68baa18523af59fec2bdfa28ea27f4c2c88962fc
[dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61
62 #define TAP_GSO_MBUFS_PER_CORE  128
63 #define TAP_GSO_MBUF_SEG_SIZE   128
64 #define TAP_GSO_MBUF_CACHE_SIZE 4
65 #define TAP_GSO_MBUFS_NUM \
66         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70
71 #define TAP_IOV_DEFAULT_MAX 1024
72
73 static int tap_devices_count;
74
75 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
76         "UNKNOWN", "TUN", "TAP"
77 };
78
79 static const char *valid_arguments[] = {
80         ETH_TAP_IFACE_ARG,
81         ETH_TAP_REMOTE_ARG,
82         ETH_TAP_MAC_ARG,
83         NULL
84 };
85
86 static volatile uint32_t tap_trigger;   /* Rx trigger */
87
88 static struct rte_eth_link pmd_link = {
89         .link_speed = ETH_SPEED_NUM_10G,
90         .link_duplex = ETH_LINK_FULL_DUPLEX,
91         .link_status = ETH_LINK_DOWN,
92         .link_autoneg = ETH_LINK_FIXED,
93 };
94
95 static void
96 tap_trigger_cb(int sig __rte_unused)
97 {
98         /* Valid trigger values are nonzero */
99         tap_trigger = (tap_trigger + 1) | 0x80000000;
100 }
101
102 /* Specifies on what netdevices the ioctl should be applied */
103 enum ioctl_mode {
104         LOCAL_AND_REMOTE,
105         LOCAL_ONLY,
106         REMOTE_ONLY,
107 };
108
109 /* Message header to synchronize queues via IPC */
110 struct ipc_queues {
111         char port_name[RTE_DEV_NAME_MAX_LEN];
112         int rxq_count;
113         int txq_count;
114         /*
115          * The file descriptors are in the dedicated part
116          * of the Unix message to be translated by the kernel.
117          */
118 };
119
120 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
121
122 /**
123  * Tun/Tap allocation routine
124  *
125  * @param[in] pmd
126  *   Pointer to private structure.
127  *
128  * @param[in] is_keepalive
129  *   Keepalive flag
130  *
131  * @return
132  *   -1 on failure, fd on success
133  */
134 static int
135 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
136 {
137         struct ifreq ifr;
138 #ifdef IFF_MULTI_QUEUE
139         unsigned int features;
140 #endif
141         int fd, signo, flags;
142
143         memset(&ifr, 0, sizeof(struct ifreq));
144
145         /*
146          * Do not set IFF_NO_PI as packet information header will be needed
147          * to check if a received packet has been truncated.
148          */
149         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
150                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
151         strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
152
153         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
154         if (fd < 0) {
155                 TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
156                 goto error;
157         }
158
159 #ifdef IFF_MULTI_QUEUE
160         /* Grab the TUN features to verify we can work multi-queue */
161         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
162                 TAP_LOG(ERR, "unable to get TUN/TAP features");
163                 goto error;
164         }
165         TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
166
167         if (features & IFF_MULTI_QUEUE) {
168                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
169                         RTE_PMD_TAP_MAX_QUEUES);
170                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
171         } else
172 #endif
173         {
174                 ifr.ifr_flags |= IFF_ONE_QUEUE;
175                 TAP_LOG(DEBUG, "  Single queue only support");
176         }
177
178         /* Set the TUN/TAP configuration and set the name if needed */
179         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
180                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
181                         ifr.ifr_name, strerror(errno));
182                 goto error;
183         }
184
185         /*
186          * Name passed to kernel might be wildcard like dtun%d
187          * and need to find the resulting device.
188          */
189         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
190         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
191
192         if (is_keepalive) {
193                 /*
194                  * Detach the TUN/TAP keep-alive queue
195                  * to avoid traffic through it
196                  */
197                 ifr.ifr_flags = IFF_DETACH_QUEUE;
198                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
199                         TAP_LOG(WARNING,
200                                 "Unable to detach keep-alive queue for %s: %s",
201                                 ifr.ifr_name, strerror(errno));
202                         goto error;
203                 }
204         }
205
206         flags = fcntl(fd, F_GETFL);
207         if (flags == -1) {
208                 TAP_LOG(WARNING,
209                         "Unable to get %s current flags\n",
210                         ifr.ifr_name);
211                 goto error;
212         }
213
214         /* Always set the file descriptor to non-blocking */
215         flags |= O_NONBLOCK;
216         if (fcntl(fd, F_SETFL, flags) < 0) {
217                 TAP_LOG(WARNING,
218                         "Unable to set %s to nonblocking: %s",
219                         ifr.ifr_name, strerror(errno));
220                 goto error;
221         }
222
223         /* Find a free realtime signal */
224         for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
225                 struct sigaction sa;
226
227                 if (sigaction(signo, NULL, &sa) == -1) {
228                         TAP_LOG(WARNING,
229                                 "Unable to get current rt-signal %d handler",
230                                 signo);
231                         goto error;
232                 }
233
234                 /* Already have the handler we want on this signal  */
235                 if (sa.sa_handler == tap_trigger_cb)
236                         break;
237
238                 /* Is handler in use by application */
239                 if (sa.sa_handler != SIG_DFL) {
240                         TAP_LOG(DEBUG,
241                                 "Skipping used rt-signal %d", signo);
242                         continue;
243                 }
244
245                 sa = (struct sigaction) {
246                         .sa_flags = SA_RESTART,
247                         .sa_handler = tap_trigger_cb,
248                 };
249
250                 if (sigaction(signo, &sa, NULL) == -1) {
251                         TAP_LOG(WARNING,
252                                 "Unable to set rt-signal %d handler\n", signo);
253                         goto error;
254                 }
255
256                 /* Found a good signal to use */
257                 TAP_LOG(DEBUG,
258                         "Using rt-signal %d", signo);
259                 break;
260         }
261
262         if (signo == SIGRTMAX) {
263                 TAP_LOG(WARNING, "All rt-signals are in use\n");
264
265                 /* Disable trigger globally in case of error */
266                 tap_trigger = 0;
267                 TAP_LOG(NOTICE, "No Rx trigger signal available\n");
268         } else {
269                 /* Enable signal on file descriptor */
270                 if (fcntl(fd, F_SETSIG, signo) < 0) {
271                         TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
272                                 signo, fd, strerror(errno));
273                         goto error;
274                 }
275                 if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
276                         TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
277                                 strerror(errno));
278                         goto error;
279                 }
280
281                 if (fcntl(fd, F_SETOWN, getpid()) < 0) {
282                         TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
283                                 strerror(errno));
284                         goto error;
285                 }
286         }
287         return fd;
288
289 error:
290         if (fd >= 0)
291                 close(fd);
292         return -1;
293 }
294
295 static void
296 tap_verify_csum(struct rte_mbuf *mbuf)
297 {
298         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
299         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
300         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
301         unsigned int l2_len = sizeof(struct rte_ether_hdr);
302         unsigned int l3_len;
303         uint16_t cksum = 0;
304         void *l3_hdr;
305         void *l4_hdr;
306         struct rte_udp_hdr *udp_hdr;
307
308         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
309                 l2_len += 4;
310         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
311                 l2_len += 8;
312         /* Don't verify checksum for packets with discontinuous L2 header */
313         if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
314                      rte_pktmbuf_data_len(mbuf)))
315                 return;
316         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
317         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
318                 struct rte_ipv4_hdr *iph = l3_hdr;
319
320                 l3_len = rte_ipv4_hdr_len(iph);
321                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
322                         return;
323                 /* check that the total length reported by header is not
324                  * greater than the total received size
325                  */
326                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
327                                 rte_pktmbuf_data_len(mbuf))
328                         return;
329
330                 cksum = ~rte_raw_cksum(iph, l3_len);
331                 mbuf->ol_flags |= cksum ?
332                         PKT_RX_IP_CKSUM_BAD :
333                         PKT_RX_IP_CKSUM_GOOD;
334         } else if (l3 == RTE_PTYPE_L3_IPV6) {
335                 struct rte_ipv6_hdr *iph = l3_hdr;
336
337                 l3_len = sizeof(struct rte_ipv6_hdr);
338                 /* check that the total length reported by header is not
339                  * greater than the total received size
340                  */
341                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
342                                 rte_pktmbuf_data_len(mbuf))
343                         return;
344         } else {
345                 /* IPv6 extensions are not supported */
346                 return;
347         }
348         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
349                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
350                 /* Don't verify checksum for multi-segment packets. */
351                 if (mbuf->nb_segs > 1)
352                         return;
353                 if (l3 == RTE_PTYPE_L3_IPV4) {
354                         if (l4 == RTE_PTYPE_L4_UDP) {
355                                 udp_hdr = (struct rte_udp_hdr *)l4_hdr;
356                                 if (udp_hdr->dgram_cksum == 0) {
357                                         /*
358                                          * For IPv4, a zero UDP checksum
359                                          * indicates that the sender did not
360                                          * generate one [RFC 768].
361                                          */
362                                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_NONE;
363                                         return;
364                                 }
365                         }
366                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
367                 } else if (l3 == RTE_PTYPE_L3_IPV6) {
368                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
369                 }
370                 mbuf->ol_flags |= cksum ?
371                         PKT_RX_L4_CKSUM_BAD :
372                         PKT_RX_L4_CKSUM_GOOD;
373         }
374 }
375
376 static uint64_t
377 tap_rx_offload_get_port_capa(void)
378 {
379         /*
380          * No specific port Rx offload capabilities.
381          */
382         return 0;
383 }
384
385 static uint64_t
386 tap_rx_offload_get_queue_capa(void)
387 {
388         return DEV_RX_OFFLOAD_SCATTER |
389                DEV_RX_OFFLOAD_IPV4_CKSUM |
390                DEV_RX_OFFLOAD_UDP_CKSUM |
391                DEV_RX_OFFLOAD_TCP_CKSUM;
392 }
393
394 static void
395 tap_rxq_pool_free(struct rte_mbuf *pool)
396 {
397         struct rte_mbuf *mbuf = pool;
398         uint16_t nb_segs = 1;
399
400         if (mbuf == NULL)
401                 return;
402
403         while (mbuf->next) {
404                 mbuf = mbuf->next;
405                 nb_segs++;
406         }
407         pool->nb_segs = nb_segs;
408         rte_pktmbuf_free(pool);
409 }
410
411 /* Callback to handle the rx burst of packets to the correct interface and
412  * file descriptor(s) in a multi-queue setup.
413  */
414 static uint16_t
415 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
416 {
417         struct rx_queue *rxq = queue;
418         struct pmd_process_private *process_private;
419         uint16_t num_rx;
420         unsigned long num_rx_bytes = 0;
421         uint32_t trigger = tap_trigger;
422
423         if (trigger == rxq->trigger_seen)
424                 return 0;
425
426         process_private = rte_eth_devices[rxq->in_port].process_private;
427         for (num_rx = 0; num_rx < nb_pkts; ) {
428                 struct rte_mbuf *mbuf = rxq->pool;
429                 struct rte_mbuf *seg = NULL;
430                 struct rte_mbuf *new_tail = NULL;
431                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
432                 int len;
433
434                 len = readv(process_private->rxq_fds[rxq->queue_id],
435                         *rxq->iovecs,
436                         1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
437                              rxq->nb_rx_desc : 1));
438                 if (len < (int)sizeof(struct tun_pi))
439                         break;
440
441                 /* Packet couldn't fit in the provided mbuf */
442                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
443                         rxq->stats.ierrors++;
444                         continue;
445                 }
446
447                 len -= sizeof(struct tun_pi);
448
449                 mbuf->pkt_len = len;
450                 mbuf->port = rxq->in_port;
451                 while (1) {
452                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
453
454                         if (unlikely(!buf)) {
455                                 rxq->stats.rx_nombuf++;
456                                 /* No new buf has been allocated: do nothing */
457                                 if (!new_tail || !seg)
458                                         goto end;
459
460                                 seg->next = NULL;
461                                 tap_rxq_pool_free(mbuf);
462
463                                 goto end;
464                         }
465                         seg = seg ? seg->next : mbuf;
466                         if (rxq->pool == mbuf)
467                                 rxq->pool = buf;
468                         if (new_tail)
469                                 new_tail->next = buf;
470                         new_tail = buf;
471                         new_tail->next = seg->next;
472
473                         /* iovecs[0] is reserved for packet info (pi) */
474                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
475                                 buf->buf_len - data_off;
476                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
477                                 (char *)buf->buf_addr + data_off;
478
479                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
480                         seg->data_off = data_off;
481
482                         len -= seg->data_len;
483                         if (len <= 0)
484                                 break;
485                         mbuf->nb_segs++;
486                         /* First segment has headroom, not the others */
487                         data_off = 0;
488                 }
489                 seg->next = NULL;
490                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
491                                                       RTE_PTYPE_ALL_MASK);
492                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
493                         tap_verify_csum(mbuf);
494
495                 /* account for the receive frame */
496                 bufs[num_rx++] = mbuf;
497                 num_rx_bytes += mbuf->pkt_len;
498         }
499 end:
500         rxq->stats.ipackets += num_rx;
501         rxq->stats.ibytes += num_rx_bytes;
502
503         if (trigger && num_rx < nb_pkts)
504                 rxq->trigger_seen = trigger;
505
506         return num_rx;
507 }
508
509 static uint64_t
510 tap_tx_offload_get_port_capa(void)
511 {
512         /*
513          * No specific port Tx offload capabilities.
514          */
515         return 0;
516 }
517
518 static uint64_t
519 tap_tx_offload_get_queue_capa(void)
520 {
521         return DEV_TX_OFFLOAD_MULTI_SEGS |
522                DEV_TX_OFFLOAD_IPV4_CKSUM |
523                DEV_TX_OFFLOAD_UDP_CKSUM |
524                DEV_TX_OFFLOAD_TCP_CKSUM |
525                DEV_TX_OFFLOAD_TCP_TSO;
526 }
527
528 /* Finalize l4 checksum calculation */
529 static void
530 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
531                 uint32_t l4_raw_cksum)
532 {
533         if (l4_cksum) {
534                 uint32_t cksum;
535
536                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
537                 cksum += l4_phdr_cksum;
538
539                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
540                 cksum = (~cksum) & 0xffff;
541                 if (cksum == 0)
542                         cksum = 0xffff;
543                 *l4_cksum = cksum;
544         }
545 }
546
547 /* Accumaulate L4 raw checksums */
548 static void
549 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
550                         uint32_t *l4_raw_cksum)
551 {
552         if (l4_cksum == NULL)
553                 return;
554
555         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
556 }
557
558 /* L3 and L4 pseudo headers checksum offloads */
559 static void
560 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
561                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
562                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
563 {
564         void *l3_hdr = packet + l2_len;
565
566         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
567                 struct rte_ipv4_hdr *iph = l3_hdr;
568                 uint16_t cksum;
569
570                 iph->hdr_checksum = 0;
571                 cksum = rte_raw_cksum(iph, l3_len);
572                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
573         }
574         if (ol_flags & PKT_TX_L4_MASK) {
575                 void *l4_hdr;
576
577                 l4_hdr = packet + l2_len + l3_len;
578                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
579                         *l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
580                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
581                         *l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
582                 else
583                         return;
584                 **l4_cksum = 0;
585                 if (ol_flags & PKT_TX_IPV4)
586                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
587                 else
588                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
589                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
590         }
591 }
592
593 static inline int
594 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
595                         struct rte_mbuf **pmbufs,
596                         uint16_t *num_packets, unsigned long *num_tx_bytes)
597 {
598         int i;
599         uint16_t l234_hlen;
600         struct pmd_process_private *process_private;
601
602         process_private = rte_eth_devices[txq->out_port].process_private;
603
604         for (i = 0; i < num_mbufs; i++) {
605                 struct rte_mbuf *mbuf = pmbufs[i];
606                 struct iovec iovecs[mbuf->nb_segs + 2];
607                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
608                 struct rte_mbuf *seg = mbuf;
609                 char m_copy[mbuf->data_len];
610                 int proto;
611                 int n;
612                 int j;
613                 int k; /* current index in iovecs for copying segments */
614                 uint16_t seg_len; /* length of first segment */
615                 uint16_t nb_segs;
616                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
617                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
618                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
619                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
620
621                 l4_cksum = NULL;
622                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
623                         /*
624                          * TUN and TAP are created with IFF_NO_PI disabled.
625                          * For TUN PMD this mandatory as fields are used by
626                          * Kernel tun.c to determine whether its IP or non IP
627                          * packets.
628                          *
629                          * The logic fetches the first byte of data from mbuf
630                          * then compares whether its v4 or v6. If first byte
631                          * is 4 or 6, then protocol field is updated.
632                          */
633                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
634                         proto = (*buff_data & 0xf0);
635                         pi.proto = (proto == 0x40) ?
636                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
637                                 ((proto == 0x60) ?
638                                         rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
639                                         0x00);
640                 }
641
642                 k = 0;
643                 iovecs[k].iov_base = &pi;
644                 iovecs[k].iov_len = sizeof(pi);
645                 k++;
646
647                 nb_segs = mbuf->nb_segs;
648                 if (txq->csum &&
649                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
650                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
651                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
652                         is_cksum = 1;
653
654                         /* Support only packets with at least layer 4
655                          * header included in the first segment
656                          */
657                         seg_len = rte_pktmbuf_data_len(mbuf);
658                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
659                         if (seg_len < l234_hlen)
660                                 return -1;
661
662                         /* To change checksums, work on a * copy of l2, l3
663                          * headers + l4 pseudo header
664                          */
665                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
666                                         l234_hlen);
667                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
668                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
669                                        &l4_cksum, &l4_phdr_cksum,
670                                        &l4_raw_cksum);
671                         iovecs[k].iov_base = m_copy;
672                         iovecs[k].iov_len = l234_hlen;
673                         k++;
674
675                         /* Update next iovecs[] beyond l2, l3, l4 headers */
676                         if (seg_len > l234_hlen) {
677                                 iovecs[k].iov_len = seg_len - l234_hlen;
678                                 iovecs[k].iov_base =
679                                         rte_pktmbuf_mtod(seg, char *) +
680                                                 l234_hlen;
681                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
682                                         iovecs[k].iov_len, l4_cksum,
683                                         &l4_raw_cksum);
684                                 k++;
685                                 nb_segs++;
686                         }
687                         seg = seg->next;
688                 }
689
690                 for (j = k; j <= nb_segs; j++) {
691                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
692                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
693                         if (is_cksum)
694                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
695                                         iovecs[j].iov_len, l4_cksum,
696                                         &l4_raw_cksum);
697                         seg = seg->next;
698                 }
699
700                 if (is_cksum)
701                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
702
703                 /* copy the tx frame data */
704                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
705                 if (n <= 0)
706                         return -1;
707
708                 (*num_packets)++;
709                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
710         }
711         return 0;
712 }
713
714 /* Callback to handle sending packets from the tap interface
715  */
716 static uint16_t
717 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
718 {
719         struct tx_queue *txq = queue;
720         uint16_t num_tx = 0;
721         uint16_t num_packets = 0;
722         unsigned long num_tx_bytes = 0;
723         uint32_t max_size;
724         int i;
725
726         if (unlikely(nb_pkts == 0))
727                 return 0;
728
729         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
730         max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
731         for (i = 0; i < nb_pkts; i++) {
732                 struct rte_mbuf *mbuf_in = bufs[num_tx];
733                 struct rte_mbuf **mbuf;
734                 uint16_t num_mbufs = 0;
735                 uint16_t tso_segsz = 0;
736                 int ret;
737                 int num_tso_mbufs;
738                 uint16_t hdrs_len;
739                 uint64_t tso;
740
741                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
742                 if (tso) {
743                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
744
745                         /* TCP segmentation implies TCP checksum offload */
746                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
747
748                         /* gso size is calculated without RTE_ETHER_CRC_LEN */
749                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
750                                         mbuf_in->l4_len;
751                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
752                         if (unlikely(tso_segsz == hdrs_len) ||
753                                 tso_segsz > *txq->mtu) {
754                                 txq->stats.errs++;
755                                 break;
756                         }
757                         gso_ctx->gso_size = tso_segsz;
758                         /* 'mbuf_in' packet to segment */
759                         num_tso_mbufs = rte_gso_segment(mbuf_in,
760                                 gso_ctx, /* gso control block */
761                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
762                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
763
764                         /* ret contains the number of new created mbufs */
765                         if (num_tso_mbufs < 0)
766                                 break;
767
768                         if (num_tso_mbufs >= 1) {
769                                 mbuf = gso_mbufs;
770                                 num_mbufs = num_tso_mbufs;
771                         } else {
772                                 /* 0 means it can be transmitted directly
773                                  * without gso.
774                                  */
775                                 mbuf = &mbuf_in;
776                                 num_mbufs = 1;
777                         }
778                 } else {
779                         /* stats.errs will be incremented */
780                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
781                                 break;
782
783                         /* ret 0 indicates no new mbufs were created */
784                         num_tso_mbufs = 0;
785                         mbuf = &mbuf_in;
786                         num_mbufs = 1;
787                 }
788
789                 ret = tap_write_mbufs(txq, num_mbufs, mbuf,
790                                 &num_packets, &num_tx_bytes);
791                 if (ret == -1) {
792                         txq->stats.errs++;
793                         /* free tso mbufs */
794                         if (num_tso_mbufs > 0)
795                                 rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
796                         break;
797                 }
798                 num_tx++;
799                 /* free original mbuf */
800                 rte_pktmbuf_free(mbuf_in);
801                 /* free tso mbufs */
802                 if (num_tso_mbufs > 0)
803                         rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
804         }
805
806         txq->stats.opackets += num_packets;
807         txq->stats.errs += nb_pkts - num_tx;
808         txq->stats.obytes += num_tx_bytes;
809
810         return num_tx;
811 }
812
813 static const char *
814 tap_ioctl_req2str(unsigned long request)
815 {
816         switch (request) {
817         case SIOCSIFFLAGS:
818                 return "SIOCSIFFLAGS";
819         case SIOCGIFFLAGS:
820                 return "SIOCGIFFLAGS";
821         case SIOCGIFHWADDR:
822                 return "SIOCGIFHWADDR";
823         case SIOCSIFHWADDR:
824                 return "SIOCSIFHWADDR";
825         case SIOCSIFMTU:
826                 return "SIOCSIFMTU";
827         }
828         return "UNKNOWN";
829 }
830
831 static int
832 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
833           struct ifreq *ifr, int set, enum ioctl_mode mode)
834 {
835         short req_flags = ifr->ifr_flags;
836         int remote = pmd->remote_if_index &&
837                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
838
839         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
840                 return 0;
841         /*
842          * If there is a remote netdevice, apply ioctl on it, then apply it on
843          * the tap netdevice.
844          */
845 apply:
846         if (remote)
847                 strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
848         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
849                 strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
850         switch (request) {
851         case SIOCSIFFLAGS:
852                 /* fetch current flags to leave other flags untouched */
853                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
854                         goto error;
855                 if (set)
856                         ifr->ifr_flags |= req_flags;
857                 else
858                         ifr->ifr_flags &= ~req_flags;
859                 break;
860         case SIOCGIFFLAGS:
861         case SIOCGIFHWADDR:
862         case SIOCSIFHWADDR:
863         case SIOCSIFMTU:
864                 break;
865         default:
866                 TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
867                         pmd->name);
868                 return -EINVAL;
869         }
870         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
871                 goto error;
872         if (remote-- && mode == LOCAL_AND_REMOTE)
873                 goto apply;
874         return 0;
875
876 error:
877         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
878                 tap_ioctl_req2str(request), strerror(errno), errno);
879         return -errno;
880 }
881
882 static int
883 tap_link_set_down(struct rte_eth_dev *dev)
884 {
885         struct pmd_internals *pmd = dev->data->dev_private;
886         struct ifreq ifr = { .ifr_flags = IFF_UP };
887
888         dev->data->dev_link.link_status = ETH_LINK_DOWN;
889         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
890 }
891
892 static int
893 tap_link_set_up(struct rte_eth_dev *dev)
894 {
895         struct pmd_internals *pmd = dev->data->dev_private;
896         struct ifreq ifr = { .ifr_flags = IFF_UP };
897
898         dev->data->dev_link.link_status = ETH_LINK_UP;
899         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
900 }
901
902 static int
903 tap_dev_start(struct rte_eth_dev *dev)
904 {
905         int err, i;
906
907         err = tap_intr_handle_set(dev, 1);
908         if (err)
909                 return err;
910
911         err = tap_link_set_up(dev);
912         if (err)
913                 return err;
914
915         for (i = 0; i < dev->data->nb_tx_queues; i++)
916                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
917         for (i = 0; i < dev->data->nb_rx_queues; i++)
918                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
919
920         return err;
921 }
922
923 /* This function gets called when the current port gets stopped.
924  */
925 static int
926 tap_dev_stop(struct rte_eth_dev *dev)
927 {
928         int i;
929
930         for (i = 0; i < dev->data->nb_tx_queues; i++)
931                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
932         for (i = 0; i < dev->data->nb_rx_queues; i++)
933                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
934
935         tap_intr_handle_set(dev, 0);
936         tap_link_set_down(dev);
937
938         return 0;
939 }
940
941 static int
942 tap_dev_configure(struct rte_eth_dev *dev)
943 {
944         struct pmd_internals *pmd = dev->data->dev_private;
945
946         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
947                 TAP_LOG(ERR,
948                         "%s: number of rx queues %d exceeds max num of queues %d",
949                         dev->device->name,
950                         dev->data->nb_rx_queues,
951                         RTE_PMD_TAP_MAX_QUEUES);
952                 return -1;
953         }
954         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
955                 TAP_LOG(ERR,
956                         "%s: number of tx queues %d exceeds max num of queues %d",
957                         dev->device->name,
958                         dev->data->nb_tx_queues,
959                         RTE_PMD_TAP_MAX_QUEUES);
960                 return -1;
961         }
962
963         TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
964                 dev->device->name, pmd->name, dev->data->nb_tx_queues);
965
966         TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
967                 dev->device->name, pmd->name, dev->data->nb_rx_queues);
968
969         return 0;
970 }
971
972 static uint32_t
973 tap_dev_speed_capa(void)
974 {
975         uint32_t speed = pmd_link.link_speed;
976         uint32_t capa = 0;
977
978         if (speed >= ETH_SPEED_NUM_10M)
979                 capa |= ETH_LINK_SPEED_10M;
980         if (speed >= ETH_SPEED_NUM_100M)
981                 capa |= ETH_LINK_SPEED_100M;
982         if (speed >= ETH_SPEED_NUM_1G)
983                 capa |= ETH_LINK_SPEED_1G;
984         if (speed >= ETH_SPEED_NUM_5G)
985                 capa |= ETH_LINK_SPEED_2_5G;
986         if (speed >= ETH_SPEED_NUM_5G)
987                 capa |= ETH_LINK_SPEED_5G;
988         if (speed >= ETH_SPEED_NUM_10G)
989                 capa |= ETH_LINK_SPEED_10G;
990         if (speed >= ETH_SPEED_NUM_20G)
991                 capa |= ETH_LINK_SPEED_20G;
992         if (speed >= ETH_SPEED_NUM_25G)
993                 capa |= ETH_LINK_SPEED_25G;
994         if (speed >= ETH_SPEED_NUM_40G)
995                 capa |= ETH_LINK_SPEED_40G;
996         if (speed >= ETH_SPEED_NUM_50G)
997                 capa |= ETH_LINK_SPEED_50G;
998         if (speed >= ETH_SPEED_NUM_56G)
999                 capa |= ETH_LINK_SPEED_56G;
1000         if (speed >= ETH_SPEED_NUM_100G)
1001                 capa |= ETH_LINK_SPEED_100G;
1002
1003         return capa;
1004 }
1005
1006 static int
1007 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1008 {
1009         struct pmd_internals *internals = dev->data->dev_private;
1010
1011         dev_info->if_index = internals->if_index;
1012         dev_info->max_mac_addrs = 1;
1013         dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
1014         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
1015         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
1016         dev_info->min_rx_bufsize = 0;
1017         dev_info->speed_capa = tap_dev_speed_capa();
1018         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
1019         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
1020                                     dev_info->rx_queue_offload_capa;
1021         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
1022         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
1023                                     dev_info->tx_queue_offload_capa;
1024         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
1025         /*
1026          * limitation: TAP supports all of IP, UDP and TCP hash
1027          * functions together and not in partial combinations
1028          */
1029         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
1030
1031         return 0;
1032 }
1033
1034 static int
1035 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
1036 {
1037         unsigned int i, imax;
1038         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
1039         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
1040         unsigned long rx_nombuf = 0, ierrors = 0;
1041         const struct pmd_internals *pmd = dev->data->dev_private;
1042
1043         /* rx queue statistics */
1044         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1045                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1046         for (i = 0; i < imax; i++) {
1047                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
1048                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
1049                 rx_total += tap_stats->q_ipackets[i];
1050                 rx_bytes_total += tap_stats->q_ibytes[i];
1051                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
1052                 ierrors += pmd->rxq[i].stats.ierrors;
1053         }
1054
1055         /* tx queue statistics */
1056         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1057                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1058
1059         for (i = 0; i < imax; i++) {
1060                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
1061                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1062                 tx_total += tap_stats->q_opackets[i];
1063                 tx_err_total += pmd->txq[i].stats.errs;
1064                 tx_bytes_total += tap_stats->q_obytes[i];
1065         }
1066
1067         tap_stats->ipackets = rx_total;
1068         tap_stats->ibytes = rx_bytes_total;
1069         tap_stats->ierrors = ierrors;
1070         tap_stats->rx_nombuf = rx_nombuf;
1071         tap_stats->opackets = tx_total;
1072         tap_stats->oerrors = tx_err_total;
1073         tap_stats->obytes = tx_bytes_total;
1074         return 0;
1075 }
1076
1077 static int
1078 tap_stats_reset(struct rte_eth_dev *dev)
1079 {
1080         int i;
1081         struct pmd_internals *pmd = dev->data->dev_private;
1082
1083         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1084                 pmd->rxq[i].stats.ipackets = 0;
1085                 pmd->rxq[i].stats.ibytes = 0;
1086                 pmd->rxq[i].stats.ierrors = 0;
1087                 pmd->rxq[i].stats.rx_nombuf = 0;
1088
1089                 pmd->txq[i].stats.opackets = 0;
1090                 pmd->txq[i].stats.errs = 0;
1091                 pmd->txq[i].stats.obytes = 0;
1092         }
1093
1094         return 0;
1095 }
1096
1097 static int
1098 tap_dev_close(struct rte_eth_dev *dev)
1099 {
1100         int i;
1101         struct pmd_internals *internals = dev->data->dev_private;
1102         struct pmd_process_private *process_private = dev->process_private;
1103         struct rx_queue *rxq;
1104
1105         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1106                 rte_free(dev->process_private);
1107                 return 0;
1108         }
1109
1110         tap_link_set_down(dev);
1111         if (internals->nlsk_fd != -1) {
1112                 tap_flow_flush(dev, NULL);
1113                 tap_flow_implicit_flush(internals, NULL);
1114                 tap_nl_final(internals->nlsk_fd);
1115                 internals->nlsk_fd = -1;
1116         }
1117
1118         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1119                 if (process_private->rxq_fds[i] != -1) {
1120                         rxq = &internals->rxq[i];
1121                         close(process_private->rxq_fds[i]);
1122                         process_private->rxq_fds[i] = -1;
1123                         tap_rxq_pool_free(rxq->pool);
1124                         rte_free(rxq->iovecs);
1125                         rxq->pool = NULL;
1126                         rxq->iovecs = NULL;
1127                 }
1128                 if (process_private->txq_fds[i] != -1) {
1129                         close(process_private->txq_fds[i]);
1130                         process_private->txq_fds[i] = -1;
1131                 }
1132         }
1133
1134         if (internals->remote_if_index) {
1135                 /* Restore initial remote state */
1136                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1137                                 &internals->remote_initial_flags);
1138         }
1139
1140         rte_mempool_free(internals->gso_ctx_mp);
1141         internals->gso_ctx_mp = NULL;
1142
1143         if (internals->ka_fd != -1) {
1144                 close(internals->ka_fd);
1145                 internals->ka_fd = -1;
1146         }
1147
1148         /* mac_addrs must not be freed alone because part of dev_private */
1149         dev->data->mac_addrs = NULL;
1150
1151         internals = dev->data->dev_private;
1152         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
1153                 tuntap_types[internals->type], rte_socket_id());
1154
1155         if (internals->ioctl_sock != -1) {
1156                 close(internals->ioctl_sock);
1157                 internals->ioctl_sock = -1;
1158         }
1159         rte_free(dev->process_private);
1160         if (tap_devices_count == 1)
1161                 rte_mp_action_unregister(TAP_MP_KEY);
1162         tap_devices_count--;
1163         /*
1164          * Since TUN device has no more opened file descriptors
1165          * it will be removed from kernel
1166          */
1167
1168         return 0;
1169 }
1170
1171 static void
1172 tap_rx_queue_release(void *queue)
1173 {
1174         struct rx_queue *rxq = queue;
1175         struct pmd_process_private *process_private;
1176
1177         if (!rxq)
1178                 return;
1179         process_private = rte_eth_devices[rxq->in_port].process_private;
1180         if (process_private->rxq_fds[rxq->queue_id] != -1) {
1181                 close(process_private->rxq_fds[rxq->queue_id]);
1182                 process_private->rxq_fds[rxq->queue_id] = -1;
1183                 tap_rxq_pool_free(rxq->pool);
1184                 rte_free(rxq->iovecs);
1185                 rxq->pool = NULL;
1186                 rxq->iovecs = NULL;
1187         }
1188 }
1189
1190 static void
1191 tap_tx_queue_release(void *queue)
1192 {
1193         struct tx_queue *txq = queue;
1194         struct pmd_process_private *process_private;
1195
1196         if (!txq)
1197                 return;
1198         process_private = rte_eth_devices[txq->out_port].process_private;
1199
1200         if (process_private->txq_fds[txq->queue_id] != -1) {
1201                 close(process_private->txq_fds[txq->queue_id]);
1202                 process_private->txq_fds[txq->queue_id] = -1;
1203         }
1204 }
1205
1206 static int
1207 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1208 {
1209         struct rte_eth_link *dev_link = &dev->data->dev_link;
1210         struct pmd_internals *pmd = dev->data->dev_private;
1211         struct ifreq ifr = { .ifr_flags = 0 };
1212
1213         if (pmd->remote_if_index) {
1214                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1215                 if (!(ifr.ifr_flags & IFF_UP) ||
1216                     !(ifr.ifr_flags & IFF_RUNNING)) {
1217                         dev_link->link_status = ETH_LINK_DOWN;
1218                         return 0;
1219                 }
1220         }
1221         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1222         dev_link->link_status =
1223                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1224                  ETH_LINK_UP :
1225                  ETH_LINK_DOWN);
1226         return 0;
1227 }
1228
1229 static int
1230 tap_promisc_enable(struct rte_eth_dev *dev)
1231 {
1232         struct pmd_internals *pmd = dev->data->dev_private;
1233         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1234         int ret;
1235
1236         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1237         if (ret != 0)
1238                 return ret;
1239
1240         if (pmd->remote_if_index && !pmd->flow_isolate) {
1241                 dev->data->promiscuous = 1;
1242                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1243                 if (ret != 0) {
1244                         /* Rollback promisc flag */
1245                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1246                         /*
1247                          * rte_eth_dev_promiscuous_enable() rollback
1248                          * dev->data->promiscuous in the case of failure.
1249                          */
1250                         return ret;
1251                 }
1252         }
1253
1254         return 0;
1255 }
1256
1257 static int
1258 tap_promisc_disable(struct rte_eth_dev *dev)
1259 {
1260         struct pmd_internals *pmd = dev->data->dev_private;
1261         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1262         int ret;
1263
1264         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1265         if (ret != 0)
1266                 return ret;
1267
1268         if (pmd->remote_if_index && !pmd->flow_isolate) {
1269                 dev->data->promiscuous = 0;
1270                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1271                 if (ret != 0) {
1272                         /* Rollback promisc flag */
1273                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1274                         /*
1275                          * rte_eth_dev_promiscuous_disable() rollback
1276                          * dev->data->promiscuous in the case of failure.
1277                          */
1278                         return ret;
1279                 }
1280         }
1281
1282         return 0;
1283 }
1284
1285 static int
1286 tap_allmulti_enable(struct rte_eth_dev *dev)
1287 {
1288         struct pmd_internals *pmd = dev->data->dev_private;
1289         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1290         int ret;
1291
1292         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1293         if (ret != 0)
1294                 return ret;
1295
1296         if (pmd->remote_if_index && !pmd->flow_isolate) {
1297                 dev->data->all_multicast = 1;
1298                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1299                 if (ret != 0) {
1300                         /* Rollback allmulti flag */
1301                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1302                         /*
1303                          * rte_eth_dev_allmulticast_enable() rollback
1304                          * dev->data->all_multicast in the case of failure.
1305                          */
1306                         return ret;
1307                 }
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int
1314 tap_allmulti_disable(struct rte_eth_dev *dev)
1315 {
1316         struct pmd_internals *pmd = dev->data->dev_private;
1317         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1318         int ret;
1319
1320         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1321         if (ret != 0)
1322                 return ret;
1323
1324         if (pmd->remote_if_index && !pmd->flow_isolate) {
1325                 dev->data->all_multicast = 0;
1326                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1327                 if (ret != 0) {
1328                         /* Rollback allmulti flag */
1329                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1330                         /*
1331                          * rte_eth_dev_allmulticast_disable() rollback
1332                          * dev->data->all_multicast in the case of failure.
1333                          */
1334                         return ret;
1335                 }
1336         }
1337
1338         return 0;
1339 }
1340
1341 static int
1342 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1343 {
1344         struct pmd_internals *pmd = dev->data->dev_private;
1345         enum ioctl_mode mode = LOCAL_ONLY;
1346         struct ifreq ifr;
1347         int ret;
1348
1349         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1350                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1351                         dev->device->name);
1352                 return -ENOTSUP;
1353         }
1354
1355         if (rte_is_zero_ether_addr(mac_addr)) {
1356                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1357                         dev->device->name);
1358                 return -EINVAL;
1359         }
1360         /* Check the actual current MAC address on the tap netdevice */
1361         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1362         if (ret < 0)
1363                 return ret;
1364         if (rte_is_same_ether_addr(
1365                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1366                         mac_addr))
1367                 return 0;
1368         /* Check the current MAC address on the remote */
1369         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1370         if (ret < 0)
1371                 return ret;
1372         if (!rte_is_same_ether_addr(
1373                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1374                         mac_addr))
1375                 mode = LOCAL_AND_REMOTE;
1376         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1377         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1378         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1379         if (ret < 0)
1380                 return ret;
1381         rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1382         if (pmd->remote_if_index && !pmd->flow_isolate) {
1383                 /* Replace MAC redirection rule after a MAC change */
1384                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1385                 if (ret < 0) {
1386                         TAP_LOG(ERR,
1387                                 "%s: Couldn't delete MAC redirection rule",
1388                                 dev->device->name);
1389                         return ret;
1390                 }
1391                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1392                 if (ret < 0) {
1393                         TAP_LOG(ERR,
1394                                 "%s: Couldn't add MAC redirection rule",
1395                                 dev->device->name);
1396                         return ret;
1397                 }
1398         }
1399
1400         return 0;
1401 }
1402
1403 static int
1404 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1405 {
1406         uint32_t gso_types;
1407         char pool_name[64];
1408         struct pmd_internals *pmd = dev->data->dev_private;
1409         int ret;
1410
1411         /* initialize GSO context */
1412         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1413         if (!pmd->gso_ctx_mp) {
1414                 /*
1415                  * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
1416                  * bytes size per mbuf use this pool for both direct and
1417                  * indirect mbufs
1418                  */
1419                 ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
1420                                 dev->device->name);
1421                 if (ret < 0 || ret >= (int)sizeof(pool_name)) {
1422                         TAP_LOG(ERR,
1423                                 "%s: failed to create mbuf pool name for device %s,"
1424                                 "device name too long or output error, ret: %d\n",
1425                                 pmd->name, dev->device->name, ret);
1426                         return -ENAMETOOLONG;
1427                 }
1428                 pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
1429                         TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
1430                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1431                         SOCKET_ID_ANY);
1432                 if (!pmd->gso_ctx_mp) {
1433                         TAP_LOG(ERR,
1434                                 "%s: failed to create mbuf pool for device %s\n",
1435                                 pmd->name, dev->device->name);
1436                         return -1;
1437                 }
1438         }
1439
1440         gso_ctx->direct_pool = pmd->gso_ctx_mp;
1441         gso_ctx->indirect_pool = pmd->gso_ctx_mp;
1442         gso_ctx->gso_types = gso_types;
1443         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1444         gso_ctx->flag = 0;
1445
1446         return 0;
1447 }
1448
1449 static int
1450 tap_setup_queue(struct rte_eth_dev *dev,
1451                 struct pmd_internals *internals,
1452                 uint16_t qid,
1453                 int is_rx)
1454 {
1455         int ret;
1456         int *fd;
1457         int *other_fd;
1458         const char *dir;
1459         struct pmd_internals *pmd = dev->data->dev_private;
1460         struct pmd_process_private *process_private = dev->process_private;
1461         struct rx_queue *rx = &internals->rxq[qid];
1462         struct tx_queue *tx = &internals->txq[qid];
1463         struct rte_gso_ctx *gso_ctx;
1464
1465         if (is_rx) {
1466                 fd = &process_private->rxq_fds[qid];
1467                 other_fd = &process_private->txq_fds[qid];
1468                 dir = "rx";
1469                 gso_ctx = NULL;
1470         } else {
1471                 fd = &process_private->txq_fds[qid];
1472                 other_fd = &process_private->rxq_fds[qid];
1473                 dir = "tx";
1474                 gso_ctx = &tx->gso_ctx;
1475         }
1476         if (*fd != -1) {
1477                 /* fd for this queue already exists */
1478                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1479                         pmd->name, *fd, dir, qid);
1480                 gso_ctx = NULL;
1481         } else if (*other_fd != -1) {
1482                 /* Only other_fd exists. dup it */
1483                 *fd = dup(*other_fd);
1484                 if (*fd < 0) {
1485                         *fd = -1;
1486                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1487                         return -1;
1488                 }
1489                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1490                         pmd->name, *other_fd, dir, qid, *fd);
1491         } else {
1492                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1493                 *fd = tun_alloc(pmd, 0);
1494                 if (*fd < 0) {
1495                         *fd = -1; /* restore original value */
1496                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1497                         return -1;
1498                 }
1499                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1500                         pmd->name, dir, qid, *fd);
1501         }
1502
1503         tx->mtu = &dev->data->mtu;
1504         rx->rxmode = &dev->data->dev_conf.rxmode;
1505         if (gso_ctx) {
1506                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1507                 if (ret)
1508                         return -1;
1509         }
1510
1511         tx->type = pmd->type;
1512
1513         return *fd;
1514 }
1515
1516 static int
1517 tap_rx_queue_setup(struct rte_eth_dev *dev,
1518                    uint16_t rx_queue_id,
1519                    uint16_t nb_rx_desc,
1520                    unsigned int socket_id,
1521                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1522                    struct rte_mempool *mp)
1523 {
1524         struct pmd_internals *internals = dev->data->dev_private;
1525         struct pmd_process_private *process_private = dev->process_private;
1526         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1527         struct rte_mbuf **tmp = &rxq->pool;
1528         long iov_max = sysconf(_SC_IOV_MAX);
1529
1530         if (iov_max <= 0) {
1531                 TAP_LOG(WARNING,
1532                         "_SC_IOV_MAX is not defined. Using %d as default",
1533                         TAP_IOV_DEFAULT_MAX);
1534                 iov_max = TAP_IOV_DEFAULT_MAX;
1535         }
1536         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1537         struct iovec (*iovecs)[nb_desc + 1];
1538         int data_off = RTE_PKTMBUF_HEADROOM;
1539         int ret = 0;
1540         int fd;
1541         int i;
1542
1543         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1544                 TAP_LOG(WARNING,
1545                         "nb_rx_queues %d too small or mempool NULL",
1546                         dev->data->nb_rx_queues);
1547                 return -1;
1548         }
1549
1550         rxq->mp = mp;
1551         rxq->trigger_seen = 1; /* force initial burst */
1552         rxq->in_port = dev->data->port_id;
1553         rxq->queue_id = rx_queue_id;
1554         rxq->nb_rx_desc = nb_desc;
1555         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1556                                     socket_id);
1557         if (!iovecs) {
1558                 TAP_LOG(WARNING,
1559                         "%s: Couldn't allocate %d RX descriptors",
1560                         dev->device->name, nb_desc);
1561                 return -ENOMEM;
1562         }
1563         rxq->iovecs = iovecs;
1564
1565         dev->data->rx_queues[rx_queue_id] = rxq;
1566         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1567         if (fd == -1) {
1568                 ret = fd;
1569                 goto error;
1570         }
1571
1572         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1573         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1574
1575         for (i = 1; i <= nb_desc; i++) {
1576                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1577                 if (!*tmp) {
1578                         TAP_LOG(WARNING,
1579                                 "%s: couldn't allocate memory for queue %d",
1580                                 dev->device->name, rx_queue_id);
1581                         ret = -ENOMEM;
1582                         goto error;
1583                 }
1584                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1585                 (*rxq->iovecs)[i].iov_base =
1586                         (char *)(*tmp)->buf_addr + data_off;
1587                 data_off = 0;
1588                 tmp = &(*tmp)->next;
1589         }
1590
1591         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1592                 internals->name, rx_queue_id,
1593                 process_private->rxq_fds[rx_queue_id]);
1594
1595         return 0;
1596
1597 error:
1598         tap_rxq_pool_free(rxq->pool);
1599         rxq->pool = NULL;
1600         rte_free(rxq->iovecs);
1601         rxq->iovecs = NULL;
1602         return ret;
1603 }
1604
1605 static int
1606 tap_tx_queue_setup(struct rte_eth_dev *dev,
1607                    uint16_t tx_queue_id,
1608                    uint16_t nb_tx_desc __rte_unused,
1609                    unsigned int socket_id __rte_unused,
1610                    const struct rte_eth_txconf *tx_conf)
1611 {
1612         struct pmd_internals *internals = dev->data->dev_private;
1613         struct pmd_process_private *process_private = dev->process_private;
1614         struct tx_queue *txq;
1615         int ret;
1616         uint64_t offloads;
1617
1618         if (tx_queue_id >= dev->data->nb_tx_queues)
1619                 return -1;
1620         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1621         txq = dev->data->tx_queues[tx_queue_id];
1622         txq->out_port = dev->data->port_id;
1623         txq->queue_id = tx_queue_id;
1624
1625         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1626         txq->csum = !!(offloads &
1627                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1628                          DEV_TX_OFFLOAD_UDP_CKSUM |
1629                          DEV_TX_OFFLOAD_TCP_CKSUM));
1630
1631         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1632         if (ret == -1)
1633                 return -1;
1634         TAP_LOG(DEBUG,
1635                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1636                 internals->name, tx_queue_id,
1637                 process_private->txq_fds[tx_queue_id],
1638                 txq->csum ? "on" : "off");
1639
1640         return 0;
1641 }
1642
1643 static int
1644 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1645 {
1646         struct pmd_internals *pmd = dev->data->dev_private;
1647         struct ifreq ifr = { .ifr_mtu = mtu };
1648         int err = 0;
1649
1650         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1651         if (!err)
1652                 dev->data->mtu = mtu;
1653
1654         return err;
1655 }
1656
1657 static int
1658 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1659                      struct rte_ether_addr *mc_addr_set __rte_unused,
1660                      uint32_t nb_mc_addr __rte_unused)
1661 {
1662         /*
1663          * Nothing to do actually: the tap has no filtering whatsoever, every
1664          * packet is received.
1665          */
1666         return 0;
1667 }
1668
1669 static int
1670 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1671 {
1672         struct rte_eth_dev *dev = arg;
1673         struct pmd_internals *pmd = dev->data->dev_private;
1674         struct ifinfomsg *info = NLMSG_DATA(nh);
1675
1676         if (nh->nlmsg_type != RTM_NEWLINK ||
1677             (info->ifi_index != pmd->if_index &&
1678              info->ifi_index != pmd->remote_if_index))
1679                 return 0;
1680         return tap_link_update(dev, 0);
1681 }
1682
1683 static void
1684 tap_dev_intr_handler(void *cb_arg)
1685 {
1686         struct rte_eth_dev *dev = cb_arg;
1687         struct pmd_internals *pmd = dev->data->dev_private;
1688
1689         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1690 }
1691
1692 static int
1693 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1694 {
1695         struct pmd_internals *pmd = dev->data->dev_private;
1696         int ret;
1697
1698         /* In any case, disable interrupt if the conf is no longer there. */
1699         if (!dev->data->dev_conf.intr_conf.lsc) {
1700                 if (pmd->intr_handle.fd != -1) {
1701                         goto clean;
1702                 }
1703                 return 0;
1704         }
1705         if (set) {
1706                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1707                 if (unlikely(pmd->intr_handle.fd == -1))
1708                         return -EBADF;
1709                 return rte_intr_callback_register(
1710                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1711         }
1712
1713 clean:
1714         do {
1715                 ret = rte_intr_callback_unregister(&pmd->intr_handle,
1716                         tap_dev_intr_handler, dev);
1717                 if (ret >= 0) {
1718                         break;
1719                 } else if (ret == -EAGAIN) {
1720                         rte_delay_ms(100);
1721                 } else {
1722                         TAP_LOG(ERR, "intr callback unregister failed: %d",
1723                                      ret);
1724                         break;
1725                 }
1726         } while (true);
1727
1728         tap_nl_final(pmd->intr_handle.fd);
1729         pmd->intr_handle.fd = -1;
1730
1731         return 0;
1732 }
1733
1734 static int
1735 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1736 {
1737         int err;
1738
1739         err = tap_lsc_intr_handle_set(dev, set);
1740         if (err < 0) {
1741                 if (!set)
1742                         tap_rx_intr_vec_set(dev, 0);
1743                 return err;
1744         }
1745         err = tap_rx_intr_vec_set(dev, set);
1746         if (err && set)
1747                 tap_lsc_intr_handle_set(dev, 0);
1748         return err;
1749 }
1750
1751 static const uint32_t*
1752 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1753 {
1754         static const uint32_t ptypes[] = {
1755                 RTE_PTYPE_INNER_L2_ETHER,
1756                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1757                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1758                 RTE_PTYPE_INNER_L3_IPV4,
1759                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1760                 RTE_PTYPE_INNER_L3_IPV6,
1761                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1762                 RTE_PTYPE_INNER_L4_FRAG,
1763                 RTE_PTYPE_INNER_L4_UDP,
1764                 RTE_PTYPE_INNER_L4_TCP,
1765                 RTE_PTYPE_INNER_L4_SCTP,
1766                 RTE_PTYPE_L2_ETHER,
1767                 RTE_PTYPE_L2_ETHER_VLAN,
1768                 RTE_PTYPE_L2_ETHER_QINQ,
1769                 RTE_PTYPE_L3_IPV4,
1770                 RTE_PTYPE_L3_IPV4_EXT,
1771                 RTE_PTYPE_L3_IPV6_EXT,
1772                 RTE_PTYPE_L3_IPV6,
1773                 RTE_PTYPE_L4_FRAG,
1774                 RTE_PTYPE_L4_UDP,
1775                 RTE_PTYPE_L4_TCP,
1776                 RTE_PTYPE_L4_SCTP,
1777         };
1778
1779         return ptypes;
1780 }
1781
1782 static int
1783 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1784                   struct rte_eth_fc_conf *fc_conf)
1785 {
1786         fc_conf->mode = RTE_FC_NONE;
1787         return 0;
1788 }
1789
1790 static int
1791 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1792                   struct rte_eth_fc_conf *fc_conf)
1793 {
1794         if (fc_conf->mode != RTE_FC_NONE)
1795                 return -ENOTSUP;
1796         return 0;
1797 }
1798
1799 /**
1800  * DPDK callback to update the RSS hash configuration.
1801  *
1802  * @param dev
1803  *   Pointer to Ethernet device structure.
1804  * @param[in] rss_conf
1805  *   RSS configuration data.
1806  *
1807  * @return
1808  *   0 on success, a negative errno value otherwise and rte_errno is set.
1809  */
1810 static int
1811 tap_rss_hash_update(struct rte_eth_dev *dev,
1812                 struct rte_eth_rss_conf *rss_conf)
1813 {
1814         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1815                 rte_errno = EINVAL;
1816                 return -rte_errno;
1817         }
1818         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1819                 /*
1820                  * Currently TAP RSS key is hard coded
1821                  * and cannot be updated
1822                  */
1823                 TAP_LOG(ERR,
1824                         "port %u RSS key cannot be updated",
1825                         dev->data->port_id);
1826                 rte_errno = EINVAL;
1827                 return -rte_errno;
1828         }
1829         return 0;
1830 }
1831
1832 static int
1833 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1834 {
1835         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1836
1837         return 0;
1838 }
1839
1840 static int
1841 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1842 {
1843         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1844
1845         return 0;
1846 }
1847
1848 static int
1849 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1850 {
1851         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1852
1853         return 0;
1854 }
1855
1856 static int
1857 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1858 {
1859         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1860
1861         return 0;
1862 }
1863 static const struct eth_dev_ops ops = {
1864         .dev_start              = tap_dev_start,
1865         .dev_stop               = tap_dev_stop,
1866         .dev_close              = tap_dev_close,
1867         .dev_configure          = tap_dev_configure,
1868         .dev_infos_get          = tap_dev_info,
1869         .rx_queue_setup         = tap_rx_queue_setup,
1870         .tx_queue_setup         = tap_tx_queue_setup,
1871         .rx_queue_start         = tap_rx_queue_start,
1872         .tx_queue_start         = tap_tx_queue_start,
1873         .rx_queue_stop          = tap_rx_queue_stop,
1874         .tx_queue_stop          = tap_tx_queue_stop,
1875         .rx_queue_release       = tap_rx_queue_release,
1876         .tx_queue_release       = tap_tx_queue_release,
1877         .flow_ctrl_get          = tap_flow_ctrl_get,
1878         .flow_ctrl_set          = tap_flow_ctrl_set,
1879         .link_update            = tap_link_update,
1880         .dev_set_link_up        = tap_link_set_up,
1881         .dev_set_link_down      = tap_link_set_down,
1882         .promiscuous_enable     = tap_promisc_enable,
1883         .promiscuous_disable    = tap_promisc_disable,
1884         .allmulticast_enable    = tap_allmulti_enable,
1885         .allmulticast_disable   = tap_allmulti_disable,
1886         .mac_addr_set           = tap_mac_set,
1887         .mtu_set                = tap_mtu_set,
1888         .set_mc_addr_list       = tap_set_mc_addr_list,
1889         .stats_get              = tap_stats_get,
1890         .stats_reset            = tap_stats_reset,
1891         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1892         .rss_hash_update        = tap_rss_hash_update,
1893         .flow_ops_get           = tap_dev_flow_ops_get,
1894 };
1895
1896 static int
1897 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1898                    char *remote_iface, struct rte_ether_addr *mac_addr,
1899                    enum rte_tuntap_type type)
1900 {
1901         int numa_node = rte_socket_id();
1902         struct rte_eth_dev *dev;
1903         struct pmd_internals *pmd;
1904         struct pmd_process_private *process_private;
1905         const char *tuntap_name = tuntap_types[type];
1906         struct rte_eth_dev_data *data;
1907         struct ifreq ifr;
1908         int i;
1909
1910         TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1911
1912         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1913         if (!dev) {
1914                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1915                                 tuntap_name);
1916                 goto error_exit_nodev;
1917         }
1918
1919         process_private = (struct pmd_process_private *)
1920                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1921                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1922
1923         if (process_private == NULL) {
1924                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1925                 return -1;
1926         }
1927         pmd = dev->data->dev_private;
1928         dev->process_private = process_private;
1929         pmd->dev = dev;
1930         strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1931         pmd->type = type;
1932         pmd->ka_fd = -1;
1933         pmd->nlsk_fd = -1;
1934         pmd->gso_ctx_mp = NULL;
1935
1936         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1937         if (pmd->ioctl_sock == -1) {
1938                 TAP_LOG(ERR,
1939                         "%s Unable to get a socket for management: %s",
1940                         tuntap_name, strerror(errno));
1941                 goto error_exit;
1942         }
1943
1944         /* Setup some default values */
1945         data = dev->data;
1946         data->dev_private = pmd;
1947         data->dev_flags = RTE_ETH_DEV_INTR_LSC |
1948                                 RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1949         data->numa_node = numa_node;
1950
1951         data->dev_link = pmd_link;
1952         data->mac_addrs = &pmd->eth_addr;
1953         /* Set the number of RX and TX queues */
1954         data->nb_rx_queues = 0;
1955         data->nb_tx_queues = 0;
1956
1957         dev->dev_ops = &ops;
1958         dev->rx_pkt_burst = pmd_rx_burst;
1959         dev->tx_pkt_burst = pmd_tx_burst;
1960
1961         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1962         pmd->intr_handle.fd = -1;
1963         dev->intr_handle = &pmd->intr_handle;
1964
1965         /* Presetup the fds to -1 as being not valid */
1966         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1967                 process_private->rxq_fds[i] = -1;
1968                 process_private->txq_fds[i] = -1;
1969         }
1970
1971         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1972                 if (rte_is_zero_ether_addr(mac_addr))
1973                         rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
1974                 else
1975                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1976         }
1977
1978         /*
1979          * Allocate a TUN device keep-alive file descriptor that will only be
1980          * closed when the TUN device itself is closed or removed.
1981          * This keep-alive file descriptor will guarantee that the TUN device
1982          * exists even when all of its queues are closed
1983          */
1984         pmd->ka_fd = tun_alloc(pmd, 1);
1985         if (pmd->ka_fd == -1) {
1986                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1987                 goto error_exit;
1988         }
1989         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1990
1991         ifr.ifr_mtu = dev->data->mtu;
1992         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1993                 goto error_exit;
1994
1995         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1996                 memset(&ifr, 0, sizeof(struct ifreq));
1997                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1998                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1999                                 RTE_ETHER_ADDR_LEN);
2000                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
2001                         goto error_exit;
2002         }
2003
2004         /*
2005          * Set up everything related to rte_flow:
2006          * - netlink socket
2007          * - tap / remote if_index
2008          * - mandatory QDISCs
2009          * - rte_flow actual/implicit lists
2010          * - implicit rules
2011          */
2012         pmd->nlsk_fd = tap_nl_init(0);
2013         if (pmd->nlsk_fd == -1) {
2014                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
2015                         pmd->name);
2016                 goto disable_rte_flow;
2017         }
2018         pmd->if_index = if_nametoindex(pmd->name);
2019         if (!pmd->if_index) {
2020                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
2021                 goto disable_rte_flow;
2022         }
2023         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
2024                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
2025                         pmd->name);
2026                 goto disable_rte_flow;
2027         }
2028         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
2029                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2030                         pmd->name);
2031                 goto disable_rte_flow;
2032         }
2033         LIST_INIT(&pmd->flows);
2034
2035         if (strlen(remote_iface)) {
2036                 pmd->remote_if_index = if_nametoindex(remote_iface);
2037                 if (!pmd->remote_if_index) {
2038                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
2039                                 pmd->name, remote_iface);
2040                         goto error_remote;
2041                 }
2042                 strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
2043
2044                 /* Save state of remote device */
2045                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
2046
2047                 /* Replicate remote MAC address */
2048                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
2049                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2050                                 pmd->name, pmd->remote_iface);
2051                         goto error_remote;
2052                 }
2053                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
2054                            RTE_ETHER_ADDR_LEN);
2055                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
2056                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
2057                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2058                                 pmd->name, remote_iface);
2059                         goto error_remote;
2060                 }
2061
2062                 /*
2063                  * Flush usually returns negative value because it tries to
2064                  * delete every QDISC (and on a running device, one QDISC at
2065                  * least is needed). Ignore negative return value.
2066                  */
2067                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
2068                 if (qdisc_create_ingress(pmd->nlsk_fd,
2069                                          pmd->remote_if_index) < 0) {
2070                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2071                                 pmd->remote_iface);
2072                         goto error_remote;
2073                 }
2074                 LIST_INIT(&pmd->implicit_flows);
2075                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
2076                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
2077                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
2078                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
2079                         TAP_LOG(ERR,
2080                                 "%s: failed to create implicit rules.",
2081                                 pmd->name);
2082                         goto error_remote;
2083                 }
2084         }
2085
2086         rte_eth_dev_probing_finish(dev);
2087         return 0;
2088
2089 disable_rte_flow:
2090         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2091                 strerror(errno), errno);
2092         if (strlen(remote_iface)) {
2093                 TAP_LOG(ERR, "Remote feature requires flow support.");
2094                 goto error_exit;
2095         }
2096         rte_eth_dev_probing_finish(dev);
2097         return 0;
2098
2099 error_remote:
2100         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2101                 strerror(errno), errno);
2102         tap_flow_implicit_flush(pmd, NULL);
2103
2104 error_exit:
2105         if (pmd->nlsk_fd != -1)
2106                 close(pmd->nlsk_fd);
2107         if (pmd->ka_fd != -1)
2108                 close(pmd->ka_fd);
2109         if (pmd->ioctl_sock != -1)
2110                 close(pmd->ioctl_sock);
2111         /* mac_addrs must not be freed alone because part of dev_private */
2112         dev->data->mac_addrs = NULL;
2113         rte_eth_dev_release_port(dev);
2114
2115 error_exit_nodev:
2116         TAP_LOG(ERR, "%s Unable to initialize %s",
2117                 tuntap_name, rte_vdev_device_name(vdev));
2118
2119         return -EINVAL;
2120 }
2121
2122 /* make sure name is a possible Linux network device name */
2123 static bool
2124 is_valid_iface(const char *name)
2125 {
2126         if (*name == '\0')
2127                 return false;
2128
2129         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2130                 return false;
2131
2132         while (*name) {
2133                 if (*name == '/' || *name == ':' || isspace(*name))
2134                         return false;
2135                 name++;
2136         }
2137         return true;
2138 }
2139
2140 static int
2141 set_interface_name(const char *key __rte_unused,
2142                    const char *value,
2143                    void *extra_args)
2144 {
2145         char *name = (char *)extra_args;
2146
2147         if (value) {
2148                 if (!is_valid_iface(value)) {
2149                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2150                                 value);
2151                         return -1;
2152                 }
2153                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2154         } else {
2155                 /* use tap%d which causes kernel to choose next available */
2156                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2157         }
2158         return 0;
2159 }
2160
2161 static int
2162 set_remote_iface(const char *key __rte_unused,
2163                  const char *value,
2164                  void *extra_args)
2165 {
2166         char *name = (char *)extra_args;
2167
2168         if (value) {
2169                 if (!is_valid_iface(value)) {
2170                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2171                                 value);
2172                         return -1;
2173                 }
2174                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2175         }
2176
2177         return 0;
2178 }
2179
2180 static int parse_user_mac(struct rte_ether_addr *user_mac,
2181                 const char *value)
2182 {
2183         unsigned int index = 0;
2184         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2185
2186         if (user_mac == NULL || value == NULL)
2187                 return 0;
2188
2189         strlcpy(mac_temp, value, sizeof(mac_temp));
2190         mac_byte = strtok(mac_temp, ":");
2191
2192         while ((mac_byte != NULL) &&
2193                         (strlen(mac_byte) <= 2) &&
2194                         (strlen(mac_byte) == strspn(mac_byte,
2195                                         ETH_TAP_CMP_MAC_FMT))) {
2196                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2197                 mac_byte = strtok(NULL, ":");
2198         }
2199
2200         return index;
2201 }
2202
2203 static int
2204 set_mac_type(const char *key __rte_unused,
2205              const char *value,
2206              void *extra_args)
2207 {
2208         struct rte_ether_addr *user_mac = extra_args;
2209
2210         if (!value)
2211                 return 0;
2212
2213         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2214                 static int iface_idx;
2215
2216                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
2217                 memcpy((char *)user_mac->addr_bytes, "\0dtap",
2218                         RTE_ETHER_ADDR_LEN);
2219                 user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2220                         iface_idx++ + '0';
2221                 goto success;
2222         }
2223
2224         if (parse_user_mac(user_mac, value) != 6)
2225                 goto error;
2226 success:
2227         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2228         return 0;
2229
2230 error:
2231         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2232                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2233         return -1;
2234 }
2235
2236 /*
2237  * Open a TUN interface device. TUN PMD
2238  * 1) sets tap_type as false
2239  * 2) intakes iface as argument.
2240  * 3) as interface is virtual set speed to 10G
2241  */
2242 static int
2243 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2244 {
2245         const char *name, *params;
2246         int ret;
2247         struct rte_kvargs *kvlist = NULL;
2248         char tun_name[RTE_ETH_NAME_MAX_LEN];
2249         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2250         struct rte_eth_dev *eth_dev;
2251
2252         name = rte_vdev_device_name(dev);
2253         params = rte_vdev_device_args(dev);
2254         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2255
2256         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2257             strlen(params) == 0) {
2258                 eth_dev = rte_eth_dev_attach_secondary(name);
2259                 if (!eth_dev) {
2260                         TAP_LOG(ERR, "Failed to probe %s", name);
2261                         return -1;
2262                 }
2263                 eth_dev->dev_ops = &ops;
2264                 eth_dev->device = &dev->device;
2265                 rte_eth_dev_probing_finish(eth_dev);
2266                 return 0;
2267         }
2268
2269         /* use tun%d which causes kernel to choose next available */
2270         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2271
2272         if (params && (params[0] != '\0')) {
2273                 TAP_LOG(DEBUG, "parameters (%s)", params);
2274
2275                 kvlist = rte_kvargs_parse(params, valid_arguments);
2276                 if (kvlist) {
2277                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2278                                 ret = rte_kvargs_process(kvlist,
2279                                         ETH_TAP_IFACE_ARG,
2280                                         &set_interface_name,
2281                                         tun_name);
2282
2283                                 if (ret == -1)
2284                                         goto leave;
2285                         }
2286                 }
2287         }
2288         pmd_link.link_speed = ETH_SPEED_NUM_10G;
2289
2290         TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2291
2292         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2293                                  ETH_TUNTAP_TYPE_TUN);
2294
2295 leave:
2296         if (ret == -1) {
2297                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2298                         name, tun_name);
2299         }
2300         rte_kvargs_free(kvlist);
2301
2302         return ret;
2303 }
2304
2305 /* Request queue file descriptors from secondary to primary. */
2306 static int
2307 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2308 {
2309         int ret;
2310         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2311         struct rte_mp_msg request, *reply;
2312         struct rte_mp_reply replies;
2313         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2314         struct ipc_queues *reply_param;
2315         struct pmd_process_private *process_private = dev->process_private;
2316         int queue, fd_iterator;
2317
2318         /* Prepare the request */
2319         memset(&request, 0, sizeof(request));
2320         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2321         strlcpy(request_param->port_name, port_name,
2322                 sizeof(request_param->port_name));
2323         request.len_param = sizeof(*request_param);
2324         /* Send request and receive reply */
2325         ret = rte_mp_request_sync(&request, &replies, &timeout);
2326         if (ret < 0 || replies.nb_received != 1) {
2327                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2328                         rte_errno);
2329                 return -1;
2330         }
2331         reply = &replies.msgs[0];
2332         reply_param = (struct ipc_queues *)reply->param;
2333         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2334
2335         /* Attach the queues from received file descriptors */
2336         if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2337                 TAP_LOG(ERR, "Unexpected number of fds received");
2338                 return -1;
2339         }
2340
2341         dev->data->nb_rx_queues = reply_param->rxq_count;
2342         dev->data->nb_tx_queues = reply_param->txq_count;
2343         fd_iterator = 0;
2344         for (queue = 0; queue < reply_param->rxq_count; queue++)
2345                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2346         for (queue = 0; queue < reply_param->txq_count; queue++)
2347                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2348         free(reply);
2349         return 0;
2350 }
2351
2352 /* Send the queue file descriptors from the primary process to secondary. */
2353 static int
2354 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2355 {
2356         struct rte_eth_dev *dev;
2357         struct pmd_process_private *process_private;
2358         struct rte_mp_msg reply;
2359         const struct ipc_queues *request_param =
2360                 (const struct ipc_queues *)request->param;
2361         struct ipc_queues *reply_param =
2362                 (struct ipc_queues *)reply.param;
2363         uint16_t port_id;
2364         int queue;
2365         int ret;
2366
2367         /* Get requested port */
2368         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2369         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2370         if (ret) {
2371                 TAP_LOG(ERR, "Failed to get port id for %s",
2372                         request_param->port_name);
2373                 return -1;
2374         }
2375         dev = &rte_eth_devices[port_id];
2376         process_private = dev->process_private;
2377
2378         /* Fill file descriptors for all queues */
2379         reply.num_fds = 0;
2380         reply_param->rxq_count = 0;
2381         if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2382                         RTE_MP_MAX_FD_NUM){
2383                 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2384                 return -1;
2385         }
2386
2387         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2388                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2389                 reply_param->rxq_count++;
2390         }
2391         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2392
2393         reply_param->txq_count = 0;
2394         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2395                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2396                 reply_param->txq_count++;
2397         }
2398         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2399
2400         /* Send reply */
2401         strlcpy(reply.name, request->name, sizeof(reply.name));
2402         strlcpy(reply_param->port_name, request_param->port_name,
2403                 sizeof(reply_param->port_name));
2404         reply.len_param = sizeof(*reply_param);
2405         if (rte_mp_reply(&reply, peer) < 0) {
2406                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2407                 return -1;
2408         }
2409         return 0;
2410 }
2411
2412 /* Open a TAP interface device.
2413  */
2414 static int
2415 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2416 {
2417         const char *name, *params;
2418         int ret;
2419         struct rte_kvargs *kvlist = NULL;
2420         int speed;
2421         char tap_name[RTE_ETH_NAME_MAX_LEN];
2422         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2423         struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2424         struct rte_eth_dev *eth_dev;
2425         int tap_devices_count_increased = 0;
2426
2427         name = rte_vdev_device_name(dev);
2428         params = rte_vdev_device_args(dev);
2429
2430         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2431                 eth_dev = rte_eth_dev_attach_secondary(name);
2432                 if (!eth_dev) {
2433                         TAP_LOG(ERR, "Failed to probe %s", name);
2434                         return -1;
2435                 }
2436                 eth_dev->dev_ops = &ops;
2437                 eth_dev->device = &dev->device;
2438                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2439                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2440                 if (!rte_eal_primary_proc_alive(NULL)) {
2441                         TAP_LOG(ERR, "Primary process is missing");
2442                         return -1;
2443                 }
2444                 eth_dev->process_private = (struct pmd_process_private *)
2445                         rte_zmalloc_socket(name,
2446                                 sizeof(struct pmd_process_private),
2447                                 RTE_CACHE_LINE_SIZE,
2448                                 eth_dev->device->numa_node);
2449                 if (eth_dev->process_private == NULL) {
2450                         TAP_LOG(ERR,
2451                                 "Failed to alloc memory for process private");
2452                         return -1;
2453                 }
2454
2455                 ret = tap_mp_attach_queues(name, eth_dev);
2456                 if (ret != 0)
2457                         return -1;
2458                 rte_eth_dev_probing_finish(eth_dev);
2459                 return 0;
2460         }
2461
2462         speed = ETH_SPEED_NUM_10G;
2463
2464         /* use tap%d which causes kernel to choose next available */
2465         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2466         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2467
2468         if (params && (params[0] != '\0')) {
2469                 TAP_LOG(DEBUG, "parameters (%s)", params);
2470
2471                 kvlist = rte_kvargs_parse(params, valid_arguments);
2472                 if (kvlist) {
2473                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2474                                 ret = rte_kvargs_process(kvlist,
2475                                                          ETH_TAP_IFACE_ARG,
2476                                                          &set_interface_name,
2477                                                          tap_name);
2478                                 if (ret == -1)
2479                                         goto leave;
2480                         }
2481
2482                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2483                                 ret = rte_kvargs_process(kvlist,
2484                                                          ETH_TAP_REMOTE_ARG,
2485                                                          &set_remote_iface,
2486                                                          remote_iface);
2487                                 if (ret == -1)
2488                                         goto leave;
2489                         }
2490
2491                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2492                                 ret = rte_kvargs_process(kvlist,
2493                                                          ETH_TAP_MAC_ARG,
2494                                                          &set_mac_type,
2495                                                          &user_mac);
2496                                 if (ret == -1)
2497                                         goto leave;
2498                         }
2499                 }
2500         }
2501         pmd_link.link_speed = speed;
2502
2503         TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2504
2505         /* Register IPC feed callback */
2506         if (!tap_devices_count) {
2507                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2508                 if (ret < 0 && rte_errno != ENOTSUP) {
2509                         TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2510                                 strerror(rte_errno));
2511                         goto leave;
2512                 }
2513         }
2514         tap_devices_count++;
2515         tap_devices_count_increased = 1;
2516         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2517                 ETH_TUNTAP_TYPE_TAP);
2518
2519 leave:
2520         if (ret == -1) {
2521                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2522                         name, tap_name);
2523                 if (tap_devices_count_increased == 1) {
2524                         if (tap_devices_count == 1)
2525                                 rte_mp_action_unregister(TAP_MP_KEY);
2526                         tap_devices_count--;
2527                 }
2528         }
2529         rte_kvargs_free(kvlist);
2530
2531         return ret;
2532 }
2533
2534 /* detach a TUNTAP device.
2535  */
2536 static int
2537 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2538 {
2539         struct rte_eth_dev *eth_dev = NULL;
2540
2541         /* find the ethdev entry */
2542         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2543         if (!eth_dev)
2544                 return 0;
2545
2546         tap_dev_close(eth_dev);
2547         rte_eth_dev_release_port(eth_dev);
2548
2549         return 0;
2550 }
2551
2552 static struct rte_vdev_driver pmd_tun_drv = {
2553         .probe = rte_pmd_tun_probe,
2554         .remove = rte_pmd_tap_remove,
2555 };
2556
2557 static struct rte_vdev_driver pmd_tap_drv = {
2558         .probe = rte_pmd_tap_probe,
2559         .remove = rte_pmd_tap_remove,
2560 };
2561
2562 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2563 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2564 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2565 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2566                               ETH_TAP_IFACE_ARG "=<string> ");
2567 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2568                               ETH_TAP_IFACE_ARG "=<string> "
2569                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2570                               ETH_TAP_REMOTE_ARG "=<string>");
2571 RTE_LOG_REGISTER(tap_logtype, pmd.net.tap, NOTICE);