support.");
2080                 goto error_exit;
2081         }
2082         rte_eth_dev_probing_finish(dev);
2083         return 0;
2084
2085 error_remote:
2086         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2087                 strerror(errno), errno);
2088         tap_flow_implicit_flush(pmd, NULL);
2089
2090 error_exit:
2091         if (pmd->nlsk_fd != -1)
2092                 close(pmd->nlsk_fd);
2093         if (pmd->ka_fd != -1)
2094                 close(pmd->ka_fd);
2095         if (pmd->ioctl_sock != -1)
2096                 close(pmd->ioctl_sock);
2097         /* mac_addrs must not be freed alone because part of dev_private */
2098         dev->data->mac_addrs = NULL;
2099         rte_eth_dev_release_port(dev);
2100         rte_intr_instance_free(pmd->intr_handle);
2101
2102 error_exit_nodev:
2103         TAP_LOG(ERR, "%s Unable to initialize %s",
2104                 tuntap_name, rte_vdev_device_name(vdev));
2105
2106         return -EINVAL;
2107 }
2108
2109 /* make sure name is a possible Linux network device name */
2110 static bool
2111 is_valid_iface(const char *name)
2112 {
2113         if (*name == '\0')
2114                 return false;
2115
2116         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2117                 return false;
2118
2119         while (*name) {
2120                 if (*name == '/' || *name == ':' || isspace(*name))
2121                         return false;
2122                 name++;
2123         }
2124         return true;
2125 }
2126
2127 static int
2128 set_interface_name(const char *key __rte_unused,
2129                    const char *value,
2130                    void *extra_args)
2131 {
2132         char *name = (char *)extra_args;
2133
2134         if (value) {
2135                 if (!is_valid_iface(value)) {
2136                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2137                                 value);
2138                         return -1;
2139                 }
2140                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2141         } else {
2142                 /* use tap%d which causes kernel to choose next available */
2143                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2144         }
2145         return 0;
2146 }
2147
2148 static int
2149 set_remote_iface(const char *key __rte_unused,
2150                  const char *value,
2151                  void *extra_args)
2152 {
2153         char *name = (char *)extra_args;
2154
2155         if (value) {
2156                 if (!is_valid_iface(value)) {
2157                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2158                                 value);
2159                         return -1;
2160                 }
2161                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2162         }
2163
2164         return 0;
2165 }
2166
2167 static int parse_user_mac(struct rte_ether_addr *user_mac,
2168                 const char *value)
2169 {
2170         unsigned int index = 0;
2171         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2172
2173         if (user_mac == NULL || value == NULL)
2174                 return 0;
2175
2176         strlcpy(mac_temp, value, sizeof(mac_temp));
2177         mac_byte = strtok(mac_temp, ":");
2178
2179         while ((mac_byte != NULL) &&
2180                         (strlen(mac_byte) <= 2) &&
2181                         (strlen(mac_byte) == strspn(mac_byte,
2182                                         ETH_TAP_CMP_MAC_FMT))) {
2183                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2184                 mac_byte = strtok(NULL, ":");
2185         }
2186
2187         return index;
2188 }
2189
2190 static int
2191 set_mac_type(const char *key __rte_unused,
2192              const char *value,
2193              void *extra_args)
2194 {
2195         struct rte_ether_addr *user_mac = extra_args;
2196
2197         if (!value)
2198                 return 0;
2199
2200         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2201                 static int iface_idx;
2202
2203                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
2204                 memcpy((char *)user_mac->addr_bytes, "\0dtap",
2205                         RTE_ETHER_ADDR_LEN);
2206                 user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2207                         iface_idx++ + '0';
2208                 goto success;
2209         }
2210
2211         if (parse_user_mac(user_mac, value) != 6)
2212                 goto error;
2213 success:
2214         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2215         return 0;
2216
2217 error:
2218         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2219                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2220         return -1;
2221 }
2222
2223 /*
2224  * Open a TUN interface device. TUN PMD
2225  * 1) sets tap_type as false
2226  * 2) intakes iface as argument.
2227  * 3) as interface is virtual set speed to 10G
2228  */
2229 static int
2230 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2231 {
2232         const char *name, *params;
2233         int ret;
2234         struct rte_kvargs *kvlist = NULL;
2235         char tun_name[RTE_ETH_NAME_MAX_LEN];
2236         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2237         struct rte_eth_dev *eth_dev;
2238
2239         name = rte_vdev_device_name(dev);
2240         params = rte_vdev_device_args(dev);
2241         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2242
2243         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2244             strlen(params) == 0) {
2245                 eth_dev = rte_eth_dev_attach_secondary(name);
2246                 if (!eth_dev) {
2247                         TAP_LOG(ERR, "Failed to probe %s", name);
2248                         return -1;
2249                 }
2250                 eth_dev->dev_ops = &ops;
2251                 eth_dev->device = &dev->device;
2252                 rte_eth_dev_probing_finish(eth_dev);
2253                 return 0;
2254         }
2255
2256         /* use tun%d which causes kernel to choose next available */
2257         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2258
2259         if (params && (params[0] != '\0')) {
2260                 TAP_LOG(DEBUG, "parameters (%s)", params);
2261
2262                 kvlist = rte_kvargs_parse(params, valid_arguments);
2263                 if (kvlist) {
2264                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2265                                 ret = rte_kvargs_process(kvlist,
2266                                         ETH_TAP_IFACE_ARG,
2267                                         &set_interface_name,
2268                                         tun_name);
2269
2270                                 if (ret == -1)
2271                                         goto leave;
2272                         }
2273                 }
2274         }
2275         pmd_link.link_speed = RTE_ETH_SPEED_NUM_10G;
2276
2277         TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2278
2279         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2280                                  ETH_TUNTAP_TYPE_TUN);
2281
2282 leave:
2283         if (ret == -1) {
2284                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2285                         name, tun_name);
2286         }
2287         rte_kvargs_free(kvlist);
2288
2289         return ret;
2290 }
2291
2292 /* Request queue file descriptors from secondary to primary. */
2293 static int
2294 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2295 {
2296         int ret;
2297         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2298         struct rte_mp_msg request, *reply;
2299         struct rte_mp_reply replies;
2300         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2301         struct ipc_queues *reply_param;
2302         struct pmd_process_private *process_private = dev->process_private;
2303         int queue, fd_iterator;
2304
2305         /* Prepare the request */
2306         memset(&request, 0, sizeof(request));
2307         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2308         strlcpy(request_param->port_name, port_name,
2309                 sizeof(request_param->port_name));
2310         request.len_param = sizeof(*request_param);
2311         /* Send request and receive reply */
2312         ret = rte_mp_request_sync(&request, &replies, &timeout);
2313         if (ret < 0 || replies.nb_received != 1) {
2314                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2315                         rte_errno);
2316                 return -1;
2317         }
2318         reply = &replies.msgs[0];
2319         reply_param = (struct ipc_queues *)reply->param;
2320         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2321
2322         /* Attach the queues from received file descriptors */
2323         if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2324                 TAP_LOG(ERR, "Unexpected number of fds received");
2325                 return -1;
2326         }
2327
2328         dev->data->nb_rx_queues = reply_param->rxq_count;
2329         dev->data->nb_tx_queues = reply_param->txq_count;
2330         fd_iterator = 0;
2331         for (queue = 0; queue < reply_param->rxq_count; queue++)
2332                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2333         for (queue = 0; queue < reply_param->txq_count; queue++)
2334                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2335         free(reply);
2336         return 0;
2337 }
2338
2339 /* Send the queue file descriptors from the primary process to secondary. */
2340 static int
2341 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2342 {
2343         struct rte_eth_dev *dev;
2344         struct pmd_process_private *process_private;
2345         struct rte_mp_msg reply;
2346         const struct ipc_queues *request_param =
2347                 (const struct ipc_queues *)request->param;
2348         struct ipc_queues *reply_param =
2349                 (struct ipc_queues *)reply.param;
2350         uint16_t port_id;
2351         int queue;
2352         int ret;
2353
2354         /* Get requested port */
2355         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2356         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2357         if (ret) {
2358                 TAP_LOG(ERR, "Failed to get port id for %s",
2359                         request_param->port_name);
2360                 return -1;
2361         }
2362         dev = &rte_eth_devices[port_id];
2363         process_private = dev->process_private;
2364
2365         /* Fill file descriptors for all queues */
2366         reply.num_fds = 0;
2367         reply_param->rxq_count = 0;
2368         if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2369                         RTE_MP_MAX_FD_NUM){
2370                 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2371                 return -1;
2372         }
2373
2374         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2375                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2376                 reply_param->rxq_count++;
2377         }
2378         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2379
2380         reply_param->txq_count = 0;
2381         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2382                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2383                 reply_param->txq_count++;
2384         }
2385         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2386
2387         /* Send reply */
2388         strlcpy(reply.name, request->name, sizeof(reply.name));
2389         strlcpy(reply_param->port_name, request_param->port_name,
2390                 sizeof(reply_param->port_name));
2391         reply.len_param = sizeof(*reply_param);
2392         if (rte_mp_reply(&reply, peer) < 0) {
2393                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2394                 return -1;
2395         }
2396         return 0;
2397 }
2398
2399 /* Open a TAP interface device.
2400  */
2401 static int
2402 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2403 {
2404         const char *name, *params;
2405         int ret;
2406         struct rte_kvargs *kvlist = NULL;
2407         int speed;
2408         char tap_name[RTE_ETH_NAME_MAX_LEN];
2409         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2410         struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2411         struct rte_eth_dev *eth_dev;
2412         int tap_devices_count_increased = 0;
2413
2414         name = rte_vdev_device_name(dev);
2415         params = rte_vdev_device_args(dev);
2416
2417         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2418                 eth_dev = rte_eth_dev_attach_secondary(name);
2419                 if (!eth_dev) {
2420                         TAP_LOG(ERR, "Failed to probe %s", name);
2421                         return -1;
2422                 }
2423                 eth_dev->dev_ops = &ops;
2424                 eth_dev->device = &dev->device;
2425                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2426                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2427                 if (!rte_eal_primary_proc_alive(NULL)) {
2428                         TAP_LOG(ERR, "Primary process is missing");
2429                         return -1;
2430                 }
2431                 eth_dev->process_private = (struct pmd_process_private *)
2432                         rte_zmalloc_socket(name,
2433                                 sizeof(struct pmd_process_private),
2434                                 RTE_CACHE_LINE_SIZE,
2435                                 eth_dev->device->numa_node);
2436                 if (eth_dev->process_private == NULL) {
2437                         TAP_LOG(ERR,
2438                                 "Failed to alloc memory for process private");
2439                         return -1;
2440                 }
2441
2442                 ret = tap_mp_attach_queues(name, eth_dev);
2443                 if (ret != 0)
2444                         return -1;
2445                 rte_eth_dev_probing_finish(eth_dev);
2446                 return 0;
2447         }
2448
2449         speed = RTE_ETH_SPEED_NUM_10G;
2450
2451         /* use tap%d which causes kernel to choose next available */
2452         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2453         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2454
2455         if (params && (params[0] != '\0')) {
2456                 TAP_LOG(DEBUG, "parameters (%s)", params);
2457
2458                 kvlist = rte_kvargs_parse(params, valid_arguments);
2459                 if (kvlist) {
2460                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2461                                 ret = rte_kvargs_process(kvlist,
2462                                                          ETH_TAP_IFACE_ARG,
2463                                                          &set_interface_name,
2464                                                          tap_name);
2465                                 if (ret == -1)
2466                                         goto leave;
2467                         }
2468
2469                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2470                                 ret = rte_kvargs_process(kvlist,
2471                                                          ETH_TAP_REMOTE_ARG,
2472                                                          &set_remote_iface,
2473                                                          remote_iface);
2474                                 if (ret == -1)
2475                                         goto leave;
2476                         }
2477
2478                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2479                                 ret = rte_kvargs_process(kvlist,
2480                                                          ETH_TAP_MAC_ARG,
2481                                                          &set_mac_type,
2482                                                          &user_mac);
2483                                 if (ret == -1)
2484                                         goto leave;
2485                         }
2486                 }
2487         }
2488         pmd_link.link_speed = speed;
2489
2490         TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2491
2492         /* Register IPC feed callback */
2493         if (!tap_devices_count) {
2494                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2495                 if (ret < 0 && rte_errno != ENOTSUP) {
2496                         TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2497                                 strerror(rte_errno));
2498                         goto leave;
2499                 }
2500         }
2501         tap_devices_count++;
2502         tap_devices_count_increased = 1;
2503         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2504                 ETH_TUNTAP_TYPE_TAP);
2505
2506 leave:
2507         if (ret == -1) {
2508                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2509                         name, tap_name);
2510                 if (tap_devices_count_increased == 1) {
2511                         if (tap_devices_count == 1)
2512                                 rte_mp_action_unregister(TAP_MP_KEY);
2513                         tap_devices_count--;
2514                 }
2515         }
2516         rte_kvargs_free(kvlist);
2517
2518         return ret;
2519 }
2520
2521 /* detach a TUNTAP device.
2522  */
2523 static int
2524 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2525 {
2526         struct rte_eth_dev *eth_dev = NULL;
2527
2528         /* find the ethdev entry */
2529         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2530         if (!eth_dev)
2531                 return 0;
2532
2533         tap_dev_close(eth_dev);
2534         rte_eth_dev_release_port(eth_dev);
2535
2536         return 0;
2537 }
2538
2539 static struct rte_vdev_driver pmd_tun_drv = {
2540         .probe = rte_pmd_tun_probe,
2541         .remove = rte_pmd_tap_remove,
2542 };
2543
2544 static struct rte_vdev_driver pmd_tap_drv = {
2545         .probe = rte_pmd_tap_probe,
2546         .remove = rte_pmd_tap_remove,
2547 };
2548
2549 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2550 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2551 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2552 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2553                               ETH_TAP_IFACE_ARG "=<string> ");
2554 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2555                               ETH_TAP_IFACE_ARG "=<string> "
2556                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2557                               ETH_TAP_REMOTE_ARG "=<string>");
2558 RTE_LOG_REGISTER_DEFAULT(tap_logtype, NOTICE);