d422fac8c24974bbb28fb61752b6fdcee682ab3d
[dpdk.git] / drivers / net / virtio / virtqueue.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #ifndef _VIRTQUEUE_H_
6 #define _VIRTQUEUE_H_
7
8 #include <stdint.h>
9
10 #include <rte_atomic.h>
11 #include <rte_memory.h>
12 #include <rte_mempool.h>
13 #include <rte_net.h>
14
15 #include "virtio_pci.h"
16 #include "virtio_ring.h"
17 #include "virtio_logs.h"
18 #include "virtio_rxtx.h"
19
20 struct rte_mbuf;
21
22 #define DEFAULT_TX_FREE_THRESH 32
23 #define DEFAULT_RX_FREE_THRESH 32
24
25 #define VIRTIO_MBUF_BURST_SZ 64
26 /*
27  * Per virtio_ring.h in Linux.
28  *     For virtio_pci on SMP, we don't need to order with respect to MMIO
29  *     accesses through relaxed memory I/O windows, so smp_mb() et al are
30  *     sufficient.
31  *
32  *     For using virtio to talk to real devices (eg. vDPA) we do need real
33  *     barriers.
34  */
35 static inline void
36 virtio_mb(uint8_t weak_barriers)
37 {
38         if (weak_barriers)
39                 rte_smp_mb();
40         else
41                 rte_mb();
42 }
43
44 static inline void
45 virtio_rmb(uint8_t weak_barriers)
46 {
47         if (weak_barriers)
48                 rte_smp_rmb();
49         else
50                 rte_cio_rmb();
51 }
52
53 static inline void
54 virtio_wmb(uint8_t weak_barriers)
55 {
56         if (weak_barriers)
57                 rte_smp_wmb();
58         else
59                 rte_cio_wmb();
60 }
61
62 static inline uint16_t
63 virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
64                               uint8_t weak_barriers)
65 {
66         uint16_t flags;
67
68         if (weak_barriers) {
69 /* x86 prefers to using rte_smp_rmb over __atomic_load_n as it reports
70  * a better perf(~1.5%), which comes from the saved branch by the compiler.
71  * The if and else branch are identical with the smp and cio barriers both
72  * defined as compiler barriers on x86.
73  */
74 #ifdef RTE_ARCH_X86_64
75                 flags = dp->flags;
76                 rte_smp_rmb();
77 #else
78                 flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE);
79 #endif
80         } else {
81                 flags = dp->flags;
82                 rte_cio_rmb();
83         }
84
85         return flags;
86 }
87
88 static inline void
89 virtqueue_store_flags_packed(struct vring_packed_desc *dp,
90                               uint16_t flags, uint8_t weak_barriers)
91 {
92         if (weak_barriers) {
93 /* x86 prefers to using rte_smp_wmb over __atomic_store_n as it reports
94  * a better perf(~1.5%), which comes from the saved branch by the compiler.
95  * The if and else branch are identical with the smp and cio barriers both
96  * defined as compiler barriers on x86.
97  */
98 #ifdef RTE_ARCH_X86_64
99                 rte_smp_wmb();
100                 dp->flags = flags;
101 #else
102                 __atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE);
103 #endif
104         } else {
105                 rte_cio_wmb();
106                 dp->flags = flags;
107         }
108 }
109 #ifdef RTE_PMD_PACKET_PREFETCH
110 #define rte_packet_prefetch(p)  rte_prefetch1(p)
111 #else
112 #define rte_packet_prefetch(p)  do {} while(0)
113 #endif
114
115 #define VIRTQUEUE_MAX_NAME_SZ 32
116
117 #ifdef RTE_VIRTIO_USER
118 /**
119  * Return the physical address (or virtual address in case of
120  * virtio-user) of mbuf data buffer.
121  *
122  * The address is firstly casted to the word size (sizeof(uintptr_t))
123  * before casting it to uint64_t. This is to make it work with different
124  * combination of word size (64 bit and 32 bit) and virtio device
125  * (virtio-pci and virtio-user).
126  */
127 #define VIRTIO_MBUF_ADDR(mb, vq) \
128         ((uint64_t)(*(uintptr_t *)((uintptr_t)(mb) + (vq)->offset)))
129 #else
130 #define VIRTIO_MBUF_ADDR(mb, vq) ((mb)->buf_iova)
131 #endif
132
133 /**
134  * Return the physical address (or virtual address in case of
135  * virtio-user) of mbuf data buffer, taking care of mbuf data offset
136  */
137 #define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
138         (VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
139
140 #define VTNET_SQ_RQ_QUEUE_IDX 0
141 #define VTNET_SQ_TQ_QUEUE_IDX 1
142 #define VTNET_SQ_CQ_QUEUE_IDX 2
143
144 enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
145 /**
146  * The maximum virtqueue size is 2^15. Use that value as the end of
147  * descriptor chain terminator since it will never be a valid index
148  * in the descriptor table. This is used to verify we are correctly
149  * handling vq_free_cnt.
150  */
151 #define VQ_RING_DESC_CHAIN_END 32768
152
153 /**
154  * Control the RX mode, ie. promiscuous, allmulti, etc...
155  * All commands require an "out" sg entry containing a 1 byte
156  * state value, zero = disable, non-zero = enable.  Commands
157  * 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature.
158  * Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA.
159  */
160 #define VIRTIO_NET_CTRL_RX              0
161 #define VIRTIO_NET_CTRL_RX_PROMISC      0
162 #define VIRTIO_NET_CTRL_RX_ALLMULTI     1
163 #define VIRTIO_NET_CTRL_RX_ALLUNI       2
164 #define VIRTIO_NET_CTRL_RX_NOMULTI      3
165 #define VIRTIO_NET_CTRL_RX_NOUNI        4
166 #define VIRTIO_NET_CTRL_RX_NOBCAST      5
167
168 /**
169  * Control the MAC
170  *
171  * The MAC filter table is managed by the hypervisor, the guest should
172  * assume the size is infinite.  Filtering should be considered
173  * non-perfect, ie. based on hypervisor resources, the guest may
174  * received packets from sources not specified in the filter list.
175  *
176  * In addition to the class/cmd header, the TABLE_SET command requires
177  * two out scatterlists.  Each contains a 4 byte count of entries followed
178  * by a concatenated byte stream of the ETH_ALEN MAC addresses.  The
179  * first sg list contains unicast addresses, the second is for multicast.
180  * This functionality is present if the VIRTIO_NET_F_CTRL_RX feature
181  * is available.
182  *
183  * The ADDR_SET command requests one out scatterlist, it contains a
184  * 6 bytes MAC address. This functionality is present if the
185  * VIRTIO_NET_F_CTRL_MAC_ADDR feature is available.
186  */
187 struct virtio_net_ctrl_mac {
188         uint32_t entries;
189         uint8_t macs[][RTE_ETHER_ADDR_LEN];
190 } __rte_packed;
191
192 #define VIRTIO_NET_CTRL_MAC    1
193 #define VIRTIO_NET_CTRL_MAC_TABLE_SET        0
194 #define VIRTIO_NET_CTRL_MAC_ADDR_SET         1
195
196 /**
197  * Control VLAN filtering
198  *
199  * The VLAN filter table is controlled via a simple ADD/DEL interface.
200  * VLAN IDs not added may be filtered by the hypervisor.  Del is the
201  * opposite of add.  Both commands expect an out entry containing a 2
202  * byte VLAN ID.  VLAN filtering is available with the
203  * VIRTIO_NET_F_CTRL_VLAN feature bit.
204  */
205 #define VIRTIO_NET_CTRL_VLAN     2
206 #define VIRTIO_NET_CTRL_VLAN_ADD 0
207 #define VIRTIO_NET_CTRL_VLAN_DEL 1
208
209 /*
210  * Control link announce acknowledgement
211  *
212  * The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that
213  * driver has recevied the notification; device would clear the
214  * VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives
215  * this command.
216  */
217 #define VIRTIO_NET_CTRL_ANNOUNCE     3
218 #define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0
219
220 struct virtio_net_ctrl_hdr {
221         uint8_t class;
222         uint8_t cmd;
223 } __rte_packed;
224
225 typedef uint8_t virtio_net_ctrl_ack;
226
227 #define VIRTIO_NET_OK     0
228 #define VIRTIO_NET_ERR    1
229
230 #define VIRTIO_MAX_CTRL_DATA 2048
231
232 struct virtio_pmd_ctrl {
233         struct virtio_net_ctrl_hdr hdr;
234         virtio_net_ctrl_ack status;
235         uint8_t data[VIRTIO_MAX_CTRL_DATA];
236 };
237
238 struct vq_desc_extra {
239         void *cookie;
240         uint16_t ndescs;
241         uint16_t next;
242 };
243
244 struct virtqueue {
245         struct virtio_hw  *hw; /**< virtio_hw structure pointer. */
246         union {
247                 struct {
248                         /**< vring keeping desc, used and avail */
249                         struct vring ring;
250                 } vq_split;
251
252                 struct {
253                         /**< vring keeping descs and events */
254                         struct vring_packed ring;
255                         bool used_wrap_counter;
256                         uint16_t cached_flags; /**< cached flags for descs */
257                         uint16_t event_flags_shadow;
258                 } vq_packed;
259         };
260
261         uint16_t vq_used_cons_idx; /**< last consumed descriptor */
262         uint16_t vq_nentries;  /**< vring desc numbers */
263         uint16_t vq_free_cnt;  /**< num of desc available */
264         uint16_t vq_avail_idx; /**< sync until needed */
265         uint16_t vq_free_thresh; /**< free threshold */
266
267         void *vq_ring_virt_mem;  /**< linear address of vring*/
268         unsigned int vq_ring_size;
269
270         union {
271                 struct virtnet_rx rxq;
272                 struct virtnet_tx txq;
273                 struct virtnet_ctl cq;
274         };
275
276         rte_iova_t vq_ring_mem; /**< physical address of vring,
277                                  * or virtual address for virtio_user. */
278
279         /**
280          * Head of the free chain in the descriptor table. If
281          * there are no free descriptors, this will be set to
282          * VQ_RING_DESC_CHAIN_END.
283          */
284         uint16_t  vq_desc_head_idx;
285         uint16_t  vq_desc_tail_idx;
286         uint16_t  vq_queue_index;   /**< PCI queue index */
287         uint16_t offset; /**< relative offset to obtain addr in mbuf */
288         uint16_t  *notify_addr;
289         struct rte_mbuf **sw_ring;  /**< RX software ring. */
290         struct vq_desc_extra vq_descx[0];
291 };
292
293 /* If multiqueue is provided by host, then we suppport it. */
294 #define VIRTIO_NET_CTRL_MQ   4
295 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET        0
296 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN        1
297 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX        0x8000
298
299 /**
300  * This is the first element of the scatter-gather list.  If you don't
301  * specify GSO or CSUM features, you can simply ignore the header.
302  */
303 struct virtio_net_hdr {
304 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1    /**< Use csum_start,csum_offset*/
305 #define VIRTIO_NET_HDR_F_DATA_VALID 2    /**< Checksum is valid */
306         uint8_t flags;
307 #define VIRTIO_NET_HDR_GSO_NONE     0    /**< Not a GSO frame */
308 #define VIRTIO_NET_HDR_GSO_TCPV4    1    /**< GSO frame, IPv4 TCP (TSO) */
309 #define VIRTIO_NET_HDR_GSO_UDP      3    /**< GSO frame, IPv4 UDP (UFO) */
310 #define VIRTIO_NET_HDR_GSO_TCPV6    4    /**< GSO frame, IPv6 TCP */
311 #define VIRTIO_NET_HDR_GSO_ECN      0x80 /**< TCP has ECN set */
312         uint8_t gso_type;
313         uint16_t hdr_len;     /**< Ethernet + IP + tcp/udp hdrs */
314         uint16_t gso_size;    /**< Bytes to append to hdr_len per frame */
315         uint16_t csum_start;  /**< Position to start checksumming from */
316         uint16_t csum_offset; /**< Offset after that to place checksum */
317 };
318
319 /**
320  * This is the version of the header to use when the MRG_RXBUF
321  * feature has been negotiated.
322  */
323 struct virtio_net_hdr_mrg_rxbuf {
324         struct   virtio_net_hdr hdr;
325         uint16_t num_buffers; /**< Number of merged rx buffers */
326 };
327
328 /* Region reserved to allow for transmit header and indirect ring */
329 #define VIRTIO_MAX_TX_INDIRECT 8
330 struct virtio_tx_region {
331         struct virtio_net_hdr_mrg_rxbuf tx_hdr;
332         struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT]
333                 __rte_aligned(16);
334 };
335
336 static inline int
337 desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
338 {
339         uint16_t used, avail, flags;
340
341         flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
342         used = !!(flags & VRING_PACKED_DESC_F_USED);
343         avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
344
345         return avail == used && used == vq->vq_packed.used_wrap_counter;
346 }
347
348 static inline void
349 vring_desc_init_packed(struct virtqueue *vq, int n)
350 {
351         int i;
352         for (i = 0; i < n - 1; i++) {
353                 vq->vq_packed.ring.desc[i].id = i;
354                 vq->vq_descx[i].next = i + 1;
355         }
356         vq->vq_packed.ring.desc[i].id = i;
357         vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
358 }
359
360 /* Chain all the descriptors in the ring with an END */
361 static inline void
362 vring_desc_init_split(struct vring_desc *dp, uint16_t n)
363 {
364         uint16_t i;
365
366         for (i = 0; i < n - 1; i++)
367                 dp[i].next = (uint16_t)(i + 1);
368         dp[i].next = VQ_RING_DESC_CHAIN_END;
369 }
370
371 /**
372  * Tell the backend not to interrupt us. Implementation for packed virtqueues.
373  */
374 static inline void
375 virtqueue_disable_intr_packed(struct virtqueue *vq)
376 {
377         if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
378                 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
379                 vq->vq_packed.ring.driver->desc_event_flags =
380                         vq->vq_packed.event_flags_shadow;
381         }
382 }
383
384 /**
385  * Tell the backend not to interrupt us. Implementation for split virtqueues.
386  */
387 static inline void
388 virtqueue_disable_intr_split(struct virtqueue *vq)
389 {
390         vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
391 }
392
393 /**
394  * Tell the backend not to interrupt us.
395  */
396 static inline void
397 virtqueue_disable_intr(struct virtqueue *vq)
398 {
399         if (vtpci_packed_queue(vq->hw))
400                 virtqueue_disable_intr_packed(vq);
401         else
402                 virtqueue_disable_intr_split(vq);
403 }
404
405 /**
406  * Tell the backend to interrupt. Implementation for packed virtqueues.
407  */
408 static inline void
409 virtqueue_enable_intr_packed(struct virtqueue *vq)
410 {
411         if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
412                 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
413                 vq->vq_packed.ring.driver->desc_event_flags =
414                         vq->vq_packed.event_flags_shadow;
415         }
416 }
417
418 /**
419  * Tell the backend to interrupt. Implementation for split virtqueues.
420  */
421 static inline void
422 virtqueue_enable_intr_split(struct virtqueue *vq)
423 {
424         vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
425 }
426
427 /**
428  * Tell the backend to interrupt us.
429  */
430 static inline void
431 virtqueue_enable_intr(struct virtqueue *vq)
432 {
433         if (vtpci_packed_queue(vq->hw))
434                 virtqueue_enable_intr_packed(vq);
435         else
436                 virtqueue_enable_intr_split(vq);
437 }
438
439 /**
440  *  Dump virtqueue internal structures, for debug purpose only.
441  */
442 void virtqueue_dump(struct virtqueue *vq);
443 /**
444  *  Get all mbufs to be freed.
445  */
446 struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
447
448 /* Flush the elements in the used ring. */
449 void virtqueue_rxvq_flush(struct virtqueue *vq);
450
451 int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
452
453 int virtqueue_txvq_reset_packed(struct virtqueue *vq);
454
455 static inline int
456 virtqueue_full(const struct virtqueue *vq)
457 {
458         return vq->vq_free_cnt == 0;
459 }
460
461 static inline int
462 virtio_get_queue_type(struct virtio_hw *hw, uint16_t vtpci_queue_idx)
463 {
464         if (vtpci_queue_idx == hw->max_queue_pairs * 2)
465                 return VTNET_CQ;
466         else if (vtpci_queue_idx % 2 == 0)
467                 return VTNET_RQ;
468         else
469                 return VTNET_TQ;
470 }
471
472 #define VIRTQUEUE_NUSED(vq) ((uint16_t)((vq)->vq_split.ring.used->idx - \
473                                         (vq)->vq_used_cons_idx))
474
475 void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
476 void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
477 void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
478                           uint16_t num);
479
480 static inline void
481 vq_update_avail_idx(struct virtqueue *vq)
482 {
483         virtio_wmb(vq->hw->weak_barriers);
484         vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
485 }
486
487 static inline void
488 vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
489 {
490         uint16_t avail_idx;
491         /*
492          * Place the head of the descriptor chain into the next slot and make
493          * it usable to the host. The chain is made available now rather than
494          * deferring to virtqueue_notify() in the hopes that if the host is
495          * currently running on another CPU, we can keep it processing the new
496          * descriptor.
497          */
498         avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
499         if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
500                 vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
501         vq->vq_avail_idx++;
502 }
503
504 static inline int
505 virtqueue_kick_prepare(struct virtqueue *vq)
506 {
507         /*
508          * Ensure updated avail->idx is visible to vhost before reading
509          * the used->flags.
510          */
511         virtio_mb(vq->hw->weak_barriers);
512         return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
513 }
514
515 static inline int
516 virtqueue_kick_prepare_packed(struct virtqueue *vq)
517 {
518         uint16_t flags;
519
520         /*
521          * Ensure updated data is visible to vhost before reading the flags.
522          */
523         virtio_mb(vq->hw->weak_barriers);
524         flags = vq->vq_packed.ring.device->desc_event_flags;
525
526         return flags != RING_EVENT_FLAGS_DISABLE;
527 }
528
529 /*
530  * virtqueue_kick_prepare*() or the virtio_wmb() should be called
531  * before this function to be sure that all the data is visible to vhost.
532  */
533 static inline void
534 virtqueue_notify(struct virtqueue *vq)
535 {
536         VTPCI_OPS(vq->hw)->notify_queue(vq->hw, vq);
537 }
538
539 #ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
540 #define VIRTQUEUE_DUMP(vq) do { \
541         uint16_t used_idx, nused; \
542         used_idx = (vq)->vq_split.ring.used->idx; \
543         nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
544         if (vtpci_packed_queue((vq)->hw)) { \
545                 PMD_INIT_LOG(DEBUG, \
546                 "VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
547                 " cached_flags=0x%x; used_wrap_counter=%d", \
548                 (vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
549                 (vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
550                 (vq)->vq_packed.used_wrap_counter); \
551                 break; \
552         } \
553         PMD_INIT_LOG(DEBUG, \
554           "VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
555           " avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
556           " avail.flags=0x%x; used.flags=0x%x", \
557           (vq)->vq_nentries, (vq)->vq_free_cnt, nused, \
558           (vq)->vq_desc_head_idx, (vq)->vq_split.ring.avail->idx, \
559           (vq)->vq_used_cons_idx, (vq)->vq_split.ring.used->idx, \
560           (vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
561 } while (0)
562 #else
563 #define VIRTQUEUE_DUMP(vq) do { } while (0)
564 #endif
565
566 /* avoid write operation when necessary, to lessen cache issues */
567 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
568         typeof(var) var_ = (var);               \
569         typeof(val) val_ = (val);               \
570         if ((var_) != (val_))                   \
571                 (var_) = (val_);                \
572 } while (0)
573
574 #define virtqueue_clear_net_hdr(hdr) do {               \
575         typeof(hdr) hdr_ = (hdr);                       \
576         ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0);     \
577         ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0);    \
578         ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0);          \
579         ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0);       \
580         ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0);       \
581         ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0);        \
582 } while (0)
583
584 static inline void
585 virtqueue_xmit_offload(struct virtio_net_hdr *hdr,
586                         struct rte_mbuf *cookie,
587                         bool offload)
588 {
589         if (offload) {
590                 if (cookie->ol_flags & PKT_TX_TCP_SEG)
591                         cookie->ol_flags |= PKT_TX_TCP_CKSUM;
592
593                 switch (cookie->ol_flags & PKT_TX_L4_MASK) {
594                 case PKT_TX_UDP_CKSUM:
595                         hdr->csum_start = cookie->l2_len + cookie->l3_len;
596                         hdr->csum_offset = offsetof(struct rte_udp_hdr,
597                                 dgram_cksum);
598                         hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
599                         break;
600
601                 case PKT_TX_TCP_CKSUM:
602                         hdr->csum_start = cookie->l2_len + cookie->l3_len;
603                         hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
604                         hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
605                         break;
606
607                 default:
608                         ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
609                         ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
610                         ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
611                         break;
612                 }
613
614                 /* TCP Segmentation Offload */
615                 if (cookie->ol_flags & PKT_TX_TCP_SEG) {
616                         hdr->gso_type = (cookie->ol_flags & PKT_TX_IPV6) ?
617                                 VIRTIO_NET_HDR_GSO_TCPV6 :
618                                 VIRTIO_NET_HDR_GSO_TCPV4;
619                         hdr->gso_size = cookie->tso_segsz;
620                         hdr->hdr_len =
621                                 cookie->l2_len +
622                                 cookie->l3_len +
623                                 cookie->l4_len;
624                 } else {
625                         ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
626                         ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
627                         ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
628                 }
629         }
630 }
631
632 static inline void
633 virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
634                               uint16_t needed, int can_push, int in_order)
635 {
636         struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr;
637         struct vq_desc_extra *dxp;
638         struct virtqueue *vq = txvq->vq;
639         struct vring_packed_desc *start_dp, *head_dp;
640         uint16_t idx, id, head_idx, head_flags;
641         int16_t head_size = vq->hw->vtnet_hdr_size;
642         struct virtio_net_hdr *hdr;
643         uint16_t prev;
644         bool prepend_header = false;
645
646         id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
647
648         dxp = &vq->vq_descx[id];
649         dxp->ndescs = needed;
650         dxp->cookie = cookie;
651
652         head_idx = vq->vq_avail_idx;
653         idx = head_idx;
654         prev = head_idx;
655         start_dp = vq->vq_packed.ring.desc;
656
657         head_dp = &vq->vq_packed.ring.desc[idx];
658         head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
659         head_flags |= vq->vq_packed.cached_flags;
660
661         if (can_push) {
662                 /* prepend cannot fail, checked by caller */
663                 hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
664                                               -head_size);
665                 prepend_header = true;
666
667                 /* if offload disabled, it is not zeroed below, do it now */
668                 if (!vq->hw->has_tx_offload)
669                         virtqueue_clear_net_hdr(hdr);
670         } else {
671                 /* setup first tx ring slot to point to header
672                  * stored in reserved region.
673                  */
674                 start_dp[idx].addr  = txvq->virtio_net_hdr_mem +
675                         RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
676                 start_dp[idx].len   = vq->hw->vtnet_hdr_size;
677                 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
678                 idx++;
679                 if (idx >= vq->vq_nentries) {
680                         idx -= vq->vq_nentries;
681                         vq->vq_packed.cached_flags ^=
682                                 VRING_PACKED_DESC_F_AVAIL_USED;
683                 }
684         }
685
686         virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload);
687
688         do {
689                 uint16_t flags;
690
691                 start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
692                 start_dp[idx].len  = cookie->data_len;
693                 if (prepend_header) {
694                         start_dp[idx].addr -= head_size;
695                         start_dp[idx].len += head_size;
696                         prepend_header = false;
697                 }
698
699                 if (likely(idx != head_idx)) {
700                         flags = cookie->next ? VRING_DESC_F_NEXT : 0;
701                         flags |= vq->vq_packed.cached_flags;
702                         start_dp[idx].flags = flags;
703                 }
704                 prev = idx;
705                 idx++;
706                 if (idx >= vq->vq_nentries) {
707                         idx -= vq->vq_nentries;
708                         vq->vq_packed.cached_flags ^=
709                                 VRING_PACKED_DESC_F_AVAIL_USED;
710                 }
711         } while ((cookie = cookie->next) != NULL);
712
713         start_dp[prev].id = id;
714
715         vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
716         vq->vq_avail_idx = idx;
717
718         if (!in_order) {
719                 vq->vq_desc_head_idx = dxp->next;
720                 if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
721                         vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
722         }
723
724         virtqueue_store_flags_packed(head_dp, head_flags,
725                                      vq->hw->weak_barriers);
726 }
727
728 static void
729 vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
730 {
731         struct vq_desc_extra *dxp;
732
733         dxp = &vq->vq_descx[id];
734         vq->vq_free_cnt += dxp->ndescs;
735
736         if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
737                 vq->vq_desc_head_idx = id;
738         else
739                 vq->vq_descx[vq->vq_desc_tail_idx].next = id;
740
741         vq->vq_desc_tail_idx = id;
742         dxp->next = VQ_RING_DESC_CHAIN_END;
743 }
744
745 static void
746 virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, int num)
747 {
748         uint16_t used_idx, id, curr_id, free_cnt = 0;
749         uint16_t size = vq->vq_nentries;
750         struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
751         struct vq_desc_extra *dxp;
752
753         used_idx = vq->vq_used_cons_idx;
754         /* desc_is_used has a load-acquire or rte_cio_rmb inside
755          * and wait for used desc in virtqueue.
756          */
757         while (num > 0 && desc_is_used(&desc[used_idx], vq)) {
758                 id = desc[used_idx].id;
759                 do {
760                         curr_id = used_idx;
761                         dxp = &vq->vq_descx[used_idx];
762                         used_idx += dxp->ndescs;
763                         free_cnt += dxp->ndescs;
764                         num -= dxp->ndescs;
765                         if (used_idx >= size) {
766                                 used_idx -= size;
767                                 vq->vq_packed.used_wrap_counter ^= 1;
768                         }
769                         if (dxp->cookie != NULL) {
770                                 rte_pktmbuf_free(dxp->cookie);
771                                 dxp->cookie = NULL;
772                         }
773                 } while (curr_id != id);
774         }
775         vq->vq_used_cons_idx = used_idx;
776         vq->vq_free_cnt += free_cnt;
777 }
778
779 static void
780 virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, int num)
781 {
782         uint16_t used_idx, id;
783         uint16_t size = vq->vq_nentries;
784         struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
785         struct vq_desc_extra *dxp;
786
787         used_idx = vq->vq_used_cons_idx;
788         /* desc_is_used has a load-acquire or rte_cio_rmb inside
789          * and wait for used desc in virtqueue.
790          */
791         while (num-- && desc_is_used(&desc[used_idx], vq)) {
792                 id = desc[used_idx].id;
793                 dxp = &vq->vq_descx[id];
794                 vq->vq_used_cons_idx += dxp->ndescs;
795                 if (vq->vq_used_cons_idx >= size) {
796                         vq->vq_used_cons_idx -= size;
797                         vq->vq_packed.used_wrap_counter ^= 1;
798                 }
799                 vq_ring_free_id_packed(vq, id);
800                 if (dxp->cookie != NULL) {
801                         rte_pktmbuf_free(dxp->cookie);
802                         dxp->cookie = NULL;
803                 }
804                 used_idx = vq->vq_used_cons_idx;
805         }
806 }
807
808 /* Cleanup from completed transmits. */
809 static inline void
810 virtio_xmit_cleanup_packed(struct virtqueue *vq, int num, int in_order)
811 {
812         if (in_order)
813                 virtio_xmit_cleanup_inorder_packed(vq, num);
814         else
815                 virtio_xmit_cleanup_normal_packed(vq, num);
816 }
817
818 static inline void
819 virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
820 {
821         uint16_t i, used_idx, desc_idx;
822         for (i = 0; i < num; i++) {
823                 struct vring_used_elem *uep;
824                 struct vq_desc_extra *dxp;
825
826                 used_idx = (uint16_t)(vq->vq_used_cons_idx &
827                                 (vq->vq_nentries - 1));
828                 uep = &vq->vq_split.ring.used->ring[used_idx];
829
830                 desc_idx = (uint16_t)uep->id;
831                 dxp = &vq->vq_descx[desc_idx];
832                 vq->vq_used_cons_idx++;
833                 vq_ring_free_chain(vq, desc_idx);
834
835                 if (dxp->cookie != NULL) {
836                         rte_pktmbuf_free(dxp->cookie);
837                         dxp->cookie = NULL;
838                 }
839         }
840 }
841
842 /* Cleanup from completed inorder transmits. */
843 static __rte_always_inline void
844 virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
845 {
846         uint16_t i, idx = vq->vq_used_cons_idx;
847         int16_t free_cnt = 0;
848         struct vq_desc_extra *dxp = NULL;
849
850         if (unlikely(num == 0))
851                 return;
852
853         for (i = 0; i < num; i++) {
854                 dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
855                 free_cnt += dxp->ndescs;
856                 if (dxp->cookie != NULL) {
857                         rte_pktmbuf_free(dxp->cookie);
858                         dxp->cookie = NULL;
859                 }
860         }
861
862         vq->vq_free_cnt += free_cnt;
863         vq->vq_used_cons_idx = idx;
864 }
865 #endif /* _VIRTQUEUE_H_ */